

CAN System Engineering

Wolfhard Lawrenz
Editor

CAN System Engineering
From Theory to Practical Applications

1 3

ISBN 978-1-4471-5612-3 ISBN 978-1-4471-5613-0 (eBook)
DOI 10.1007/978-1-4471-5613-0
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013951526

© Springer-Verlag London 1997, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editor
Wolfhard Lawrenz
C&S group GmbH
Wolfenbüttel
Germany

v

Preface

Controller Area Network—CAN—is a communication protocol, which had been
developed by R. Bosch GmbH in the beginning of the 1980s.The design focus
was to support robust applications in cars. The protocol then was introduced to
the market in cooperation of Bosch and Intel. In the year 1990 Mercedes Benz
was the first car manufacturer who applied CAN in a series application, in the
S-class car for networking of body electronics. The first suppliers of CAN mo-
dules at that time were Intel and Motorola. Currently almost all minor and ma-
jor semiconductor manufacturers have CAN products in their portfolio. In 1997
24 million CAN interfaces were produced in 1 year; 2 years later there were
already more than three times as many. Currently there will probably be more
than a billion per year.

In the CAN introduction phase—in the end of the 80s and the beginning of
the 90s—mostly so called “stand-alone” solutions were offered, which could be
easily connected to any type of micro-controller. This strategy fostered the broad
application of CAN, because CAN application was not only limited to the micro-
controller families of the pioneer semiconductor manufacturers. Since the 90s
more and more integrated solutions—CAN together with a microcontroller on
one single chip—were launched on the market. However the so called transcei-
ver—the interface between the analogue signals on the bus lines and the digital
signals of the CAN controller—is even still today typically implemented in a se-
parate chip due to its different semiconductor technology. The integrated version
of CAN and micro-controller saves die size and connecting pins, increases relia-
bility and reduces cost. These factors and the CAN quality itself are some reasons
for the overwhelming CAN market dissemination. Currently, CAN communica-
tion networking is applied widely in cars, but also in avionics, trains, military
 applications, industrial controls, etc.

The big interest in CAN is mirrored by the huge amount of publications rela-
ted to CAN. This is another reason for this newly revised second edition of the
English-language CAN book, which corresponds to the 5th edition of the German-
language CAN book. This edition addresses the various issues and questions when
applying CAN for communication networks. As such, there is a short introduction
into the CAN basics. Furthermore, problems and solutions are discussed for the

vi Preface

physical layout of networks including EMC issues and topology layout. Addi-
tionally, quality issues and, especially, test techniques are addressed. A special
feature of this CAN book is that all the technical details have been contributed
by different authors who are widely known specialists in their field of expertise.

Wolfhard Lawrenz, Wolfenbuettel
 July 2013

vii

Contents

1 CAN Basic Architectures ... 1
 Wolfhard Lawrenz

2 Physical Layer .. 41
 Wolfhard Lawrenz, Cornelius Butzkamm, Bernd Elend, Thorsten Gerke,

Magnus-Maria Hell, Ursula Kelling, Bernd Koerber, Kurt Mueller,
 Christian Schmitz, Radoslaw Watroba and Rolf Weber

3 Data Link Layer Implementation ... 131
 Wolfhard Lawrenz, Florian Hartwich, Ursula Kelling, Vamsi Krishna,

 Roland Lieder and Peter Riekert

4 Higher Level Protocols .. 173
 Gangolf Feiter, Lars-Berno Fredriksson, Karsten Hoffmeister,

Joakim Pauli and Holger Zeltwanger

5 Applications .. 255
 Guenter Reichart, Gabriel Leen, Nathalie Courmont, Ralph Knüppel,

 Christian Schmid and Markus Brockmann

6 Testing ... 283
 Wolfhard Lawrenz, Federico Cañas, Maria Fischer, Stefan Krauß,

 Lothar Kukla and Nils Obermoeller

Bibliography ... 345

Index .. 351

ix

Contributors

Markus Brockmann WILO AG, Nortkirchenstrasse, Dortmund, Germany

Cornelius Butzkamm C&S group GmbH, Am Exer, Wolfenbuettel, Germany

Federico Cañas Quellweg 27, Berlin, Germany

Nathalie Courmont Airbus France S.A.S., 316 Route de Bayonne, Toulouse
Cedex, France

Bernd Elend NXP Seminconductors Germany GmbH, Streesemannallee,
Hamburg, Germany

Gangolf Feiter Concepts & Services Consulting, Alte Landstrasse, Heinsberg,
Germany

Maria Fischer C&S group GmbH, Waldweg, Wolfenbuettel, Germany

Bernd Koerber Westsächsische Hochschule Zwickau, Dr.-Friedrichs-Ring,
 Zwickau, Germany

Lars-Berno Fredriksson Kvaser AB, Aminogatan, Mölndal, Sweden

Thorsten Gerke Synopsys GmbH, Karl-Hammerschmidt-Strasse, Aschheim-
Dornach, Germany

Florian Hartwich Robert Bosch GmbH, Tuebinger Strasse, Reutlingen, Germany

Magnus-Maria Hell Infineon Technologies AG, Am Campeon, Neubiberg, Germany

Karsten Hoffmeister Elektrobit Automotive GmbH, Max-Stromeyer-Strasse,
Konstanz, Germany

Ursula Kelling Infineon Technologies AG, Am Campeon, Neubiberg, Germany

Stefan Krauß Vector Informatik GmbH, Ingersheimer Strasse ,Stuttgart, Germany

Vamsi Krishna Xilinx India Technology Services Pvt. Ltd., Cyber Pearl, Hi-tec
City, Madhapur, Hyderabad, India

Ralph Knüppel Airbus Deutschland GmbH, Hünefeldstr. Bremen, Germany

Lothar Kukla C&S group GmbH, Am Exer, Wolfenbüttel, Germany

Wolfhard Lawrenz C&S group GmbH, Waldweg, Wolfenbuettel, Germany

Gabriel Leen BMW AG, Petuelring, Munich, Germany

Roland Lieder Renesas Electronics Europe GmbH, Arcadiastrasse, Duesseldorf,
Germany

Kurt Mueller Synopsys, Inc., 2025 NW Cornelius Pass Road, Hillsboro, OR, USA

Nils Obermoeller C&S group GmbH, Am Exer, Wolfenbüttel, Germany

Joakim Pauli Volvo Powertrain Corporation, Gropegårdsgatan, SE, Göteborg,
Sweden

Peter Riekert Ingenieurbüro für IC-Technologie, Kleiner Weg, Wertheim, Germany

Christian Schmitz ELMOS Semiconductor AG, Heinrich Hertz Strasse,
 Dortmund, Germany

Christian Schmid Airbus Deutschland GmbH, Hünefeldstr. Bremen, Germany

Radoslaw Watroba STMicroelectronics Application GmbH, Bahnhofstraße,
Aschheim-Dornach, Germany

Rolf Weber ELMOS Semiconductor AG, Heinrich Hertz Strasse, Dortmund,
Germany

Holger Zeltwanger CAN in Automation (CiA) GmbH, Kontumazgarten,
Nuremberg, Germany

Contributors

xi

Abbreviations

A
ABS Anti-lock Braking System
ABT Automatic Block Transfer for the transmission of multiple CAN

messages without CPU interaction
AC Alternating Current
ACC Adaptive Cruise Control
ACK Acknowledge, e.g. ACK-Bit in CAN-messages
ADC Analog Digital Converter
AEE Architecture électronique électrique—Denotes the electrionic

architecture at PSA PEUGEOT CITROËN
AEEC Airlines Electronic Engineering Committee—The AEEC deve-

loped standards and technical solutions for avionics, cabin sys-
tems and networks

AFCAN Advanced Full-CAN—controller architecture microcontrol-
lers from NEC with optional diagnostic functionality called
“DAFCAN”

AFDX Avionics Full Duplex Switched Ethernet—Ethernet-based proto-
col, supplemented by data rate control (QoS) and deterministic
routing

AFIR (Xilinx) Acceptance Filter ID Register
AFMR (Xilinx) Acceptance Filter Mask Register
AFR (Xilinx) Acceptance Filter Register
AM Amplitude Modulation
AMP Arbitration on Message Priority
API Application Programming Interface
ARINC Aeronautical Radio Inc.—various technical standards of the

aerospace industry; create and maintained by ARINC
ARPANET Advanced Research Projects Agency Network—precursor to the

Internet
ASAP Asynchronous Service Access Protocol—describes a standard-

ized way to start, manage, and monitor long running services
ASC ASCII—ASCII-encoded text file

xii Abbreviations

ASCB-D Avionics Standard Communications Bus, rev. D—bus structure
for networking avionics modules from Honeywell

ASCII American Standard Code for Information Interchange—known
7-bit character encoding with 128 characters, consisting of 95
printable and 33 non-printable characters

ASIC Application-Specific Integrated Circuit—also: Custom-Chip,
called an application-specific integrated circuit

ASP Abstract Service Primitive
ATA Air Transport Association
ATM “Anyone-to-Many”—principle of communication
AUTOSAR AUTomotive Open System ARchitecture

B
BACnet Building Automation and Control Networks—a network proto-

col for building automation
BCC Block Check Character—approval of a data block in the longi-

tudinal parity checking
BCI Bulk Current Injection
BIOS Basic Input Output System—Software that allows the start of a

PC
BRP Baud Rate Prescaler—also: BRPR, Baud rate prescaler, directs

the TQ-stroke from the oscillator clock
BSI Boîtier de Servitude Intelligent—Acronym refers to the central

control unit in PSA PEUGEOT CITROËN
BSP Bit Stream Processor—Bit stream processor, responsible for

serialization and deserialization of messages and the insertion
and removal of transport information (Stuff-Bits, CRC etc.)

BSW Basic Software
BTL 1) Bit Timing Logic
 2) Backplane Transceiver Logic
BTR Bit Timing Register
BUSK Bus Coupler for decentralized heating control system GENIAX

C
CAN Controller Area Network
CAN_H CAN High—also: CANH. One of the CAN bus lines, bus signal

with dominant at a higher potential than CAN-Low (CAN_L)
CAN_L CAN Low—also: CANL. One of the CAN bus lines, bus signal

with dominant at a lower potential than CAN-High (CAN_H)
CAT Category (of Twisted-Pair-Cables)
CCT CAN Conformance Tester—test control software of the C&S

group for conformance testing of CAN controllers
CD Compact Disc
CEN (Xilinx) CAN Enable—Bit in the software reset register (SRR),

that activates the CAN controller

xiiiAbbreviations

CFI Canonical Format Indicator—Bit in the ethernet-frame-header
CiA CAN in Automation—international users and manufacturers

with stakeholders CAN Application Layer (IG CAL), CANopen
(IG CANopen) and SAE J1939 (IG J1939) with the aim of sprea-
ding and standardization of CAN in the industry

CIP Common Industrial Protocol—an open protocol for industrial
automation applications

CISPR Comité international spécial des perturbations radioélectri-
ques—official translation: International Special Committee on
Radio Interference

CK CanKingdom—short form for the CanKingdom
Meta-High-Level-Protocol

CLK Clock
CMC Common Mode Choke
CO2 Carbon Dioxide—chemical compound of carbon and oxygen,

acidic, non-flammable, colorless and odorless gas
COAX Coaxial—short form for “Coaxialcable”, a cable with a central

inner conductor, a dielectric surrounding the insulation and an
outer conductor which also serves as the shield, enclosed by a
protective jacket

COB-ID Communication Object Identifier
CPU Central Processing Unit
CRC Cyclic Redundancy Check—Method for determining a check

value for data in order to detect errors in transmission or storage
may

CRI Certification Review Item—Subject to an acceptance test
CS Chip Select
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CSMA/CR Carrier Sense Multiple Access/Collision Resolution
CSR Command and Status Register
CSV Comma Separated Values

D
DAL Design Assurance Level
DBC CANdb-database-file, Channel definition for CAN bus in the

format of Vector computer science
DC Direct Current
DDM Driver Door Module
DID Data Identifier
DIN formerly: German industrial standard; Today, the name is regar-

ded as characteristic of DIN community work of the German
Institute for Standardization. DIN standards are recommendati-
ons and can be applied

DI Digital I/O

xiv

DIP-Schalter DIP Dual In-line Package—several typical single-pole switches
in a design with two parallel rows of connection

DLC Data Length Code—length code for the amount of user data in a
CAN message

DMA Direct Memory Access
DMIPS/MHz Dhrystone MIPS/Megahertz—A synthetic benchmark program

to measure the integer performance; Loop cycles through the
program are counted for performance evaluation, regardless of
the number of pure instructions; Expressiveness by specifying
better than pure MIPS

DN Data New—Flag that indicates the content of a receive buffer as
updated

DOC Data Object Code
DP Process Fieldbus for Decentralized Peripherals—Profibus solu-

tion for Low-Cost-Sensor-/Actuator-networks specializing in
brief messages at high speed

DPI Direct Power Injection—Method for direct interference cou-
pling into the pins of the test object

DSC Digital Signal Controller
DSD Debug Service Data
DSO Digital Storage Oscilloscope
DSP Digital Signal Processor
DTC Diagnostic Trouble Code
DVD Digital Versatile Disc

E
EAN European Article Number—Product labeling for commercial

items, today: International Article Number
EASA European Aviation Safety Agency URL: www.easa.europa.eu
EAST-ADL Electronics Architecture and Software Technology—Architec-

ture Description Language
EBCDIC Extended Binary Coded Decimals Interchange Code
eBUS Energy Bus—Simple UART protocol for heating applications
ECC Error Correction Code—Procedures that can help detect and

correct errors of redundancy in stored data
ECM Engine Control Module
ECU Electronic Control Unit
EDK Embedded Development Kit
EDS Electronic Data Sheet
EEC Exception Event Channel—Acronym for logical communication

channel ARINC 825 for exception events
EED Emergency Event Data
EEPROM Electrically Erasable Programmable Read-only Memory

Abbreviations

xv

EIB European Installation Bus – European installation of building
automation, according to standard EN 50090, current name:
KNX, standardized in ISO/IEC 14543-3

EMC Electromagnetic Compatibility
EME Electromagnetic Emissions
EMI Electromagnetic Interference
EN European Standard
EN, ENT Enable (Not), Enable Transmitter—Mode selection control sig-

nal for a transceiver, and for activating the transmission stage
EOF End Of Frame
ESD Electro-Static Discharge –can destroy a semiconductorblock

without adequate safeguards
ESPRIT European Strategic Program on Research in Information

 Technology –
EU European Union

F
FAA Federal Aviation Administration URL: www.faa.gov
FCS Frame Check Sequence—Check information generated by the

CRC method and transmitted along with the protected message,
in representations of data frames often called “CRC field” be
lines, in an Ethernet frame, for example, a 32-bit CRC include
field

FGID Function Group Identifier
FID Function Code Identifier
FIFO First In, First Out—Operation of data buffer structures and

items that were first stored, first out
FLASH Flash-EEPROM, see EEPROM
FLDU Front Left Door Unit
FM Frequency Modulation
FMC CAN Base Frame Migration Channel – Acronym for logical

communication channel ARINC 825
FMS Process Fieldbus Message Specification
FPGA Field Programmable Gate Array—An integrated circuit (IC) in

digital technology, in which a logic circuit can be programmed
FRDU Front Right Door Unit
FSA Finite State Automation
FTDMA Flexible Time Division Multiple Access—Minislotting method

G
GA General Aviation
GIFT Generalized Interoperable Fault-tolerant CAN Transceiver—

The GIFT-Group has developed the specification for low-speed
CAN transceiver

GLARE Glass-fibre reinforced aluminium

Abbreviations

xvi

GND Ground-Zero potential, connection of devices, ECUs etc.
GNU GNU is not Unix—recursive acronym as the name of a project to

create a fully free operating system
GPL General Public License—published by the Free Software Foun-

dation License Copyleft (pun as opposed to copyright) for the
licensing of free software

GPS General Public License—published by the Free Software Foun-
dation License Copyleft (pun as opposed to copyright) for the
licensing of free software

GPS Global Positioning System—officially NAVSTAR GPS is a glo-
bal navigation satellite system for determining the position and
timing

GPT General Purpose Timer
GTR Global Technical Regulation
GUI Graphical User Interface

H
HBM Human Body Model—An electrical model of the human body,

in particular with respect to the capacitance and the resistance
value of

HDV Heavy Duty Vehicle
HF High Frequency
HIL Hardware In the Loop—Method for testing and validating

embedded systems by an existing hardware can be integrated
into a simulated system to test the function

HIS Herstellerinitiative Software—Joint activities of the automobile
manufacturer Audi, BMW, Daimler, Porsche and Volkswagen
to develop uniform standards: standard software modules for
networks that process maturity determination, software testing,
software tools and programming of control units

HLP High Level Protocol
HPB (Xilinx) High Priority Buffer—Transmission buffer having a

high priority in order to avoid the need to transmit FIFO

I
I/M Inspection/Maintenance
I/O Input/Output
IC Integrated Circuit
ICSP In-Circuit Serial Programming—In circuit serial programming

(programming of a semiconductor in installed)
ICT International Transceiver Conformance Test—The ICT pro-

ject has developed conformance testing for CAN transceiver
after the date specified in POISON standard components and
standardized

Abbreviations

xvii

ID Identifier—The identifier of CAN messages (CAN-ID), also
used as an example, data identifier, connection identification,
equipment identification

IDE Identifier Extension—Bit in the header of the CAN frame:
high—followed by 18 additional ID bits (extended frame),
low—standard frame

IE Interrupt Enable—Flag for switching of interrupts
IEC International Electrotechnical Commission—The International

Electrotechnical Commission developed and published interna-
tional standards URL: http://www.iec.ch

IEEE Institute of Electrical and Electronics Engineers—Worldwide
professional association of engineers in the fields of electrical
engineering and computer science, originally acting as a stan-
dards body engineering association in the United States

IFS Interframe Space—Minimum interval between two CAN
frames, three recessive bits

IIC Inter-Integrated Circuit—serial data bus for connecting diffe-
rent circuit parts, mostly inside the device

IMA Integrated Modular Avionics—a computer-/network- architec-
ture in aircraft

INH Inhibit—Output signal of a transceiver, for example, serves to
control of connected voltage regulator to switch off the control
unit in sleep mode until an alarm is received via the CAN bus

IP Internet Protocol
IP65 International Protection (Class) 65– For protection against

contact and foreign bodies and water protection (1. digit:
6– Protected against access with a wire and dustproof, 2. digit:
5– Protection against water jets (nozzle) from any angle)

IP-Core Intellectual Property Core—reusable part of a chip designs,
including the intellectual property of the developer and is passed
against royalties

IPIEF (Xilinx) Intellectual Property Inter-Connect—OPB IPIF signals
for connecting the processor and peripheral on-chip

IPIF (Xilinx) Intellectual Property Interface—Used in connection
with the on-chip peripheral bus (OPB),

IRT Isochronous Real Time—Simultaneous real-time method for e.g.
Industrial Ethernet for real-time systems with time-synchroni-
zed participants

ISA/SP50 International Society of Automation, Signal Compatibility of
Electrical Instruments—Objective: Define common interfaces
between components of electrical measurement and/or control
systems URL: http://www.isa.org

ISO International Organization for Standardization
ISO/CD ISO/Committee Draft
ISO/PAS ISO/Public Available Standard

Abbreviations

xviii

ISO/WD ISO/Working Draft
ISPF Interoperable System Project Foundation—Predecessor of the

Fieldbus Foundation, which has emerged from the ISPF and the
North American offshoot of WorldFIP

ISR 1) Interrupt Service Routine—routine which is executed at the
interrupt event occurs

 2) (Xilinx) Interrupt Status Register—Register for querying the
status of the status of interrupt sources, eg, if no interrupts are
used (polling)

ITID InfoType Identifier
IUT Implementation Under Test

J, K
JSAE Japanese Society of Automotive Engineers

L
LAN Local Area Network
LBA Federal Aviation
LCC Logical Communication Channel
LCL Local Bus Only—ARINC 825 bit in the identifier
LDV Light Duty Vehicle
LED Light Emitting Diode
LEN Length-Field
LIN Local Interconnect Network—especially for low-cost

applications
LLC Logical Link Control—Logical Link Control, the extension of

the layer 2 Ethernet protocol provides the connection to the layer
3 with various transmission methods ago

LON Local Operating Network—mainly inserted in building automa-
tion fieldbus

LRC Longitudinal Redundancy Check
LRU Line Replaceable Unit—By defined hardware interfaces, net-

work layer, security mechanisms, data types and coordinate sys-
tem definitions replaceable network nodes in CANaerospace

LSB Least Significant Bit
LSS Layer Setting Services—CANopen services for Node ID

configuration
LT Lower Tester—Part of the test system, which uses the interface

of the IUT to deeper layers
LWL Fiber

M
MAC Media Access Control
MAC ID Media Access Control Identifier

Abbreviations

xix

MAST A hardware description language (HDL) from Synopsys and a
de facto industry standard, first published in 1986 and applied
for analog and mixed-signal applications

MBRB Multi Buffer Receive Block—Block of a plurality of receiving
buffers for receiving messages complying with the same filte-
ring conditions

MCAL Micro-Controller Abstraction Layer
MCNet Mobile Communication Network
MCU Micro-Controller Unit
MDI Medium Dependent Interface—Functional interface to the trans-

mission medium
MDV Medium Duty Vehicle
MI Malfunction Indicator
MID Monitor Identifier
MIL Malfunction Indicator Light
MIPS Mega Instructions Per Second
MLT-3 Multilevel Transmission Encoding, 3 Levels
MMU Memory Management Unit
MOST Media Oriented Systems Transport—Bus system, especially for

the connection of multimedia components in the vehicle
MPDO Multiplexed Process Data Object
MPU Micro Processor Unit
MSB Most significant Bit
MSC Message Status Counter
MSR (Xilinx) Mode Select Register—Register to select the operating

mode

N
NACK Negative Acknowledge
NASA National Aeronautics and Space Administration
NBT Nominal Bit Time—Nominal (ideal) bit time without considera-

tion of oscillator tolerances or other deviations from the nominal
bit time

NEFZ New European Driving Cycle
NERR (Not) Error—Output signal of a transceiver is used to indicate

detected bus errors or e.g. overtemperature
NIC Network Interface Controller
NID Node Identifier
NM/NMT Network Management
NOC Normal Operation Channel—Acronym for logical communica-

tion channel ARINC 825 for normal operation (user data)
NOD Normal Operation Data—Gewöhnliche Nutzdaten
NOx Nitrogen Oxide—Stickstoffoxid, oft auch kurz Stickoxid

Abbreviations

xx

NRZ Non-Return-to-Zero—Method of line coding for binary signals
without neutral symbol (zero-symbol), the binary coded one on
one with two defined levels

NRZI Non-Return-to-Zero Invert—A method for encoding binary sig-
nals without line neutral symbol (zero), in contrast to the NRZ
coding, the coded binary signal not level but by a level change
(for example, 1’ = switch to the beginning of the stroke and
‘0’= no exchange)

NSC Node Service Channel—Acronym for logical communication
channel ARINC 825 for node services

NSH/NSL High/Low Priority Node Service Data
NSTB (Not) Stand-by—Mode selection control signal for a transceiver
NTU Network Time Unit—network-wide measure of the time at

TTCAN
NVM Non-Volatile Memory

O
OBD On-Board Diagnostics
ODX Open Diagnostic Data Exchange—Formal description language

for essential information of vehicle or ECU diagnostics (request
and documentation), standardized in ISO/DIS 22901-1

OEM Original Equipment Manufacturer
OPB (Xilinx) On-chip Peripheral Bus—Bus between the processor

and the peripherals on a microcontroller chip
OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im

Kraftfahrzeug/Vehicle Distributed Executive—Panel of automo-
tive manufacturers, suppliers and software companies to - and
the French initiative VDX

OSI Open Systems Interconnect

P
PA Process Automation—Profibus solution for Chemical and Petro-

chemical industry in hazardous areas
PAD Padding-Field—Padding field in the Ethernet-frame, if this is

not achieved with the minimum length of the payload transpor-
ted by 64 bytes

PC Personal Computer
PCB Printed Circuit Board
PCO Point of Control and Observation
PDIP Plastic Dual In-line Package—A housing for electronic devices

having double-row-shedding plastic, wherein there are two rows
of pins (pins) for through-hole mounting on opposite sides of the
housing

PDM Passenger Door Module
PDO Process Data Object

Abbreviations

xxi

PDU Protocol Data Unit
PEC Peripheral Event Controller—A kind of “hidden”, infiltrates

realized in hardware interrupt, the transfer commands in the nor-
mal program flow without new commands must be fetched from
the program memory

PGN Parameter Group Number
PHY Physical Layer (common abbr.)—Identifies the module that is

responsible for mediating between purely digital and analog bus
signals

PID Parameter Identifier
PLB (Xilinx) Processor Local Bus—A fast interface between the pro-

cessor and high-performance peripherals
PLL Phase-Locked Loop—Phase locked loop electronic circuit to

minimize the phase error of a clock signal from a reference sig-
nal, whereby the resulting frequency is stabilized

PLS Physical Layer Signalling—includes Bit-Encoding/-Decoding,
bit timing and synchronization

PMA Physical Medium Attachment
PN Partial Networking—Partial network operation by switching off

of ECUs by the partial networking transceiver that is awakened
only by dedicated wake-up frames again

PoE Power over Ethernet—Method for supplying power to Ethernet
network devices on the bus

POF Polymeric Optical Fiber/Plastic Optical Fibre
PPDT Peer-to-Peer Data Transport
PRNG Pseudorandom number generator
PTP “Peer-to-Peer”—Communication with participants addressing
PVT Private—ARINC 825 bit in the identifier
PWM Pulse Width Modulation

R
RAM Random Access Memory
RCI Redundancy Channel Identifier—ARINC 825 supports redun-

dant transmission: The RCI defines which redundancy channel
is assigned to a message

RCP Rapid Control Prototyping—Computer-aided design method for
regulating and controlling development (rapid prototype design)

REC Receive Error Counter
RF Radio Frequency—Denotes oscillation frequencies in the range

from about 30 kHz to 300 GHz
RHL Receive History List—List of reception history of CAN messages
RID Routine Identifier
RLDU Rear Left Door Unit
RM Receive-only Mode
ROM Read Only Memory

Abbreviations

xxii

RPDO Receive Process Data Object
RRDU Rear Right Door Unit
RS Recommended Standard—Recommended Standard EIA (Elec-

tronic Industries Alliance), former importance: Radio Sector of
the U.S. standardization committees, a well-known representa-
tive is such as RS 232

RSD/SMT Reserved/Service Message Type ARINC 825 bit in the identifier
RT Real Time
RTC Real Time Clock
RTE Run-Time Environment
RTH Resistor Termination High In low-speed transceiver CAN_H

can be connected to the stabilization of the bus level (idle) on
the external termination resistor to ground

RTL Resistor Termination Low—In low-speed transceiver CAN_L
can be connected to the stabilization of the bus level (idle) on
the external termination resistor to VCC

RTR Remote Transmission Request
RTT Real-Time Testing
RX Receive
RxD Receive Data
RZ Return to Zero—Line coding, wherein the transmitter is returned

to zero within each transmitted symbol (usually + 1 and − 1)

S
S/N Signal/Noise
SAE Society of Automotive Engineers
SAM System of Aviation Modules—A completely based CANaero-

space avionics system for small transport aircraft
SAP Service Access Point
SAPI Service Access Point Identifier
SBP Serial Bus Protocol—Basis for the PPDT with FireWire
SCI Serial Communication Interface—Generic term for serial bus

systems, often confused with e.g. RS232
SCU System Control Unit—Microcontroller unit that allows, for

example, by reducing or stopping the clock frequency of peri-
pheral elements for saving energy

SDCS Safety Decision Control System – Control system, which auto-
matically makes security decisions

SDL System Description Language
SDO Service Data Object
SERCOS Efficient, deterministic real-time communication based on

Ethernet protocol is used by CNC machines via motion control
to general automation URL: http://www.sercos.com

Abbreviations

xxiii

SFD Start Frame Delimiter—Ends the preamble in an Ethernet frame
SFID Sub-Function Identifier
SFR Special Function Register
SGN Signal Group Number
SID Service Identifier/Server Identifier
SIL Safety Integrity Level—A method for determining the potential

risk to persons, systems, devices and processes in the case of a
malfunction

SJW Synchronization Jump Width—Maximum extent to which the
phase segments may be changed in the post-synchronization
during receiving in order to adjust the sampling

SLIO Serial Linked IO—Input-/Output port, which operates without
local software and configured via the bus can be accessed and
controlled

SOF Start Of Frame—Bit, marks the beginning of a CAN frame
SOFIA Stratospheric Observatory For Infrared Astronomy—A Boeing

747SP with a 2.7-m telescope for infrared astronomy
SOIC Small-Outline Integrated Circuit—Housing for integrated cir-

cuits, SO-ICs are 30 to 50 % smaller than the corresponding
DIL-ICs

SOP Start Of Production
SOVS System Operation Vector Space
SPI Serial Peripheral Interface
SPICE Simulation Program with Integrated Circuit Emphasis—a soft-

ware for simulation of analog, digital, and mixed electronic
circuits

 PSPICE—PC-Version of SPICE
 HSPICE—UNIX-Version of SPICE
SPLIT Output pin of a transceiver, provides 2.5 V voltage to stabilize

the bus level ready to be connected via split termination resistors
for CAN_H and CAN_L

SPN Suspect Parameter Number—Signal and parameter identifica-
tion, such as J1939-71

SR (Xilinx) Status Register
SRDO Safety-related Data Object
SRR 1) Substitute Remote Request—Bit in the header of a CAN

frame, replaces the RTR bit
 2) (Xilinx) Software Reset Register—The control register to per-

form a software reset
STP Shielded Twisted Pair
SUT System Under Test
SWC Software Component
SWITCH Selective Wake-up Interoperable Transceiver in CAN High-Speed

Abbreviations

xxiv

T
TADL Timing Augmented Description Language—Language for sys-

tem-wide time behavior description of automotive functions and
their interactions

TC Test Case
TCM Transmission Control Module
TCP Test Coordination Procedure
TCP/IP Transmission Control Protocol/Internet Protocol—Network

protocol suite, also called Internet protocol family
TDMA Time Division Multiple Access
TEC Transmit Error Counter
THL Transmit History List—List of broadcasting history of CAN

messages
TID Test Identifier
TIMMO Timing Model—A ITEA 2 project developed a standardized

infrastructure for development-related handling of time informa-
tion in real-time embedded systems in the automotive industry

TMC Test and Maintenance Channel—Acronym for logical communi-
cation channel ARINC 825 for test and maintenance purposes

TPDO Transmit Process Data Object
TQ Time Quantum—Time step, a sampling designation for the bus

sampling of the CAN controller, the length is derived from the
oscillator clock, divided by the value of the baud rate prescaler

TRQ Transmit Request
TSEG1/2 Timing Segment 1/2
TTCAN Time-Triggered CAN
TTL Transistor-Transistor-Logic—Transistor-transistor logic family

of logic, logic circuits are used in the planar npn bipolar transis-
tors as active components

TTP Time-Triggered Protocol—Transmission protocol that allows
timed and fault-tolerant communication and satisfies hard real-
time requirements

TUR Time Unit Ratio—Part relationship (node-specific) between the
local clock source and the network time unit (NTU) in TTCAN

TV Television
TX Transmit
TxD Transmit Data
TxEN Transmit Enable (Not)—Control signal to the transceiver of the

CAN controller that activates the transmitter
TxRQ Transmit Request—also: TXREQ or TRQ

U
UAF (Xilinx) Use Acceptance Filter—Bit n AFR-register, on the use

of an acceptance filter pair free

Abbreviations

xxv

UART Universal Asynchronous Receiver Transmitter—Universal asyn-
chronous receiver [and] transmitter electronic circuit for the rea-
lization of digital, serial interfaces and byte-oriented protocols

UDC User-defined Channel—Acronym for logical communication
channel ARINC 825 for custom data

UDH/UDL High/Low Priority User-Defined Data
UDP/IP User Datagram Protocol—Protocol for data transfer on the

Internet
UDS Unified Diagnostic Services
UML Universal Modelling Language
USB Universal Serial Bus
USIC Universal Serial Interface Controller
UT Upper Tester—Part of the test system, which serves the IUT

interface to higher layers
UTP Unshielded Twisted Pair—Unshielded, twisted-pair cable, often

used for CAN

V
VDA Association of the Automotive Industry
VHDL-AMS Very High Speed Integrated Circuit Hardware Description

Language
VFB Virtual Function Bus
VIN Vehicle Identification Number
VLAN Virtual Local Area Network—Virtual local area network, The

method for displaying a plurality of logical networks on a single
physical network, such as Ethernet

VRC Vertical Redundancy Check

W
WK Wake—Local Wake-pin with which the transceiver can be awa-

kened, for example by means of switches from sleep mode
WUF Wake-up Frame—CAN message with specific useful data that

exist only to wake from partial network transceivers on the
busWWH-OBD Wold-wide harmonized OBD—globally harmo-
nized OBD

X
XLP eXtreme Low Power
XML Extensible Markup Language—free “extensible markup lan-

guage” for representing hierarchically structured data in the
form of text data

XOR eXclusive OR

Abbreviations

1

Chapter 1
CAN Basic Architectures

Wolfhard Lawrenz

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_1,
© Springer-Verlag London 2013

W. Lawrenz ()
Waldweg 1,
38302, Wolfenbuettel, Germany
e-mail: W.Lawrenz@gmx.net

1.1 CAN History

The driving factor in the automotive industry for the development of controller
area network (CAN) and other so-called bus protocols was the need to search for
new solutions for the problem field, which resulted with the increasing need for
communication in vehicles—with the boundary condition to reduce the associated
impending increase in the complexity of the wiring harness in the car. The wiring in
cars may include several miles of cable length and may be heavier than 100 kg. It is
understandable that such wiring harnesses are difficult to install.

In addition, for example, a family car requires for covering the variants of only
one single model hundreds of different types of wiring harnesses. This shows clear-
ly which problem exists with the cabling, also in conjunction with the just-in-time-
logistic and, of course, with the question of cost reduction. Since the early 1980s,
almost all automobile manufacturers had started intensive efforts to find or develop
suitable communication protocols. One application—the so-called Class-C appli-
cations—aimed at the communication link between real-time critical control units
for engine management, transmission, brakes, vehicle stabilization, etc. Any other
application—so-called Class-A applications—addresses the area of body electron-
ics, e.g. for mirror control, power windows, door locks, seat adjustment, climate
control, lighting, etc. The latter area is less real-time critical, therefore, it requires
a lower communication bandwidth, but is, however, extremely cost-sensitive. In
response to the needs of different classes of applications, different bus protocols
have emerged, such as CAN, Local Interconnect Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay.

Since 1994–1995, CAN is the most common protocol for automotive appli-
cations, and is described in the International Organization for Standardization
(ISO) standards 11898-1 to 11898-5. In Part 1 of ISO 11898 (ISO 11898-1), the

2 W. Lawrenz

data link layer and physical layer are set according to the ISO reference model
ISO/IEC 7498-1. The “High Speed” CAN bus access (up to 1 Mbit/s) is speci-
fied in ISO 11898-2 and mainly used in the propulsion of a vehicle. The “Low
Speed” CAN (40…125 kbit/s) for the comfort section is described in ISO 11898-
3. ISO 11898-4 allows a time-triggered communication to ensure a smooth data
transfer with high communication traffic. Available since 2007, the expansion of
the ISO 11898-2 describes the behaviour of a CAN high-speed node in the power
saving mode. Since the early 1990s, CAN was at first used in series-production cars
and also in industrial control, usually in conjunction with the higher CANopen pro-
tocol. CANopen (see Sect. 6.1) is specified in the European standard EN 50325-4
and is maintained by the user organization CiA (CAN in Automation). Reasons for
the series use are certainly the high performance standard, low costs and the wide
range of semiconductor manufacturers, which offer CAN modules. CAN was used
first in the Mercedes S-Class in 1992 and served there as a high-speed network for
communication between engine control, transmission control and dashboard. A sec-
ond CAN network was—at low speed—used for distributed climate control. BMW,
Porsche, Jaguar, etc., put CAN into series-production cars shortly after.

Typical applications of CAN are:

• Transportation with CAN applications: passenger cars, trucks, planes, trains,
ships, agricultural machinery, construction machinery, etc.

• Industrial control automation technology with CAN communications such as:
programmable controllers, automatic handling equipment, robots, intelligent
motor controllers, intelligent sensors/actuators, hydraulic systems, intelligent
meters for different applications such as water consumption, energy consump-
tion, etc., textile applications such as spinning, weaving, etc., medical techno-
logy, laboratory automation, building systems, elevators, automatic teller machi-
nes (ATMs), toys, mechanical tools and much more.

Nowadays, it is increasingly important, also through the tightening of legal regula-
tions, to reduce CO2emissions and fuel consumption of new vehicles. At the same
time, with shorter development times, the driving performance and the comfort of
a vehicle are to be increased, costs reduced and quality improved. Thus, there are
always new challenges to the development of electronic systems in vehicles; some
of them are only possible by a high degree of networking. Many of today’s standard
techniques would not be feasible without the use and dissemination of field buses.

1.1.1 Standardizations of CAN

Robert Bosch GmbH began as an electronic control unit (ECU) manufacturer in
1983 with the development of a communications protocol for bus systems, which
was initially only intended for the use in the automotive sector. The result was
CAN. The first CAN chip was offered to car manufacturers in the late 1980s by In-
tel. CAN was finally standardized in November 1993 as ISO 11898 Road vehicles—

31 CAN Basic Architectures

Interchange of digital information—Controller area network (CAN) for high-speed
communication.

1.1.1.1 The ISO 11898 family

The standard describes the architecture of CAN in terms of the layers of the Inter-
national Organization for Standardization/Open Systems Interconnection (ISO/OSI)
model1. It specifies both parts of the physical layer and parts of the link layer for
transmission rates up to 1 Mbit/s.

Part 1 and Part 2 correspond together to the first version of the standard:

• ISO 11898-1 Road vehicles—Controller area network (CAN) —Part 1: Data
link layer and physical signalling

• ISO 11898-2 Road vehicles—Controller area network (CAN) —Part 2: High-
speed medium access unit

The following parts were developed later:

• ISO 11898-3 Road vehicles—Controller area network (CAN)—Part 3: Low-
speed, fault-tolerant, medium-dependent interface

• ISO 11898-4 Road vehicles—Controller area network (CAN)—Part 4: Time-
triggered communication

• ISO 11898-5 Road vehicles—Controller area network (CAN)—Part 5: High-
speed medium access unit with low-power mode

Besides the ISO 11898 family, there are other standards for CAN in other organiza-
tions of standardization. Examples of this are the Society of Automotive Engineers
(SAE) Standards J2284-1 bis-3, which specify the physical layer for CAN networks
with different bit rates of 125 kbit/s (J2284-1), 250 kbit/s (J2284-2) and 500 kbit/s
(J2284-3).

1.2 CAN Specifications

The first publication of CAN was a paper at the SAE conference in Detroit (SAE
860391), in February 1986. The first published version of the whole CAN protocol
was the specification version 1.1. The protocol was further developed with ver-
sion 1.2, followed by version 2.0A and version 2.0B. The versions are compatible;
CAN modules of different protocol versions may be, with few limitations, operated
in a single network. CAN 1.2 allows a higher oscillator tolerance than CAN 1.1.

1 As a basis for a standardization of the various protocols, the Open Systems Interconnection (OSI)
reference model was designed. The protocol hierarchy—also known as the ISO/OSI model—is
available as standard ISO/IEC 7498–1 Information Technology— Open Systems Interconnection—
Basic Reference Model: The Basic Model.

4 W. Lawrenz

CAN 2.0A is identical to 1.2, while the CAN 2.0B specification introduces—in ad-
dition to those messages with 11-bit identifiers defined in CAN 2.0A—frames with
29-bit identifiers called “Extended Frame”.

The CAN protocol has been standardized by the ISO, in the standards ISO 11519
for bit rates up to 125 kbit/s and ISO 11898 for bit rates up to 1,000 kbit/s. Later,
these standards have been merged into ISO 11898. ISO 11898-1 describes the higher
ISO/OSI layer of the protocol up to the Data Link Layer, ISO 11898-4 describes the
time triggered option on CAN (TTCAN, see Sect. 3.2), and the other parts of the
standard describe different variants of the lower ISO/OSI layers, the CAN transceiv-
ers and the CAN bus line.

The following sections describe the CAN frame types and the associated system
features.

1.2.1 Bit Coding

The bit stream on the CAN bus line is coded according to the Non Return to Zero
(NRZ) method with bit-stuffing. This has the advantage to require only a minimum
bandwidth for signal transmission. On the other hand, the NRZ encoding, where the
bit level is constant during the bit time, contains no information about the bit clock.
For long data lengths, this may cause problems with synchronization and thus lead
to erroneous bit detection since each node in the network has its own clock genera-
tor.

Therefore, additional stuff bits are added to the main part of the bit stream. In
that part of the bit stream where the stuffing method applies, the transmitter will, af-
ter having sent five consecutive bits of identical value, insert (“stuff”) an additional
bit of inverse value into the bit stream. The receiver will recognize a sequence of
five consecutive bits of identical value and discard the following stuff bit.

Due to the bit-stuffing mechanism, the distance between edges in the bit stream
is at most five bits. The edges are used to synchronize the local bit clocks of all
nodes in the network. The chosen stuff-width is a compromise between the length-
ening of the frames and the tolerance range of the clock generators.

1.2.2 CAN Frames

There are four types of frames in the CAN protocol: Data Frame, Error Frame,
Remote Frame and Overload Frame. Only the Data Frame transports message data;
the other frames are for fault containment, triggering and synchronization.

Each CAN message is divided into different fields of specific length. These fields
are, for example, the End of Frame, the CyclicRedundancyCheck (CRC) Field, the
Data Field and the Arbitration Field. The Arbitration Field combines, in the identi-
fier, the priority of the message with the logical address of the information.

51 CAN Basic Architectures

Bit stuffing applies to the fields from the Start of Frame to the CRC Field, in
Data Frames and Remote Frames. There is no bit stuffing in the other fields and
also not in Error Frames or Overload Frames.

There are two identifier formats in CAN. The first is 11 bits long, specified in
CAN 2.0A, allowing 2,048 different logical addresses (0–2,047). This means that
a maximum of 2,048 different messages can be sent in a network if no additional
distinction is performed, for example, in the data bytes.

In some applications, this number may be too low. Therefore, the specification
has been extended so that messages with a total of 29 identifier bits are possible.
This allows 2 29 (= 536.870.912) different messages, called Extended Frames ac-
cording to CAN specification 2.0B.

The exact structure of the frames is shown in Fig. 1.1.
The individual bit fields, initially for frames with 11-bit identifiers (also called

Standard Frames) are described below:

• Start Of Frame = 1 bit = low ( dominant):
Marks the start of a frame. After an idle time on the bus, the falling edge is used for

phase synchronization of all network nodes.
• Arbitration Field = 12 bits:
The Arbitration Field contains the 11-bits-long Identifier, which is the logical ad-

dress and priority of the message. The lower the numerical value of the Identifier
is, the higher is the priority.

• The Identifier is followed by the Remote-Transmission-Request (RTR) bit. The
RTR bit identifies this message as one that either contains the data itself which
belong to the logical address (RTR = low = dominant) or as a frame which itself
contains no data but only triggers the actual transmitter of this information to
send a frame with the current data. The RTR bit is the last bit of the Arbitra-
tion Field. The request (which is called Remote Frame) and the response of the
corresponding data transmitter are two separate messages. This means that one
or more higher priority messages may be transmitted on the CAN bus between
request and response.

• Control Field = 6 bits:

Fig. 1.1  Structure of a CAN data frame

6 W. Lawrenz

The first bit in the Control Field is the Identifier Extension Flag (IDE) bit. In 11-bit
identifier frames it is low ( dominant), which indicates that the identifier is com-
pleted. The following bit r0 is reserved. The last four bits of the Control Field
contain the Data Length Code ( DLC) for the following Data Field.

• Data Field = 0–8 bytes of data:
Contains the actual data of the message.
• CRC Field = 16 bits:
Contains the checksum for the preceding bits of the frame. The 15-bits-long CRC

checksum ( CRC Sequence) is only used for fault detection, not for error correc-
tion. The CRC polynomial of CAN results in a Hamming distance of 6, meaning
that up to five single-bit errors in the message can be detected. Furthermore,
so-called burst-errors—directly consecutive bit errors—can be recognized up to
the length of the CRC Sequence. The checksum is followed by one bit, the CRC
Delimiter (high = recessive).

• Acknowledge Field = 2 bits:
All nodes that have seen a syntactically correct message on the CAN bus acknow-

ledge by sending a dominant level in the so-called ACK Slot. A Transmitter sends
a recessive level in the ACK Slot and expects that this recessive level is over-
written by a dominant level. The transmitter of the message considers a missing
dominant level in the ACK Slot to be an acknowledgement error. Detection of
this dominant level does not mean that the frame was received by all intended
recipients of this information! It only states that the frame was recognized by at
least one active node to be a correct CAN frame. The ACK Slot is followed by
one bit, the ACK Delimiter (high = recessive).

• End Of Frame (EOF) = 7 bits (high = recessive):
The End Of Frame (EOF) is characterized by a deliberate breach of coding. Accor-

ding to the bit-stuffing mechanism, a Stuff-Bit would be inserted after the fifth
recessive bit. This does not happen in EOF; the EOF indicates the end of the
data frame.

• Inter Frame Space (IFS) = 3 bits (high = recessive):
The Inter Frame Space (IFS) separates the current frame from the following frame.

Inside the CAN node, this period is also used for transferring a correctly received
message from protocol controller into the appropriate space of the receive buffer,
or for transferring a message from the transmit buffer to the protocol controller.

• Idle ≥ 0 bit (high = recessive):
The bus is unused. Each CAN node may, beginning with a Start of Frame bit, send

a message to the bus.
Frames with 29-bit identifiers (also called Extended Frames) differ from frames
with 11-bit identifiers in the Arbitration Field and in the first bit of the Control
Field:
• Arbitration Field = 32 bits:
The Arbitration Field of frames with 29-bit identifiers consists of three parts. It

starts with the 11 most significant bits (MSBs) of the identifier ( Base Identifier),
followed by two recessive (high) bits: the Substitute Remote Request bit (SRR)
and the IDentifier Extension Flag (IDE) bit. Then follow the 18 least significant

71 CAN Basic Architectures

bits (LSBs) of the identifier ( Identifier Extension). The concatenated values of
Base Identifier and Identifier Extension are the logical address and priority of
the message.

The last bit of the Arbitration Field is the RTR bit.
• Control Field = 6 bits:
In contrast to frames with 11-bit identifiers, the Control Field of frames with 29-bit

identifiers does not start with the IDE flag and one reserved bit, but with two
reserved bits, r1 and r0. The last four bits of the Control Field contain the DLC
for the following Data Field.

Valid values for the DLC are 0…15. The DLC values 8…15 are treated as DLC 8,
i.e. the maximum length of a frame’s Data Field is 8 bytes. Reserved bits ( r1 and
r0) are transmitted dominant (low); receivers accept both dominant and recessive
values for r1 and r0.

Old CAN controllers, designed prior to the release of CAN 2.0B, would detect
errors in Extended Frames and would destroy them with Error Frames, but these
CAN controllers are no longer in production. All CAN controllers that can process
Extended Frames are also able to process frames with 11-bit identifiers. Therefore,
it is possible to use both frame formats in the same CAN network. Limited CAN
implementations that can send and receive frames with 11-bit identifiers but ignore
Extended Frames may be used for specific applications.

The IDE bit distinguishes between the frame formats. This bit is recessive in
Extended Frames; hence, an Extended Frame will lose arbitration to another frame
with an 11-bit identifier that is identical to the Extended Frame’s Base Identifier.

The Data Frames shown in Fig. 1.1 are the regular messages that distribute net-
work data. Under normal circumstances, such a message is sent on the initiative of
the application program in the transmitting node. Alternatively, CAN also provides
the option that a recipient of a specific piece of information may prompt the sender
to transmit the actual data values. This is done via a Remote Frame. Such a frame
is characterized by its recessive RTR bit and its Data Field—independent of the
DLC—contains no data. A Remote Frame will prompt a sender to transmit its cor-
responding Data Frame. This response can be done automatically by the CAN con-
troller (with “Full CAN” controller) or under the control of the application program
(“Basic CAN” controller). It should be noted that several higher priority messages
may be sent on the CAN bus between the query, i.e. the Remote Frame, and the
answer, i.e. the Data Frame.

Remote Frame may, e.g. be used when a receiver was temporarily inactive, that
is, not participating in bus communication, and needs the current data value before
their sender reaches its next scheduled transmit time.

The structure of a Remote Frame is shown in Fig. 1.2. The frame structure is
identical in CAN 2.0A and CAN 2.0B except for the length of the Arbitration Field.

A Remote Frame must always be sent with the same DLC as the correspond-
ing Data Frame. If more than one CAN node would simultaneously start Remote
Frames with the same identifier but different DLCs, these frames would destroy
each other.

8 W. Lawrenz

1.2.3 Arbitration

The CAN bus access is regulated by the method of nondestructive bitwise arbitra-
tion. Nondestructive means that the frame that is winner of the arbitration—i.e. the
higher priority message—is not disturbed and does not need to be restarted. This
mechanism requires the relevant physical drivers to be implemented in a certain
way: The two logical levels on the CAN bus must be dominant and recessive, mean-
ing that one node, sending a dominant level, overwrites all other nodes that send a
recessive level. In the CAN protocol, a logical one is sent recessive and a logical
zero is sent dominant.

In multimaster networks, the “philosophy” of the access right allocation on the
bus is a crucial factor that characterizes the throughput, the transmission delay and
thus the real-time capability of a networked system. CAN shows a very good per-
formance in this regard: When multiple nodes simultaneously try to access the CAN
bus, the most important competitor is automatically selected. When a CAN node
with a pending transmission request detects that the bus is already occupied, that
request is delayed until the bus returns to the idle state.

An example illustrates arbitration between two competing CAN nodes (see
Fig. 1.3).

Two CAN nodes A and B start a transmission at the same time. According to the
Carrier Sense Multiple Access with Collision Detection and Arbitration on Message
Priority (CSMA/CD + AMP) access method, both nodes had to wait until the bus is
free (Carrier Sense). When this is detected, they both send their dominant Start Of
Frame bit (Multiple Access). Throughout the frame, each CAN node will, via its
transceiver, read back the logical value which occurs on the CAN bus and compare
it with the transmitted logical value (Collision Detection). The two dominant Start
Of Frame bits are superimposed on the bus and a dominant bus level is read back
by both nodes. Next, the MSBof the identifier is sent. In our example, the MSB is
recessive in both identifiers. Here, too, the recessive level appears on the bus and
is again recognized by both nodes. Therefore, no node notices the competing node
until the first difference in the identifier.

Fig. 1.2  Structure of a CAN remote frame

91 CAN Basic Architectures

In the example, the first difference between the two frames is at identifier bit 7.
Node A sends a dominant level, node B sends a recessive level. According to the
protocol specification, a dominant level appears on the bus. Node A reads back the
level that it had sent; hence, it does not see a collision. Node B also reads back the
dominant level and compares it with the recessive level that it had sent; therefore,
it sees a Bit-Error. At this point, node B recognizes that it has lost arbitration (Ar-
bitration on Message Priority) and immediately stops the transmission of its own
frame. Furthermore, node B becomes receiver of node A’s frame, because the frame
that has won the arbitration may contain data that need to be processed by node B.

A Bit-Error is detected when the level read back from the CAN bus differs from
the level that is sent to the CAN bus. If a Bit-Error is detected outside the Arbi-
tration Field (Identifier and RTR bit) or ACK Slot, or if there is a Bit-Error on a
dominant bit inside the Arbitration Field, that is an error that is handled by the Error
Management Logic. More about that follows in the next section.

1.2.4 Error Management

Besides the above-mentioned Bit-Errors, other errors are also detected by CAN and
treated accordingly. The following description refers to the error management in
the Data Link Layer. This error management is also part of the standardization in
ISO 11898, which means that each CAN integrated circuit (IC) has, implemented in
silicon, the same error handling.

It is a principle of CAN that as many errors as possible should be detected and
treated inside the CAN IC. Any error that is detected by a network node is immedi-
ately communicated to all other nodes. After this error notification, all the partici-
pants in the network discard the message currently in progress. The error correction
is done by automatic retransmission, which is a function of the Data Link Layer.

Fig. 1.3  CAN arbitration

10 W. Lawrenz

The notification of a detected fault to all other participants is done by an Error
Frame, which is characterized—like the End Of Frame—by a deliberate breach of
the bit-stuffing rules. The structure of such an Error Frame is shown in Fig. 1.4.

The Active Error Flag overwrites, with a series of six or more consecutive domi-
nant bits, all other current bus levels. This pattern is—by violating the bit-stuffing
rules—recognized by all other network nodes.

To prevent a persistent local disturbance of a CAN node or a group of CAN nodes
from permanently paralyzing the CAN bus with dominant Active Error Flags, the
affected CAN nodes—according to a specific algorithm—gradually withdraw from
CAN bus activity. After the first stage of the withdrawal from the CAN bus, a CAN
node may send only so-called Passive Error Flags (see Fig. 1.4). This algorithm is
described in detail below.

The fault confinement consists of three parts: error detection, error handling and
fault isolation.

1.2.4.1 Error Detection

The error management is able to identify five different types of errors:

• Bit-Error
A transmitted bit is not received with the same logical value with which it was sent.

Excluded are the Arbitration Field and the ACK Slot.
• Stuff-Error
More than five consecutive bits of the same level have been detected. Excluded are

End Of Frame and Interframe Space (IFS).
• CRC-Error
The calculated CRC checksum does not match with the received CRC checksum.
• Form-Error
There has been a violation of the frame format, e.g. CRC Delimiter or ACK Delimi-

ter was not recognized as a recessive bit, or End Of Frame was disturbed.

Fig. 1.4  CAN error frame

111 CAN Basic Architectures

• Acknowledgement-Error
A transmitter did not detect a dominant bit in the ACK Slot, which means that the

message was not recognized as fault-free by any other CAN node.

1.2.4.2 Error Handling

After one of the errors described above is recognized, each CAN node is notified by
an Error Frame. The Error Frame overwrites other frames and is detected by the
violation of the bit-stuffing rules. As a result of an Active Error Flag, which consists
of actually only six dominant bits, other CAN nodes see a Stuff-Error and therefore
also start to send an Error Frame. This effect occurs when the error is not a global
error (detected simultaneously by all CAN nodes), but a local error (detected only
by one CAN node or by a group of CAN nodes) and leads to a possible superposi-
tion of Error Flags up to a length of 12 dominant bits. The Error Frame is termi-
nated by an Error Delimiter (a series of eight recessive bits).
The error handling is done in the following order:

a. An error is detected.
b. An Error Frame is sent by any CAN node that has detected the error.
c. The message currently in progress is rejected by all CAN nodes.
d. The error counters (see fault isolation) in each CAN node are affected according

to the fault confinement rules.
e. The disturbed message is repeated.

1.2.4.3 Fault Isolation

The CAN protocol defines—with the aim of fault isolation—specific methods to
prevent local disturbances from disturbing the CAN bus with multiple dominant
Active Error Flags. For this purpose, three states are defined for the CAN nodes:

• Error Active
This is the normal state of a CAN node, in which messages can be sent and recei-

ved. In the event of a fault, an Active Error Flag, consisting of dominant bits, is
transmitted.

• Error Passive
This state is reached after several errors have been detected on the CAN bus. In this

state, the CAN node may continue to send and receive messages, but in the case
of an error, only a Passive Error Flag is sent, consisting of recessive bits. Conse-
quently, a CAN node that is Error Passive cannot impede the other CAN traffic.
It will mark only errors in its own transmitted messages. This may happen when
the node sees a local disturbance. Such a CAN node that terminated its own
transmitted frame switches—after the Error Delimiter—for 8 bits into a Suspend
state where it cannot start a frame, but can receive every message.

12 W. Lawrenz

• Bus Off
In this state, the CAN node is completely disconnected from the CAN bus. It there-

fore cannot send or receive messages or Error Flags. This state is reached when
there is a long disturbance on the CAN bus or a frequently repeated disturbance.

The transition from Error Active to Error Passive and vice versa is done automati-
cally by the CAN IC. The Bus Off state can be exited only by appropriate actions of
the host controller (software or hardware reset). The transitions between the states
are shown in Fig. 1.5.

The error state transitions are controlled by so-called error counters. Each CAN
node has an error counter for receive errors ( Receive Error Counter—REC) and an
error counter for transmit errors ( Transmit Error Counter—TEC).

The states are characterized by the following count values:

• Error Active:
The counts of the Receive Error Counter and Transmit Error Counter are both less

than or equal to 127.
• Error Passive:
At least one of the two error counts is greater than 127 and the Transmit Error

Counter is less than 256.
• Bus Off:
The Transmit Error Counter is greater than 255.

The error counters are incremented on detected errors or decremented on successful
messages, according to the fault confinement rules. There are algorithms in the error
management that allow CAN nodes to distinguish between local and global errors.
Nodes seeing more local errors will reach the Error Passive state earlier than the
other CAN nodes.

The fault confinement rules are explained below ( Receive Error Counter —REC;
Transmit Error Counter—TEC):

Fig. 1.5  CAN error states

131 CAN Basic Architectures

a. A receiver detects an error → REC = REC + 1
except the error is a Bit-Error that is detected while the receiver sends an Active

Error Flag or an Overload Flag.
b. A receiver detects a dominant bit after sending an Error Flag → REC = REC + 8.
c. A transmitter starts an Error Flag→ TEC = TEC + 8
Exception 1: When a transmitter is in Error Passive state and detects an Acknowled-

gment-Error (no dominant bit in the ACK Slot) and it does not detect a dominant
bit while sending its Passive Error Flag, the TEC is not changed.

Exception 2: If a transmitter detects a Bit-Error on a recessive stuff-bit in the Arbi-
tration Field before the RTR bit, the TEC is not changed.

d. A transmitter detects a Bit-Error while sending an Active Error Flag or an Over-
load Flag → TEC = TEC + 8.

e. A receiver detects a Bit-Error while sending an Active Error Flag or an Overload
Flag → REC = REC + 8.

f. Any CAN node tolerates up to seven consecutive dominant bits after sending
an Active Error Flag, Passive Error Flag, or Overload Flag. After detecting the
14th consecutive dominant bit (in case of an Active Error Flag or an Overload
Flag) or after detecting the eighth consecutive dominant bit following a Passive
Error Flag, and after each sequence of additional eight consecutive dominant
bits, every transmitter increases → TEC = TEC + 8 and every receiver increases
→ REC = REC + 8.

g. A transmitter with TEC > 0 will decrement after each successful transmission of
a Data Frame or a Remote Frame → TEC = TEC − 1.

h. A receiver with REC > 0 will decrement after each reception of a fault-free Data
Frame or Remote Frame → REC = REC - 1.

Exception 1 of rule c) was introduced to avoid complicating the initialization phase
of a network. After a system is started, the initialization times of the individual
CAN nodes in a distributed control network will—under normal circumstances—
be different. If we suppose now that the first CAN node that has completed its
 initialization sends a frame, it will always get an Acknowledgment-Error since there
is no other CAN node ready to give an acknowledge, with the transmission at-
tempt automatically repeated. This would mean that the Transmit Error Counter
is incremented by 8 at each attempt, until it finally reaches the Bus Off threshold
and the CAN operation is stopped. One can easily imagine that the initialization
of a network would be very difficult under these circumstances. Therefore, this
Acknowledgment-Error is treated differently.

After reaching the Error Passive state, the Transmit Error Counter is no longer
incremented in the case of an Acknowledgment-Error —if there is no other node
sending an Active Error Flag. This means that the first transmission attempt will be
repeated until a second node finishes its initialization and gives an acknowledge.

One single error may cause the application of more than one rule, e.g. under the
following circumstances:

If CAN node A, that is currently receiving a frame, detects a local error and then
sends an Active Error Flag, this Error Flag will not completely overlap with the

14 W. Lawrenz

Error Flags of the other CAN nodes. The other CAN nodes did not see the local
error, but the Active Error Flag causes them to see a Stuff-Error (or a Form-Error),
and therefore they start their Error Flags later. This causes node A to detect more
dominant bits after sending its sixth dominant bit of the Active Error Flag. Rule a)
applies to all receivers and their Receive Error Counters are incremented by 1. Rule
b) additionally applies in CAN Node A, that had seen the local error; therefore, its
Receive Error Counter is increased by a total of 9. As a result, CAN Node A will
reach the Error Passive state earlier. Once a REC has exceeded the Error Passive-
threshold, it is no longer incremented.

The process of error counting and the changing error states are shown in Fig. 1.6.
The Error Warning flag in the CAN IC’s status register is set—and if enabled, an
interrupt is triggered—upon reaching the warning threshold of 96 ( Receive Error
Counter or Transmit Error Counter), just before reaching the Error Passive state.

When the Transmit Error Counter reaches the Bus Off threshold of 256, the Bus
Off flag is set in the CAN IC’s status register and that may in turn trigger an inter-
rupt. The CAN node is now in the Bus Off state and will not take part in CAN bus
activity before being restarted by the host controller.

The two above-mentioned Error Warning and Bus Off flags are the minimum
required means for the host controller to detect the presence of noise or other dis-
turbances. Their advantage is that the host controller does not need to attend to
infrequent faults.

Most variants of CAN ICs also allow the host controller direct read access to the
error counters as well as information on the type of the detected error; hence, early
action can be taken to troubleshoot the application.

The measures described above are entirely functions of the Data Link Layer, so
they are implemented in the hardware of the CAN IC.

The impact of the error states ( Error Passive or Bus Off) on the application and
what steps need to be taken are highly dependent on the application area. This can,
for example, mean that even a single faulty CAN node may require a complete shut-
down of the overall system, or it may require the system to be set into a safe state.

In less safety-relevant systems, suitable measures may be implemented that at
least enable an emergency operation. There are, e.g. applications in which the mea-
surements of a certain failed sensor can be replicated by other sensors and thus the
overall function is still guaranteed. Likewise, the function of a failed brake light in
a vehicle could be taken over by the rear fog light. All these measures are only made
possible by the use of a network.

Faults in a CAN network may have several causes, such as electromagnetic in-
terference, short circuits, defective contacts, or a malfunction in the CAN IC itself.
One error-handling measure in the application therefore is to completely turn off
a CAN node that—in the considered period—switches too often into the Bus Off
state. If the root cause was a local error in the disconnected CAN node, this measure
will allow the rest of the network—and the host controller—to continue operation,
at least in an emergency mode.

151 CAN Basic Architectures

1.2.4.4 Overload Handling

Another means of exception handling is the so-called Overload Frame. The struc-
ture of an Overload Frame is exactly the same as that of an Error Frame. The only
difference is that an Error Frame overwrites and destroys normal messages while
the Overload Frame is exclusively started in the IFS (see Fig. 1.7).

There are two conditions for sending an Overload Frame. First, an Overload
Frame is sent when a dominant bit is seen in the first two bits of the IFS. Here,
the Overload Frame is used to synchronize all CAN nodes. On the other hand, a
CAN controller may use an Overload Frame to notify all other CAN nodes that it is
overloaded (not able to handle a new message immediately), caused by (IC) internal
delay times. The other CAN nodes will see the first dominant bit of the Overload

Fig. 1.6  CAN error counting

16 W. Lawrenz

Flag inside the IFS and will respond with their own Overload Frames; the Over-
load Flags will overlap each other. In this case, the start of a next frame is delayed
by the length of an Overload Frame. In both cases, the overload condition has no
effect on the error counters. Today’s CAN controllers are fast enough; they are able
to handle all bus traffic without the additional delay of Overload Frames.

1.2.5 Timing Considerations

As described in Sect. 1.2.2, there are two different frame types, those with 11-bit
identifiers (also called Standard Frame) and those with 29-bit identifiers (also
called Extended Frame). Furthermore, each message may contain from 0 to 8 bytes
of data. Due to this, there are differences in effective data rates and minimum la-
tency times for high priority messages.

Under normal circumstances (in undisturbed operation), a minimum latency
time can be calculated only for the message with the highest priority in the network.
Delay times for lower priority messages are not deterministic; they can only be
determined statistically, using appropriate measuring equipment such as simulators,
emulators, or dedicated network analyzers. Alternatively, the time-triggered option
of CAN (TTCAN—time-triggered CAN) may be used, in which all messages are
sent in a predefined time schedule. TTCAN is described in Sect. 1.3.

The maximum delay time for the message with the highest priority depends on
the length of the longest possible message and on the bit rate. The length of the
longest message (with a Data Field length of 8 bytes) is shown in Table 1.1; the
result on the left is for networks where only frames with 11-bit (short) identifiers are
used, while the result on the right is for networks where frames with 29-bit (long)
identifiers are used.

This means that in networks where only frames with 11-bit identifiers are used,
the message with highest priority has to wait at most 135-bit times frames for bus
access, 135 µs at a bit rate of 1 Mbit/s. If frames with 29-bit identifiers are used, the
maximum waiting time is 160 bit times, 160 µs at 1 Mbit/s.

The effective data rate of CAN frames is calculated from the ratio of data bits to
the length of the frame. The data rate depends on the length of the Data Field, the
length of the identifier and on the transmission rate. Table 1.2 gives an indication of

Fig. 1.7  CAN overload frame

171 CAN Basic Architectures

the effective data rate for different lengths of the Data Field at a bit rate of 1 Mbit/s.
At these values, the number of stuff bits is not considered.

Of course, no data rate can be calculated for a Data Field with a length of zero.
However, such messages still have information content. The mere fact that a mes-
sage with a certain identifier appears on the bus can be used for a so-called “Life
Guarding” mechanism, i.e. key CAN nodes must—in a certain time schedule—send
such a frame on the network, allowing other nodes to keep track of their operation
state. Furthermore, such frames can be used, e.g. for synchronization purposes in a
distributed application.

Considering the previous results for the calculation of the host controller’s time
budget needed to handle the CAN messages, the following values have to be taken
into consideration:

The worst-case conditions regarding the processing time of the interrupt service
routine for received frames occur at the maximum transfer rate of 1 Mbit/s, 100 %
bus load and a message length of zero data bytes.

This means that with these parameters a message can be received every 47 µs. If
the interrupt service routine in this example needed exactly 47 µs, the central pro-
cessing unit (CPU) would be loaded to 100 % with this task alone and would have
no capacity left for other tasks. For networks using only frames with 29-bit identi-
fiers, this time would be—under the same conditions—67 µs.

The tasks of the received interrupt service routine depend on the type of CAN
module; they are different for modules of the type “Full CAN” or the type “Basic
CAN”, see Sect. 1.2.7.

Table 1.1  Maximum frame length for data frames
Short identifier Elements of a CAN frame Long identifier

1 Start of frame 1
11 (Base) Identifier 11

Substitute remote request (SRS) 1
Identifier extension flag (IDE) 1
Identifier extension 18

1 Remote transmission request (RTR) 1
6 Control field (IDE, r0, DLC or r1, r0, DLC) 6
64 Data field (8 × 8 bit) 64
16 CRC field (CRC sequence and CRC

delimiter)
16

24 (Maximum number of) stuff-bits 29
2 Acknowledge field (ACK slot and ACK

delimiter)
2

7 End of frame 7
3 Interframe space 3

Total 135 Maximum frame length Total 160

18 W. Lawrenz

1.2.6 Bit-Timing and Synchronization

CAN supports data rates of less than 1 kbit/s and also up to 1,000 kbit/s. Each
CAN node in a CAN network is clocked by an individual clock generator (usually
a quartz oscillator). The parameters of the bit time (i.e. the inverse of the bit rate)
are individually adjusted in each CAN node, to achieve a uniform bit rate even from
different oscillator frequencies (fosc).

The parameters are written into the configuration registers of the bit timing logic
( BTL). The Baud Rate Prescaler ( BRP) determines the length of the time quantum
(tq), which is the basic unit of the bit time, while the timing segments determine the
number of time quanta in the bit time. The clock frequencies of these oscillators are
not absolutely stable, caused by temperature or voltage fluctuations and the aging of
components. As long as the deviations remain within a certain oscillator tolerance
range ( df), the CAN nodes are able to compensate for the differences by synchroniz-
ing to the edges in CAN frames.

According to the CAN specification, a CAN bit time is divided into four seg-
ments (see Fig. 1.8): the Synchronization Segment, the Propagation Time Segment,
the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists
of a certain (programmable) number of time quanta. The duration of a time quantum
(tq) is determined by the CAN controller’s system clock fsys and the BRP: tq = BRP/
fsys. Common clocks are fsys = fosc or fsys = fosc/2.

The synchronization segment, Sync_Seg, is that part of the bit time where edg-
es of the CAN bus level are expected to occur. The Propagation Time Segment,
Prop_Seg, is intended to compensate for the physical delay times within the CAN
network. The Phase Buffer Segments, Phase_Seg1 and Phase_Seg2, surround the
Sample Point. The (re-) synchronization jump width ( SJW) defines how far a re-
synchronization may move the Sample Point inside the limits, defined by the Phase
Buffer Segments.

The individual parameters are configurable in the following ranges:

• Sync_Seg: 1
• Prop_Seg: [1…8]

Data field
in bytes

Effective data rate for frames with
11-bit identifier 29-bit identifier

0 ― ―
1 72.1 kbit/s 61.1 kbit/s
2 144.1 kbit/s 122.1 kbit/s
3 216.2 kbit/s 183.2 kbit/s
4 288.3 kbit/s 244.3 kbit/s
5 360.4 kbit/s 305.3 kbit/s
6 432.4 kbit/s 366.4 kbit/s
7 504.5 kbit/s 427.5 kbit/s
8 576.6 kbit/s 488.5 kbit/s

Table 1.2  Effective data rate
at 1 Mbit/s

191 CAN Basic Architectures

• Phase_Seg1: [1…8]
• Phase_Seg2: [1…8]
• SJW: [1…4]
• BRP: [1…32]

In most CAN implementations, the sum of ( Prop_Seg + Phase_Seg1) is collected
(as TSEG1) together with Phase_Seg2 (as TSEG2) in a first configuration register,
while SJW and BRP are collected in a second register. It should be noted that the
values programmed into these bit timing registers are—for each of TSEG1, TSEG2,
SJW and BRP—the formal values reduced by one; hence, the values are written
[0…n – 1] instead of [1…n]. This allows, for example, to represent SJW (actual
range [1…4]) by only two bits. When Prop_Seg and Phase_Seg1 are configured as
a sum, Prop_Seg may be even larger than 8 while Phase_Seg1 will be correspond-
ingly shorter.

Therefore, the length of a bit time is (programmed values) [TSEG1 + TSEG2 + 3]
tq or (formal values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

The sequential flow of the bit time and possible synchronizations are controlled
by the CAN protocol controller’s BTL, a state machine that is evaluated once per
time quantum. The BTL has the task to evaluate the CAN bus level and to determine
the position of the Sample Point. The remaining part of the CAN protocol control-
ler, the Bit Stream Processor (BSP) state machine, is evaluated only once per bit
time, at the Sample Point, with the CAN bus level evaluated at the Sample Point
taken as the sampled bit value.

1.2.6.1 “Hard” and “Soft” Synchronization

At each time quantum, the CAN controller’s BTL compares the actual level of
the CAN bus with the stored value of the last Sample Point, to detect edges for
 synchronization.

There are two types of synchronization:

• “Hard” synchronization

Fig. 1.8  Bit timing

20 W. Lawrenz

is performed on the falling edge (from recessive to dominant) of a Start Of Frame
bit. This edge defines the beginning of a CAN frame; the BTL restarts at Sync_
Seg.

• “Soft” (re-)synchronization is performed within a CAN frame at edges from re-
cessive to dominant; it lengthens or shortens single bits of that frame.

If the CAN bus level changes outside of Sync_Seg, the distance between Sync_Seg
and that edge is called the Phase_Error. When a Phase_Error is detected, it is com-
pensated by synchronization. In case of a resynchronization, Phase_Seg1 is extend-
ed (when the edge was between Sync_Seg and the Sample Point) or Phase_Seg2 is
shortened (when the edge was between the Sample Point and the next Sync_Seg).
This is intended to keep the distance between the edge of the input signal and the
following Sample Point at the configured value. In a hard synchronization, the
Phase_Error will be fully eliminated, while a single resynchronization will reduce
the Phase_Error only by an amount of up to the value of the (Re-)Synchronization
Jump Width ( SJW). A residual error ( Phase_Error – SJW) may remain until the next
synchronization.

There may be at most one synchronization between two Sample Points. The dis-
tance between the edge and Sample Point, which is maintained by synchronizations,
allows the CAN bus level time to stabilize and filters out spikes that are shorter
than ( Prop_Seg + Phase_Seg1). Internal delay in the CAN transceiver, from the
transceiver’s transmit input to its receive output, may cause transmitters to see all
their transmitted edges “late”, this happens especially at high bit rates. Therefore, to
avoid lengthening their own transmitted dominant bits, transmitters do not synchro-
nize on “late” edges. The bit-stuffing mechanism guarantees a maximum distance
of ten bits between two edges for synchronization inside a frame. Phase_Errors
caused by clock tolerances will accumulate between synchronizations, so a receiv-
er’s actual Sample Point position (relative to the transmitter’s Sample Point) may
need to be corrected. The size of the Phase Buffer around the Sample Point defines
how large a Phase_Error can be tolerated and therefore limits the clock tolerance.

Figure 1.9 shows how the phase buffer segments are used to compensate for
Phase_Errors. Two successive bit times are presented: At the top with a synchroni-
zation to a “late” edge, which is detected between Sync_Seg and the Sample Point,
in the centre without synchronization (as reference) and at the bottom with a syn-
chronization to an “early” edge, which is seen after the Sample Point.

The examples in Fig. 1.10 show how short dominant spikes on the CAN bus are
filtered out by the BTL. In both examples, the spike starts at the end of Prop_Seg
and has a length of less than ( Prop_Seg + Phase_Seg1).

In the first example, SJW is at least as large as the Phase_Error of the “late” edge
which starts the spike. Therefore, the Sample Point can be moved past the end of
the spike. At the Sample Point, the CAN bus is returned to recessive and the spike
is suppressed.

In the second example, SJW is smaller than the Phase_Error of the edge which
starts the spike. The Sample Point cannot be shifted far enough; the dominant spike
at the Sample Point is taken as actual bus level.

211 CAN Basic Architectures

The advancement of the CAN protocol from version 1.1 to 1.2 increased the
oscillator tolerance and the option to synchronize on edges from dominant to re-
cessive became obsolete. Only the edges from recessive to dominant are used for
synchronization. CAN protocol implementations according to version 1.1 are no
longer in production.

Most synchronizations occur during arbitration. All CAN nodes synchronize
“hard” on the first node that sends a Start Of Frame bit, but their phases will be
shifted to each other, caused by differences in the signal propagation delays. Dur-
ing arbitration, there may be several transmitters (transmitters do not synchronize
on “late” edges) and the transmitter, which triggers the hard synchronization, does
not necessarily win the arbitration. Therefore, the receivers must synchronize them-
selves successively to different transmitters, whose edges arrive delayed by differ-
ent propagation delays.

1.2.6.2 Propagation Delays

The maximum signal propagation time in the CAN network (between the most
distant nodes, here called A and B) becomes relevant when both of them start CAN
frames at the same time. Supposing that A causes the hard synchronization of B,
then B will operate with a phase shift of Delay A → B relative to A. Delay A → B
is the sum of the delay of A’s bus driver, the propagation time on the CAN bus line
between A and B and the delay of B’s bus coupling circuit. The critical point is
reached when A sends two consecutive recessive bits while B sends at the same time
a recessive and a dominant bit. A loses the arbitration at the dominant bit. However,
A sees that bit at the earliest 2 • Delay A → B ( Delay B → A assumed equal to

Fig. 1.9  Synchronizations on edge before and after the Sync_Seg

22 W. Lawrenz

Delay A → B) after its Sync_Seg. Its Phase_Seg1 may not yet have started at that
time, since the beginning of Phase_Seg1 is the earliest position of A’s Sample Point
if that Sample Point is virtually shifted by clock tolerance. Prop_Seg must therefore
be programmed to a value of 2 • Delay A → B (rounded up to the nearest integer
multiple of tq), as shown in Fig. 1.11.

The Propagation Time Segment must be programmed to a length that ensures
edges to be seen before the onset of Phase_Seg1, even when the edges are affected
by the maximum signal propagation delay. The Phase Buffer Segments before and
after Sample Point have to be left for compensating oscillator tolerances. The im-
pact of the bit time parameters on the oscillator tolerance df is shown by the formu-
lae [1.1] and [1.2].

Some CAN implementations provide an optional so-called Three_Sample_Mode.
In this mode, a digital low-pass filter is set before the CAN bus input of the BTL.
Three Sample Points are not present in one bit time, but the bit value at the Sample
Point is generated from the last three values of the CAN bus input (strobed each tq),
evaluated by majority voting. The majority voting filters out spikes, but the CAN
bus input signal is delayed by at least one tq and the Propagation Time Segment
must be extended accordingly.

1.2.6.3 Oscillator Tolerance

The formulae [1.1] and [1.2] are used to calculate the oscillator tolerance:

df
Phase Seg Phase Seg

Bitperiod Phase Seg
=

−
min(_ , _)

•(• _)

1 2

2 13 2
 (1.1)

Fig. 1.10  Filtering of short dominant spikes

231 CAN Basic Architectures

and

df
SJW

Bitperiod
=

20•
. (1.2)

Both inequalities must hold, with df indicating how much a CAN node’s oscillator
frequency may deviate from its reference value without causing disturbances on the
CAN bus.

The oscillator tolerance df (given in per cent) thus depends on the length of the
Phase Buffer Segments as well as the length of the Resynchronization Jump Width,
compared to the entire bit time. It must be noted that the Resynchronization Jump
Width may not be longer than the shorter of the Phase Buffer Segments and that the
partition of the bit time available for the Phase Buffer Segments is limited by the
Propagation Time Segment.

1.2.6.4 Setting the Bit Timing Registers

Two cases have to be distinguished when programming a CAN node’s bit time
configuration. When the CAN node is integrated into an existing network, it needs
to adopt the bit time configuration that was specified for the network. Here, the
only variable is the BRP. Depending on the node’s fsys frequency, BRP defines the
length of the tq, with the requirement that an integer number of tq needs to be placed
in one bit time, before and after the Sample Point. In CANopen-based networks, for
example, the Sample Point should be set to 85 % of the bit time. The standardized
configuration allows the easy integration of modules into a common CAN network,
even when the modules are supplied by different vendors.

If no default configuration is available, the parameters of the bit time are largely
determined by the desired bit rate and by the signal propagation delay. The compo-
nents of the bit time are calculated as follows: First, the delay times in the network

Fig. 1.11  Phase shift between the nodes in the CAN network

24 W. Lawrenz

need to be determined. These consist of the delay on the CAN bus line (typically
5 ns/m), the transit times through the node’s transceivers and, for example, in in-
dustrial applications, through additional optocouplers for galvanic isolation. The
determined signal propagation delay gives an upper limit for the possible bit rate,
since the CAN bit time (reciprocal of the bit rate) must be significantly longer than
twice this value.

Then, based the desired bit rate and the available system clock frequency fsys,
BRP values are selected, that can produce the desired bit time from an integer num-
ber (in the range of [5…25]) of tq, with tq = BRP/fsys. The length of Prop_Seg
needs to be twice the signal propagation delay, rounded up to the next integer mul-
tiple of tq. Hence, the BRP value must allow Prop_Seg to be in the range of [1…8]
(if needbe, in the range of [1…15] when Prop_Seg and Phase_Seg1 are combined
in TSEG1).

The desired bit time must be at least 3 tq longer than the time required for Prop_
Seg. Sync_Seg is always 1 tq long; the rest is left for the two Phase Buffer Segments.
Phase_Seg1 and Phase_Seg2 should have the same length, but if the subtraction
(bit time – [Sync_Seg + Prop_Seg]) results in an odd number of tq, Phase_Seg2 is
set longer: Phase_Seg2 = Phase_Seg1 + 1. In order to optimize the oscillator toler-
ance, SJW needs to be set to the highest possible value, but not longer than one
Phase Buffer Segment. The oscillator tolerance is mainly determined by the relation
between the length of the Phase Buffer Segments and the length of the bit time.

The combination of Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4
yields has an oscillator tolerance of 1.58 %, the largest value possible in the CAN
protocol. This combination, with a Propagation Time Segment of only 10 % of the
bit time, is not suitable for short bit times; at a 40-m bus length, it can be used for
bit rates up to 125 kbit/s (with a bit time of at least 8 µs).

The bit timing concept of the CAN protocol has sufficient reserves, so that small
deviations from the nominal values (temperature changes or aging of the compo-
nents may cause, e.g. drift of the oscillators or longer signal delays) do not directly
cause disturbances in the communication; but the deviations may make the network
less resilient with regard to external sources of error (e.g. EMI). If a bit is disturbed
at its Sample Point, the faulty bit is intercepted by higher protocol layers (CRC
code, bit-stuffing, etc.) and the message is invalidated.

1.2.7 Characteristics of CAN Controllers

In principle, there are three types of CAN controllers: “Full CAN”, “Basic CAN”
and serial linked input/output (SLIO). CAN controllers are internally partitioned in
CAN protocol controller and CAN message handler. While the function of the CAN
protocol controller is defined by the CAN specification, the function of the CAN
message handler is application specific. Different concepts have been developed for
the CAN message handling.

251 CAN Basic Architectures

A “Full CAN” manages a set of dedicated transmit and receive buffers. It is
characterized by the fact that it sorts—based on the acceptance filtering—a received
message into a receive buffer of the CAN controller’s message memory that was
specifically configured for that message. This means that the host controller can
read the received data directly from their dedicated address range inside the CAN
controller’s data random access memory (RAM). Furthermore, a “Full CAN” will
notify the host controller only of those received messages that successfully pass the
acceptance filtering, meaning that the identifier of the received message matches
with the identifier of at least one of the configured receive buffers. The host con-
troller is not burdened with message filtering. The dedicated transmit buffers are
also configured for specific identifiers. During operation, the host controller only
needs to update the data content of the transmit buffer and request the transmission.
This transmission may also be triggered by the reception of the matching Remote
Frame; hence, the acceptance filtering enables the “Full CAN” to automatically
reply to a Remote Frame with a Data Frame, not needing any further action of the
host controller.

The “Basic CAN” variant has in principle only one receive buffer, which is
designed as a first in, first out (FIFO). Therefore, the FIFO needs to be checked
regularly and each received identifier needs to be compared with a list of relevant
identifiers. If this comparison finds the relevant received messages, then the data are
transferred into the corresponding address range of the host controller’s RAM. The
transmit buffer is managed dynamically; it is reconfigured for each transmission.
To answer a Remote Frame, the host controller needs to prepare the corresponding
Data Frame, load the transmit buffer and then request its transmission.

A “SLIO” is a CAN controller that requires no local software. It has several
digital port pins and some analog/digital (A/D) and digital/analog (D/A) converters.
These input and output functions are polled and controlled via CAN messages. An-
other feature is the automatic clock calibration. For this purpose, the SLIO observes
the CAN communication and seeks dedicated calibration messages. There is a spe-
cific bit pattern in these messages that provides reference points for the measure-
ment of the network’s bit rate. The SLIOs calibrate and adjust their clock frequency
to the determined bit rate. The SLIOs’ transmission path remains switched off until
the calibration is complete, to prevent disturbances on the CAN network. The cali-
bration messages have to be repeated regularly.

The advantage of the “Full CAN” concept is the reduced load on the host con-
troller; a disadvantage is the limited number of messages that can be managed. The
advantage of the “Basic CAN” concept is that the number of different messages that
can be treated is not limited by the number of receive (FIFO-) buffers; the disad-
vantage is the higher load on the host controller, for acceptance filtering and FIFO
management.

In both concepts, received messages are lost when the host controller picks them
up slower than they are loaded into the buffers of the CAN controller. In the “Ba-
sic CAN”, an unexpectedly large number of messages (“babbling idiot” problem),
which are not rejected by the acceptance filtering, may cause other, unread mes-
sages to be pushed out of the FIFO.

26 W. Lawrenz

There are mixed concepts of “Full CAN” and “Basic CAN”. A “Full CAN” may,
for example, use mask registers to except selected bits of the identifier from accep-
tance filtering. This allows groups of messages to be stored in the same receive buf-
fer. Further, some transmit buffers in a “Full CAN” may be managed dynamically,
when more buffers are needed than the CAN controller implementation provides.
Typical “Full CAN” controllers have 15–128 message buffers, which can be config-
ured to receive buffers or transmit buffers.

“Basic CANs” may have the characteristics of “Full CANs” if, for example,
more than one FIFO is provided, or if an extensive acceptance filtering loads only
those messages into the FIFO that are relevant for the application.

CAN controllers may be implemented as dedicated CAN ICs (“stand alone”)
or they may be integrated as a peripheral module of a microcontroller. There are
also microcontrollers available that are provided with several CAN modules. These
modules may be connected to the same CAN network, operating as one CAN mod-
ule with a large number of message buffers. Mostly they are connected to different
CAN networks and may also be used, for example, to transfer messages between
these networks, operating as gateway (switch).

In general, CAN controllers cannot be directly connected to a CAN bus; CAN
transceivers are required for the connection. CAN controllers, especially the mod-
ules in a microcontroller, are manufactured in a semiconductor process that is
 optimized for high packing density. CAN transceivers are manufactured in a dif-
ferent process, which provides much more electrical driving strength and is also
more robust against high voltage, e.g. caused by electrostatic discharges on the
CAN bus line. The partitioning in CAN controller and CAN transceiver has also the
advantage that the same CAN controller can be used with different types of CAN
transceivers, such as for conventional two-wire differential bus lines ( ISO 11898-2,
-3, or -5) and also for single-wire bus lines ( SAE J2411).

CAN transceivers mediate between the bi-directional CAN bus on the one side,
that knows only dominant and recessive levels, and the CAN controller on the other
side, which is connected by two unidirectional digital lines, one each for reception
and for transmission.

1.3 Time-Triggered CAN

1.3.1 Motivation to Advance CAN Protocol Towards
TTCAN

Safety-relevant systems in car electronics require a timely deterministic communi-
cation protocol with predefined latency time. This demand is a sine qua non pre-
requisite when designing distributed control systems consisting of a multitude of
individual controllers fulfilling their special requirements on

271 CAN Basic Architectures

• Safety
• Schedulability of timely behaviour
• Verifiability
• Fault tolerance
• Synchronous behaviour

CAN communication protocol implements a purely priority-driven bus-access tech-
nology which per se does not guarantee any specific latency time. CAN message
transfer is thus characterized by a typically big jitter in best-case and worst-case la-
tency times. Therefore, different methodologies had been considered over the years
in order to achieve a message transfer characterized by predefined latency times.

When inspecting and revising the CAN standard ISO 11898-1 periodically, the
experts checked whether the event-driven CAN protocol could be modified towards
a time-triggered version; and it turned out that this attempt could be achieved.
Hence, the time-triggered version of the CAN protocol was developed by a small
team of experts of Robert Bosch GmbH. The resulting TTCAN protocol then be-
came the ISO 11898-4 standard.

1.3.2 Constraints

• When developing TTCAN, one of the basic prerequisites was the compatibility
with the existing CAN standard features such as data frames, the proven error
detection and error handling mechanism. Therefore, CAN knowledge, experien-
ce and CAN development tools could easily be reused.

• Only in case of automatic retransmission on error detection of the CAN protocol
there is a small restriction: In exclusive time windows—refer to Sect. 1.3.4—er-
roneous messages are not retransmitted immediately; otherwise, the cyclic com-
munication would be corrupted. This message, anyhow, will be retransmitted
within the next cycle.

• In time-triggered systems, a condition that is absolutely needed is a time stable
basis, being available all over the whole system. A failure of an individual mo-
dule in a system must not lead to chaos nor cause a breakdown of the communi-
cation process of the remaining system.

• The communication process must be synchronized by external events in order to
synchronize further sub-networks, redundant channels, or events depending on
engine revolution speed.

• The system must be configurable over the bus. There, easy synchronous swit-
ching between the event-driven and time-triggered mode is required.

1.3.3 Time Triggered Basics

A common synchronized clock (a global clock) in all nodes participating in a com-
munication system is the basic principle in time-triggered systems .

28 W. Lawrenz

Basically, there are multiple methods to synchronize the clocks of the individual
communication participants to a global time in a system. Either all participants com-
municate their local clock to all other participants, and thus individually can calcu-
late a common global clock, or there is one single global clock known to everybody,
and all participants can synchronize themselves on this single global clock. There
will be no further evaluation of the pros and cons of these methods following.

When developing a TTCAN protocol, the choice of the time base was driven by
the characteristics of the already existing CAN applications: Many of the messages
are communicated in non-periodic repetition rate in the range of some milliseconds.
Furthermore, there are other messages which are transferred spontaneously, based
on an event or based on long repetition rates.

In a TTCAN protocol, one of the participants is appointed to be the Time Master
with its responsibility to provide the clock signal to all other participants. By apply-
ing an individual node-specific clock divider ratio, called Time Unit Ratio, TUR,
to the Time Master clock, each node derives internally the Network Time Unit—
NTU. The NTU therefore is identical within all participants, representing the time
granularity for any communication in the system. The calculation of the local time
within each node is shown in Fig. 1.12.

1.3.4 Communication Architecture

Communication is controlled by the time progress after being initialized by a ref-
erence message from the Time Master. This reference message is repeated peri-
odically with a predefined cycle time. The reference message is followed by so
called Time Windows which are used by the network participants to insert their
information for the communication process.

The start of a time window is designated by time tags ( Tx_Ref_Trigger, Tx_Trig-
ger) resulting from the cycle time counter value ( Cycle_Time). Cycle time will be
described in more detail below.

There are various kinds of time windows: exclusive, arbitrating and free time
windows. Furthermore, there are merged arbitrating windows, which are a special
kind of arbitrating time windows.

An exclusive time window is used for periodic transfer of solely one message
of a participant. Arbitrating time windows are available for any participant sharing
bus access. Arbitrating time windows typically communicate sporadic messages or
periodic messages with long cycle times.

Any number of consecutive arbitrating time windows can be combined to a
so-called merged arbitrating window. This feature typically is applied to transfer
messages which previously had lost arbitration or were a little late. The transfer is
then performed immediately after the currently transferred message without wait-
ing until the next start of a time window. As such, bus efficiency is increased and
message latency times are reduced. In an extreme case, all time windows could be
defined as merged arbitrating windows, thus resulting in an almost mere event-
driven CAN system.

291 CAN Basic Architectures

“Free” time windows are planned for further extension or they may result with
the design of the system.

In order to optimize the required bus bandwidth lengths of time windows, it can
be adjusted to the lengths of the messages to be transferred. Therefore, time win-
dows have different lengths in a system. However, the design must make sure that
the longest messages to be transferred fit into their designated time windows. (This
constraint must be met especially when doing the layout of the arbitrating time win-
dows and the system matrix.)

The sequences of time windows between two reference messages are referred to
as “Basic Cycle”.

The sequence of time windows in a basic cycle as shown in Fig. 1.13 is not al-
ways the same. Distribution and content of time windows may vary from one basic
cycle to the next one. The entirety of all basic cycles is called “System Matrix”. The
columns of the system matrix represent the so-called Transmission Columns con-
taining the time windows, while its rows represent the basic cycles. Lengths of time
windows in the columns are restricted maximally to the width of the corresponding
column. The only exception to this constraint are the merged arbitrating windows,
which may comprise several columns but must start and end at column borders.

There is a restriction to the numbers of possible basic cycles due to system
constraints. The maximum number of basic cycles in one single-system matrix
(Fig. 1.14) is 64, or any lower number to the power of 2.

When specifying exclusive Time Windows only, access is uniquely time con-
trolled. In that case, the identifier part of the data frame could be abandoned. How-
ever, for compatibility reasons and as learned from experience, it is required and
advantageous to keep this arbitration feature.

All participants of a network know their related time windows in which they are
allowed to transmit messages or in which they may receive messages from other
participants. The start of each time window respectively is given by a time tag rela-
tive to the reference message. Therefore, each participant must be able to recognize

Fig. 1.12  Calculation of local time within a node

30 W. Lawrenz

the reference message. It is designated by a specific identifier (specified by the
system designer) which is communicated to all network participants.

The reference message itself consists—in the simple case Level I implemen-
tation—of one data byte containing the Cycle Counter (number of the actual ba-
sic cycle) and the control bit, next_is_gap. In Level II implementation, the refer-
ence message contains further information for the interpretation of NTU (refer to
Sect. 1.2.3), an additional Disc_Bit and a 16-bit information giving the actual time
of the time master. The Disc_Bit signals a disruption in the time continuity by an
external synchronization.

While in Level I implementation NTU typically is related to a bit time, in Level
II implementation NTU may be related to the physical time entity “second”.

1.3.5 Communication Sequence

Whenever the cycle time counter of the node, designated as the system clock,
reaches the reference transmission threshold (Tx_Ref_Trigger), this node transmits
its reference message, which is recognized as such by all other nodes due to the
designated identifier and which causes synchronization of their local time counters
or global time counters, in case of Level II implementation (see Sect. 1.2.6). If the
internal local or global time counter of a participant reaches its transmit threshold
( Tx_Trigger) signalling, the start of its designated transmission window and if the
bus is not busy, this participant transmits its message which is assigned to this time
window. In case this is an exclusive time window, a receive tag ( Rx_Trigger) is
set in this window in all those participants which are to receive this message. This
causes error checks upon reception of this message, in order to initiate an error-
handling process in case of a problem detected.

The transmit tags consist of a time tag (column number of the system matrix),
a basic tag (designating the basic cycle in which the message is to be transmitted
for the first time) and a repetition rate (specifying the number of basic cycles after
which the message is to be retransmitted).

The receive tags contain the same information, but only the time tag is deferred
by the window width.

Fig. 1.13  Structure of a TTCAN “Basic Cycle”

311 CAN Basic Architectures

Fi
g.

 1
.1

4 
Ex

am
pl

e
of

 a
 sy

st
em

 m
at

rix

32 W. Lawrenz

1.3.6 Synchronization, Local and Global Time

As already explained, all time windows respectively the start of time windows are
related to the reference message. All participants receive the reference message at
the same time—except the differences in their signal propagation delays—but they
must also have a common reference point within the message. There is a distinc-
tive item recognizable uniquely by all participants: the Start of Frame (SOF) of
CAN messages. However, at this point of time it is not known whether or not the
following message is a reference message and whether or not it will be received
non-corrupted.

Therefore, on detection of an SOF all participants write the Local_Time value of
their cycle time counter into a so-called Sync_Mark register.

If hereafter a reference message is recognized, the Sync_Mark register is copied
into a Ref_Mark register. Then, the difference between this register and the Cycle_
Time counter is calculated, thus achieving the time count being set in relation to the
start of the CAN frame (see Fig. 1.15).

In Level II implementations, even absolute time references can be achieved rela-
tive to a predefined time given by the reference sender. In order to do so when de-
tecting the sample point of SOF, the reference sender writes its local time into a
Master_Ref_Mark, which is part of the data field of the currently to be transmitted
reference message. All other participants can calculate from there their Ref_Mark
as described above.

The difference between the Master_Ref_Mark and the node-specific Ref_Mark
corresponds to the Offset (called the Local_Offset) of each node relatively to the
time transmitter. Adding the offset to the local time of a node results in a Global_
Time, which is common to all participants (Fig. 1.16).

1.3.7 Redundancy of Time Transmitters

TTCAN systems with only one single-time transmitter had to be considered very
weak from a safety-critical systems-design point of view. Therefore, suitable provi-
sions are required in order to meet safety and availability requirements.

One of these provisions required is the installation of redundant so-called po-
tential time transmitters. Up to eight participants can be defined as potential time
transmitters in one network. Therefore, specific reference messages are defined in
these participants, all with identical identifiers except for their three LSBs. The
participant with the lowest identifier (typically all 3 LSB = 0) becomes as such the
standard time transmitter (Time Master), while all the others are the potential time
transmitters.

As long as the standard time transmitter is functional, all the others will re-
ceive its reference message thus suppressing transmission of their own references
messages. If this one fails, all potential time transmitters will try to send their

331 CAN Basic Architectures

reference messages, while in case of simultaneous transmissions the one with the
highest priority will win. When the standard time transmitter recovers, this one
will try to take over again the time transmitter function when the next basic cycle
is to start.

This technique guaranties a fast and well-organized system start up: The first
one of the potential time transmitters being operational will start the basic cycles.
The other higher priority potential time transmitters becoming operational over time
then will take over, while at the end of this start-up phase the standard time transmit-
ter will finally control the communication process.

1.3.8 Event-Synchronized Cycle

In non-event-synchronized TTCAN systems, the reference message is transmitted
periodically in equidistant steps.

However, TTCAN systems also allow us to interrupt this periodic process and to
start basic cycles on an event in a time transmitter. The event may be derived from
a software trigger or from a timer elapsed or it may come from an external signal
source.

For synchronization, the currently running cycle will be halted at the end of the
basic cycle while the next_is_gap bit is set in the reference message. This halts the
next reference message until the predefined event will start a new cycle by transmit-
ting the reference message.

This technique enables synchronization of communication on, e.g. crank shaft
synchronous tasks, synchronization of multiple subnets, or smoothing cycle drifts
caused by corrupted reference messages.

Figure 1.17 shows pure cyclic and event synchronized cyclic message commu-
nication.

Fig. 1.15  Synchronization
of local time by reference
message (Level I)

34 W. Lawrenz

1.3.9 Drift Correction

At long basic cycles, slight differences in clock frequencies between individual
nodes may cause nodes to fall out of synch. Level II implementations provide a
drift-correction feature for compensation (Fig. 1.18).

Therefore, each node compares the length of the basic cycle, transmitted by the
time transmitter with its own. The difference between the two results in a correction
factor, which adjusts the frequency divider in each node respectively through TUR
(see Sect. 1.2.3).

1.3.10 Extended Error Detection and Error Handling

Due to the cyclic character of TTCAN, there are additional diagnostic features on
top of the well-known error-handling techniques of CAN:

• Based on the reception tags mentioned above, a loss of an expected message in
exclusive time windows can be detected. The number of expected messages per
system cycle is known. The application will be signalled, if a specific number of
messages is lost.

• Further, the number of transmitted messages is counted. If for a specific partici-
pant the number of exclusive transmission windows exceeds the defined amount,
a further transmission of messages is abandoned until the start of the next system
cycle.

• Various watchdogs prevent the system from going into an uncontrolled state:
− A synchronization watchdog monitors the periodic transmission of the refe-

rence message. In the event synchronous operation mode, another watchdog
restarts communication in case of a loss of trigger.

Fig. 1.16  Calculation of
global time (Level II)

351 CAN Basic Architectures

− An application watchdog checks the periodic application signal “alive”. If
this signal is not detected, the watchdog abandons further transmission of
messages. This prevents any TTCAN controller from behaving unexpectedly
and thus disturbing communication of other participants.

• The time windows are protected by so-called “Tx_Enable-Windows”. A mes-
sage is only allowed to be transmitted, if this can be done within the Tx_Ena-
ble-Window. The Tx_Enable-Window is a small fraction in the first part of a
time window. This feature prevents corruption of the entire communication cycle
when the bus is still busy due to overlapping messages or any sporadic time de-
viation. There are four error levels specified, related to the types of error:

− S0 = No error, unrestricted communication
− S1 = Warning, application may decide what to do
− S2 = Error, neither date frames nor remote frames are allowed to be transmit-

ted (ACK frames and error frames may be transmitted)
− S3 = Severe error, no bus communication (dominant bits) allowed; reconfigu-

ration required (corresponds to the Bus-Off state in CAN)

1.3.11 Summary

TTCAN provides deterministic communication at a bus load which may even ex-
ceed 90 %, theoretically. Synchronization of multiple busses in the area of an NTU
can be done as well as synchronization on external events and the implementation
of redundant safety critical systems.

Fig. 1.17  Pure cyclic and event synchronized cyclic message communication

36 W. Lawrenz

For further details and amendments, refer to ISO 11898-4, Road vehicles—Con-
troller area network (CAN)—Part 4: Time-triggered communication as well as to
www.semiconductors.bosch.de/en/20/can/3-literature.asp.

1.4 CAN FD—CAN with Flexible Data Rate

CAN with flexible data rate (CAN FD) is a new protocol that combines CAN’s
core features with a higher data rate. For automotive applications, CAN FD targets
an average data rate of 2.5 MBit/s with existing CAN transceivers, resulting in
the same effective payload as a low-speed FlexRay network. In other applications,
where long bus lines limit the bit rate in the Arbitration-Phase to, e.g. 125 kbit/s,
a higher acceleration factor is possible without exceeding the specification range
of existing CAN transceivers in the Data-Phase. New specification ranges for the
CAN transceivers are currently evaluated, while new transceiver designs may fur-
ther increase the acceleration factor.

There is an easy migration path from CAN systems to CAN FD systems since
CAN application software can be left (apart from configuration) unchanged. CAN FD
controllers can operate in CAN systems. The Bosch CAN IP - CAN Intellectual Prop-
erty - modules are currently being adapted to optionally support the CAN FD protocol.
The first engineering samples of microcontrollers with integrated CAN FD modules
are expected in 2013. International standardization of CAN FD is in preparation.

Fig. 1.18  Calculation of a correction factor for drift correction (Level II)

371 CAN Basic Architectures

1.4.1 Further Development of the CAN Protocol

Increasing system complexity can fill a CAN network’s communication bandwidth
to its limit. Solving this problem by using multiple CAN buses or by switching to
another protocol requires high effort in system design as well as replacing hardware
and software.

Over the years, several concepts have been proposed regarding how to replace
CAN with new bus systems that have a higher bandwidth and a similar controller
host interface. The similarity avoids the need for major software modifications.

CAN’s bandwidth limit is closely linked to one of its greatest advantages, its
nondestructive arbitration mechanism for media access control. This mechanism
requires that the signal propagation delay between any two nodes is less than half
of one bit time and so defines an upper boundary for the bit rate as well as for the
bus length.

Therefore, new concepts to increase the CAN bit rate avoid this limit mainly
by two alternatives. Firstly, some concepts change CAN’s multimaster bus line to
a star (or tree) topology where arbitration (or even message routing) is performed
inside an active star. Other concepts use two alternate bit rates and switch—after the
arbitration—from the lower to the higher bit rate.

CAN FD has been developed with the goal to increase the bandwidth of a CAN
network while keeping most of the software and hardware—especially the physi-
cal layer—unchanged. Consequently, only the CAN protocol controllers need to
be enhanced with the CAN FD option. The new frame format makes use of CAN’s
reserved bits. Via these bits, a node can distinguish between the frame formats dur-
ing reception. CAN FD protocol controllers can take part in standard CAN commu-
nication. This allows a gradual introduction of CAN FD nodes into standard CAN
systems. CAN FD may be restricted to specific operation modes, e.g. software-
download at end-of-line programming, while other controllers that do not support
CAN FD are kept on standby.

1.4.2 CAN FD Concept

The development of CAN FD was based on the standard CAN protocol and had
the requirement to accelerate the serial communication while keeping the physical
layer of CAN unchanged. CAN FD started with the approach to increase the band-
width by modification of the frame format. Two changes suggest themselves: firstly,
improving the header to payload ratio by allowing longer data fields and secondly,
speeding up the frames by shortening the bit time.

However, these steps are only the groundwork; some additional measures are
needed, e.g. to keep the Hamming distance of the longer frames at the same level as
in standard CAN and to account for the CAN transceiver’s loop delay time.

38 W. Lawrenz

The CRC polynomial of CAN is suited for patterns of up to 127 bits in length
including the CRC Sequence itself. Increasing the CAN frame’s payload makes
longer polynomials necessary.

CAN nodes synchronize on received edges from recessive to dominant on the
CAN bus line. The phases of their Sample Points are shifted relative to the phase of
the transmitter’s Sample Point. A node’s specific phase shift depends on the signal
delay time from the transmitter to that specific node.

The signal delay time between the nodes needs to be considered when more than
one node may transmit a dominant bit. This is the case in the Arbitration Field or
in the ACK Slot. The configuration of the CAN bit time, especially the Propagation
Time Segment’s length and the Sample Point’s position, must ensure that twice the
maximum phase shift fits between the Synchronization Segment and the Sample
Point. Once the arbitration is decided, until the end of the CRC Field, only one
node transmits dominant bits, all other nodes synchronize themselves to this single
transmitter. Therefore, it is possible to switch to a predefined (shorter) bit time in
this part of a CAN frame, here called the Data-Phase, see Fig. 1.19. The rest of the
frame, outside the Data-Phase, is called the Arbitration Phase. Different coding of
the DLC allows making the Data Field longer than the 8 bytes of standard CAN.
The advantage of the improved header to payload ratio rises with the acceleration
factor between the Arbitration-Phase and Data-Phase.

All nodes in the network must switch to this shorter bit time synchronously at
the start of the Data-Phase and back to the standard bit time at the end of the Data-
Phase. The factor between the short bit time in the Data-Phase and the standard bit
time in the Arbitration-Phase decides how much the frames are speeded up. This
factor has two limits. The first is the speed of the transceivers: Bits that are too short
cannot be decoded. The second is the time resolution of the CAN synchronization
mechanism: after switching to the short bit time, a Phase_Error of one time quan-
tum in the standard bit time needs to be compensated for.

At the last bit of the Data-Phase, the CRC Delimiter, all nodes switch back to
the standard bit time before the receivers send their acknowledge bit, followed by a
recessive Acknowledge Delimiter and End of Frame.

CAN’s fault confinement strategy, where a node that detects an error in an on-
going frame immediately notifies all other nodes by destroying that frame with
an Error Flag, requires that all nodes monitor their own transmitted bits to check
for Bit-Errors. Current CAN transceivers may have, according to ISO 11898-5, a
loop delay (CAN_Tx pin to CAN_Rx pin) of up to 255 ns. That means, to detect a
Bit-Error inside a bit time of the Data-Phase, this bit time has to be significantly
longer than the loop delay. To make the length of a short bit time independent of the
transceiver’s loop delay, CAN FD provides the Transceiver Delay Compensation
option, where the check for Bit-Errors and the responding Error Flag are delayed.
All nodes that detect an error switch back to the standard bit time before sending
an Error Flag.

391 CAN Basic Architectures

1.4.3 CAN FD Frame Format

The Control Field in standard CAN frames contains reserved bits which are speci-
fied to be transmitted dominant. In a CAN FD frame, the reserved bit after the IDE
bit (11-bit Identifier) or after the RTR bit (29-bit Identifier) is redefined as Extended
Data Length ( EDL) bit and is transmitted recessive. This sets the receiving BSP and
BTL FSMs - Finite State Machines - into a CAN FD decoding mode.

The following bits are new in CAN FD:

• EDL Extended Data Length
• r1, r0 reserved, transmitted dominant
• BRS Bit Rate Switch
• ESI Error State Indicator

The DLC values from 0000b to 1000b still code a Data Field length from 0 to
8 bytes, while the (in standard CAN redundant) DLC values from 1001b to 1111b
are redefined in CAN FD to code Data Fields with a length of up to 64 bytes:

DLC 1001 1010 1011 1100 1101 1110 1111
Byte 12 16 20 24 32 48 64

EDL distinguishes between the standard CAN frame format and the CAN FD frame
format.

The value of BRS decides whether the bit rate in the Data-Phase is the same as
in the Arbitration-Phase ( BRS dominant) or whether the predefined faster bit rate is
used in the Data-Phase ( BRS recessive).

In CAN FD frames, EDL is always recessive and followed by the dominant bit,
r0. This provides an edge for resynchronization before an optional bit rate switch.
The edge is also used to measure the transceiver’s loop delay for the optional Trans-
ceiver Delay Compensation.

Fig. 1.19  CAN FD data frame format with 11-bit identifier and with 29-bit identifier

40 W. Lawrenz

In CAN FD frames, the transmitter’s error state is indicated by ESI, dominant for
Error Active and recessive for Error Passive. This simplifies network management.

There are no CAN FD Remote Frames; the bit at the position of the RTR bit in
standard CAN frames is replaced by the dominant reserved bit, r1. However, stan-
dard CAN Remote Frames may optionally be used in CAN FD systems.

Receivers ignore the actual values of the bits r1 and r0 in CAN FD frames; they
are reserved for future expansion of the protocol, e.g. using r1 as additional identi-
fier bit.

41

Chapter 2
Physical Layer

Wolfhard Lawrenz, Cornelius Butzkamm, Bernd Elend, Thorsten Gerke,
Magnus-Maria Hell, Ursula Kelling, Bernd Koerber, Kurt Mueller,
Christian Schmitz, Radoslaw Watroba and Rolf Weber

C. Butzkamm ()
C&S group GmbH, Am Exer 19b, 38302, Wolfenbuettel, Germany
e-mail: C.Butzkamm@cs-group.de

W. Lawrenz
Waldweg 1, 38302, Wolfenbuettel, Germany
e-mail: W.Lawrenz@gmx.net

B. Elend
NXP Seminconductors Germany GmbH, Streesemannallee 101, 22529, Hamburg, Germany
e-mail: bernd.elend@nxp.com

T. Gerke
Synopsys GmbH, Karl-Hammerschmidt-Strasse 34, 85609, Aschheim-Dornach, Germany
e-mail: gerke.thorsten@yahoo.de

M.-M. Hell · U. Kelling
Infineon Technologies AG, Am Campeon 1-12, 85579, Neubiberg, Germany
e-mail: magnus-maria.hell@infineon.com

U. Kelling
e-mail: ursula.kelling@infineon.com

B. Koerber
Westsächsische Hochschule Zwickau, Dr.-Friedrichs-Ring 2A, 08056, Zwickau, Germany
e-mail: Bernd.Koerber@fh-zwickau.de

K. Mueller
Synopsys, Inc., 2025 NW Cornelius Pass Road, 97124, Hillsboro, OR, USA
e-mail: kurt.mueller@synopsys.com

C. Schmitz · R. Weber
ELMOS Semiconductor AG, Heinrich Hertz Strasse 1, 44227, Dortmund, Germany
e-mail: christian.schmitz@elmos.eu

R. Watroba
STMicroelectronics Application GmbH, Bahnhofstraße 18, 85609 Aschheim-Dornach, Germany

The transfers of data which have been processed in the data link layer are done in
the physical layer. The physical layer consists of:

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_2,
© Springer-Verlag London 2013

42 W. Lawrenz et al.

• Transceiver
• Controller area network (CAN) choke (optional)
• Electro magnetic compatibility (EMC) and electrostatic discharge (ESD) protec-

tion devices (optional)
• Connector
• Network or data bus, e.g. a two-wire cable

There are two different concepts for the physical layer, which is, on the one hand,
the so-called Fault-Tolerant Low-Speed CAN Physical Layer and the High-Speed
CAN Physical Layer on the other. They are different in the maximum data rate
(1 Mbit/s for high-speed CAN and 125 kbit/s for low-speed CAN) and the concepts
for bus termination which enable the fault-tolerant low-speed CAN transceiver to
continue the communication in all error conditions. This is not feasible for high-
speed CAN communication if there is, for instance, a short circuit condition be-
tween the bus lines. Nevertheless, high-speed CAN physical layer meanwhile is
applied for the communication between all modules in cars. The area of application
of low-speed CAN is typically limited to the vehicle interior applications—the so
called “body”. The fault-tolerant low-speed CAN physical layer is preferably ap-
plied by European car manufacturers. However, American and Japanese automo-
tive manufacturers solely apply the more simple high-speed CAN physical layer.
Nevertheless, European car manufacturers have dropped low-speed CAN in the
meantime. In newer vehicle generations, they almost only apply the newer version
of the high-speed CAN transceivers. The basic characteristics of the transceivers
and the related physical layers are specified in the ISO 11898 standard.

2.1 Basic Elements

2.1.1 Transceiver

The transceiver transmits and receives the physical data to and from the bus. The ba-
sic concept of the transceiver is identical for high-speed CAN and low-speed CAN
transceiver. For this basic concept, a transmitter and a receiver are needed. The trans-
mitter is a buffer, which transforms the logical signal on pin TxD (transmit data) into
a slew rate-controlled analog signal on the pins CAN_H and CAN_L. Both are open
drain outputs. CAN_H is a high-side driver and CAN_L is a low-side driver. Both
have reverse polarity diodes to protect these outputs against reverse operation. The
minimum voltage range for both outputs is required to be between − 27 and + 40 V.
The maximum output current is controlled to protect this output stage and the CAN
coils (if implemented) against shorts to ground and supply…. The current will nor-
mally be limited between 40 and 200 mA, but in newer products the maximum value
is reduced to 100 mA to protect the 100-µH CAN coils too. The receiver is a dif-
ferential comparator and converts the differential signal into a logical signal on pin
RxD (receive data). A logical high on RxD corresponds with a recessive differential
level on the bus, and a logical low on pin RxD corresponds with a dominant signal

432 Physical Layer

on the bus. The receiver in normal mode is always active and receives the signal
on the bus, independent of whether these signals are transmitted from him or other
participants on the bus. The differences between fault-tolerant low-speed and high-
speed CAN transceivers will be discussed in the following chapters.

2.1.1.1 Transceiver Mode

In ISO 11898-3- (fault-tolerant low-speed CAN) and ISO 11898-5 transceiver
(high-speed CAN with remote wake-up), special modes are implemented. A typical
mode diagram is shown in Fig. 2.1 and will be described in more detail.

Fig. 2.1  Typical mode diagram of a transceiver

44 W. Lawrenz et al.

The most important transceiver modes are:

• Sleep mode
• Stand-by mode
• Normal mode
• Go-to-sleep mode

Sleep Mode

The fault-tolerant low-speed CAN transceiver (according to ISO 11898-3) and the
high-speed CAN transceiver (according to ISO 11898-5) with remote wake func-
tion can be permanently supplied and have a sleep mode to reduce the current
consumption below 30 µA. In this mode, the pin Inhibit (INH) is switched off. In
the transceiver itself, the receiver is active with a very low current consumption
to monitor CAN communication on the bus. A valid differential signal on the bus
wakes the transceiver up, sets the transceiver in standby mode and switches on the
INH pin. If a local wake pin is implemented, the transceiver can be woken up with
level changes on this pin too.

Standby Mode

The standby mode is an intermediate mode after a transceiver wake up. The reasons
for a wake-up can be:

• Power-up
• Level change on local wake pin
• Remote bus wake-up

In standby mode, the transmitter is blocked and set to recessive to guarantee no
disturbance on the bus during microcontroller ramp-up. Depending on the imple-
mentation, the wake-up source is flagged. Normally, a remote wake-up is flagged
on the pin RxD with a permanent dominant signal. A mode change in normal mode
resets this flag. In standby mode, the INH pin (if available) is set to high. An INH-
controlled voltage regulator will be switched on.

Normal Mode

In normal mode, the transceiver transmits and receives data. The transceiver can
be set in normal mode via the mode pin EN. This mode pin is controlled from the
microcontroller. In some transceiver products, a TxD-dominant time-out protec-
tion is implemented too. In case of a permanent dominant signal on the pin TxD,
the bus is blocked and the communication on the bus is corrupted. After a defined
time, the TxD-dominant time-out protection will set the transmitter to recessive and
the communication on the bus can be continued. The release of this TxD-dominant

452 Physical Layer

time-out latch depends on the implementation of the product. Most of the time, a
logical high on pin TxD releases the latch. An over-temperature to protect the output
stages CAN_H and CAN_L is normally implemented in a standard transceiver and
switches off the output stages CAN_H and CAN_L. A recessive level on pin TxD
will reset the over-temperature protection.

Go-to-Sleep Mode

If an INH pin is available, a voltage regulator, connected to this INH pin, can be
controlled from the transceiver. In sleep mode, the INH pin is switched off and the
voltage regulator is switched off as well. The go-to-sleep mode is implemented to
delay the host command sleep mode until the INH is switched off. During this time,
the microcontroller can finalize the activities. After remote wake-up, the transceiver
changes into standby mode and switches on the INH pin and the controlled voltage
regulator.

2.1.2 CAN Coil

The advantages of a CAN coil include:

• Reduction of electromagnetic emission
• Improvement of immunity
• Sometimes improving the ESD performance

The typical used values for CAN coils in CAN networks are 22, 51 or 100 μH.
The CAN coil reduces the emission from the transceiver and increases the im-

munity robustness against disturbances.

2.1.3 Network Concepts

Two different concepts of physical layer implementations are available now:

• The high-speed CAN physical layer concept with baud rates up to 1 Mbaud
• The fault-tolerant low-speed CAN concept with baud rates up to 125 kbaud

These concepts are different from each other and will be described in the next chapter.

2.1.4 Fault-Tolerant Low-Speed CAN Physical Layer

The application areas for the fault-tolerant low-speed CAN physical layer are body
application in cars and applications where the fault tolerance is needed and the
lower baud rate can be accepted.

46 W. Lawrenz et al.

This concept is tolerant against:

• CAN_H short to ground
• CAN_L short to ground
• CAN_H short to supply or battery voltage
• CAN_L short to supply or battery voltage
• CAN_H short to VCC (5 V supply for microcontroller and transceiver supply)
• CAN_L short to VCC (5V supply for microcontroller and transceiver supply)
• CAN_L short to CAN_H
• CAN_H open wire
• CAN_L open wire

In addition, the combination of all of these failures can be detected as double fail-
ure. In total, 120 combinations are possible and can be handled. How does this

Fig. 2.2  Block diagram of TLE6254-3G and a typical fault-tolerant low-speed CAN network

472 Physical Layer

work? In principle, CAN_H and CAN_L work separately and in ant phase. CAN_H
has a termination resistor to ground (via switch RTH) and CAN_L has a termination
resistor via switch RTL to VCC (see Fig. 2.2). The signal will be transmitted via
the CAN_H path and CAN_L low in ant phase. All receivers obtain the differential
signal if there is no short or open wire on the bus. In this mode, the common-mode
range and robustness is very high. If one short is detected, the transmitter deactivates
this path (for example, if CAN_H is shorted to ground, CAN_H will be disabled and
the communication will be transmitted over CAN_L only). For the termination, all
nodes are complete. The value for the termination resistor can be between 500 Ω
and 5 kΩ. In total, the value for all resistors (in a parallel connection) should be in
a range of 100 Ω. Values less than 100 Ω are not allowed.

A high level on pin TxD corresponds with a recessive level on the bus. A reces-
sive level on the bus means 0 V on CAN_H and 5 V on CAN_L. A low level on
pin TxD corresponds with a dominant level on the bus. A dominant level on the bus
means CAN_H and CAN_L are switched on and the levels are 4 V for CAN_H and
1 V for CAN_L. The absolute level depends on the busload. This ends in a differ-
ential level for recessive state of typical −5 V (VCAN_H − VCAN_L) and −3 V for the
dominant state. In Fig. 2.3, the typical behaviour is demonstrated.

A fault-tolerant receiver consists of five different receivers which work in paral-
lel. These receivers are:

• A differential receiver (for standard communication), with threshold voltage at −3 V
• A single-ended receiver for CAN_H (used in case of CAN_H short), with thresh-

old voltage at 1.8 V
• Asingle-ended receiver for CAN_L (used in case of CAN_H short), with thresh-

old voltage at 3.2 V

Fig. 2.3  Typical signals for a fault-tolerant low-speed CAN network

48 W. Lawrenz et al.

• Asingle-ended comparator for CAN_H (to detect CAN_H short to Vbatt), with
threshold voltage at 7.2 V

• Asingle-ended comparator for CAN_L (to detect CAN_L short to Vbatt) with
threshold voltage at 7.2 V

All receivers and comparators are also used to analyse failure cases on the bus. The
failure management logic decides when there is a failure on the bus and changes
from differential mode to single-ended mode. In the single-ended mode, the shorted
transmitter is switched off (for example, in the case of CAN_H short to ground the
CAN_H transmitter) and the single-ended CAN_L receiver is used. In the case of
a CAN_L short to VCC or Vbatt, the CAN_L transmitter is switched off and the
CAN_H single-ended receiver is used. The disadvantage of this single-ended mode
is the lower noise robustness and the lower possible ground shift between the sender
node and the receiver nodes.

In case of CAN_H short to Vbatt or VCC or a CAN_L short to ground, a high
current flows through the termination resistors in sleep mode. This is the reason
why termination resistor switches are implemented. In case of a short on the bus,
the termination resistors are switched off. Pin RTL is the switch for the CAN_L
termination resistor and RTH is the switch for the CAN_H termination resistor. In
sleep mode, normally the 5 V supply VCC is switched off, floating or 0 V. To have
a positive termination voltage, CAN_L will be high ohmic terminated to Vbatt.
When CANS communication is started, the transmitter of the transmitting node
pulls the CAN_L to ground and all other detects this as a remote wake-up event and
the transceivers change into standby mode. In standby mode, INH is activated and
switches on the voltage regulator and ramps up the microcontroller. After the suc-
cessful ramp-up of the microcontroller, the transceiver should be set to normal mode
for normal communication on the bus. In transceiver standby mode, the termination
switches RTL and RTH on and terminates the CAN_H and CAN_L wires.

2.1.4.1 High-Speed Physical Layer

An ideal high-speed CAN physical layer has a termination resistor of 120 Ω on
both ends of the wire. This reduces the echo on the wire to a minimum. All other
nodes are connected in between. This concept allows a data rate of up to 1 Mbaud.
The ringing, especially after the dominant to recessive edge, is minimized and the
high data rate is possible. After switching on the CAN_H and CAN_L output stages,
a current flows from CAN_H to CAN_L over the termination resistors. The result
is a voltage drop over both termination resistors between 1.5 and 3 V. This is called
dominant level. If both output stages are switched off, the voltage drop over the
termination resistors is zero. This is called recessive level. The receiver thresholds
are between 500 and 900 mV. A voltage drop higher than 900 mV will be detected as
dominant level on the bus and a voltage drop smaller than 500 mV will be detected
as recessive level. The common-mode range for the receiver is from −12 to +12V.
If the bus common-mode voltage is higher or lower, the receiver can detect wrong
signals. This concept is not proven against CAN_H shorts to ground and a CAN_L
short to battery voltage. In this case, the communication can be corrupted.

492 Physical Layer

Figure 2.4 shows a typical high-speed CAN bus signal.

High-Speed Transceiver

Two different kinds of transceivers are in the market now:

• ISO 11898-2 transceiver
• ISO 11898-5 transceiver, with remote wake-up feature

The typical high-speed CAN transceiver consists of a transmitter and a receiver.
Two 20-kΩ resistors, connected to an internal voltage source of 2.5 V , stabilize
the bus voltage to 2.5 V in recessive state. The receiver is a differential comparator
with electromagnetic compatibility (EMC) filter. This comparator monitors the bus
levels and transforms the differential signal of the bus levels to a logic signal on
pin RxD. High level on RxD is recessive level on the bus and low level on RxD is
dominant level on the bus.

Figure 2.5 shows a block diagram of an ISO 11898-2 transceiver (left) and the
ISO 11898-5 transceiver with remote wake-up (right).

Transceiver according to ISO 11898-2

A transceiver according to ISO 11898-2 is a transceiver with a transmitter and a re-
ceiver to transmit and receive data only. In the first generation of this kind of trans-
ceiver, no additional function was implemented. In newer generations, the ESD
robustness is dramatically increased up to 15 kV and the emission is reduced to very

Fig. 2.4  Typical signal for a high-speed CAN physical layer

50 W. Lawrenz et al.

Fig. 2.5  Block diagram: comparison of ISO 11898-2-/ISO 11898-5 transceiver

512 Physical Layer

low values. In addition, a TxD time-out function is added to lock the transmitter in
case of failure on the TxD pin. This kind of transceiver is active if the 5 V VCC
pin is supplied. Such transceivers are used in industrial applications and not per-
manently supplied applications. The Infineon TLE 6250G is a typical ISO 11898-2
transceiver and will be described in Sect. 2.5.

Transceiver According to ISO 11898-5

In some applications, especially in the car body, the transceiver is permanently
supplied. If the bus communication is inactive, the current consumption should be
reduced dramatically. For this mode, a new function was implemented and called
sleep mode. This mode is described in ISO 11898-5. The new functions are:

• Sleep mode with a very low current consumption
• Remote bus wake-up function
• Reduced busload in case of unsupplied device

The ISO 11898-5 is based on ISO 11898-2. All bus parameters are the same; only
the remote wake-up function was added.

2.1.5 Termination Concepts

The termination concept has an impact on the signal integrity and the emission in
the network. A high signal integrity is necessary for high baud rates. A stabilized
recessive level is necessary for low ones. In the International Organization for Stan-
dardization (ISO), two 120-Ω resistors are recommended for the termination, but
some newer concepts are used to improve this concept.

2.1.5.1 Standard-Termination Concept

The termination resistor at the end of the wire reduces the echo on the bus and
increases the signal integrity for a reliable communication. In the ISO, two 120-Ω
resistors are recommended (see Fig. 2.5).

2.1.5.2 Termination with Centre Tab

To reduce the emission, the sum of the CAN_H and CAN_L level must be constant
for a recessive and dominant signal. Deviation comes from different CAN_H and
CAN_L propagation delays or different switching times. A ground shift can in-
crease the emission as well. To reduce this impact, a termination with a centre tab is
used in different applications. The centre tab, normally 4.7 nF or higher, increases
the stability of the recessive level and reduces the emission (see Fig. 2.6).

52 W. Lawrenz et al.

Fi
g.

 2
.6

  T
er

m
in

at
io

n
co

nc
ep

ts
 in

 h
ig

h-
sp

ee
d

C
A

N
 n

et
w

or
ks

532 Physical Layer

2.1.6 Network Topologies

In modern cars, different topology concepts are used. In industrial applications, the
linear bus topology is preferred. The different topologies are:

• Single star
• Twin star
• Linear bus
• Hybrid topology

2.1.6.1 Single Star

In the single star topology (Fig. 2.7), all stabs are connected in the centre of the star.
Only one termination resistor (60 Ω) is used in this single star architecture. The
advantage of this topology is the flexibility and the possible high number of nodes
in a network. The length of each wire can be up to 9 m. The maximum baud rate in
this topology is 500 kbaud. Higher bus rates are not possible. The ringing at the end
of a dominant bit is very long and dominates the maximum baud rate.

2.1.6.2 Twin Star

The twin star topology consists of two single stars, which are connected to each
other (Fig. 2.8). With this kind of topology, an optimized adaption wiring harness is
possible. The termination resistors are located in the centre of each star. The maxi-
mum baud rate is also 500 kbaud.

2.1.6.3 Linear Bus Topology

The linear bus topology is used in the industrial world and in cars (Fig. 2.9). For cars, it
is not flexible enough, but it allows baud rates up to 1 Mbaud. In the ISO 11898-2, the
recommended stub length is maximum 30 cm. The total length should be below 40 m.

Fig. 2.7  Schematic and application of a single star topology

54 W. Lawrenz et al.

2.1.6.4 Hybrid Topology

The hybrid topology is a combination of linear bus and single star (Fig. 2.10).
This technology combines the advantage and disadvantage of both topologies.

The baud rate can be up to 1 Mbaud and the maximum length of the wire can be
smaller than that in the other solutions. However, the cost for this topology is higher
than for the others.

2.1.6.5 Network Propagation Delay

The calculation of the network propagation delay (Fig. 2.11) in a network is neces-
sary to guarantee a reliable arbitration. If more than one node starts to transmit a
message, the higher ID will win the arbitration phase.

Fig. 2.8  Schematic and application of a twin star topology

Fig. 2.10  Schematic and application of a hybrid technology

Fig. 2.9  Schematic and application of a linear bus topology

552 Physical Layer

In the worst-case scenario:

• The maximum propagation delay from node A to node B is calculated with mi-
crocontroller.

• Propagation delay node A = 30 ns.
• Transceiver propagation delay node A = 280 ns.
• Wire propagation delay for 40 m with 5 ns per metre = 200 ns.
• Transceiver propagation delay for transceiver node B = 280 ns.
• Propagation delay microcontroller node B = 30 ns.
• Wire propagation delay from node B to node A 40 m with 5 ns per m = 200 ns.
• The total propagation delay is 1040 ns.
• This is the reason why in long networks only 500 kbaud are possible.

2.2 Network Topologies—Design Constraints

The term “topology” can be deduced from the Greek words “topos” (place, loca-
tion) and “logos” (theory, knowledge). Thus, topology means the science of the
location. In a CAN system, several bus connections or nodes are connected to a
system or network. As the way of connecting the nodes exerts influences (e.g. on
the signal integrity or the signal propagation) or reacts on external influences, the
architecture of the network is termed as the topology. Thus, the science of the place-
ment and its corresponding impacts are considered in a CAN topology.

The impact of CAN topologies, discussed in this chapter, focuses on three differ-
ent categories. First, the impacts and properties of CAN topologies are discussed,
followed by the structure of the bus connection of a CAN node and the character-
istics of its integrated bus connecting circuitry. Based on examples, different inter-
actions between bus connection circuitry and the topology are discussed with the

Fig. 2.11  Network propagation delay in a CAN network

56 W. Lawrenz et al.

focus on the signal integrity. Analytic considerations and optimization measures
shall give possibilities of a specific judgement and enhancement of the signal qual-
ity of the CAN network.

2.2.1 CAN Network Architecture

Although CAN bus is not one of the high-speed data networks, some phenomena
show that the laws of physics apply here. Especially at speeds above 250 kbit/s and
at cable lengths above 50 m, it must be analysed more closely and will require some
calculation rules. The actual physical properties of the CAN bus lines as well as the
circuitry of the connected control devices have to be considered. If the electrical
specifications of these components are available, the quality of the received signals
can be derived from the transmit signals. To reduce the complexity of calculations,
some assumptions can be made, which are explained below.

Simulations may be used to avoid the need for such calculations. However, fun-
damental knowledge of all influencing parameters is important to predict the impact
of changes or modifications on existing CAN networks.

2.2.1.1 Transmission Line Theory

Theoretical considerations of the electrical lines are based on the electromagnetic
waves forming the signals, which spread along the line with a characteristic speed.
Therefore, voltage and current pulses of CAN messages also move from transmitter
to receivers with a characteristic propagation speed. For very slow operations, i.e.
switching off light, this can be neglected. For the fast CAN signals, the propagation
speed limits the allowable cable length. Signals are classified as fast, if the rise time
is shorter than the propagation time of the corresponding line.

The specific propagation delay results from the material properties of the cable
in use. The dielectric constant of the insulating material and geometric parameters
plays an essential role. Hence, a wave impedance can be determined, which de-
scribes the relationship between current and voltage at any point on the line, and the
propagation speed of pulses on the line. On closer inspection, these parameters are
frequency dependent, which can have an impact on very fast signals (above about
5 Mbit/s). For CAN signals, this effect can usually be neglected. The impedance
thus can be assumed to be a resistance.

The transmission of CAN signals is usually performed in a differential method.
Two wires are used, where the data signal is derived from the voltage between the
conductors. To simplify the calculation of the transmission signals, the signals of
the two conductors can be decomposed in a differential signal and a common-mode
signal.

The differential signal—also called odd mode signal—and the common-mode
signal can be calculated if the voltage of each single CAN signal line is known, as
shown in [2.1]:

572 Physical Layer

U U U

U
U U

diff CAN H CAN L

com
CAN H CAN L

= −

=
+

_ _

_ _

2

(2.1)

All considerations can, therefore, be performed for the two CAN lines separately
or alternatively for common-mode and differential signals. The partial results fi-
nally have to be superimposed. The common-mode signal can often be neglected
if interference-free signals are considered. For signal propagation, however, both
components are important. Since the circuitry and the line impedances for both
components are very different, very different considerations arise.

In most cases, CAN systems use unshielded twisted pair (UTP) cables. The elec-
trical equivalent is shown in Fig. 2.12. To calculate the electrical field, it can be
assumed that both wires and a ground plane form a three-wire system.

The impedance can be calculated based on the material properties or by mea-
surement. Driving the two wires by a pure differential signal allows calculating the
impedance of the circuit arrangement as a parallel connection of 2 × ZC and ZD.
For pure common-mode stimulation, ZD is not effective and ZC can be measured.

Another method is to describe the line by short segments, each represented by
concentrated electric components (R, L, C) as shown in Fig. 2.13. The length of
each segment must be considered to be short versus wavelengths of the driving
signals.

The concentrated circuitry describes the losses (R, G) and the energy-storing ele-
ments (L, C) per segment length—also known as primary line constants.

Fig. 2.13  Schematic of the elements, representing a transmission line segment

Fig. 2.12  Impedances of UTP cable as three-wire system

58 W. Lawrenz et al.

The resistivity may lead to voltage drops along the line. In case of long lines, the
loss along the line can be so large that the received signal by the voltage drop is no
longer sufficient.

The capacitive characteristics—along with the input capacitances of the con-
nected control units—can lead to significant switching times in extended systems.
For the transition between recessive and dominant, these can be estimated by the
internal resistance, the transmitting transceiver and the sum of the above-mentioned
capacities. On the transition to recessive state, the system will be discharged via the
termination resistor. The two periods are so different and must be separately deter-
mined. Additional capacitive portions can also play a role, if shielded wire is used
(shielded twisted pair—STP).

In the following, only the differential signal is considered, which can later be sup-
plemented by separate consideration of the common-mode behaviour (Fig. 2.14).

If we observe the propagation of a switching pulse along a line, then an unex-
pected behaviour occurs at the end of the line: If we consider an open end of the
line, the pulse may not continue to move. To ensure the continuity of the energy, a
wave is reflected back, which compensates for the incoming wave. This overlaps
with the end of the wave and leads to signal distortion. Only if the end of the line is
terminated by a resistor equivalent to the line impedance, the energy is absorbed and
thus the overlay can be avoided. In all other cases, signal reflections occur, whose
size is described by the reflection factor.

For differential signals, there is a typical characteristic impedance of about
120 Ω for a twisted-pair cable which is usual in CAN systems. This corresponds to
a propagation speed of 4–5 ns/m. The CAN bus should be terminated at both ends
with this resistance, as required, for example, in the standard ISO 11898-2. In real
systems, the end of the line often cannot be determined unambiguously, like in a
star-shaped or branched system topology. In these cases, a single termination or
multiple distributed termination resistors may be used instead—as a result of an
optimization process.

Reflections—as mentioned above—occur at each crossing point, because, at
these points, the line impedance changes due to parallel connection of line imped-
ances. The reflections of branches which are not accordingly terminated will over-
lay and distribute in the overall system. The result of these interferences depends

Fig. 2.14  Separation of CAN signals in differential-mode and common-mode components

592 Physical Layer

on the location of the observation; it must be determined separately for each node
of the system. Even simulation-based analyses result in a very large amount of data.

In many cases, it is unfortunately not possible to establish the system as a bus
with short branch lines, as required by ISO 11898-2 (maximum bus cable length,
40 m; maximum stub length, 0.3 m) (see Fig. 2.15). Although this topology would
cause least disturbances by reflections, the maximum elongation from 40 m at
1 Mbit can hardly be achieved.

Due to the arrangement of the electronic control units (ECUs), for example, in
a motor vehicle, a multiple star configuration results quite often. Stub lengths of
several metres may be required as shown in the example stub “s” in Fig. 2.16.

At the junction point of multiple parallel stubs, reflections increase, depending
on the number of branches. For symmetric structures, the returning reflected signals
will again come together and intensify. Symmetrical topologies are especially criti-
cal. For large networks with low symmetry, superposition of reflected signals may
erase each other. In spite of the increasing complexity of the network topology, the
resulting signals may be uncritical. The “golden rules” for the configuration can-
not be given, only trends and experiences. These are particularly problematic for
networks with a large number of optional ECUs. Problems can occur by adding or
omitting devices in very critical combinations—even if the system works initially
stable. Figure 2.17 shows such a case. To the system made up from the ECU 1 to
ECU 5, the sixth is added. The propagation delay is increased in this particular
case—by the ringing at the transition from dominant to recessive—from 280 to
422 ns.

Fig. 2.16  Stub length in a network

Fig. 2.15  Limits of system extent according to ISO 11898-2

60 W. Lawrenz et al.

The waveforms also show very clearly that the signal quality is heavily influ-
enced by the position in the system. It is not sufficient to analyse a single position in
the network. Since the access of measuring points in the final system is very limited,
the signal analysis by means of simulations is often the only solution.

2.2.2 Architecture of CAN Nodes

The previous chapter addressed the influences of the characteristics of network ar-
chitectures. In this chapter, the architecture of a CAN node and its components shall
be handled. In this context, all components taking part in the signal transmission
from a digital to an analog CAN bus signal and vice versa are inquired. Function-
ing and implementation reasons as well as signal integrity crucial attributes are
explained.

2.2.2.1 CAN-Bit-Timing and Oscillator Tolerances

The interface between the physical layer and the data link layer are the digital sig-
nals RxD and TxD. With the help of these signals, information is given over to the
other respective communication layer. This is only possible if both sides are using
the same comprehension of the information content. In case of the RxD and TxD
signals, this is reduced to the binary logic with both its defined states logic “1” and
logic “0”. However, there is a further physical unit which is present at the interface
between the physical and data link layer and shall be considered: the time. In this
case, the timing aspect is interesting regarding the oscillator tolerances inside the
protocol layer and different delay times in the physical layer. Through the configu-

Fig. 2.17  Optional ECU 6 increases the propagation delay (220 ns 480 ns) due to the symmetry
of the topology

612 Physical Layer

ration of the bit timing, the sample point, the synchronization jump width (SJW)
and the data rate are defined. Tolerances of the clock sources influence the CAN
clock directly. Today, used crystal oscillators have tolerances of about 50 ppm.

In case of two communicating CAN nodes, each has oscillators with a maximum
deviation (one in positive and one in negative direction). This results in a maximum
divergence of the data rate. Therefore, there is one fast-running and one slow-run-
ning CAN node. Taking delays of the physical layer (of the network architecture, of
the signal path as well as delay times of state transitions from dominant to recessive
and vice versa) into account, the correct information exchange shall be guaranteed
even with the discrepancy of the two local bit rates of the CAN nodes.

Section 2.2.3 continues this aspect in combination with the analytic consider-
ation of the maximum length of the signal path and how the clock tolerance influ-
ences the physical layer and the CAN communication.

2.2.2.2 Transceiver

Section 2.1 described transceivers in detail, however, this chapter focuses on as-
pects and properties given by the transceiver which influences the signal integrity
evaluations. The task of the transceiver is to convert digital signals to analog bus
signals and vice versa. Due to the fact that the transceiver is integrated into the
signal flow directly, the influences given by the transceiver are intense and shall
be evaluated precisely. Of particular importance are the dynamic processes during
the change between the two logical states of the CAN bus, especially in the case
of sending. Particularly static characteristics are important in the case of receiving.
However, delay times are important characteristics in the case of sending or receiv-
ing. Delay times are next to signal propagation delays of the network crucial for the
calculation and evaluation of CAN topologies. There are delay times due to trans-
forming digital information to analogue bus signals (from a state change on TxD
until the corresponding state change on the CAN bus) and there are delay times due
to transforming analogue bus signals to digital information (from a state change on
the CAN bus to the corresponding state change on RxD). These delay times occur at
a state change from dominant to recessive (dom_rec) approximately from logic “0”
to logic “1” and from recessive to dominant (rec_dom) approximately from logic
“1” to logic “0”. Therefore, there are the four following listed important delay times
of the transceiver:

• tTXD_dom_rec: Transceiver acts as sender, state change from logic “0” to logic “1”.
• tTXD_rec_dom: Transceiver acts as sender, state change from logic “1” to logic “0”.
• tRXD_dom_rec: Transceiver acts as receiver, state change from dominant to recessive.
• tRXD_rec_dom: Transceiver acts as receiver, state change from recessive to logic

dominant.

Information for measuring these delay times is given in detail in ISO 11898-2 (for
high-speed CAN).

62 W. Lawrenz et al.

As mentioned above, the dynamic characteristics of the transmitter part of the
transceiver are important. There, the transceiver drives the bus signal which will be
distributed over the network. The characteristics of the signal shape are not only rel-
evant if it is possible to distribute the information over the whole network but also
crucial for noise immunity and sensitivity against interference with (or of) other
network components. Furthermore, the signal shapes of dynamic processes have
a huge impact on EMC behaviour of the network. Important aspects for the con-
sideration of the signal flanks are the symmetry between the flanks of the CAN_H
signal and the CAN_L signal, the rounding of the flanks as well as the slew rate of
the signal flanks. Through the rounding and the limitation of the slew rate of the
signal flanks, high-frequency (HF) signal parts are limited to increase the EMC
robustness and immunity. The symmetry of the CAN bus signal, which describes
the line symmetry of the signals CAN_H and CAN_L, with the axis of symmetry
lying on the mid-level (typically 2.5 V) is important to avoid asymmetries. Asym-
metries are one cause for common-mode disturbances which enable the emissions
of electromagnetic interference.

In case of validating the dynamic processes of a sending transceiver, the domi-
nant to recessive state change is of particular importance because the transceiver ac-
tively drives the CAN bus with a differential voltage in the dominant state (provid-
ing energy into a system) and is turned off during the transmission to recessive level
(high ohmic output). Discharging processes may result, regarding the disabling of
an active energy source which may lead to disturbances. Such processes are anal-
ysed in detail further below.

Figure 2.18 shows an example of a measurement set-up to measure the flanks of
a transceiver.

On the receiver side are on the one hand the thresholds and on the other the
resistive and capacitive load against the bus from interest. The ISO 11898-2 stan-
dard defines the dominant state as a differential voltage greater than 0.9 V and
the recessive state as a differential voltage smaller than 0.5 V. This means that the
maximum possible threshold for the dominant state is equal to 0.9 V and the mini-
mum possible threshold for the recessive state is equal to 0.5 V. Consequentially, the

Fig. 2.18  Measurement set-up—dynamic behaviour of the transceiver output stage

632 Physical Layer

real thresholds lie between these boundaries. The real thresholds are interesting for
signal integrity inspections, delay measurements or the calculation of the maximum
possible network length. Figure 2.19 shows a measurement set-up to measure the
thresholds of a CAN transceiver.

The characteristics of the receiver part of the transceiver depend on the differen-
tial resistance and the differential capacitance which acts between the bus signals
CAN_H and CAN_L. The differential resistance helps in building abstract equiva-
lent circuits for the calculation of the maximum possible network length. The volt-
age drop over this differential resistance shall be at least as big as the minimum de-
fined differential voltage for the dominant level to make communication exchange
possible. The capacitive load between the bus signals of a CAN node influences the
signal shape during a state change. With an increase of CAN node, the capacitive
load of the CAN bus increases as well and may result in a deformation of the slew
rates in form of an approximation of a capacitive charging curve. Measurement
techniques for the observation of the differential resistance and the differential ca-
pacitance of a transceiver are defined in ISO 11898-2.

2.2.2.3 EMC Circuits

To increase immunity against electromagnetic emissions and interferences, com-
mon-mode chokes (CMCs) are typically part of the CAN connecting circuits of
a CAN node. In the following, the structure and operating principles are given to
be able to judge and evaluate influences of the CMCs on signal quality. Due to the
twisting of the CAN cables for the CAN_H and CAN_L signal electromagnetic
field induced by the differential signal annuls each other. However, the problem of
the emission or interference of common-mode signal parts is not solved by twist-
ing the signal cables. This is the task of the CMCs. As the name indicates, the task
of a CMC is to attenuate common-mode signal parts while differential signal parts
(containing the information content) are passed without any attenuation. This task
is realized by two chokes, one for CAN_H and one for CAN_L, which are coiled
contrary around a common used core. Concerning the differential mode, the cur-
rent directions in the CAN_H and CAN_L signals are in opposite directions. As a

Fig. 2.19  Measurement
set-up—thresholds of the
transceiver receive stage

64 W. Lawrenz et al.

result of this, the magnetic flows induced by the chokes and coupled by the core are
in opposite directions as well and cancel each other out. Without a magnetic flow,
no magnetic field can be induced which would lead to an attenuation of the signal.
In case of the common mode, the current directions in the CAN_H and CAN_L
signals have the same directions. This results in an addition of the magnetic flows
which induces a magnetic field which attenuates the common-mode signal parts.
Figure 2.20 depicts the magnetic flows which are proportional to the signal cur-
rents. The magnetic flow Φ12 depicts the flow induced by the current I1 in choke 1
which influences choke 2. The magnetic flow Φ21 depicts the flow induced by the
current I2 in choke 2 which influences choke 1.

The above shown function of the CMC does not contain the fact that, due to
straying, the complete magnetic flow will not be transported through the core. The
so-called stray flows are the parts of the complete magnetic flow which do not
influence the magnetic flows induced by the other coil. Figure 2.21 explains the
formation of stray flows. The magnetic flow Φ1 depicts the flow induced by the
current I1. The magnetic flow Φ12 depicts the part of the flow Φ1 which acts in the
other coil, where the magnetic flow Φ1S depicts the flow which does not influence
the other coil.

The strength of the straying is depicted by the stray factor which is standardized
on the rated inductance. The complementary of the stray factor is the coupling factor

Fig. 2.21  Stray flows inside
a common-mode choke

Fig. 2.20  Description of magnetic flows inside a common-mode choke

652 Physical Layer

or coupling coefficient, which depicts the strength of the impact (coupling) of the
magnetic flow to the magnetic flow of the other signal. Through the normalization
on the rated inductance, the sum of the stray factor and coupling factor is always 1.

This means that the stray factor or coupling factor gives indications for the effec-
tive working inductance in case of common-mode operation. Because the impact of
the CMC on the differential signal shall be as small as possible, the coupling coef-
ficient deals as a quality characteristic of the CMC and shall be as big as possible.

In practice, it must be distinguished between two different types of winding
which shows different coupling coefficients. The chokes with sector winding are
similar to the figures shown above (see Fig. 2.20). Each coil has its own part or sec-
tor of the core. The CAN_L and CAN_H signal lines are first twisted and then wind
up together around the core in a CMC with bifilar winding. Through the sector-
based layout with a distance between both coils, sector-based CMCs have a smaller
coupling coefficient (typically c ≈ 0.97) than CMCs with bifilar winding (c ≈ 0.99).

Chokes with bifilar winding have, caused by the small distance of the CAN_H
and CAN_L signal lines, bigger capacitances between the CAN signal lines. Dif-
ferent types of cores (in practice, there are ring cores and I-cores) do not result in
significant differences regarding signal quality aspects in the time domain (working
frequency range).

Figure 2.22 shows a simplified but sufficient equivalent circuit for signal integ-
rity considerations in the time domain.

The coupling of the magnetic flows is mentioned as the coupling arch between
the inductances L1 and L2 in the equivalent circuit. The practical values of the main
inductance are in the range of 11 and 100 µH (automotive industry). Typically,
CMCs with 51 µH are used in CAN systems (also the automotive industry) and
100 µH in FlexRay systems.

The resistance in serial to the main inductance describes the ohmic load of the
coil. The capacitance Cn represents the sum of the capacitances between coil input
and output (which should be as small as possible). The particular capacitances occur
by distances between the signal lines to each other, distances between signal lines

Fig. 2.22  Simplified equiva-
lent circuit of a common-
mode choke

66 W. Lawrenz et al.

and the core, and distances of coil start and end. These parasitic capacitances influ-
ence the attenuation curve and the position of the resonance maximum of the CMC.

The capacitance Cp represents the capacitances between coil input of coil 1 and
coil input of coil 2 as well as the capacitance between the outputs of both coils. The
capacitance depends on the distance between the ends of coil 1 to the ends of coil 2
and the distance between the coil wires to each other.

Hysteresis losses (~ f) and eddy current losses (~ f 2) are represented by the high
ohmic resistance Rfe in parallel to the inductance L inside the equivalent circuit. In
case of a saturation of the core, this resistance will decrease and bridge the frequen-
cy-dependent resistances, and the attenuation would collapse.

The ohmic loads of the coil are frequency dependent caused by the skin effect.
However, these influences are neglectable for signal integrity analysis in the time
domain and, as a result of this the ohmic load, is implemented as the constant resis-
tance RCU in serial to the inductance L.

2.2.2.4 Cable Termination, Supporting Resistances

As already introduced in the former sections, there are several possibilities of termi-
nating a CAN network with the help of termination resistances. The simple termi-
nation and the split termination were introduced. In this section, further aspects for
network termination focused on the topology layout are considered.

In dependence of the topology, there are different aspects leading to an optimized
termination concept. One important point is that the overall line termination should
have a value of approximately 60 Ω. Another important point is that stubs with a
long length in comparison to the wavelength generate reflections; termination resis-
tances should be located at long stubs as well.

Therefore, the termination resistances should be placed in a star topology in the
two stubs with the longest distance to each other. Alternatively, it is possible in an
example with a star containing four short stubs and three long stubs to terminate
each of the three stubs with 180 Ω (180 Ω || 180 Ω || 180 Ω = 60 Ω) or to terminate
the star point with a single termination with 60 Ω.

It is possible to implement supporting resistances improving the EMC charac-
teristics and interference immunity, even in the case of no usage of a split termina-
tion. These supporting resistances are implemented between CAN_H and 5 V and
between CAN_L and ground (GND) to improve the symmetry characteristics and
to stabilize the average potential to 2.5 V. The resistances have a typical value of
1.3 kΩ.

2.2.2.5 ESD Protection

To protect the bus connecting circuitry against current pulses by ESD, ESD protec-
tion components are implemented. Modern transceivers already have internal ESD
protection measures; thus, the location of the ESD protection components should

672 Physical Layer

be as close as the injection location which is normally at the bus connector pins of
the node. Usually, ESD protection components are realized with varistors which
are implemented between the bus signals and GND. Relevant for signal integrity
inspections are the parasitic capacitances which are normally depicted in the data
sheet of the ESD protection component.

To sum up all components of a CAN node bus connection, Fig. 2.23 implies,
depicted for signal integrity valuations, important equivalent circuit.

2.2.2.6 Isolation and GND Shift

In case of applications with huge topologies and high current consumptions, GND
shifts (or shifts on the supply line) may occur. In the following, an example case
explains which measures shall be taken into account to avoid influences of the ap-
plication’s current load on the CAN communication. Further praxis-relevant solu-
tion approaches, related to industrial used CAN networks, could be found in the
DeviceNet specifications [ODVA94].

In this example, the CAN nodes have a huge distance to each other and thus
the cable length is relatively long. To illustrate, for example, a CAN control of in-
dustrial motors on a conveyor belt is used. GND line and supply line are installed
together with the CAN lines. In case of a common use of supply and GND lines
for application and CAN communication, the voltage drop over the GND cable
will be dependent on the cable resistance per unit length, the length of the cable as
well as the current load of the application (which could be huge in comparison to
the CAN communication current load). This voltage drop over the GND cable af-
fects as a GND shift which may influence the CAN communication and the related
application.

Fig. 2.23  CAN bus connecting circuit of a CAN node

68 W. Lawrenz et al.

GND shifts are critical because they induce common-mode currents which lead
to worse EMC behaviour of the network and, in the case of huge GND shifts, the
information exchange itself is endangered by wrong bit decoding.

One solution to avoid GND shifts, caused by the current consumption of the
application, is to separate the GND line for the CAN communication and for the
application as well as a galvanic isolation between the CAN communication and the
application. Regarding the supply of the CAN communication parts, the galvanic
isolation can be realized by direct current (DC)/DC converter; the galvanic isolation
of the logic signals RxD and TxD can be realized by optocouplers. EMC behaviour
and interference immunity are enhanced by the isolation of the CAN physical layer.
The explained concept is depicted in Fig. 2.24.

2.2.3 Interactions of Components and Analytic Signal Integrity
Inspections

An elementary problem at signal integrity valuations is the interactions of influ-
ences of different components on the overall behaviour of the system. That only
the sum of all influences can be measured is problematic. A systematic approach is
needed to identify and localize particular influences and to be able to evaluate these
influences.

Sections 2.2.1 and 2.2.2 describe the influences of network components as well
as those of the network architecture. The characteristics were analysed isolated
from influences of other network component or influencing parts.

This section, however, describes, taking examples from praxis, how the different
components interact with each other and how these interactions result in changes
of the signal integrity of the overall system. Furthermore, analytic procedures are
introduced to allow a specific consideration of the signal quality.

Fig. 2.24  Separated grounding of communication and application

692 Physical Layer

2.2.3.1 Ringing at the Transition from Dominant to Recessive

For signal quality evaluations of CAN network topologies, it is crucial to know
where disturbances occur and which properties of the network architecture or prop-
erties of the CAN node architecture amplify these disturbances. In case of signal
integrity evaluation of CAN networks, the state change from dominant to recessive
is of particular importance. Abstracted, it could be said that during the state change
an energy source driving the differential signal is taken from the bus (which results
in the recessive state) and instead a high ohmic receiver circuit is added to the bus.
The existing energy inside the system degrades over the passive components of
the network. Implemented capacitive and inductive energy storages discharge and
influence each other. Recharging between inductive and capacitive stored energy
may occur which results in oscillations of the bus signals which is called ringing.
These overshoots and undershoots occur at different strengths dependent on the
characteristics of the different used components. These interactions can be clarified
by formula [2.2] of the fundamental field of the electro techniques:

u L
i

t
= ·
∆
∆

 (2.2)

First, to assume a constant stray inductance, which is operative in the differential
mode, it is easy to see using formula [2.2] that the overshoots and undershoots will
be more intense in case of a transceiver which produces faster slow rates; thus,
the Δi/Δt is higher. Furthermore, different CMCs have different stray inductances.
CMCs with higher stray inductances (smaller coupling coefficients) invoke high-
er overshoots and undershoots. CMCs with sector-based winding have in general
smaller coupling coefficients and approximately higher stray inductances. CMCs
with bifilar winding have in general higher coupling coefficients.

Figure 2.25 compares both extreme cases of these interactions of different com-
ponents. The solid curve refers to a CAN node with a transceiver with a fast slew
rate, corresponding to a high Δi/Δt, and with a CMC with sector winding, thus a
high stray inductance. The dotted line belongs to the same CAN node but in the
case with a transceiver with a slower slew rate while applying a CMC with a higher
coupling coefficient. It is easy to see that the ringing is less intense with the second
equipped case (dotted line). The measured CAN node is located inside a symmetric
CAN topology with two stars where all stubs have the same length to the star points.
This topology is typical for a lot of ringing at the state change from dominant to
recessive caused by the symmetric characteristics which leads to an adding of par-
ticular reflection parts.

As already mentioned, the energy distribution in the system is of importance.
Therefore, two relevant scenarios shall be taken into account: On the one hand, the
signal flow and behaviour at the sending node are important to consider because this
is the point of the energy input. On the other hand, the consideration of the ACK
bit is important. In that case, all receiving nodes start transmitting the dominant

70 W. Lawrenz et al.

acknowledge except the frame sending node. As a result of this, there are many
energy input points in the system and with it a lot of energy in the system.

Ringing occurs more heavily when the topologies consist of stars or of stubs with
long stub length as well as when the topology has a symmetric shape. In this case,
the more intense ringing is a result of reflections and adding of reflection parts in
the case of symmetric shapes.

The effects of the ringing can be seen in the delay times. A view on the thresh-
olds helps the valuation of the ringing: If the differential bus signal exceeds 0.9 V,
caused by an overshoot, this will lead to a change of the logic RxD to the dominant
state until the differential bus signal falls back below 0.5 V (worst-case threshold
values). In this case, the ringing drives a change on the logic signals which results
in a prolongation of the related system propagation delays.

2.2.3.2 GND Shift, CMC and Arbitration

With the help of a further example, it is possible to observe the effect of self-induc-
tion on the CAN bus. In the case of a lost arbitration, the state of the node changes
from sending to receiving. Based on a scenario with two nodes sending a dominant
bit followed by a dominant bit of the arbitration winning node and a recessive bit
by the arbitration losing node, the direction of the energy flow changes at the losing
node (from driving energy by sending a dominant bit to receiving energy by receiv-
ing a dominant bit of a foreign node). As a consequence, there is a reverse of the
energy flow in the CMC as well.

Fig. 2.25  Different intense ringing at the “dominant-to-recessive” transition

712 Physical Layer

A self-induction describes the induction of a voltage by the inductance which
tries to hold the current and the magnetic current constant in case of a change in
the current flow. The proportionality factor L describes the intensity of the self-
induction as well. A high inductance results also in a high inducted voltage in
the case of a self-induction. Based on the above-described operating principle of
the CMC, it clearly shows that in differential mode only the stray inductance is
effective which is much smaller than the main inductance which works only in
common mode. After a node lost arbitration it switches off the transmitter stage
and the current in the CMC. An inducted voltage peak results, which is higher if
the main inductance is active – in case of common mode signal. A GND shift is a
source for common-mode currents which raises the effective working inductance
and with it the intensity of the self-induction which will be evoked by the loss of
arbitration.

As a consequence of this, it is possible to observe that CMCs induce voltage
peaks on the CAN bus after the above-described scenario. Measurement resulting
from these peaks is shown in Fig. 2.26.

2.2.3.3 Limitations of the Cable Length in Consideration of the Bit Timing

In principle, two different factors limit the maximum network distribution. On the
one hand, the data rate, bit timing settings and oscillator tolerances influence the
maximum possible cable length. On the other hand, resistances and capacitances of
the cable and transceiver limit the possible cable length. The last condition refers to

Fig. 2.26  Voltage pulse induced by common-mode chokes and GND shift

72 W. Lawrenz et al.

the signal amplitude where the limitation is that at least the threshold for the domi-
nant state shall exceed overall the network independent of the sender’s position.
Data rate and bit timing are influenced by the cable length-dependent delay times.

The section “CAN bit timing and oscillator tolerances” already described the
appearance of different fast-running nodes inside a CAN system. In this section,
differences of oscillator tolerances and how they influence the CAN physical layer
are discussed.

An example shall show how the CAN physical layer and bit timing configuration
interfere with and limit each other. For this, the communication flow is analysed
over the time space between two soft-synchronization events.

At the time of the first soft-synchronization (a slope from recessive to domi-
nant), the communication nodes synchronize its clock to the bus signal. From now
on until the next synchronization event, all timing-dependent influences shall be
considered. These influences are mainly delay times of the communication control-
ler and the transceiver at sender and receiver and eventually further components in
the signal flow as well as differences in the node clocks. In addition to this, there
are the propagation delays of the cable which depend on the propagation speed and
the cable length. These delay times occur at the first considered slope as well as the
second considered slope. The basic condition for a successful communication is that
each bit is sampled correctly at the position of the sample point.

The sample point can be shifted to a later position to enable long cable distances.
Thus, a longer time period from the beginning of the bit to the sample point is pro-
vided to allow enough time for all the delay times. However, the margin for com-
pensating clock differences is limited by shifting the sample point to a later position
because with it the SJW size is limited as well.

It is possible to construct worst-case scenarios where two nodes are considered
which have a huge distance to each other and are operating on opposite boundar-
ies of possible clock ranges. In this case, the sending node has a fast clock and the
receiving node has a slow clock. During a long period without synchronization,
the receiver sampling will fall behind the transmitter. The deviation increases
with the difference of the clock rates and with the duration since last resynchro-
nization. The margin for propagation delay times narrows in dependence of the
oscillator times.

Based on an error-free communication scenario, time spaces without resyn-
chronization are limited by the bit stuffing rule. A simple example can be derived
with five dominant bits followed by a recessive stuff bit followed by four recessive
bits—a time space of 10 bits without resynchronization. For error-free communica-
tion, it is required that the slower receiver (propagation delays of the network have
to be considered as well) has to sample the tenth bit as recessive. Therefore, the
following inequation can be derived [2.3]:

10 1 10 1 1⋅ ⋅ −() > + ⋅ ⋅ +() − ⋅ +()NBT f t NBT f f
RD

∆ ∆ ∆Phase_Seg2 (2.3)

732 Physical Layer

with NBT = nominal bit-time, tRD = propagation delay recessive-to-dominant,
NBT f⋅ −()1 ∆ = “fast” clock and NBT f⋅ +()1 ∆ = “slow” clock.

Furthermore, it shall be considered that the evoked time gap, caused by the prop-
agation delays, and the different fast-running clocks shall be smaller than the SJW
to avoid a drifting of the clocks over longer time spaces.

2.2.3.4 Limitations of the Cable Length in Consideration of the Line Losses

In the following, static influences are analysed which impact the cable length and
signal quality. The maximum possible cable length is limited mainly by the resis-
tance per unit length and capacitance per unit length and the number of implement-
ed nodes. Through an implementation of too many nodes containing very high dif-
ferential capacitances, bit deformation may occur. The dominant bit shape becomes
close to a capacitive charging shape (slope to dominant) respectively discharging
shape (slope to recessive).

Latest, at the sample point position of a dominant bit, the differential voltage shall
have (even in worst case) a voltage of 0.9 V or more to guarantee the communica-
tion. However, the recessive bit shall have at the same position a differential voltage
of less or equal to 0.5 V. The worst-case consideration with the maximum/minimum
thresholds of 0.9 respectively 0.5 helps here again in analysing the influences of
resistances of cable, transceiver and bus connecting circuitry. Abstractions to simple
equivalent circuits using resistances help the right dimensioning of the network.

At a simple point-to-point connection, the differential voltage of the sender acts
as a simple voltage source. Parallel to this voltage source is located the termination
resistance. The receiver is to substitute by the second termination resistance and the
differential resistance of the receiver stage. The cable length-dependent cable resis-
tances connect the sender and receiver equivalent circuit. As mentioned above, the
basic requirement making a communication possible is that at the receiver side the
differential voltage shall be equal to or higher than 0.9 V. Therefore, the equivalent
circuit shown in Fig. 2.27 can be used for calculations.

Fig. 2.27  Simplified equivalent circuit for calculating the maximum allowed cable length at a
point-to-point connection

74 W. Lawrenz et al.

It is possible using the voltage divider formula to calculate the maximum allowed
cable resistance (and with it the maximum allowed cable length) under the con-
sumption that the voltage drop over the receiver resistances is 0.9 V or higher [2.4]:

R

V

V out
R

V

V out

Kabel

Kabel

diff

Term b

Kabel

diff

max

_

=
() ⋅

− ()

1

⋅ 2

 (2.4)

Considering a star topology, the resistance arrangement and with it the simplified
equivalent circuit change to that shown in Fig. 2.28.

At a daisy chain topology, thus a linear topology with stub length of 0 m, an
iterative calculation helps calculating the maximum allowed cable length as shown
in Fig. 2.29.

Fig. 2.28  Simplified equivalent to calculate the maximum allowed cable length of a star
topology

752 Physical Layer

2.3 Network Topologies—Design by Simulation

2.3.1 Development of Automotive Networking Topologies

Due to the ever more stringent cost, quality and time-to-market requirements, the
development of automotive vehicle networking systems has become a very chal-
lenging task. When specifying new networking systems or revising existing imple-
mentations, a major challenge is to validate that an implementation will work prop-
erly and robustly over the entire operating range. In-vehicle networking systems can
be divided into two domains:

• Logical Network Architecture: This domain deals with the actual data communi-
cation between ECUs.

• Physical Network Architecture: This domain deals with all aspects of the physi-
cal implementation of the in-vehicle network.

Fig. 2.29  Simplified equivalent circuit to calculate the maximum allowed cable length in a daisy
chain topology

76 W. Lawrenz et al.

This chapter focuses on the physical network architecture or “physical layer”. Due
to the increasing complexity and size of automotive networks over the past years,
more rigorous exploration and analysis of the physical layer have become neces-
sary. In order to address this very challenging task, simulation-based methodologies
have proven to be the methods of choice. The technical necessity for simulation-
based methodologies is driven by the following issues typically encountered by the
network developer during the development process:

• Complexity (e.g. number of ECUs and wiring harness)
• Variety of vehicle platform variants
• Reproducibility of test conditions (e.g. worst case)

The complexity of modern in-vehicle networking systems makes it extremely diffi-
cult for developers to derive any a priori conclusions about the correct functionality
and robustness of the system before prototyping. This problem will be explained
by means of an example. Figure 2.30 depicts a networking system composed of
six ECUs that are connected through a high-speed CAN bus. If one of the ECUs
is transmitting a data stream to the other ECUs in the network, it is important for
the network developer to know what data have been sampled by each of the receiv-
ers. The reasons for problems during communication are particularly related to the
analog electrical signal behaviour between the different ECUs. Although CAN is a
digital communication protocol, the electrical behaviour along the bus and between
the ECUs is analog. This behaviour is significantly impacted by the following ele-
ments:

Fig. 2.30  Logical versus physical network architecture

772 Physical Layer

• Type of topology
• Physical interface of ECU and number of ECUs
• Cable type and length

The cumulative impact of these elements is so complex that it is impossible to
manually predict the electrical behaviour of a vehicle topology and analyse its ro-
bustness through a pure paper specification. This is particularly important during
the specification phase since any problems discovered during the later stages of
development can be very costly to correct. This problem is even more severe if
problems related to network implementation are uncovered close to the start of pro-
duction (SOP) and the timely delivery of the vehicle to market is at risk.

Aside from the complexity, the huge diversity of vehicle platforms related to
different sets of vehicle equipment adds another dimension to the challenge. It
is necessary to ensure that the network implementation of all variants associated
with each vehicle platform function properly. However, the effort to test all vari-
ants would be tremendously high and time consuming and in some cases not even
feasible since certain dedicated variant types are not available for physical testing
before SOP.

Since vehicles are exposed to harsh environmental conditions in everyday opera-
tion, it must be ensured that the communication network functions robustly over
all of these possible operating conditions. Testing this would mean running the
tests under authentic and repeatable environmental conditions. These may relate to
temperature, vehicle component tolerances, cable impedance variations, etc. Tra-
ditional tests using a real vehicle prototype typically only allow for quite limited
coverage of the previously mentioned criteria and thus make it difficult to reach a
final conclusion about the robustness of the vehicle topology.

2.3.2 System Simulation as a Tool for Network Developers

To meet the growing demands and challenges that network developers face, simu-
lation-based approaches have become the preferred and dominant methodologies.
Initially, semiconductor companies adopted simulation methodologies but nowa-
days automotive original equipment manufacturer (OEMs) and their Tier 1 sup-
pliers have understood the necessity and benefits of a “virtual prototyping”-based
development approach. As opposed to the classic approach of designing the net-
work topology on paper and then later realizing it as a physical prototype (e.g.
breadboard) for testing purposes, the virtual prototyping approach allows one to
create an executable specification by means of a simulation model. The benefits of
using this methodology include the following:

• Proof of-concept of the topology specification without a physical prototype.
• Flexible adjustment of topology specification to explore different implementa-

tion options.
• Analysis of dedicated operating conditions and reproducible test results.
• Reduction of cost through optimization and accelerated test procedures.

78 W. Lawrenz et al.

Figure 2.31 compares the classic development approach and the simulation model-
based methodology using the V-diagram. The difference between the two approach-
es is that the model-based methodology uses a virtual prototype along the entire
path of the V-diagram. The developer can validate the topology at a very early stage
of the development process and does not need to wait until he has obtained all ECUs
from suppliers to assemble the real prototype through breadboarding. If the simu-
lation-based approach uncovers failures in the topology specification, alternative
options can be quickly analysed by making adjustments to the virtual prototype and
re-simulating. This approach increases the efficiency throughout the development

Fig. 2.31  Development flow using real versus virtual prototype

792 Physical Layer

process and reduces risk early in the process by allowing designers to assure that
development is heading towards a reliable and robust network topology implemen-
tation. This helps to eliminate problems being discovered late in the development
process. However, simulation’s benefits extend beyond the conceptual phase. Even
for network implementations that are already used in production vehicles, simula-
tion helps to ensure the required level of quality if changes to the topology need to
be applied. For example, suppose the on-board vehicle network department applies
changes to the wiring harness system due to routing considerations. Naturally, this
will also impact the electrical behaviour of the networking system (e.g. CAN bus).
Using a simulation-based approach, the network developer can quickly validate
how significantly the changes impact the networking behaviour and then work with
the on-board vehicle network department to reach a viable solution.

Before an executable specification (or virtual prototype) of a CAN topology is
built up, the following questions should be answered:

• What questions will be answered through simulation?
• What data need to be created to answer these questions (e.g. analog and digital)?
• What type of simulation is required to create the data (e.g. transient and AC)?
• In which format should the data (results) be prepared (e.g. signal curves and

tables)?

The importance of exploring and answering these questions becomes immediately
obvious when one tries to develop the topology model and characterize it with data.
The approach described in this chapter focuses on the signal integrity of CAN to-
pologies which partially answers the first question. To complete the answer to the
first question, it is necessary to use typical signal integrity evaluation criteria. This
encompasses quantities such as propagation delay which quantifies the timing delay
between the transmitting CAN node and receivers. Another important criterion is
the settle time after the transition from dominant to recessive state and vice versa.
In particular, the second criterion is closely associated with the robustness of the
system since a long settling time may lead to sampling errors by the CAN controller.
To validate the robustness of the network system in detail, it is desirable to deter-
mine the available timing margin. This means figuring out how close the sample
point of the CAN controller is to the critical ringing area after the transition of the
differential bus signal.

This automatically leads to the answer of the second question since the described
criteria above required a certain set of specific signals to be available after the simu-
lation. Evaluation of the settle time requires analogue signals. The propagation de-
lay is measured between the falling edges of the TxD signal at the transmitting node
and the RxD signal at the receiving nodes. Since both of these signals are digital, it
is understood that in order to model the entire topology both analogue and digital
models are required. Accurate simulation of the propagation delay also requires
inclusion of the propagation delay through the transceiver chip to complete an ac-
curate system behavioural model.

Having the first two questions answered, it becomes apparent that simulating
automotive networking topologies requires a holistic system level approach since

80 W. Lawrenz et al.

the validation of the network robustness requires information from all layers of the
system.

As shown in Fig. 2.32, in order to model a CAN topology there are three different
layers to be taken into account. From a system/vehicle-level perspective, the type
of topology is important. Is the topology a linear topology with stub nodes or a pas-
sive star? The electrical signal behaviour of these topology types is very different
and the related implementation cost for each topology type is a major differentiator.

The cable model of the bus between the ECUs plays an important role for the
analogue system behaviour of the topology and has a significant impact on the ac-
curacy of simulation results. The same applies to the physical ECU bus interface.
This in particular applies to high-speed CAN topologies as the integrated CMCs can
cause problems for the analogue system behaviour due to stray inductance. Finally,
the simulation model of the topology needs to contain a behavioural model of the
transceiver chip.

One major objective in using simulation is to make design decisions in the very
early development phase. This objective is very closely tied to the abstraction level
of the overall system. At first glance, it seems desirable to model the vehicle includ-
ing all effects impacting the electrical signal behaviour in order to accurately pre-
dict signal integrity. This approach would not be very reasonable from a simulation
perspective as the effort to develop a model with such a high level of sophistication
will not be feasible and this level of accuracy is not really necessary. It would be
very difficult to gather all required data to characterize the model. Especially during
the early concept phase, this set of data is usually not completely available. Further-
more, it may also be problematic to leverage required compute resources to simu-
late such a highly sophisticated vehicle networking system and the required amount

Fig. 2.32  Topology analysis in the context of system simulation

812 Physical Layer

of time to simulate the model would most likely go beyond the available timing
budget during the concept phase. The benefit of time savings during the develop-
ment phase using a virtual prototype would disappear. Therefore, it is important to
target an appropriate abstraction level and to focus modelling work on the actual
required set of data and constraints. This means that, for instance, any routing and
vehicle packaging information should be disregarded to model the network cabling.
Only the cable length and the electrical properties of the cable should be taken into
account. As far as the model of the ECU is concerned, a proper level of abstraction
is required. Since the CAN control unit may not yet exist during the conceptual
stage, and, therefore, the electrical effects of the printed circuit boards (PCBs) on
the wiring interface are unknown, a pure component-based model of the ECU inter-
face has been found to be sufficiently accurate. In general, even in the later stages
of modelling the parasitic effects are disregarded since acquiring such data requires
running complex and time-consuming finite element analyses. The semiconduc-
tor chips should also be modelled using a behavioural modelling approach. Ap-
plying this to the transceiver chip would mean modelling the analogue behaviour
of the transceiver bus pins. Internal state machines can be modelled as simplified
idealized digital state machines. Using full transistor-level models from semicon-
ductor vendors would not be appropriate as this would not provide any additional
accuracy benefit while simultaneously causing a significant increase in simulation
time. Automotive manufacturers and semiconductor vendors have joined forces to
standardize requirements for transceiver models. The GIFT-consortium has already
leveraged comprehensive work together with automotive companies and made sig-
nificant progress in this regard.

The answer relating to the question of what simulation analyses should be ap-
plied can be quickly ascertained based upon the answer to the first question. Since
the nonlinear behaviour of the entire topology is modelled and the criteria of inter-
est are measured within the time domain, a transient simulation is the analysis type
of choice. A simplified frequency domain simulation would only be possible if the
nonlinearities were ignored, for instance, in the behaviour of the transceiver chip.
In order to evaluate the robustness and worst-case behaviour, simulation models
that include the component data sheet-specified tolerances over the entire operat-
ing range are needed. For this type of analysis, a continuous thermal model is not
necessary but rather specific corner case conditions are sufficient. These are much
easier to model and represent the actual critical cases for automotive networking
applications. Usually, network developers start validating the quality of the topol-
ogy implementation using the nominal behaviour of the system to develop a basic
understanding about the system robustness. Starting with the worst-case behaviour
from the beginning does not make sense since the network performance may al-
ready show some problems under nominal conditions, and an analysis of the worst-
case behaviour for this topology configuration would be redundant.

The previously described item builds the transition to the question around the
format of the generated simulation results. A major benefit using a simulation-based
approach is to fully automate the entire testing process. This applies to both simula-
tion as well as post-processing. The standard testing procedure for CAN networks is

82 W. Lawrenz et al.

called Round-Robin communication. During this procedure, each network node acts
once as transmitter and all other ECUs act as receiver. Thus, a network including
ten nodes requires ten transmission sequences. The discrete electrical measurement
results are consolidated into a signal matrix which shows the transmitter–receiver
relationship. This usually is a three-dimensional matrix representation since mul-
tiple validation criteria are applied and need to be evaluated for each transmission
sequence. It is highly desired to fully automate the creation of this matrix including
a validation and reference scheme. This automated approach allows the network
developer to quickly gain an insight into the quality of the topology implementa-
tion with respect to the signal integrity. A validation using this discrete data is very
helpful; however, it is still necessary to have the analogue signal curves available in
order to qualify particular signals in detail or to generate eye diagrams.

The previously described methodology contains the general aspects and objec-
tives and builds a solid foundation for the simulation of automotive networking
topologies. These methodological requirements are next implemented using a simu-
lation tool.

2.3.3 Saber—A Development Tool for Simulation and Analysis of
the Electrical Physical Layer of Networking Topologies

Driven by cost pressure and compatibility, it is often required and beneficial to
apply open standards. This also applies to the simulation of automotive electrical
physical layer topologies. It has become common practice that required simulation
models (like transceivers) are delivered along with their hardware component by
semiconductor vendors. However, it would be difficult and cost intensive for semi-
conductor companies to support creation, testing and delivery of simulation models
for each of their customers with various dedicated model types. In this particular
case, it is prudent to use a tool-independent open standard. Very high-speed inte-
grated circuits (VHSIC) hardware description language-analog mixed-signal (VH-
DL-AMS), defined through the Institute of Electrical and Electronics Engineers
(IEEE) standard 1076.1 (now IEC 61691, Part 6), is such a tool-independent model-
ling language that is very much applicable to model supply chains. VHDL-AMS is
an extension of the VHDL-IEEE 1076 standard and was created for the purpose of
hardware design. This means that the language supports modelling constructs to de-
scribe the behaviour of physical systems. One of the tools supporting this modelling
language is Synopsys’ Saber. In addition to VHDL-AMS, Saber also supports other
diverse modelling languages and software development tools providing developers
with great modelling flexibility. Figure 2.33 shows a consolidated overview of the
features supported by the Saber product.

In order to model a CAN topology, the developer can either use Saber’s com-
ponent library transceiver models or use models provided directly by component
vendors. The Saber tool allows the integration of externally developed models into
the tool. The simulation model of the topology can be easily built up by selecting

832 Physical Layer

component models from Saber’s parts gallery, placing them on the schematic editor
and connecting corresponding topology instances with each other.

Figure 2.34 shows an example for a high-speed CAN topology modelled in Sa-
ber. This simulation model allows a convenient way for the network developer to
analyse the signal integrity behaviour of the topology. How detailed of a level at
which the system is evaluated and what the specification requirements are depend
very much on the automotive OEM. This means that the level of detail for the
topology model can also vary. In order to qualify the signal integrity, the network
developer now has, amongst other things, access to the differential bus voltages as

Fig. 2.34  Simulation model of high-speed CAN topology in Saber

Fig. 2.33  Overview of the
Saber product features

84 W. Lawrenz et al.

well as the digital RxD signals at the transceiver. Figure 2.35 depicts the differential
voltage for two of the ECUs. Using Saber’s post-processing capabilities, measure-
ments such as slew rate can be easily extracted with a single mouse click.

Moreover, the simulation performed in Saber affords the developer a deeper in-
sight into the CAN topology in order to evaluate the robustness of the physical layer
implementation. Aside from the analogue bus signals, it is possible to integrate a
digital CAN controller model into the simulation to take into account the bit tim-
ing behaviour. Saber’s model library includes a simplified CAN controller model
which is optimized for performing signal integrity analysis of the physical layer
implementation. The origins of this model started with an initial specification from
Volkswagen in Germany. The model contains the following features:

• Transmit and receive functionality
• Arbitration
• Hard and soft synchronization
• Acknowledgement
• Bit timing register settings

In addition to the optimization of the signal integrity mentioned previously, the
model allows for exploration of the impact of the controller configuration on the
overall system behaviour. Figure 2.36 gives an overview of the available post-pro-
cessing data using the CAN controller model in Saber.

By modelling the bit timing, the developer can determine exactly the time be-
tween the sample point and the critical transition area after the change of the digital
signal. If the sample point is too close to the critical ringing area, the developer can
apply changes to the controller software and adjust the location of the sample point
or fix the problem in the hardware topology. The first solution is often easier to

Fig. 2.35  Simulated differential bus voltages

852 Physical Layer

implement as it is only a software parameter that needs to be changed. Simulating
a virtual prototype quickly provides an overview of the quality and the robustness
of the CAN topology implementation. Problems related to the implementation can
be discovered early and the developer has a powerful solution available in order to
compare and validate different implementation options.

The previously discussed methodology demonstrated a simple case with just a
handful of data to evaluate. If the number of signals or amount of data is much
greater, it would be very time consuming to manually analyse all of the simulated
signals. Let us assume we had a topology consisting of 14 ECUs and just three
validation criteria (propagation delay, slew rate and settle time). This would mean
the network developer would have to analyse 14 × 14 × 3 = 588 discrete measure-
ments. It may also be necessary to visually inspect other signals in the system. And
if variations of stub lengths as well as worst-case configurations for the transceivers
or cable impedance were to be simulated, then the amount of data would increase
significantly. Obviously, a manual evaluation of the simulated data would be very
time consuming, error prone and would reduce the time-saving benefits of using
a virtual prototype. In Saber, the network developer can fully automate the entire
simulation and post-processing steps. Figure 2.37 shows a possible scenario.

The starting point of the entire process is an automated Round-Robin commu-
nication for which the developer specifies the desired communication pattern. The
entire simulation process is then put into a script and can be run via a single mouse
click. In the second step, the generated simulation data will be further processed/
modified according to the specific requirements of the automotive OEM. Due to
the fact that each OEM has different topology requirements and prefers a differ-
ent representation of the final data, it is infeasible to provide an automated post-
processing solution off the shelf that addresses everyone’s needs. Therefore, Saber

Fig. 2.36  Analysis of the bit timing in Saber

86 W. Lawrenz et al.

provides a flexible platform that allows users to customize the output data to the
desired format. Saber provides an interface to Excel that can be used to export data
and transform it into any sort of desired representation. As mentioned previously,
often the signal parameter matrix is applied which shows the relationship between
transmitter and receiver. Using the Excel interface, the data can be compiled into
a workbook where each worksheet includes a two-dimensional matrix related to a
dedicated discrete signal parameter. Standard functionalities of MS-Excel can be
used to extract the extreme values from these matrices. Such an automated analysis
and post-processing procedure is particularly valuable for frequently used simula-
tion scenarios, since the bulk of the time spent is related to preparation and valida-
tion of the resulting data.

2.4 Electromagnetic Compatibility

Technical system design actually is conceived on a distributed architecture concept.
When implementing such a distributed system, a powerful data exchange technol-
ogy for communication between the system components is required. Among oth-
ers, CAN communication protocol is a powerful means for a highly effective data
exchange. As such, CAN is widely used for distributed control communication in
automotive and industrial applications.

Data bus systems have high significance regarding system EMC consideration
because data bus systems represent one of the physical interfaces of the electronic
modules to the wiring harness, thus forming a vastly distributed network structure.
As this network is stretched all over the system, the network must be considered as
the major EMC coupling media. This implies that through the wiring harness most
of the electromagnetic noise is either injected into the system or emitted from the
system. This theoretical consideration is proven by practical experience.

Fig. 2.37  Example of an automated analysis

872 Physical Layer

These considerations apply to a high extent to automotive electronics as in au-
tomotive electronics mostly unshielded bus cabling is applied other than in other
application areas such as industrial control or avionics where typically shielded
cables are used. These characteristics result in much higher immission and emission
of electromagnetic stray fields and transient interfering pulses. These very harsh
EMC conditions must be compensated by correspondingly increased constraints
for bus interface design. In order to ensure this, automotive manufacturers are re-
quired to coordinate any of the EMC activities and design constraints as well as
to specify the related qualification criteria. The layout of bus topology, the choice
of protection circuitry for the bus interface and the applied transceiver have great
impact on the EMC characteristics of the whole system. Therefore, characterization
of these semiconductor devices requires EMC measurement already in an early de-
velopment stage of cars. This task is performed by vehicle manufacturers in various
ways. German car manufacturers have agreed upon a common procedure in 2009.
This comprises the specification of the basic structure of the bus interface as well as
its passive and active components.

2.4.1 EMC Requirements, Specifications and Guidelines

For CAN systems, there is no explicit EMC specification in the form of a national or
international standard or guideline. Nevertheless, this is subject to the correspond-
ing legal or manufacturers internal requirements of the related devices or assembly
groups, for which these specifications would apply to.

But as a speciality for vehicle electronics applications, car manufacturers specify
specific requirements on the basis of which semiconductor devices are to be tested.
For this purpose, the technical specification IEC 62228 TS was developed and pub-
lished. This standard is the basis for EMC release of CAN transceivers for German
vehicle manufacturers.

2.4.2 Factors Effecting EMC of CAN Buses

The major factors influencing EMC of CAN buses are bus topology, termination
concept, bus lines, bus filter and transceiver. All these areas require an optimal
layout with regard to their EMC behaviour in order to meet the higher level require-
ments for safety-relevant applications as they are, e.g. for automotive electronics.

2.4.2.1 Bus Topologies and Termination Concepts

Passive bus topology is the mostly preferred topology in industrial automation
with both ends of the bus lines being terminated by line impedance resistors.
Any further bus node is connected to the bus by short stub lines (high-impedance

88 W. Lawrenz et al.

terminated connection) or by the so-called daisy chaining. The advantage of this
topology is the avoidance of reflections on the bus lines, which may make the
EMC get worse.

A passive bus implies a reduced flexibility in a certain way. That is why the
passive star is another preferred bus topology, especially for cars. This topology
is characterized by all nodes being connected in a star-shaped form, or even a
combination of multiple stars is applied. However, the termination of all seg-
ments with low reflection is not feasible. In order to achieve an optimum between
flexibility and reflection characteristics, two distributed terminations are applied,
which are located at the ends of the two segments with the largest geometric dis-
tance. Another termination method is implemented in the star node itself. In this
method, the termination of the longer lines as well as the HF decoupling of the
lines are applied. All these result in optimized EMC characteristics of the CAN
system as a whole.

In general, there is no simple relation between bus topology and related EMC
characteristics. However, there is a unique dependency between signal integrity—
that is, the characteristics of CAN_H and CAN_L bus signals—and the EMC char-
acteristics of the system. In comparison with an optimal bus layout, a decline of
signal quality coming, e.g. from reflections from the line ends or attenuation by pas-
sive components results in a reduction of system safety margin, which, in conjunc-
tion with external noise, may cause system failure. Furthermore, it can be stated that
shortening the length of the bus system normally improves EMC due to a reduced
effective antenna surface, and thus less noise is emitted or immitted.

2.4.2.2 Bus Lines

For CAN bus cables, twin lines with or without shielding are used. Nominal dif-
ferential line impedance shall be 120 Ω. Typically, the value is in the range of
90–130 Ω. Shielded twin lines typically are applied in industrial control applica-
tions and avionics. In current cars only UTP cables are used with various twist
pitches between 20 and 50 mm.

When using shielded bus lines, immission and emission of noise are widely re-
duced or even eliminated. The efficiency of shielding depends on the cable charac-
teristics itself as well as on the applied concept of shielding (cable, connector and
module box). High shielding effect in the relevant frequency range (f = 150 kHz up
to a couple of GHz) can only be achieved if the shielding concept is strictly applied
to all components.

These twisted pair bus lines do not have any shielding. The advantage of twisted
pair cables is that external noise (e.g. HF electromagnetic fields) affects the system
as common-mode interference. Therefore, the differential-mode CAN signals are
not disturbed. In that respect, the same is true for interference fields emitted by the
bus lines. At a high-level symmetry of the bus lines, the HF interference parts com-
pensate each other and thus they are not radiated as common-mode signals.

892 Physical Layer

2.4.2.3 Bus Filter

Besides the applied transceiver, the implementation of the bus filter has great influ-
ence on the EMC characteristics of the systems as a whole. According to the EMC
requirements of the application, there is a different emphasis on the implementations:

• Industrial control: High priority on protection against burst pulse, surge pulse
and ESD.

• Automotive: Focus mostly on protection against HF interference and ESD.

2.4.2.4 Transceiver

CAN transceivers represent the physical interface between the CAN bus system and
the bus lines. Therefore, the transceiver itself has great impact on the EMC charac-
teristics of the system as a whole. Especially for in-vehicle applications, the trans-
ceivers must meet increased requirements, as in this application only UTP bus lines
are applied. Therefore, higher level noise amplitudes may get to the transceiver.

The most important requirements for CAN transceivers are as follows:

• Immunity against common-mode interference with high amplitudes due to the
induction of interference fields and transients into the bus lines.

• Immunity against differential-mode interference with relatively low amplitudes,
coming from the induction of noise into the non-symmetrical bus lines (or bus
segments) or induced by the common-mode–differential-mode conversion
caused by non-symmetries in the filter electronics or the transceiver by itself.

• Immunity against common-mode and differential-mode noise in conjunction
with ground offset between different bus nodes.

• Sufficient protection against damage caused by ESD.
• High degree of symmetry of the bus signals in order to avoid emission of com-

mon-mode noise through the bus lines.

These most important requirements led to the development of an EMC test specifi-
cation for CAN transceivers. These requirements are mostly relevant for car elec-
tronics and they partially represent the constraints for EMC qualification. The test
specification is described in more detail subsequently.

2.4.3 EMC Evaluation of CAN Transceivers

2.4.3.1 Ways for EMC Evaluation for Cars Applications

For the evaluation of the EMC characteristics of semiconductors in car applica-
tions, there are analysis methods available covering all phases of the development
process. Table 2.1 depicts the environmental conditions and the range of dynamics
for all three test levels.

90 W. Lawrenz et al.

Measurements of the integrated circuit (IC) level can be performed already on
early development samples of the semiconductor. They result in general test ver-
dicts and they are characterized by a high dynamics range. As such, they are very
well suited for comparison of semiconductors from different semiconductor suppli-
ers or for comparison of different sample versions of one specific kind.

Analysis on module level is advantageous, because it can be performed in an
early phase, independent of the vehicle itself. When knowing the correlation be-
tween the applied component measurement method and the car measurement meth-
od, the car manufacturer can evaluate the semiconductor device correspondingly
to the component’s requirements. There are some restrictions though, coming from
the partially lower bandwidth noise transmission function of the component mea-
surement method and the dependency of the layout of the components, the applied
passive components and the ground layout.

When performing measurements in cars, typically there is sufficient EMC envi-
ronment available and thus a decision can be taken on the release of the transceiver.
Unfortunately, this kind of measurement can only be performed when the car is
available, which is relatively late in the development process. Furthermore, the in-
formation on EMC capabilities can only be derived for the tested type of vehicle.
Any statement on a noise immunity range margin, which may be required for the
application on another type of car, cannot simply be derived.

A reasonable step-by-step combination of all three levels of measurements re-
sults in an effective process for the development of CAN transceivers with suffi-
cient and even excellent EMC characteristics. The comparison of test results of the
individual levels for transceivers, which have already undergone this test process,
allows the specification of test requirements on IC level, which correlates with the
later stage car constraints. In conjunction with the test specification for CAN trans-
ceivers, an EMC measurement specification for the EMC evaluation on IC level

Table 2.1  Environmental conditions, dynamics range and potential ICs test verdicts
Car measurement
methods

Component measurement
methods

IC measurement
methods

Environment Finalized vehicle Components, special test board Special test board
Test verdict Pretest, release Pretest, (prerelease),

comparison of semiconductors
Pretest, comparison
of semiconductors

Dynamics range
for comparison

— Corresponding to transmission
function of measurement
 method

Very high, broadband
measurement

Validity range Corresponding to
the particular car

Corresponding to the
particular constraints of the
component measurement

General

Point of time of
measurement in
the development
process

Only applicable
 on availability of
the particular car

Only applicable on
availability of the particular
component or always
applicable on the application
of a dedicated test board

Always

912 Physical Layer

had been developed and published as the international standard IEC 62228 TS. This
test specification specifies measurements on the basis of international standards
for semiconductor components and car components, adapted to the corresponding
EMC requirements for later application in cars.

2.4.3.2 EMC Evaluation on Semiconductor Level

Test Philosophy

Basic Concept

The basic focus of the EMC test specification of CAN transceivers is exclusively on
the evaluation of the hardware functionality of the transceiver in conjunction with
the electromagnetic environment. For this purpose, the signals are directly analysed
at the CAN transceiver pins without the CAN protocol chip connected. This is ap-
plied to stand-alone CAN transceivers and, if applicable, to CAN cells which are
integrated in application-specific integrated circuits (ASICs), multi-chip modules
or embedded systems.

EMC Test Requirements

Based on the EMC requirements derived from measurements on components and
cars, the following EMC characteristics of transceivers are tested:

• Noise immunity against transient noise, coupled through lines
• Noise immunity against radiated noise
• Noise immunity against ESD
• Noise emission of radiated noise

When performing measurements on noise immunity, a separation of tests into de-
stroying tests and tests on malfunction is required. The measurements on noise im-
munity checking a malfunction are performed on any possible operational mode
(normal, standby and sleep), while a—within limits—defined undisturbed function-
ality of the transceiver is to be specified as evaluation criteria.

The evaluation of the noise emission is performed in the frequency domain. For
the optimization of the analysis, there is a complementing measurement in the time
domain.

EMC Pin Classes for Semiconductors

The analysis of the relevance of individual parts of the circuitry of semiconductors
leads to a classification into the so-called pin classes (Table. 2.2).

92 W. Lawrenz et al.

Corresponding to this classification into EMC pin classes, only those pins of
a CAN transceiver are tested with respect to noise immunity and noise emission,
which, as global pins, feature either a direct or only a weakly decoupled connection
to peripherals of the component and thus to the connected wiring harness.

EMC Test Specification for CAN Transceivers

Figure 2.38 depicts the relation of the EMC test philosophy for CAN transceivers
according to IEC 62228 TS.

This philosophy defines the EMC measurement method for ICs as well as the
therefore-required constraints for the measurements according to the above-de-
scribed scheme. The result of the measurements according to this test specification
does not allow deriving of any generalized EMC conformance though. Only when

Fig. 2.38  Test philosophy for EMC evaluation of CAN transceivers

Table 2.2  Pin classes for connections of CAN transceivers
Pin classes Characteristic features Example for pins at CAN transceivers
Global Direct connection to peripherals of

the component or only simple
filtering, respectively

CAN_H, CAN_L, VBAT, Wake

Local No direct connection to peripher-
als of the component or very
strong decoupling by filtering,
respectively

RxD, TxD, Mode, VCC

932 Physical Layer

making use of application-specific boundaries, any decision on the applicability of
the transceiver can be taken. In 2008, for the first time German car manufacturers
jointly had published such a specification of requirements, which, from that point
of time on, represents the basis for EMC release.

Measurement of Emissions in the Frequency Domain—1 Ω/150 Ω Method

The measurement process of the emission spectrum (electromagnetic emission
(EME) test) of semiconductor devices is described in the standard IEC 61967: “In-
tegrated circuits—Measurement of electromagnetic emissions”. This standard is
subdivided into a general part I, which contains general definitions for all measure-
ment methods, as well as into five further parts for each of the individual measure-
ment methods, respectively. The 1 Ω/150 Ω method (IEC 61967, Part 4) is based on
the direct measurement of lines-based noise of semiconductor devices. This method
assumes that any internal noise, which is generated by high-speed current or voltage
swings, will proceed over the pins to the electronic circuit board or to the wiring
harness, from where the noise is radiated over cable loops or any other antenna-like
structure. For the most commonly used body shapes of ICs (with the exception of
large microprocessors), the internal parasitic antenna structures, which are able to
radiate as a function of frequency, are significantly smaller than those of PCBs. As
such, the external radiation is predominant in the application. In this case, the mea-
surement method is applicable for the comprehensive characterization of the noise
emission of the semiconductor device. For the analysis of noise emission of the
global pins of CAN transceivers, the HF measurement technique of noise voltage is
applied, using a voltage probe of 150 Ω. This technique represents one of the two
potential measurement methods of the standard.

Measurement of Noise Immunity in the Frequency Domain—Direct Power Injection

The measurement of noise immunity of semiconductor devices against narrowband
radiated noise is performed analogously to noise emission described in the standard.
IEC 62132 “Integrated circuits—Measurement of Electromagnetic Immunity” is
divided into a general part I and four further parts describing the individual mea-
surement methods. In this standard, the test methods also are subdivided into those
ones for direct field immission into the IC body and those ones for methods of
noise injection over the pins. In the frequency range below f = 1 GHz, the direct
immission can be neglected for a multitude of semiconductor devices. Applied to
CAN transceivers, the direct power injection (DPI) method (IEC 62132-4) emulates
those parts of noise, which are generated by field immission into the wiring harness
or into antenna-like structures of the PCB of a component, from where the noise
is line-borne fed into the semiconductor device. For this purpose, a noise power
corresponding to this field immission is directly injected into the global pins of the
CAN transceiver.

94 W. Lawrenz et al.

Noise Immunity against Transients—Direct Capacitive Impulse Coupling

The direct capacitive impulse coupling method is similar to the noise immission
method into signal and data lines using a capacitive coupling calliper corresponding
to ISO 7637 Part 3 or IEC 61000-4-4, respectively, which is applied for immunity
measurement of electronic components. In this case, though the 100-pF distributed
capacity of the standardized coupling calliper is substituted by a discrete capacity in
the form of a capacitor component in order to perform the noise immunity measure-
ments while using test boards.

Based on this approach, the measurement process is very similar to the DPI
method and to the 150-Ω method. Therefore, this approach can be applied in com-
bination with the latter methods for the evaluation of CAN transceivers with respect
to radiated and impulse-based noise.

ESD Measurement

For ESD tests, the test directive specifies an analysis of the destruction immunity of
CAN transceivers. For this purpose, an ESD is required, using the “human body”
model (HBM) corresponding to IEC 61000-4-2 (R = 330 Ω, C = 150 pF and tan ca.
700 ps) and applied onto the global pins of the CAN transceiver with no power sup-
ply. This test is oriented towards the requirements of the so-called packaging and
handling tests as known from automotive industries, which requires the ESD with
this network to the connector pins of the component.

2.4.3.3 Basic Test Procedure for EMC Evaluation of CAN

Basic Thoughts

The basic approach to an EMC evaluation of CAN transceivers shall result in a test
close to application while using IC measurement methods which are oriented on the
test constraints and requirements for the higher level measurements of components
and vehicles. For this purpose, the transceiver basically is tested by connecting to
a minimum circuitry as specified by the semiconductor supplier (e.g. stabilizing
capacitors at the supply pins or filter circuit at wake pin).

Another approach though is applied concerning the CAN bus lines circuitry: In
this case, the specification of the applicant (car manufacturer) is applied, who only
specifies a specific CMC as bus filter. In order to comply with this influence, the
following commitment was made:

• Test without bus filter which results in high dynamics measurement for the com-
parison of different types of transceivers.

• Test with bus filter (CMC for noise suppression) for the adaptation to the real
application constraints, if they have been implemented EMC optimal.

• Corresponding to the single-test requirements at first a grouping into two main
test parts is done:

952 Physical Layer

• DPI tests, transients tests and EMI tests on a minimum network consisting of
three active transceivers

• ESD tests for the destruction of a transceiver with no power supply

Minimum Network for DPI Tests, Transients Tests and Emission Tests

Figure 2.39 depicts an overview of the minimum network for tests on an active
transceiver. The network consists of three CAN nodes. Each of the node circuitries
are identical, consisting of the transceiver which is to be evaluated, its minimum
circuitry according to the data sheet, the bus filter and a decoupling circuitry which
connects the signal for stimulation and control of the functions. The required volt-
age supplies (VBAT and VCC) are connected to the test network through well-spec-
ified filters. Noise injection and noise observation are performed through specific
coupling networks, which are compliant to the requirements of the individual IC
measurement method (see Table 2.3).

Fig. 2.39  Minimum network for measurement of noise immunity and noise emission of active
transceivers

96 W. Lawrenz et al.

Communication Specifications

Corresponding to the individual test parts, communication will be performed by
various sequences of signals which are transmitted by node 1. The transmitted in-
formation will be received by all other nodes and monitored through their RxD
outputs:

• Test signal 1: Symmetric square wave with a 50 % duty cycle (CAN signal with
continuous 0–1 data swing) and a frequency of 250 kHz or a bit rate of 500
kbit/s, respectively.

• Test signal 2: Non-symmetrical square wave with 90 % duty cycle and a fre-
quency of 50 kHz.

For noise immunity tests with communication, only test signal 1 must be applied.
Noise emission measurements are to be performed using test signals 1 and 2.

Definitions for Test Modes and Error Criteria for Tests on Malfunction.

Table 2.4 shows the relation between operational modes of the transceivers, pins for
noise injection and evaluation as well as the intended test purpose for measurements
to be executed for noise immunity checking a resulting malfunction.

Table 2.3  Coupling circuitry-compliant IC measurement methods
Coupling circuitry Purpose Implementation
HF1 Symmetric DPI coupling into

CAN
Parallel circuit of two times
R = 120 Ω + C = 4,7 nF

HF2 DPI coupling into VBAT C = 4,7 nF
HF3 DPI coupling into wake C = 4,7 nF
IMP1 Symmetric transients coupling

into CAN
Parallel circuit of two times
C = 1 nF

IMP2 Transients coupling into VBAT D (standard diode)
IMP3 Transients coupling into wake C = 1 nF
EMI1 Symmetric 150 Ω voltage mea-

surement CAN
Parallel circuit of two times
R = 120 Ω + C = 4,7 nF with matching

resistor of R = 51 Ω

Table 2.4  Transceiver operational modes, pins for noise injection and evaluation
Operational
mode

Noise injection pins Evaluation pins Purpose

Normal CAN, VBAT, Wake RxD Evaluation: Communication
ERR Evaluation: Error
INH Evaluation: Inhibit output

Standby CAN, VBAT, Wake RxD Unintentional-wake-up observation
INH Evaluation: Inhibit output

Sleep CAN, VBAT, Wake RxD, INH,
respectively

Unintentional-wake-up observation

972 Physical Layer

The error criteria for the evaluation of pins RxD, ERR and INH is listed in
Table 2.5. These error criteria are applied to all three nodes of the minimum network
simultaneously, which means that any signal of any one of the transceivers exceeding
the maximum specified deviations for amplitude or timing is interpreted as malfunction.
No timing criteria are applied for evaluation in standby or sleep mode and basically
for error pin and INH pin, because in these cases static signals are to be evaluated. For
evaluation of non-disturbed communication, an RxD mask test is applied. The applied
mask is derived from a non-disturbed RxD signal of the minimum network.

Test Mock-Up and Execution of DPI Tests, Transients Tests and Emissions Tests

The above-described parts of the minimum network are implemented on a test
board, which is applied to all three test groups (DPI, transients and EME).

Figure 2.40 shows the measurement set-up used for DPI tests. The HF noise is
induced into the minimum network through one of the DPI coupling circuitries in

Table 2.5  Error criteria for the evaluation of RxD, ERR and INH
Operational
mode

Test Transmit
signal

Maximum amplitude deviation Maximum timing
deviation

RxD ERR INH RxD ERR INH
Normal DPI, pulse With ± 0.9 V ± 0.9 V −5 V ± 200 ns – –
Standby DPI, pulse Without ± 0.9 V – −5 V – – –
Sleep DPI, pulse Without ± 0.9 V – + 2 V – – –

Fig. 2.40  Measurement set-up for DPI tests

98 W. Lawrenz et al.

each case. The function of the network under the influence of noise is controlled by
devices for monitoring and generation of the test signals. The digital storage oscil-
loscope (DSO) is used for the mask tests.

As the result of an automatic measurement process, the noise immunity-limiting
curve of the individual test function part is determined.

The transient tests are basically performed in the same way. A noise impulse
generator, which generates the standard pulses to be tested according to ISO 7637
part 1, is applied to the test mock-up. Additionally, a complementing test for de-
structibility stability is required.

For emission spectrum analysis of the bus lines, output EMI1 is used and con-
nected to a measurement device according to CISPR 16.

As an example for a physical implementation of the test board for EMC tests,
refer to Fig. 2.41.

Test Mock-Up and Execution of ESD tests

The ESD test on destruction stability of the non-powered CAN transceiver requires
another test board, because for this test the constraints are different. This test board
has specific layout characteristics and it realizes the required ESD minimum circuit-
ry for the CAN transceiver, as well as the ESD points. The test board is connected
to the ESD ground reference plane by an adapter (ground block) at low impedance.
Figure 2.42 depicts a basic measurement as well as a physical implementation.

For test execution the tip of the ESD simulator with the contacting discharge mod-
ule according to DIN EN 61000-4-2 is directly put onto the discharge points while
increasing the ESD voltage until the transceiver will be destroyed. The destruction

Fig. 2.41  Example for an
EMC test board (here an
SBC with integrated CAN
transceiver is shown)

992 Physical Layer

or damage, respectively, is detected by the analysis of the input-voltage–current
characteristic of the pin under test as well as by checking the functionality of the
CAN transceiver.

2.4.3.4 Comparison of EMC Evaluation Results for Measurements of IC,
Components and Cars

A direct comparison of EMC measurement results derived from measurements of
cars, components and ICs typically is difficult to do. The reasons come from the
big differences in measurements of cars. Depending on the location where a control
unit is installed as well as depending on the length and the position of the bus lines
and ground lines, the EMC load for transceivers varies significantly which, e.g.
results in different immission immunities even for one unique type of transceiver.
The same is true for radiated noise emission through the bus lines. The interference
effect depends on the transceiver characteristics and also on the coupling strength of
the bus lines to the car antennas for radio, TV and radio communication.

Concerning both of these important aspects, subsequently some results of sys-
tematic analysis are presented, comparing measurement results. They are supposed
to help to discover limits for IC measurements or to relate them to a broader data-
base, respectively.

Noise Immunity—Radiated

The listed results of measurements in cars represent the worst case of the measured
noise immission immunities of the analysed transceivers (CAN high speed, types
A, B and C) implemented in various control units and thus for various installation
locations and constraints in an upper middle-class passenger car. The immission

Fig. 2.42  Measurement set-up (on the left) and test implementation (on the right) for ESD tests
with ESD test board (here an SBC with integrated CAN transceiver is shown)

100 W. Lawrenz et al.

immunities are presented as noise immunity-limiting curves with the test variables
electrical field strength (V/m), interference current (mA) for the executed bulk cur-
rent injection (BCI) measurement as well as interference power (dBm) for DPI mea-
surement. All of the measurement results represent systems without any external
protection circuitries (with the exception of car measurements where, in all cases, a
split termination including a capacitor was implemented).

Figure 2.43a shows a narrowband interference of types A and C, measured in
cars at shortwave frequency range. Narrowband failure is typical; it is caused by
wiring harness resonance effects. Type B, however, possesses a sufficient noise
immunity at |E| = 120 V/m (in the analysed case, this corresponds to a peak-to-peak
value of approximately 200 V/m electrical field strength). The failure criteria were
the occurrence of CAN error frames.

Figure 2.43b depicts the results of the BCI component measurement of installed
control units in cars applying types A and B. In these cases, the same constraints
apply as within cars (real CAN communication, failure criteria are the occurrence
of CAN error frames). Common-mode interference exclusively is coupled through
the CAN lines. The different behaviours of types A and B from measurement in cars
can be observed in the same way.

The transition from real control units to specific test boards as well as the ap-
plication of a communication mask for failure evaluation at RxD pin instead of
doing a CAN error frame evaluation is done in the BCI measurements depicted in
Fig. 2.43c. The effect of influence of type B is rising, which indicates an increasing
jitter, which, however, is not recognizable in the same degree at the sample point in
real CAN communication.

a b

c d

Fig. 2.43  Emission immunity: a car measurement, b BCI measurement with real control unity, c
BCI measurement with specific tests boards and d DPI measurements

1012 Physical Layer

Figure 2.43d shows the results of the DPI measurements for all three trans-
ceiver types. Type B providing sufficient noise immunity in measurements in
cars achieves an immunity power of 36 dBm (4 W) in the critical frequency range
(10 MHz < f < 30 MHz). Both other types, however, only provide up to 3 dB lower
values, which correspond to a halving of the immunity power.

Typical requirements for noise immunity of components are in the range of
I = 100 mA (chain line in Fig. 2.43 a and b) for BCI measurements at current cou-
pling into the overall wiring harness (including power supply lines). According to
these requirements, both of the BCI measurements show failures in the frequency
range above f = 30 MHz. These failures could not be observed when performing
measurements in cars. When comparing all three types at DPI measurement with
increased requirements (Fig. 2.44—test with upward modulation), immunity weak-
nesses of type A in the upper frequency range can be stated clearly. Furthermore,
with respect to the considered frequency range, the difference in the immunity de-
gree between type B, providing sufficient noise immunity, and both of the other
types A and B gets bigger up to values greater than 6 dB.

Noise Emission—radiated

The approach to transceiver qualification is based on the application of basic test
functions emulating real communication.

Figure 2.45 compares the emission measurements (150-Ω method) for CAN
transceivers with a given TX test function (square wave signal with 50 % duty cycle
and 500 kbit/s) and a real CAN message (500 kbit/s). Obviously, with respect to the

Fig. 2.44  Emission immunity, DPI measurement with increased requirements

102 W. Lawrenz et al.

maximum values, the easy-to-generate TX test function is well suited to emulate the
emission of the respective transceiver under real communication conditions.

The derivation of limits for the qualification of transceivers with respect to ra-
diated emissions is comparably more difficult to do than for the noise immunity
problem. This is demonstrated by the measurements shown in Fig. 2.46. These mea-
surements compare the noise emission of a CAN network into a car-integrated am-
plitude modulation (AM) receiver in a passenger car for two different installations
of a CAN network within the car. The set-up 1 represents an unfavourable layout
with a short distance between a small CAN network and the integrated antenna. In
set-up 2, a big CAN network was implemented, which, however, has a larger special
distance to the antenna.

The comparison of both of the set-ups demonstrates the known problematic con-
cerning the special separation of noise source and noise drain with a dynamic range
of partially more than 30 dB. The process of specification of the limits for the emis-
sion from transceivers should be similar to the one applied for components. In this
case, different classes for interference suppression are defined, which recognize the
coupling to internal antenna systems.

Figure 2.47 compares cars and IC measurements for two CAN transceivers.
For measurements in cars, the unfavourable set-up 1 was chosen. Comparing

the differences between the two transceivers for the particular partial measurement
shows a very good resemblance between measurement in cars and on ICs.

Fig. 2.45  Emission measurement (150-Ω method) at CAN transceivers, comparison of Tx test
function and real CAN message

1032 Physical Layer

–

Fig. 2.46  Emission measurements in cars (integrated AM-Antenna with a measurement probe)
with different layout positions of a CAN network

a

c

b

Fig. 2.47  Emission of CAN transceivers: a measurements in cars, AM range, b measurements in
cars, FM range up to 1 GHz and c 150-Ω method according to transceiver test specification

104 W. Lawrenz et al.

2.5 Partial Networking

During the last years, the number of comfort function in a car is dramatically in-
creased. New functions like seat position and heating, window lift and so on were
added. These additional functions increase not only the comfort but also the cur-
rent consumption. Every function consumes typically 50 mA (without actuators)
independent of the fact that this function is used or not. During a start-up of a car,
all ECUs will be ramped up in parallel. This ends in a high current peak (up to 25 A
without actuators) but this is not necessary. Not all ECUs are required for the start of
the engine. A distributed ramp-up of the ECUs will be much more. A 100-ms delay
has no impact on the comfort but helps to reduce the load on the battery. To reduce
the current consumption and the CO2 emission, it must be possible to deactivate the
functions that are not needed during active CAN communication. An impact on the
comfort is not allowed. Two different concepts are available and established. One
concept based on a microcontroller modification is called pretended networking and
the other concept is based on a transceiver solution.

The microcontroller uses the internal CAN communication controller to moni-
tor the bus communication like established. However, all other functions in the
microcontroller are deactivated. Through the detection of the CAN communication
controller, an identifier, the rest of the micro will be awaked and the message can be
analysed. For this solution, a CAN transceiver with optimized current consumption
set into receive-only mode is recommended.

This technology requires a new generation of transceivers that can monitor the
CAN bus traffic to detect the well defined wake messages. To reduce the current
consumption of an ECU, voltage regulator and microcontroller are switched off.
The current consumption in this solution is much lower than in the microcontroller
solution. However, with this solution only one ID for wake-up is possible.

2.5.1 Motivation

In the last years, the requirements for eco-friendliness, drive engineering and CO2
emissions have been drastically changed. In future, the vehicle manufacturer has
to pay penalties for its vehicles which exceed the maximum allowed carbon di-
oxide emissions. Driven by ecological sensibility of the consumer and the limited
reserves of conventional used fuel resources, the development of alternative drive
engineering and the optimization of well-established drive concepts increased
significantly. However, a second trend says that the vehicle manufacturers have
to face an increase in applications and comfort which leads to an increase in elec-
trification inside the car. An increment of electronic functions inside a car, and
with it an increment of ECUs per car, leads to a higher power consumption which
results also in a higher fuel consumption. An increase in functionality usually
implies an increase ofelectric power supply which usually must be compensated
with power from fuel. Therefore, optimizing the electrical power consumption is

1052 Physical Layer

a necessary step to meet the expectation of both trends, increasing efficiency and
increasing functionality.

With the help of a calculation example using conversion formulae, the statement
and the potential for efficiency enhancement are confirmed. Using a battery supply
of 14 V and an ECU with an idle-current of approximately 100 mA implies 1.4 W
per ECU in idle state. The conversion formula says that 100 W electrical load are
current to 0.1 l of fuel per 100 km, where 1 l fuel raises the emission of 2.5 kg of car-
bon dioxide. Thus, an additional ECU would raise 3.5 g CO2 emissions per 100 km
even when it is in idle state and is waiting for a functioning request and its actors are
not active. The statistical department of the German government gives an average
of 11,500 driven km per car for the year 2008. As a consequence of this, an addi-
tional ECU would result in an additional emission of about 400 g of CO2 per year.

Regarding electric vehicles, the motivation lies in a more efficient power con-
sumption, which is essential to bring up today’s kilometre range of electric vehicles.

How is it possible to face these two none-harmonizing trends?
The fact is that many ECUs are responsible for functions that are not used very fre-

quently. A back-view camera, for example, is not in use when the car is driving on the
highway for hours. Other examples are seat ECUs, door ECUs or sun-roof ECUs. If
these ECUs are connected to the CAN bus, the bus communication holds these ECUs
in permanent awake state even though the communication is not relevant for these
ECUs. A solution must be found to set unused ECUs to a sleep mode and to reactivate
them only in case of use. This working principle is named as partial networking.

Figure 2.48 shows the potential of a CAN bus with partial networking. None-
used functions result in sleeping of the corresponding ECU. In case of a functional
request, the corresponding ECU is woken up. This can happen without any notice of
the driver. The real-time requirements are fulfilled in such a way that the driver may
not notice that a function is completely disabled due to its sleeping ECU.

Back to the above example calculating the impact of electrical power consump-
tion on CO2 emissions and considering an average of 12 ECUs which can be used
for partial networking this would bring a potential of 17 W saving electrical power.
This would result in approximately 0.42 g CO2 per km and in 5 g CO2 per year. Even
high-saving potentials of more than a gram for partial networking are presented in
the past. Considering penalties of up to 95 euro for exceeding emission boundaries
forced by the government, a partial networking ECU can result in up to 3.33 euro
savings. Even 17 W brings some effect on the range of electric vehicles.

In the following, several variants of setting particular ECUs to sleep and reawake
them are described.

2.5.2 Realization Methods

2.5.2.1 Variant 1: Disconnecting the Supply Voltage

By disconnecting the supply voltage, ECUs can be turned off completely. This kind
of separated working availability of ECUs already exists in the car. ECUs, which

106 W. Lawrenz et al.

are able to operate every time, are connected directly to the battery (Clamp 30).
However, ECUs, which are only able to operate after the start of the engine, are
connected to the battery voltage via the ignition key signal (Clamp 15). With this
method, the network is split into only two parts. Further parts can be realized by,
e.g. relays circuits. The disconnection of the supply lines leads to an additional ef-
fort of cabling or to a rigorous splitting in Clamp 15 and Clamp 30 ECUs which
does not meet the requirements of a dynamic wake-up behaviour.

2.5.2.2 Variant 2: Separate Wake Line

Through the integration of a wake line, ECUs can be woken up as well. It must be
distinguished between two different ways of signalling on the wake-up line. In case
of a signalling with voltage levels indicating between sleeping and awake, the same
disadvantages (global wake-up, not selective) of the above-described variant 1 are
given. The case of a pulse sequence indicating which ECU connected to the wake
line shall be woken up brings the advantage of a selective wake-up method but im-
plies high implementation costs. A simple protocol must be implemented to control
the wake conditions of a complex protocol.

2.5.2.3 Variant 3: Bus Levels

Additional cabling effort, lack of flexibility and high implementation costs of the
above-described variants lead to the conception that a solution is needed inside the
existing system. Considering the open system interconnection (OSI) layer 1, the
physical layer, special interpreted bus levels which are not affecting the already

Fig. 2.48  Partial networking—ECUs can be aimed deactivated and aimed woken up

1072 Physical Layer

used bus level definitions may be a solution. One concept of using special bus levels
is described in the SAE J2411 standard (Single-Wire CAN). High voltage levels
can lead to a wake-up. The disadvantage of this concept is again the low flexibility
because such pulses are seen globally as a wake-up event. A selective wake-up of
particular ECUs is not possible. Another disadvantage is that due to the higher volt-
age levels, more intense EMC emissions are possible which result in worse EMC
characteristics.

2.5.2.4 Variant 4: Bus Messages

Considering the OSI layer 2, the data link layer, special bit patterns can be used
to decode wake-up events. Again, it must be distinguished between two different
scenarios: On the one hand, the microcontroller can overtake the decoding and the
decision if a wake-up sequence occurred. On the other hand, the transceiver can be
added with the functionalities to be able to decode wake-up sequences.

If bit sequences are used like the content of two data bytes of a frame, the imple-
mentation effort inside the transceiver would be relatively low, but the disadvantage
would be that due to application-dependent unknown data occurrence unwanted
wake-ups can occur. To avoid this disadvantage the CAN ID should be consid-
ered as well. Thus, whole CAN messages should be considered to decode particular
wake-up events for particular ECUs.

Through the consideration of whole CAN messages, the required flexibility is
given and the risk of unwanted wake-ups is avoided. For a solution inside a trans-
ceiver, this implies that the transceiver functionality must be enhanced with de-
coding functions regarding the ISO 11898 as well as configuration functions (with
ID and data content) to configure the wake-up frame (WUF) of the transceiver.
Difficulties exist in the internal clock generation for sampling the CAN bus be-
cause external clock generation components would need additional transceiver pins
(backward compatibility) and are expensive.

Actually, the solution of enhancing the transceiver functions is favoured. Be-
cause the previously mentioned necessary requirements for partial networking with
selective wake-up can be fulfilled with the transceiver haven CAN frame decoding
functionalities, this variant is described in more detail in the following section.

2.5.3 Partial Networking (Infineon)

In a normal CAN network, all CAN nodes are permanently active when the CAN
communication is running, independent of the fact that the ECU is used or not.
However, many applications are not used all the time, and these ECUs can be
switched off to reduce the power consumption. A solution for such a realization
must fulfil the following criteria:

108 W. Lawrenz et al.

• No negative impact on the physical bus (no disturbance)
• Can be awake with a dedicated CAN frame
• Low current consumption

In addition, this solution must comply with the following three operational modes
of a vehicle and its networked system: the normal CAN communication mode, the
start up phase of the system and the vehicle, and finally the parking mode of the
vehicle with the silent system.

2.5.3.1 Normal Communication Mode

In normal CAN communication, ECUs that are not needed can be set into a special
sleep mode. All other CAN nodes can communicate and will not be disturbed by
the deactivated ECUs. With a dedicated WUF, one or more ECUs can be woken up
with a small time delay.

2.5.3.2 Start-Up Phase

During the start of CAN communication, in a CAN network, all ECUs ramp up
and, together, they will consume a lot of current. This is not necessary and with the
new approach, only the needed ECUs should be ramped up. All other nodes change
from sleep mode to a bus observation mode. After the successful ramp-up, the other
nodes can be added one by one into the communication, if necessary.

2.5.3.3 Parking Cars

If you park a car, a very low current consumption is required to unload the battery.
However, if, for example, the radio is on, all CAN ECUs located on this CAN bus
will stay active and consume a lot of current. With this new solution, only the neces-
sary ECUs are active (for example, wheel to control the radio and the radio itself)
and all other nodes are sleeping or shut off. This reduces the current consumption
dramatically.

2.5.3.4 Partial Networking

In the partial networking approach, the WUF detection unit is implemented in the
high-speed CAN transceiver. This new unit contains:

• A high precision oscillator
• A CAN message decoding unit
• An error-handling management
• A WUF configuration

1092 Physical Layer

• A compare unit

During selective wake mode, this unit is active and monitors the CAN communica-
tion like a watchdog. If a dedicated CAN frame is observed, the transceiver wakes
up the ECU. These kinds of transceivers have now two modes in the so-called low-
power mode:

• Sleep mode
• Selective wake mode

In sleep mode, the current consumption is reduced to a minimum and all functions
in the ECU are disabled. Every message on the bus wakes up the transceiver and
the ECU.

In selective wake mode, the current consumption is also low, but the WUF detec-
tion unit is active and monitors the bus. All other functions are disabled. With the
dedicated WUF, the transceiver and the ECU will be woken up.

In Fig. 2.49, the ECU modes with this new implementation are demonstrated.

Fig. 2.49  ECU modes for partial network applications

110 W. Lawrenz et al.

The mode transitions 1, 3 and 5 are well known from the ISO 11898-5 transceiv-
ers. New are the transitions 2, 4, 6 and 7.

For transition 2 (mode change into low-power mode with selective wake func-
tion) the transceiver must be checked, if the oscillator is synch, and the CAN frames
were detected from the transceiver correctly. Before the transceiver can be set into
low-power mode, the dedicated WUF must be sent to the transceiver. After this op-
eration proceeds successfully, the transceiver can be set into this low-power mode.
If the transceiver has detected a WUF, the transceiver changes into standby mode
and ramps up the ECU (transition 4). If there is no communication on the bus in
low-power mode with selective wake, the transceiver will change into sleep mode
(transition 6s) and returns after the communication on the bus starts again (transi-
tion 7). The advantage from this approach is a very low current consumption in
low-power mode. The disadvantage is the fact that only one dedicated WUF wakes
up the ECU. In addition, the long ramp-up time is a disadvantage of this system. A
first implementation from Infineon can be found on the TLE9267QX.

2.5.3.5 Trx_Standby Mode with Activated Selective Wake-Up Function

In this mode:

• RxD is decoupled from the receiver and RxD is set to logical 1.
• Transmitter is deactivated.
• VBIAS (voltage source for VCC/2) is active to improve the signal integrity.
• INH is logical “1” (to activate the voltage regulator).
• The WUF-detection unit is active.
• Tsilence timer is active.

The transceiver enters this mode after a valid WUF is detected.

2.5.3.6 Trx_Sleep Mode with Activated Selective Wake-Up Function

In this mode:

• RxD is decoupled from the receiver (RxD is logical “1”).
• Transmitter is deactivated.
• VBIAS (voltage source for VCC/2) is active to stabilize the signal integrity.
• INH is logical “0” (to switch off the voltage regulator and the rest of the ECU).
• WUF-detection unit is active.
• Tsilence timer is active.

In this mode, the microcontroller is unpowered or in stop mode. After the detec-
tion of a WUF, the transceiver changes into the Trx_Standby mode with selective
wake-up function and sets the INH pin to logical “1”. With “1” on INH, the voltage
regulator is activated and powers the microcontroller. After ramp-up of the micro-
controller, the software is able to set the transceiver in normal mode. Through serial
peripheral interface (SPI) of the transceiver, the wake-up source can be read out.

1112 Physical Layer

2.5.3.7 CAN Communication Timer (Tsilence Timer)

In Trx_Sleep mode and Trx_Standby mode, the transceiver monitors the bus perma-
nently on bus traffic. If there is no communication for 1 s on the bus, the transceiver
changes automatically into the normal sleep mode to reduce the power consumption.
After restart of the communication, the transceiver awakes and changes into the Trx_
Sleep mode to monitor the bus communication again. To be synchronized, five trans-
ceivers need up to five frames. After these five frames, a WUF will be detected reliable.

2.5.3.8 Wake-Up-Frame Detection Unit

The wake-up-detection unit monitors the bus communication like a watchdog. This
block (see Fig. 2.50) contains the following:

• Low current consumption receiver
• Receiver part of the CAN communication controller according to ISO 11898-1
• High -precision oscillator (1 % tolerance)
• Comparison unit

Before a microcontroller sets a transceiver in the new PN_Trx mode, he/she hands
over the WUF via SPI. The current consumption of the detection unit is reduced to
a minimum. However, the requirements for oscillator tolerance, EMC performance
and ESD robustness are as high as for the standard CAN communication. Before the
transceiver changes into PN_Trx_Sleep mode, the following checks will be done
on the WUF:

• Cyclic redundancy check (CRC)
• Frame check
• Bit stuffing

Fig. 2.50  Block diagram of the new selective wake function block

112 W. Lawrenz et al.

If the WUF-detection unit is not able to detect the CAN frames correctly, i.e. if
more than 32 frames were not correctly detected, the new error counter-sets the
transceiver into PN_Trx_Standby mode.

2.5.4 Transceivers for CAN Partial Networking (ELMOS)

The partial network operation presented here is an integral part of a large number
of possible solutions the automotive industry pursues in order to reach the overall
target for an average CO2 emission of 120 g/km in 2015 as defined by the European
Union (EU).

The most substantial contributions to CO2 reduction are expected from measures
focusing on engine and powertrain as well as from modifications in design and con-
struction. Examples for engine-related measures are, among others, the improve-
ment of conventional combustion engines, the needs-tailored control of ancillary
units and the increased use of hybrid and electric drives. With respect to powertrain,
the use of modern transmissions with six or seven gears is among the measures that
can help realize the reduction of emissions. Moreover, CO2 reduction is possible by
changes in construction and chassis through the use of lightweight structures and
aerodynamic improvements. All these approaches have a direct effect on CO2 emis-
sion as recorded in the New European Driving Cycle (NEUDC). In contrast, the
so-called complementary measures such as a gear-changing timing indicator, an ef-
ficient air conditioning, tyre pressure monitoring systems and smooth-running tyres
are not directly taken into account by test cycle. Although they are credited with up
to 10 g CO2/km extra, they do not fully cover the reduction potential of efficient
technologies that are beyond the test cycle. Further measures with an effect on the
vehicle, the so-called eco-innovations, are therefore additionally added towards the
target fulfilment of the manufacturer, on the amount of their minimum contribution
yet with no more than 7 g CO2/km.

In order to raise the potential of the above-mentioned measures, innovations in
automotive electronics are necessary to a large extent. A case in point, it has been
presented in [HUDI09] that operating currents can be reduced by up to 5.7 A with an
energy-optimized E/E-architecture, equivalent to the reduction of CO2 emission by
1.7 g/km in the real customer cycle. With an emission reduction potential of approxi-
mately 0.04 g CO2/km per control unit and with more than ten control units per vehi-
cle suitable for partial networking, this network operation mode as introduced in the
previous chapter represents an eco-innovation with a high potential in this context.

2.5.4.1 Requirements for High-Speed CAN Partial Networking

In view of the intended levy of 95 € per gram of CO2 beyond the limit [EC09], it
is understandable that eco-innovations such as CAN partial networking are cur-
rently in the focus of vehicle manufacturers. Within the framework of a working

1132 Physical Layer

group initiated by the Verband der Automobilindustrie, VDA), an ideas competi-
tion was launched by the German automakers, calling on semiconductor vendors
to present their solutions for the support of this kind of partial network operation
by a transceiver. The results were pooled in a requirement specification docu-
ment [OEM11]. From the very start, however, this VDA working group had the
stated goal to establish an international standard rather than a proprietary solution.
For this reason, experts from automakers and semiconductor vendors worked to-
gether under the roof of the so-called selective wake-up interoperable transceiver
in CAN high-speed (SWITCH) group in order to prepare the standard proposal
ISO/NP 11898-6 “Road vehicles—Controller area network (CAN)—Part 6: High-
speed medium access unit with selective wake-up functionality”. This proposal
has been forwarded to the ISO for decision and is currently in the stage “new
project approved”.

The essential outcome of the standardization efforts of the VDA working group
and the SWITCH group so far is that partial network operation will be realized by
selective wake-up of ECUs in partial network mode with the help of individual
WUFs. The WUF is a valid CAN data frame in accordance with ISO 11898-1.

Figure 2.51 depicts a generic ECU in active mode. A typical current consumption
of such a control unit can be several 100 mA.

The challenge is to minimize the current consumption of such a control unit
while providing for selective wake-up capability via the data bus at the same time.
One reasonable approach involves the implementation of the necessary additional
functions for partial network operation in the transceiver as this device is the link for
the connection between the control unit and the vehicle’s data bus. If the transceiver
is supplied directly by the battery in partial network mode, as is common practice
today in sleep mode, all other components of the control unit can be deactivated.
Therefore, this approach is distinguished by higher energy saving potential when
compared to the implementation of partial network operation, for example, in the
microcontroller. The control unit in partial network mode is depicted in Fig. 2.52,
indicating inactive functional blocks in grey.

The transceiver now “listens” to the data bus and analyses the bus traffic. Once
the WUF, the individual message for the respective control unit, is detected on the

Fig. 2.51  Generic electronic control unit in active mode

114 W. Lawrenz et al.

data bus, the transceiver activates the power supply via the INH pin and the entire
control unit is transferred to active mode again. In order to implement the behaviour
thus described, a transceiver for CAN partial networking must meet (at least) the
following requirements:

• Option for configuration to allow storing of the individual WUF in the trans-
ceiver

• Bit-accurate analysis of the bus traffic to make the detection of the WUF possible
• Signalling the status change from partial network to active mode for the entire

control unit if the WUF detected in the data stream corresponds to the one that is
stored in the transceiver

2.5.4.2 Implementation of High-Speed CAN Partial Networking

The requirements for transceivers supporting CAN partial networking as described
above call for new functional blocks in the monolithically integrated circuitry of the
transceiver device.

2.5.4.3 Clocking

The transceiver must be capable of receiving CAN messages sent on the data bus in
partial network mode. For a bit-accurate analysis of the CAN message, it must be
assured that the received physical analogue signal is sampled in such a way that the
bit-timing requirements defined by the CAN protocol are met. The transceiver for
CAN partial networking must feature its own on-chip clocking with a sufficiently
low oscillator tolerance (see Sect. 2.2.2). Clocking, provided by an external quartz
component, is ruled out for cost reasons.

Fig. 2.52  Generic electronic control unit in partial network mode

1152 Physical Layer

2.5.4.4 Analysis of the CAN Message

For an analysis of the received CAN message, the transceiver digital logic must
be enhanced such that complete CAN data frames can be decoded, consisting of
an 11-bit (standard) or 29-bit (extended) identifier and up to 64 bits of reference
data.

2.5.4.5 SPI-Compatible Interface

An SPI-compatible interface allows data exchange between microcontroller and
transceiver for configuration and mode control. The interface is used for:

• The storing and readout of the individual WUF
• The configuration of parameters, e.g. for bit-timing (Sect. 2.2.2)
• The control of the transceiver’s mode or mode changes
• The readout of diagnostic registers

Moreover, it has to be assured that high-speed CAN transceivers for partial network
operation are downward compatible with conventional CAN transceivers accord-
ing to ISO 11898-5 so that both transceiver types can be operated together in one
network (interoperability).

2.5.4.6 Implementation in the Device E520.13 by ELMOS Semiconductor AG

The essential challenge to the realization of a high-speed CAN transceiver for par-
tial networking is to meet the bit-timing requirements of the CAN protocol in partial
network mode, with only an on-chip oscillator available for clocking in the trans-
ceiver. In order to solve this problem, potential clocking concepts were theoretically
analysed at first; then concept verification was carried out together with a key OEM
customer by means of a hardware demonstrator. After positive results had been
achieved, the next step taken was the design of a monolithically integrated solution
for a partial network high-speed CAN transceiver meeting the requirements and the
standard proposal ISO/NP 11898-6.

The device E520.13 is a high-speed CAN transceiver according to ISO 11898-5
that additionally realizes selective wake-up for partial networking according to ISO/
NP 11898-6. It features remote wake-up through an individually configurable WUF
for supporting partial networking, in addition to the common wake-up sources “lo-
cal wake-up via WAKE pin” and “remote wake-up according to ISO 11898-5 (pat-
tern)”. In partial network mode, the current consumption of the device is below
500 µA. A typical application circuit is depicted in Fig. 2.53.

Finally, results achieved with component E520.13 in a real network will be
presented. The bus topology used for this purpose is a passive star with seven
bus participants and a total wire length of 40 m. The data rate is 500 kbaud. The

116 W. Lawrenz et al.

length of the CAN identifier is 11 bits and the length of the CAN data field comes
to 64 bits.

Figure 2.54 depicts the selective wake-up of a control unit equipped with the de-
vice E520.13 by means of a WUF. At the start of the measurement cycle, the control
unit is in partial network mode. Shown are the respective signal sequences at the two
bus pins CAN high (CAN_H) and CAN low (CAN_L) and at the pin INH through
which the wake-up call is signalled to the controller’s internal power supply. The up-
per subfigure a) shows a detail of the bus traffic, where several hundred data frames
with pseudo-arbitrary content are transmitted. The control unit in partial network
mode “listens” to the bus communication and is capable of receiving, decoding and
analysing the data frames in a reliable and robust way. The control unit remains in
partial network mode. Only when the controller-specific WUF, consisting here, e.g.
of the CAN identifier 0xFF and the CAN data field 0 × 00 00 00 00 00 00 00 FF, is
transmitted on the data bus, the wake-up call is initiated by changing from low to
high at the INH pin to get the controller out of partial network mode. The data frame
setting off the wake-up event is shown enlarged in the lower subfigure (Fig. 2.54b).
A very short delay in the range of a few tens of microseconds between WUF and
state-change at the INH pin can be observed.

Fig. 2.53  Application circuit for partial networking HS-CAN transceiver E520.13

1172 Physical Layer

Engineering samples of the ELMOS device E520.13 have been available since
middle of 2010 and have been tested by various vehicle manufacturers and automo-
tive suppliers since then. Automotive qualification of the device will be finalized in
2012, while the first in-vehicle series application is assumed for 2014.

2.5.5 Pretended Networking—the Microcontroller Approach
(Infineon)

2.5.5.1 Is Power Saving Possible with a Microcontroller?

Is power saving possible with a microcontroller? Since several years, microcon-
trollers do contain power-saving features. The power modes have been introduced,
due to the fact that several ECUs continue to run, in a parked vehicle. For example,
the XC2000/XE166, including the MultiCAN module, is having the so-called Idle-
instruction, as its ancestors have, including its well-known grandfather the C167.
The idle instruction allows switching off the clock supply of the central processing
unit (CPU) and recovering the clock by an interrupt within one cycle. Since several
years, all modules can be switched on–off and a cyclic wake-up can be performed
by the real-time clock (RTC) or the standard timer module (STM).

Fig. 2.54  Selective wake-up of a control unit from partial network mode

118 W. Lawrenz et al.

2.5.5.2 ECUs Sleep During Driving?

To save power during driving, the main question is whether the existing power-
saving features can also be used during driving.

Yes, it is possible. Most applications, which are currently discussed for partial
networking, are activated by the driver. ECUs, for example, the trailer module, have
to signal regularly to the bus if a trailer is attached or not set and can be switched
off in case no trailer is attached by the transceiver. Applications, like the window
lift, have to react so fast that the user will detect no difference to today’s solutions.
However, not only comfort but also safety play their role, e.g. in case of a crash, all
doors have to open automatically. As during a crash, also the power supply cannot
be guaranteed any longer, and the reaction time to the crash message has to be as
fast as possible. Therefore, using partial networking is not possible, as otherwise
rebooting the microcontroller by the transceiver might take too long to guarantee
the power supply. However, these ECUs are able to save power.

The easiest way to save power is to include the idle instruction (HALT mode)
into the operating system, so that all CPUs do not loop but save power in case of no
operation. All interrupts will wake up the CPU without any delay. For example, a
cyclic timer interrupt can cause such a wake-up.

If now additional peripherals of the microcontroller are switched off, not even
touching the memories, the power consumption can be significantly reduced. If now
the CPU is set into idle mode and only the MultiCAN module is kept running, the
power consumption can be already reduced to round about 50 %.

A more radical approach is to reduce the operating frequency (slow-down mode)
and, using different message catalogues, to reduce the bus traffic and the amount of
wake-up events.

The XC2000 has a standby random access memory (RAM) in addition, so that a
minimal program plus parameters can be saved within this RAM, in case memories
shall be switched off. There are different levels of power saving, and the easiest
are described above. Further power-saving modes are “active stop over”, “passive
stop over” as well as the “standby” modes. In standby, including the using of the
standby RAM, the power consumption is below 1 mA. A more detailed description
can be found within the application note AP16170 “Power Management with SCU
Driver”. Under the same title, a driver can be found with the implementation of the
power modes.

2.5.5.3 Outlook

In the future, more features will be integrated into the microcontroller, which shall
support the application to save power. Nonetheless, with today’s microcontrollers
it is already possible to save a significant amount of power, without changing the
networking management of a car platform.

As partial networking has only first samples in the market, the power saving
within microcontroller can already be started today and even on existing ECUs.

1192 Physical Layer

This can be done without changing the network and network management of a ve-
hicle or of machinery. In can be so easy to save power.

2.5.6 Comparison Between Partial and Pretended Networking
(Infineon)

Both approaches do have their advantages and also their disadvantages. The mi-
crocontroller solution reacts fast and it is the right approach for time-critical
applications. Therefore, it consumes more power and well-designed software to
able to use the power mechanisms at the right time and to have the resources avail-
able if needed. The transceiver approach looks fairly easy in the first place, ex-
change the transceiver and you are done, but it needs a significant redesign of an
existing networking architecture. This solution needs a long booting time and can-
not be used for timely critical applications. The power consumption is lower than
with the microcontroller solution. In addition, here the quality of the software and
of the physical outline of the networks defines the quality and stability of the solu-
tion. Which solution will get the majority within the vehicle is currently not defined.
The co-existence is possible and the further advantages and disadvantages will be
shown in the future. During printing of this book, both solutions are still in evalua-
tion phase and only in very few test vehicles.

2.5.7 NXP’s Concept and Implementation

In order to achieve maximum robustness in a partial networking system and to
avoid the limitations of wire harness design, NXP has incorporated a CAN protocol
decoder into its new transceivers. The decoder is clocked by a very precise in-
ternal free-running oscillator. The ISO 11898-1 compliant CAN protocol decoder
was originally developed for NXP’s LPC229x microcontroller family. Very low
temperature dependence and high immunity to changing supply voltage conditions
in the oscillator make calibration of the frequency relative to the received bus traf-
fic unnecessary. Consequently, the full capability of the CAN decoder to analyse
received messages is available at any time after a start-up phase lasting several
microseconds. As a result, reliable gap-free detection of wake-up messages can be
guaranteed without the need to generate cyclically repeating wake-up or calibration
messages. In addition, there is no need for a waiting period after start-up to allow
the oscillator frequency to be adjusted relative to that of the received messages. So
the transceiver is as robust as a CAN decoder integrated in a µC. The alternative
to using such a stable oscillator is to calibrate the oscillator relative to the received
messages as described in Sect. 2.5.3. NXP decided not to use oscillator designs that
require calibration for a number of reasons:

120 W. Lawrenz et al.

• Jitter on the received edges caused by radio frequency (RF) fields lowers the
precision of the calibration result; increasing the immunity of the transceiver
would increase current consumption and, in any case, could only be achieved to
a limited extent.

• Oversampling is needed to achieve a sufficient level of precision; the higher the
oversampling rate, the higher the current consumption.

• Ringing on the recessive edges means that they cannot be used for calibration.
• Messages that occur after silence on the bus are not defined and thus can be

transmitted in a number of different formats; in the worst case, there are only
four dominant edges in a message (ID = 0E0h, RTR = 1, DLC = 1).

• The ID field can be disturbed by arbitration and, therefore, cannot be used for
calibration; moreover, the non-calibrated receiver does not know where the ID
field ends (note that the ID can be 11 bit or 29 bit).

• Car makers require calibration to be completed by the time five messages have
been received; otherwise, start-up will take too long and wake-up events might
be missed.

• Errors such as “stuff error”, “form error”, “CRC error” or error frames can dis-
turb the calibration process.

• Transmitter clock tolerances (up to ± 0.5 % according to SAE bit-timing require-
ments) lead to errors in the calibration results. This is critical when the receiver
clock has been tuned to a slow sender and the wake-up message is sent by a fast
sender (or vice versa).

NXP transceivers with partial networking have the same state diagram as standard
transceivers like the TJA1041(A) or TJA1043. So the familiar “normal”, “standby”
and “sleep” modes are available in the new transceiver generation. The only differ-
ence is in the wake-up mechanism; the new transceivers will only respond to the
configured WUFs.

To achieve good emission performance throughout the system, pins CAN_H and
CAN_L are biased towards 2.5 V when the transceiver is in a low-power mode
(standby or sleep) and bus traffic is being monitored for wake-up messages. Bias-
ing is turned off automatically if the bus is silent for more than a second. Standard
transceivers always terminate the CAN_H and CAN_L pins to GND when in a
low-power mode, enforcing a common-mode step with every message transmitted
on the bus.

2.6 Transceiver Implementations

2.6.1 Implementation Example TLE 6254 3G (ISO
11898-3)

TLE 6254-3G is a standard low-speed CAN transceiver of Infineon technologies
with an excellent EMC performance and a high ESD robustness. All transceiver

1212 Physical Layer

modes, described in the former chapter, are implemented in this transceiver. The
block diagram in Fig. 2.55 shows the important blocks of this transceiver like:

• Transmitter block to transmit data
• Receiver block to receive the data from the bus
• Mode control unit to control the transceiver mode
• Bus failure management block
• Wave -shaping block to optimize the CAN_H and CAN_L waveform to reduce

the emission

Fig. 2.55  TLE6254-3G block diagram

122 W. Lawrenz et al.

2.6.1.1 Pin Description

• WK: Local wake pin to wake up the transceiver from sleep mode via an external
switch on the ECU.

• INH: High-side switch to control the connected voltage regulator. On in non-
sleep mode and off in sleep mode.

• NSTB and ENT: Mode input pins to control the transceiver.
• NERR: Logic output pin to flag failure conditions.
• TxD: Transmit data input pin. The data on pin TxD will be transmitted on the bus

via CAN_H and CAN_L.
• RxD: Receive data output pin. The received data are formed into logic-level

signals for the microcontroller.
• CAN_H, CAN_L: Bus pins. Very robust high-voltage pins to transmit and re-

ceive data.
• RTL, RTH: Termination resistor switches. Off in case of bus failure and on in

failure-free mode.
• VS: Supply voltage pin (reverse polarity-protected battery supply).
• VCC: 5 V supply pin.
• GND: Ground connection.

2.6.1.2 Transmitter

The requirements on the transmitter according to voltage range, ESD robustness
and EMC performance are very high. To reduce emission during data transmission,
the symmetry of the CAN_H and CAN_L signals must be very high and the corners
must be rounded. This task will be done in driver of the output stage. The driver
stages CAN_H and CAN_L have to be very robust against ESD pulses. An ESD
pulse is very short, but during this time a current peak up to 20 A has to be handled
without any reduction on the driver performance. In case of a permanent dominant
signal on TxD (for example, caused by a short on pin TxD), the driver CAN_H and
CAN_L will be switched off to release the bus. The transceiver can now receive
data but cannot transmit data until the level on pin TxD is high. A high level on pin
TxD release the look and the transmitter can transmit again. The transmitter will be
also disabled in case of an over-temperature. After returning to the normal tempera-
ture range, the transceiver logic releases the transmitter automatically.

2.6.1.3 Receiver Block

The receiver block consists of five different comparators:

• Differential receiver: In normal operation, the differential comparator receives
the data.

• CAN_L comparator: Single-ended comparator to monitor CAN_L only.

1232 Physical Layer

• CAN_H comparator: Single-ended comparator to monitor CAN_H only.
• CAN_L Vbatt Comp: Comparator to monitor high voltage on CAN_L > 7 V.
• CAN_H Vbatt Comp: Comparator to monitor high voltage on CAN_H > 7 V.

2.6.1.4 Differential Receiver

The differential receiver has a high common-mode range (−2–6V). This guarantees
an EMC and ground shift robust communication. This comparator is active if there
is no short on the bus.

2.6.1.5 CAN_L, CAN_H Single-Ended Comparator

These comparators monitor one bus CAN_H or CAN_L only. In case of a short
of one bus wire, the corresponding comparator on the short-free wire receives
the data. The robustness against EMC and ground shift is low compared with the
performance of the differential mode.

2.6.1.6 CAN_H, CAN_L Vbat Comparator

These comparators monitor the voltage on CAN_H and CAN_L to detect overvolt-
age on these wires (V > 7 V).

If the voltage on CAN_H or CAN_L is higher than 7 V, this indicates a failure on
the bus wire (for example, short to Vbatt) in sleep mode and CAN_L will be terminated
to Vbatt. In this mode, a high voltage is a normal situation. The Vbatt comparator will
be disabled in this mode to reduce current consumption and to avoid a failure report.

2.6.1.7 Bus Failure Detection

To detect the kind of failure on the bus all comparators are used. The combination of
the information allows the failure detection logic (Fig. 2.56) to find out which kind
of failure is on the bus. Depending on the type of failure, the hidden output stage
can be switched off to protect them.

2.6.1.8 Application Circuit

Figure 2.57 shows the typical application circuit of a low-speed CAN application.
Sometimes CAN coils are used to improve the emission and EMC robustness. The
termination resistors are different. Minimum on two nodes 500 Ω are set. The value
for the termination resistors on the other nodes depends on the number of node in
the network. In total, the value of all resistors must be above 100 Ω. For example, if

124 W. Lawrenz et al.

ten nodes are in the network and two nodes have 500 Ω, the value for the termina-
tion resistors of the other nodes is 1,400 Ω.

RxD, TxD, the mode pins NSTB, ENT and the failure flag pin NERR are con-
nected to the microcontroller.

The local wake pin should be connected to the switch via a 10-kΩ resistor to in-
crease the robustness against disturbance. A pull-up resistor is necessary; otherwise,
the node floats if the switch is open. The value on these resistors depends on the
required wetting current. The typical value is 1 kΩ, if the local wake pin is not used.
This pin can be connected to the supply pin VS.

The pin INH can be connected to a voltage regulator or DC/DC converter. The
transceiver controls now the power supply. In case of sleep mode, the power supply
is switched off via the INH pin and in case of an:

• Power up
• Local wake event on pin WK
• Remote bus wake

The power supply will be switched on again.

 Fig. 2.56  Receiver compara-
tors to receive the data and
detect bus failures`

1252 Physical Layer

Normally, the ESD and EMC robustness of the TLE 6254-3G is very high. How-
ever, to use this performance, the board layout must be able to handle high currents
in case of EMC and ESD events with a low voltage drop. In addition, the coupling
between signals with fast transients on the board and the CAN_H and CAN_L wires
must be very low. The blocking capacitors on VCC and VIO must be close to the
pins to develop the best performance.

2.6.2 Implementation Example TLE 6250 G (ISO 11898-2)

TLE 6250 G from Infineon technologies is a high-speed CAN transceiver according
to ISO 11898-2. Excellent EMC performance and high ESD robustness are the key
features of this transceiver. The block diagram in Fig. 2.58 shows the main blocks
of this device:

• A transmitter to transmit data
• A receiver to receive data from the CAN bus
• A mode control to control the device
• A signal shaper to optimize the output signals to reduce the emission on the bus

2.6.2.1 Pin Description

• TxD: Transmit data. Logic input pin. The data on pin TxD will be transmitted on
the bus.

• GND: Ground.
• VCC: 5 V supply for the transceiver.

Fig. 2.57  Application circuit and pinning of TLE6254-3G

126 W. Lawrenz et al.

• RxD: Receive data. Transform the differential signals from the bus into a local
signal for the microcontroller.

• RM: Receive only mode. In this mode, the transmitter is switched off.
• INH: Logic input pin to control the modes (standby mode and normal mode).
• CAN_H, CAN_L: Bus pins. High-voltage pins to transmit and receive data.
• V33V: To support the I/O pin (TxD, RM, INH and RxD) with the microcon-

troller.

2.6.2.2 Transmitter

High voltage robustness, high EMC immunity and high ESD robustness are the
requirements for the output stages CAN_H and CAN_L. At the same time, the
CAN_H and CAN_L output signals should be shaped very well to reduce the emis-
sion. This is done by the signal shaper in the transmitter. The output stage CAN_H
is a high-side switch and CAN_L is a low switch. Both stages switch on and off
together at the same time.

2.6.2.3 Receiver Block

The receiver transforms the bus differential signal into a logical signal for the mi-
crocontroller (on pin RxD); the common-mode range of this receiver is between
−20 V and + 25 V to allow a very high immunity against disturbances from the bus.
The high common-mode range also allows a high ground shift.

Fig. 2.58  Block diagram and pinning of TLE6250-G and TLE6250-GV33

1272 Physical Layer

2.6.2.4 Mode Pins: INH and RM

The INH pin controls the mode of the transceiver. In normal mode, the transceiver
transmits and receives data. In standby mode, the transceiver current consumption
is reduced to a minimum and the transmitter and receiver are blocked. The pin RM
blocks the transmitter if the CAN controller is not working correctly or TxD is
shorted to ground. The receiver works correctly in this mode.

2.6.2.5 V33V-I/O Supply Voltage

In some applications, different supply voltages are used for the microcontroller (for
example, 3.3 V) and the transceiver (5 V).To allow this separate voltages, the inter-
face pins are supplied from the microcontroller. An internal level shifter shifts the
levels from the V33 domain into the 5 V transceiver domain. In case of a missing
V33 voltage, the transmitter is blocked.

2.6.2.6 TLE 7250G and TLE 7250GVIO

The TLE 6250G and TLE 6250GV33 have now followers called TLE 7250G and
TLE 7250GVIO with higher ESD robustness and a TxD time-out function. In case
of a dominant signal longer than 300 µs the transmitter will be switched off to re-
lease the bus. After high on TxD the latch will be released.

Fig. 2.59  Block diagram and pinning TLE6251-2G

128 W. Lawrenz et al.

2.6.3 TLE 6251-2G (ISO 11898-5)

TLE 6251-2G is a high-speed CAN transceiver according to ISO 119898-5 with
remote bus wake-up with excellent EMC and ESD performance. In addition to the
standard high-speed CAN transceiver, a remote wake-up receiver with a very low
current consumption is implemented. If there is no communication on the bus, the
transceiver can be set into sleep mode and the remote wake-up receiver will be wo-
ken up, if CAN bus communication starts again. In block diagram in Fig. 2.59 the
fundamental blocks are shown.

The transceiver contains the following:

• A transmitter to transmit data on the bus
• A receiver to receive data from the bus
• The mode-control block to control the transceiver unit
• A physical bus failure detection unit
• A signal shaper to optimize the waveform on CAN_H and CAN_L and reduce

the emission

2.6.3.1 Pin Description

TLE 6251-2G pins:

• WK: Local wake-up pin to wake up the transceiver via a switch.
• INH: High-voltage high-side switch to control a voltage regulator.
• NSTB and EN: Logical input mode pins to control the transceiver modes.
• NERR: Logic output pin; output is set to low in case of physical bus failure.
• TxD: Transmit data. Logical input pin to transmit data on CAN_H and CAN_L.
• RxD: Receive data. Transforms the differential signal on the bus into logical

signal on RxD.
• CAN_H, CAN_L: Bus pins. To transmit and receive data.
• SPLIT: 2.5 V output buffer to improve signal integrity.
• VS: Battery supply pin (via a reverse polarity diode).
• VCC: 5 V supply pin for transmitter and receiver.
• VµC: Supply pin for the logic I/Os.
• GND: Ground.

2.6.3.2 Transmitter

High voltage robustness, high EMC immunity and high ESD robustness are the
requirements for the output stages CAN_H and CAN_L. At the same time, the
CAN_H and CAN_L output signals should be shaped very well to reduce the emis-
sion. This is done by the signal shaper in the transmitter. The output stage CAN_H
is a high-side switch and CAN_L is a low switch. Both stages switch on and off
together at the same time.

1292 Physical Layer

The transceiver is very robust against ESD disturbance. According to ISO 61000-
4-2 the device withstand ESD pulses higher than 6 kV. Current peaks up to 20 A
have to be handled in the device for a short time.

A current limitation is implemented to protect the device against shot circuits to
ground and Vbatt. In case of a short, the CAN_H and CAN_L output current will
be regulated to 120 mA. In case of overheating, the transmitter will be switched off.
A high level on TxD unlocks the transmitter (if the temperature is cooled down).

2.6.3.3 Receiver

The receiver transforms the bus differential signal in a logical signal for the micro-
controller (on pin RxD).

The common-mode range of this receiver is between −40 V and + 40 V to allow a
very high immunity. The high common-mode range allows also a high ground shift

2.6.3.4 Bus Failure Detection

Bus failure detection in differential voltage systems with a high common-mode
range is very difficult. In this kind of concepts, the bus can only be analysed when
the transmitter sends data. In the TLE 6251-2G, the CAN_H and CAN_L output
currents are measured and the difference will be detected as a bus failure. These
concepts support:

• Short circuit CAN_H to ground. In this mode, the CAN_H current is much high-
er than in CAN_L.

• Short circuit CAN_L to supply voltage. In this mode, the CAN_L current is
much higher than in CAN_H.

• Short circuit CAN_H to VCC or battery. In this mode, the CAN_L current is
much higher than in CAN_H.

• Short circuit CAN_L to ground. In this mode, the CAN_L current is much smaller
than in CAN_H.

The failure CAN short with CAN_L will be analysed with bit compare. If the trans-
mitter transmits data, the receiver must receive these data. If not a short between
CAN_H and CAN_L is possible.

2.6.3.5 VµC-I/O Supply

Microcontroller has a wide range of supply voltage. To guarantee a reliable commu-
nication between the microcontroller and the transceiver the microcontroller sup-
ply voltage is used to support the transceiver interface pins. The VµC undervoltage
detection unit blocks the transmitter and receiver function in case of undervoltage
on pin VµC and set the device to sleep mode.

130 W. Lawrenz et al.

2.6.3.6 Split Pin

2.5 V (VCC/2) with an input resistance of 600 Ω will be provided on this pin. This
voltage can be used to stabilize the recessive level on the bus. The centre pin of
two termination resistors (2 times 60 Ω) should be connected to this pin. The volt-
age source is active in normal mode. In sleep mode and standby mode, the voltage
source is disabled and high ohmic. This function is not offered in all transceivers
with remote wake-up function.

131

Chapter 3
Data Link Layer Implementation

Wolfhard Lawrenz, Florian Hartwich, Ursula Kelling, Vamsi Krishna,
Roland Lieder and Peter Riekert

W. Lawrenz (ed.), CAN System Engineering,DOI 10.1007/978-1-4471-5613-0_3,
© Springer-Verlag London 2013

W. Lawrenz ()
Waldweg 1,
38302, Wolfenbuettel, Germany
e-mail: W.Lawrenz@gmx.net

F. Hartwich
Robert Bosch GmbH, Tuebinger Strasse 123,
72703 Reutlingen, Germany
e-mail: Florian.Hartwich@de.bosch.com

U. Kelling
Infineon Technologies AG, Am Campeon 1-12,
85579 Neubiberg, Germany
e-mail: ursula.kelling@infineon.com

V. Krishna
Xilinx India Technology Services Pvt. Ltd.,
Cyber Pearl, Hi-tec City, Madhapur, Hyderabad 500 081, India

R. Lieder
Renesas Electronics Europe GmbH, Arcadiastrasse 10,
40472 Duesseldorf, Germany

P. Riekert
Ingenieurbüro für IC-Technologie, Kleiner Weg 3,
97877 Wertheim, Germany
e-mail: ifi@ifi-pld.de

3.1 M_CAN—Modular CAN Controller

The modular controller area network (M_CAN) module was developed to expand
Bosch’s well-known family of CAN modules (e.g. the C_CAN module, which is
found in many microcontrollers) and support standardized (Automotive Open Sys-
tem Architecture, AUTOSAR) software drivers in particular, as well as applications
with multiple CAN channels. The M_CAN module’s internal partitioning in CAN
core, Tx Handler, and Rx Handler provides flexibility for easy adaptations to future
requirements. CAN messages are stored in a separate memory, the Message RAM,

132 W. Lawrenz et al.

not inside the M_CAN. The M_CAN module is compliant with CAN protocol
2.0 A, B, and ISO 11898-1. Figure 3.1 shows its internal structure.

All functions specified in the CAN protocol, such as CAN protocol control-
ler state machines as well as the shift registers for transmission and reception, are
implemented in the CAN core. This protocol unit has been adopted from earlier
CAN modules and is part of a direct line of development that begins with the in-
troduction of the CAN protocol. The CAN core’s interface signals are connected to
the rest of the M_CAN via a synchronization logic. This makes it possible to supply
the CAN core with a dedicated clock for CAN communication, whereas the rest of
the module is in the same clock domain as the host central processing unit (CPU).
For example, the CAN core might be operated with an 8 MHz crystal clock while
the CPU is supplied with a phase-locked loop (PLL) clock of significantly higher
frequency which—to limit noise emission—may also be modulated.

The Tx Handler controls the transmission of messages. The host CPU may
set transmission requests for several messages; transmit cancellation is also
supported. The Tx Handler then transfers the messages—according to the priority
of their identifiers—from the Message RAM to the CAN core’s shift register. Up to
32 dedicated transmit buffers are available. They may—partially or completely—be
combined to operate as a transmit first-in-first-out (FIFO) or as a transmit queue.
Status information regarding the requested transmissions, including a 16-bit trans-
mit time stamp, may be logged into the optional Tx Event FIFO.

Dedicated receive buffers and up to two receive FIFOs may be configured for the
reception of messages, under the control of the Rx Handler. The Rx Handler per-
forms acceptance filtering and transfers received messages into the Message RAM.
The following filter types are available for the acceptance filtering:

• Range filter: Matches for identifiers in the range from start identifier to end iden-
tifier.

• Bit masking: Matches for a specific identifier while some identifier bits may be
masked.

• Dual filter: Matches for two specific identifiers.
• Dedicated Rx: Matches for the identifier of a dedicated receive buffer.

The filters can each be used as acceptance or as rejection filter; they also decide
where accepted messages are to be stored. In total, up to 128 filter elements may
be configured for 11-bit identifiers and up to 64 for 29-bit identifiers. This may be
combined with a global mask for 29-bit identifiers, in support of J1939 applications.
The various filter options allow a targeted filtering of received messages ensuring
that only messages which are relevant for the particular node are stored in the Mes-
sage RAM; others are rejected. The reception time, a 16-bit time stamp, is optionally
stored with the message.

The M_CAN module combines both qualities of the “Full CAN” concept and of
the “Basic CAN” concept. Received messages are stored in dedicated receive buf-
fers as well as in FIFOs; no software acceptance filtering is needed. The transmit
messages may be—depending on the application—stored in dedicated transmit buf-
fers or managed in a transmit FIFO or in a dynamic transmit queue.

1333 Data Link Layer Implementation

A 16-bit timer counter is available to check for timeout conditions in the han-
dling of the receive FIFOs and the Tx Event FIFO. Both the timer counter and the
time-stamp generation are clocked, via a prescaler, with multiples (1–16) of the
CAN bit time.

The configuration and control of the M_CAN module is done by the host CPU,
via the Generic Slave interface. Through this interface, the CPU also reads status
information from the CAN core, the Rx Handler, and the Tx Handler. The Generic
Slave interface may be connected to 8/16/32-bit CPUs.

The Generic Master interface is used to access the 32-bit-wide Message RAM
(single or dual channel). The CPU also has direct access to the Message RAM. The
transmit buffers, the Tx Event FIFO, the dedicated receive buffers, the receive FI-
FOs, and the acceptance filter elements are stored in the Message RAM, outside of
the module. The partitioning of the Message RAM can be configured flexibly (see
Fig. 3.2). A maximum of 1,216 (32-bit-wide) words can be used per M_CAN mod-
ule; the minimum size of the RAM is determined by the application.

Gateway (GW) configurations consisting of several M_CAN modules sharing
one Message RAM (see Fig. 3.3) can easily be set up. Access conflicts between the
M_CANs and the CPU are resolved by the attached RAM Arbiter state machine. No
modifications to the M_CAN module are required for their use in a GW. It is also
possible to connect several M_CAN modules to the same CAN bus, for example, to
enlarge the number of message buffers for that channel.

The interrupt flags of the M_CAN module signal status or error conditions of
CAN core, Tx Handler, and Rx Handler. The interrupt flags may be evaluated by
polling, or they may be assigned (individually) to one of two interrupt lines that are
connected to the host CPU.

Fig. 3.1  M_CAN block diagram

134 W. Lawrenz et al.

In addition to the normal operating mode, the M_CAN module provides sev-
eral test modes such as the bus monitoring mode to silently observe the CAN
communication or the loop back mode, in which the M_CAN treats its transmitted
messages as received messages. Self-test of the internal transmit and receive path
is possible without disturbing the communication on the CAN bus. A power-down
support (sleep mode) completes the feature list.

The M_CAN’s modular structure makes it easy to add new functions, such as new
communication features as CAN with Flexible Data Rate (CAN FD; see Sect. 3.3).
Another configuration of the M_CAN, with an additional frame synchronization
entity that supports Time-Triggered CAN (TTCAN; see Sect. 3.2), is also available.

Fig. 3.3  Connecting several M_CAN modules to a shared single-ported message RAM

Fig. 3.2  Message RAM configuration

1353 Data Link Layer Implementation

More information on Bosch’s Internet Protocol controller area network (CAN-
IP) modules can be found at the following URL: http://www.semiconductors.bosch.
de/en/ipmodules/can/can.asp

3.2 IFI Advanced CAN

Prior to designing a CAN communication system, some decisions must be made.
Is the intention to apply a standard CAN controller, which performs the communi-
cation tasks together with a standard CPU, or is it intended to make use of a CPU
containing an integrated CAN controller or is it planned to integrate the CAN inter-
face into a field-programmable gate array (FPGA), perhaps in conjunction with a
CPU? In any case, however, an important criterion is to plan carefully how the CAN
controller shall be operated in order to avoid the CPU to be loaded with unneces-
sary tasks. Normally operation of all CAN controllers is based on the same basic
principle; some more or less mailboxes are installed along with a couple of filters
and masks. IFI Advanced CAN, however, takes another route.

The background for the development of the IFI Advanced CAN is not to launch
the n + 1st variation of a standard controller as an application-specific integrated
circuit (ASIC) but to combine the flexibility of an FPGA with a high-performing
and resources-saving integration. For that purpose, this controller provides multiple
parameters, which, in the compilation run for the FPGA code, are chosen in such a
way that only those resources of the FPGA are allocated which are really necessary
for the application.

This concept starts with the interface between CPU and controller (Fig. 3.4). As this
Internet Protocol (IP) core is designed for Altera FPGAs, the interface is a so-called
Avalon bus. This is a synchronous bus, allowing a dynamic adaptation of the bus width.
When the controller is intended to be used in conjunction with the CPU in an FPGA, it
is recommended to apply an Altera NIOSII CPU, which accesses the core with a data
width of 32 bits. On the application of an external CPU, a parameter selects the desired
data bus width of 8, 16, or 32 bits. This simplifies the connectivity for the designers.
The following will not go into details on the architecture of the Avalon bus interface,
but the structure of the controller will be enlarged, offering quite some specialties.

Fig. 3.4  IFI Advanced CAN block diagram

http://www.semiconductors.bosch.de/en/ipmodules/can/can.asp
http://www.semiconductors.bosch.de/en/ipmodules/can/can.asp

136 W. Lawrenz et al.

3.2.1 Transmit Buffer

For offloading the CPU, a sufficiently large buffer memory is required, which in-
termediately stores the CAN messages ready for transmission until they are finally
transmitted by the CAN cell. For that purpose, most of the CAN cell implementa-
tions provide mailboxes into which the messages ready for transmission must be
written. If on top the transmission of messages is priority controlled by the control-
ler, a lot of software control is needed to know at what time actually a message
had been transmitted. IFI Advanced CAN does not make use of this method, but
applies a FIFO instead. The transmission of messages in the same sequence as the
CPU generates the messages is not only desired by many communication tasks but
also even much easier to handle. The number of messages which can be stored in
that FIFO can be controlled by a parameter between 30 and 254. Theoretically,
there is a case that due to a very busy CAN bus, a message never may be trans-
mitted because of always losing arbitration. A possible solution to that problem
would be to clear the FIFO and rewrite it with a different sequence. However, this
would imply that the user always had to know which messages are still waiting in
the queue. Even for this case, IFI Advanced CAN provides another way out. Any
message can be written into the FIFO in the normal way or a priority identification
may be assigned to the messages. Those messages are not written into the back of
the FIFO but into the front of the FIFO, while passing the queue. This architecture
avoids clearing the FIFO and memorizing the history by software. Therefore, three
functions are implemented:

• Removal of a message from the CAN cell, if it is not currently in the transmis-
sion process. That is to say, the bus is busy transmitting another message and
that message is waiting to be transmitted or that message had been interrupted
by an error frame and must be retransmitted. In both cases, that message can be
removed without corrupting any frames.

• The removed message must be written into the FIFO again as a not-yet-transmit-
ted message in order to guarantee that this message is not lost.

• The most important message is handed over to the CAN cell for transmission.

In order to make sure that this method is working smoothly even for more than one
message only, the FIFO buffer is switched into a last-in-first-out structure and iden-
tifications are assigned to all messages which are contained in the buffer. The iden-
tification enables the controller to recognize which messages still must be transmit-
ted. This concept enables the CPU to insert easily the messages into the buffer while
still maintaining control on the transmission. Each message ready for transmission
is written into the FIFO as a sequence of four addresses each 32 bits long containing
the following information:

• The addresses 2 and 3 reserve space for 8 data bytes.
• The address 1 contains the standard or the extended ID.
• The address 0 contains the data length code and the remote transmit bit as well

as an optional frame number. By this number, the controller knows whether

1373 Data Link Layer Implementation

transmission of this message must be controlled. In order to activate this function
any number greater than 0 must be inserted. After a successful transmission and
independently of any filter conditions, the controller writes this message into the
receive buffer together with this number and a 32-bit-long time stamp, if desired.
Writing into address 0 automatically enables transmission of the message.

Removing a message from a CAN cell can also be done without inserting another
message (Remove Pending Message). In case the node is only alone at the bus,
because the communication lines were disconnected, the node would continuously
retry to transmit the message. After reconnecting the node, the node would retrans-
mit the message again. A removal of the actual message together with a reset of the
transmit FIFO pointer enables once again the setup of the messages to be transmit-
ted. The number of message within the FIFO can also be read back.

3.2.2 Masks and Filters

In order to ease the evaluation of received CAN messages, this controller provides
256 pairs of masks and filters. There is an object number assigned to each of the
filter pairs, which is written into the receive buffer after a successful check. Because
programming is done in two steps, each of the masks and each of the filters pro-
vide an additional bit. When applied, both of the bits must be set, in order to avoid
the controller to use non-valid combinations for comparison. This makes sure that
masks and filters can be reprogrammed even though the system is running. As only
those messages are written into the receive buffer which have passed the filter con-
dition, a filter can be applied as such to pass all messages. Setting a 1 in bit position
x of the mask defines that the value of the filter bit and the received Identifier (ID)
bit in position x must match. A 0 indicates that the comparison is switched off and
the comparator always would indicate a match.

3.2.3 Receive Buffer

The receive buffer is FIFO organized. It can be parameterized to be 32–256 mes-
sages long. Each message is stored as a sequence of four messages.

• The address 0 contains the 8-bit-long frame number for messages which had
been transmitted by this controller itself, the object number as an identification
which of the filters had passed this message, the remote frame bit, as well as the
data length code.

• The address 1 contains the standard and extended ID.
• The addresses 2 and 3 contain the received data bytes.
• An additional address allows the receive time stamp of the message to be read.

138 W. Lawrenz et al.

In contrast to the transmit buffer, the FIFO pointer is only set to the next message
after confirmation of the read process by writing into a dedicated address. This
technique allows multiple read of each message as well as free choice of the se-
quence without the risk to lose data. Reading and clearing of the pointer is provided
in order to give any kind of control support to the applicant besides information on
interrupts.

3.2.4 Time Stamp

The FIFO implementation of transmit and receive buffers safeguards the chrono-
logical sequence of the messages. But at any time for any message the generation
of a time stamp can be activated or a time stamp be read back respectively, in case
the application requests more precise information. Not all systems operate under the
same constraints; therefore, the time base is supplied by an external signal, which
internally is fed into a 32-bit counter. The actual value of the counter is stored and
assigned to the message when the acknowledge bit is recognized. This counter can
be separately read and reset for synchronization purposes.

3.2.5 Conclusion

Depending on the application, either the standard component or the FPGA solution
may be better suited. Nevertheless, there are more and more arguments arguing for
an FPGA implementation. One of the pro-FPGA implementation arguments may be
the cancellation of standard components; another one is the continuously decreasing
costs of new FPGA product families. Furthermore, FPGAs provide an enormous
flexibility with respect to the number of required interfaces. If an application re-
quires more than one CAN node, just implement the number of CAN-IP cores as
needed. Furthermore, the increasing complexity of FPGAs offers new possibilities
up to the implementation of a complete system on one chip. In order to reduce de-
velopment time to a reasonable degree while complexity is rising, the application of
IP cores becomes a major issue.

The purchase of an IP core should not be based only on trust but on the option
to check the functionality before buying. Altera supports this option with its Open-
CorePlus concept. The desired IP core can be applied and tested without any restric-
tions as long as the FPGA is connected to the programming device. After cutting
this connection, the controller will still continue to operate for another hour until it
automatically stops. Another disadvantage of a standard component is that it only
provides exactly the functionality as specified in the data sheet. The flexibility of
the FPGA enables the designer to react on customer requests and to implement new
functions if required.

1393 Data Link Layer Implementation

3.3 Renesas RS-CAN

As part of its most recent generation of microcontroller devices, Renesas is in-
troducing a new kind of CAN controller function. In contrast to previous im-
plementations, the RS-CAN module supports shared memory among several
channels, flexible sizes of memory areas used, and consequent assignment of
FIFO structures.

The RS-CAN module contains a proprietary CAN transfer layer from Renesas
which fulfils all the requirements of the ISO 11898, SAE J1939, and CAN 2.0B
standards.

Besides its capabilities for the full support of “Full-CAN” or “Basic-CAN” ap-
plications, there are interesting new ways the RS-CAN module can be used. Several
FIFO structures for reception and transmission allow streamed data processing, and
by combining this with the AFL (acceptance filter list), a very efficient CAN con-
troller hardware for GW applications is created.

The RS-CAN naturally also supports the conventional method of message pro-
cessing via message boxes in both the receive and transmit directions. Here, RS-
CAN can handle queued messages (with prioritized sending) concurrently.

The shared memory for all associated CAN channels allows easy transfer of
messages and signals from one channel to another. The RS-CAN hardware has a
built-in mirroring engine, which can perform this job on the message level without
any CPU interaction.

If the shared memory is used consistently, it is possible to assign individual sizes
of FIFO memories and filtering lists to the different channels, in order to tailor the
amount of memory resources available to each channel. In this way, a channel that
needs more data and filter resources can take advantage of another channel needing
less of these resources (Fig. 3.5).

3.3.1 Properties of RS-CAN

One RS-CAN module supports up to eight CAN channels. The most popular im-
plementation includes three channels and its characteristics are described in detail
below (see Fig. 3.5).

• CAN protocol according to ISO 11898 (2.0B active), full functionality for exten-
ded identifiers and remote frames.

• Maximum baud rate: 1 Mbit/s. This baud rate can be achieved using a module
clock at 22 MHz and a transfer layer clock at 8 MHz, if the bit timing is set to
8 tq per bit. The transfer layer clock can be derived from a separate clock source,
by using a PLL bypass, for example.

• Identical hardware structure for all derivatives and channel configurations, which
allows easy porting of software. Compatible with AUTOSAR requirements.

140 W. Lawrenz et al.

• 192 receive objects, shared flexibly by user configuration between
− up to 48 commonly shared receive message buffers for mailbox reception
− up to eight commonly shared receive FIFO units, variable in depth up to 128

messages per FIFO
− up to three multi-purpose FIFO units per channel (nine in total), variable in

depth up to 128 messages per FIFO.
• 192 applicable acceptance filtering rules, including 29-bit identifier masking,

masking for remote and extended frames, data length control (DLC) filtering,
and GW hardware routing rules. Up to eight-way reception is possible, so that
a received message can be stored into up to eight different locations in parallel,
including an additional software identifier (Hardware Receive Handle (HRH)
number of AUTOSAR COM stack processing).

• 16 transmit message buffers per channel (in total 48 buffers), assigned flexibly
by user configuration to either
− one transmission queue per channel (three in total), using a variable subset of

the transmit message buffers
− up to three multi-purpose FIFO units per channel (nine in total), variable in

depth up to 128 messages per FIFO
− up to 16 standard (direct) transmit message buffers per channel (48 in total).

• 16 transmit history list (THL) entries per channel.
• Many interrupt sources, including:

Fig. 3.5  RS-CAN architecture

1413 Data Link Layer Implementation

− global error interrupt for DLC errors and lost messages
− reception interrupt for each receive FIFO unit (fill level of FIFO is adjustable

individually)
− reception interrupt for each multi-purpose FIFO unit (fill level of FIFO is

adjustable individually)
− transmit interrupt for each multi-purpose FIFO unit (adjustable either on

every message, or on the last sent message)
− transmit interrupt for each transmission queue (adjustable either on every

message, or on the last sent message)
− transmit interrupt for every channel, where the message buffer is not assigned

to a multi-purpose FIFO nor to a transmission queue
− transmit abortion interrupt for every channel
− THL interrupt for every channel (adjustable either on every new entry or on

fill level)
− error interrupt for every channel (adjustable on various and multiple error

sources).
• Time stamp of reception.
• Transmission delay timers.
• Individual activation and deactivation of channels.
• Diagnostic capability: automatic routing of received messages from selectable or

all channels to be output on another (diagnostic) channel.
• Diagnostic mirroring capability: automatic routing of received and sent mes-

sages from selectable or all channels to be output on another (diagnostic) chan-
nel.

• Self-test modes with internal and external (including transceiver) loop, to fulfil
ISO safety requirements.

• Listen-only mode for bus analysis purposes.

3.3.2 Initialization of RS-CAN

3.3.2.1 Operation Modes

The RS-CAN module is able to communicate with several CAN channels, where
each channel may have its individual configuration. For this reason, besides the
global operation mode, there are operation modes for each channel. After a hard
reset, the RS-CAN module is globally disabled, which means that all operation
modes are set to sleep mode. As a general rule, the operation modes of the channels
always follow the global operation mode in the direction of shutdown or stopping,
but the channels can only be moved into the activation direction if the global opera-
tion mode already has this state.

Sleep Mode After its entry upon a hard reset, the RS-CAN module automatically
initializes its local RAM, where messages, lists, queues, and configurations are sto-

142 W. Lawrenz et al.

red. Consequently, all settings are well defined to start up values. There is no need
to clear any memory with software. The completion of the initialization process is
indicated by a flag.

The sleep mode disables the channels’ clocking in order to save power effectively.

Reset Mode In this mode, the configuration can be changed. Global reconfiguration
covers the definition of the memory usage and global behaviour, such as setting the
AFL.

Within the channels, the reset mode allows users to set communication parameters
such as bit timing.

Operation Mode A channel can be put into operation mode if this mode has already
been set globally. At this point, the CAN channel starts its communication on the
CAN bus.

3.3.2.2 Test Modes

Within the operation mode of a channel, several test modes are available besides
regular operation.

Listen-Only Mode All transmit functionality is disabled. This is also effective for
the bus acknowledgement and error/overload reporting on the CAN bus by the
transfer layer. The CAN channel behaves as a listener on the CAN bus, but it cannot
be seen by other bus participants. It is possible to use this mode to detect a valid
baud rate among a known selection.

Self-Test Modes RS-CAN distinguishes between external and internal loops within
the self-test modes. In general, the self-test modes are used to verify the functiona-
lity and safety of the RS-CAN with software.

The internal loop modes allow internal communication to enable internal trans-
mitted messages to be received either in the same channel (using emulated bus
acknowledgement) or by other internal channels. In internal loop mode, the CAN
transceiver is not included, and the test messages are invisible for the other CAN
bus participants.

In external loop mode, the CAN transceiver is also included in the test loop.

In all self-test modes, the transfer layer is fully included in the test path.

3.3.3 Transmission of Messages

RS-CAN includes four methods of sending messages: the classical use of message
buffers, sending from a transmit queue, streamed sending through a FIFO, and auto-

1433 Data Link Layer Implementation

mated routing by hardware (diagnostic and mirroring function). There are 16 trans-
mit message buffers available for each channel, and these are used and shared for all
these methods of sending messages. By means of sharing, all four sending methods
can be enabled at the same time for a channel. Thus, by sharing a channel between
several software applications, each application can use its favourite method. The
priority of transmission is evaluated on message-buffer level; this means that all
four methods of sending are in competition with each other according to the priority
rules, but every method may have its internal rules as well.

Figure 3.6 shows an example of a valid usage of the message buffers and how
they can be shared among the different sending methods.

3.3.3.1 Sending from Message Buffers

Every message buffer that has not been assigned to a transmit (TX) queue, a FIFO
or to automated GW routing can be used in this way. When sending from a message
buffer, this single message competes in priority with the remaining 15 message buf-
fers. The message buffer stores all the information required to generate a valid and
complete frame on the CAN bus.

In addition, there is a flag to enable the generation of an entry in the THL after
successful transmission, and there is an optional pointer value (usable as AUTOSAR
HTH), which will appear in the THL, too. This allows tracing and defined process-
ing of transmit objects.

3.3.3.2 Sending from Transmit Queues

Several message buffers can be grouped to form a transmit queue, always start-
ing with the uppermost buffer. Within this type of transmit queue, software simply
writes all its messages into one single message buffer (the uppermost one), and the

Fig. 3.6  Transmission of messages

144 W. Lawrenz et al.

RS-CAN hardware performs the sending according to priority rules. This method
has the advantage that the software does not need to check for a free message buffer.
RS-CAN indicates the fill state of the transmit queue.

3.3.3.3 Sending from Multi-Purpose FIFO

A multi-purpose FIFO in transmit mode (TX) has its own memory area to queue
up messages. Again, software writes into a single location to feed in the messages,
and the RS-CAN hardware takes care of sending and fill-level indication. The dif-
ference between this and the transmit queue is that within a FIFO, the sequence of
messages will be kept, ignoring any priority rule (message identifier). One transmit
message buffer must be assigned to a FIFO.

3.3.3.4 Sending from GW FIFO

If a multi-purpose FIFO is operated in GW mode, it can be assigned to be a recep-
tion target for other CAN channels, so that selected messages from them can be
routed to it. In this configuration, the RS-CAN hardware performs all the tasks for
this message routing without any necessary software interaction. Again, one trans-
mit message buffer must be assigned to every multi-purpose FIFO.

The key prerequisites for smooth operation of the GW are that incoming mes-
sages are well selected from the channels by using the appropriate access filtering
list (AFL) settings, and that the bus transport capacity of the output CAN channel
is sufficient.

There is only one task that remains for the software, and this is the supervision of
the FIFO overflow. If the configuration of the CAN channels allows (at least tempo-
rarily) more data to be routed through the hardware GW than the output channel can
transmit, the FIFO may run into overflow, so that messages are lost.

3.3.3.5 Transmit History List

Every sent message can be recorded in the THL. The THL represents the confirma-
tion for the software that a message has been sent and acknowledged by another
CAN bus participant. The THL can generate interrupts on new entries or on fill level.

3.3.3.6 Transmission Intervals

When using the FIFO methods for sending messages, the minimum interval between
two subsequently sent messages can be defined by an internal timer in RS-CAN.
This functionality is required to fulfil Transport Protocol requirements of ISO
15765-2 and to avoid a full bus load caused by one node.

1453 Data Link Layer Implementation

3.3.4 Reception of Messages

The reception of messages in RS-CAN is possible using several methods, but every
method begins in the filtering section of the multi-reception handler. Here, the AFL
determines where a received message will go. For each received message, the AFL
is parsed for a match. If a match is found, the associated AFL entry contains up to
eight storage targets, which can be loaded in parallel with the message. Valid stor-
age targets are reception FIFO units, multi-purpose FIFO units, and a selectable
receive message buffer.

An AFL entry is shown in Fig. 3.7.
The AFL entry stores identifier values (ID) for the standard and extended identi-

fier frame formats of CAN, and associated mask flags, where the relevance of each
identifier bit (including remote flag bit RTR and extended flag IDE) can be masked.
Masked bits will be set as “don’t care” for the filtering; this works like a so-called
wildcard.

Reference DLC values can be entered for DLC checking. If a received message
matches the ID, but does not have enough data bytes as specified in the DLC speci-
fication of the AFL entry, it will not pass the filter.

Furthermore, the AFL entry contains several pointers:

• A flat RX direction pointer with its associated enable flag (FE). If FE is set, the
message will be stored in the receive message buffer with the number of the
pointer value.

• One or several FIFO direction pointers. Here, each bit represents one of the avai-
lable receive or multi-purpose FIFO units where the message can be stored.

• An additional pointer (PTR) value which is a freely configurable value. This
value will be attached as a property with the message, so that an identification of
the message is possible. This functionality corresponds with the HRH values of
AUTOSAR communication stacks.

3.3.4.1 Reception into a Receive Message Buffer

The receive message buffer stores the whole message including the PTR value and
a reception time stamp. Old data within the buffer are overwritten.

The method of storing a message in a receive message buffer is designed to be
used in conjunction with polled message reception, i.e. for non-interruptive infor-
mation, which is read and checked by software at certain intervals.

3.3.4.2 Reception into a FIFO Unit

This kind of reception is used for streamed and interruptive data processing. Sort-
ing into different FIFO units makes it possible to distinguish between higher and
lower priority messages. Every FIFO unit can be configured when its interrupt is

146 W. Lawrenz et al.

generated, depending on its fill level, even on every reception. Overflow of a FIFO
is indicated, too.

Like the message buffers, a FIFO entry also contains the PTR value and the re-
ception time stamp of the received message.

When receiving into a multi-purpose FIFO unit, hardware GW operations are
possible. If enabled within a multi-purpose FIFO, its received messages can be
transmitted by another channel.

• In diagnostic mode, a multi-purpose FIFO can collect received messages from
one or several channels and send them to another channel.

Fig. 3.7  Access filtering list entry

1473 Data Link Layer Implementation

• In loop back and mirroring mode, a multi-purpose FIFO collects received and
transmitted messages from one (loop back) or several (mirror) channels, and
sends them to another channel.

• At the same time, while performing the hardware GW functions, the messages
can be copied into a standard receive message buffer, so that software can moni-
tor all messages processed by the GW.

3.3.5 Summary

The RS-CAN module handles the increased complexity of current requirements for
CAN controllers. Streamed data processing support for GWs with high efficiency is
combined with flexibility in usage. Greatly enhanced filtering methods and shared
resources for all channels allow RS-CAN to be adapted to most application needs.
At the same time, the new structure of the RS-CAN hardware is smaller than those
of its predecessors.

3.4 Infineon’s CAN Modules of the XC16x-
and XC2000/XE16x family

In this section, a short introduction to the two actual CAN modules of Infineon will
be given. Both standards comply to “CAN 2.0B active”. At the end of the section,
an example how to do a GW application with an XC2000/XE16x family device (a
16/32-bit-microcontroller family with up to CAN nodes) is shown.

3.4.1 TwinCAN and MultiCAN from Infineon

The CAN modules of the current Infineon microcontroller families from Infineon
are defined in a scalable approach. The CAN modules have a message control block
and separated nodes, building one module. There it is possible to append the mes-
sage objects to the node, wherever they are needed. It is possible to build FIFO
message buffers as well as an automatic rerouting of messages, the so-called GW
function. The GW does not cost any CPU performance.

The implementation of the TwinCAN module can be found on the XC16x mi-
crocontroller family. The MultiCAN module is available on the XC2000 family as
well as on the 32-bit TriCore controllers and last but not least on the 8051-based
family, the XC8xx microcontrollers. Therefore, a porting of CAN code among the
families is given.

148 W. Lawrenz et al.

3.4.2 TwinCAN

The TwinCAN module can handle standard as well as extended identifiers. It is able
to receive and transmit all identifier types.

• All 32 message objects:
− All message objects can be assigned to one of the two CAN nodes.
− All message objects can be used to receive or transmit.
− All message objects can be part of a FIFO structure with a size of power of

two.
− All message objects do have a local acceptance mask.
− All message objects do support frame counters for bus analysis (for example,

statistics).
− All message objects can be part of a GW.
− All message objects can be used for remote monitoring in the GW use case.

• Up to eight interrupt nodes can be assigned to interrupt events.
• All nodes support the analyser function (listen mode).

First, the structure of the module is shown. The TwinCAN module is having a block
of 32 message objects and two independent CAN nodes. Additional control logic
makes these three blocks to act as one module. Figure 3.8 shows the basic block
diagram of the TwinCAN module.

We start with a brief description of the message object function.

3.4.2.1 Message Objects

Each message object has a local acceptance mask. Therefore, it is possible to re-
ceive a group of identifiers. The acceptance mask is ANDed to the identifier. A 0 on
a bit position means “don’t care” for the TwinCAN module. Message objects can be
part of a FIFO, a GW or one message object can build also a so-called Shared GW.

Fig. 3.8  Basic block diagram
of the TwinCAN module

1493 Data Link Layer Implementation

It is also possible to combine the FIFO and the GW feature. Each message object
can trigger a receive or a transmit interrupt.

Each message object can be part of a FIFO, which is described here.

3.4.2.2 FIFO

With the TwinCAN module, the FIFO can consist of 2, 4, 8, 16, or 32 message
objects. In a system, where specific messages or message groups are coming in, in
a high frequency, the FIFO gives the possibility to buffer these messages until the
CPU is ready to read out these messages. The probability of overwriting messages
can be reduced. During reception, the CPU is not used, until the interrupt is trig-
gered, at a predefined level. The FIFO is also available for transmission, so that the
CPU can write all messages to be sent within one block and the TwinCAN module
will take care of the transmission to the bus.

In addition to the FIFO, a rerouting function is available, the so-called GW mode
(Fig. 3.9).

3.4.2.3 Automatic GW

The GW function of the TwinCAN module allows interconnecting two different
bus systems. These two bus systems are allowed to run on different baud rates. No

Fig. 3.9  FIFO block diagram

150 W. Lawrenz et al.

CPU load will be generated. A message received on bus A will be copied to bus B
and depending on the settings, the transmission request can be set automatically;
the amount of data bytes can be reduced and/or the identifier can be changed au-
tomatically. This feature is quite useful also in combination with the GW feature.
The FIFO/GW combination allows to reroute messages automatically between two
buses running at different speeds, without overwriting message objects, or to buffer
their contents via software.

Figure 3.10 shows an example of the speed; information can be automatically
forwarded from the Powertrain module to the door module, to lock the door at
speeds greater than 30 km/h automatically.

In the following example, a message block of four messages having the same
identifier shall be routed to a bus running at a lower baud rate.

3.4.2.4 FIFO/GW Combination

To route the messages from bus A to bus B (Fig. 3.11) in an optimal way, a message
object assigned to bus A has to be configured a source GW object and to point to a
four-state FIFO, assigned to bus B. This combination allows rerouting the messages
automatically and it does not cost any CPU performance after initialization. The
received messages are copied to the FIFO and the message will be sent according to
CAN prioritization rules. Software activities are only needed, in case the data bytes
are changed. No software interaction is needed, in case the data length core or the
identifier is changed. Be aware that in case the data length code is increased, the
new data byte will include a 0 × 0, if not changed by software.

Figure 3.10  Example: CAN gateway for automotive

1513 Data Link Layer Implementation

3.4.2.5 Shared-GW-Modus

In case of sporadic messages, which shall be rerouted to the other bus, it is possible
to configure a single message object to be a GW. This is the so-called Shared GW
Mode. If a message is received, the message object switches to transmission on
the second CAN node. The message is sent according to CAN prioritization rules.
Depending on the settings, it switches back automatically. This feature only exists
on TwinCAN but not on its successor, the MultiCAN module.

Another feature of the TwinCAN module is the so-called analyser mode.

3.4.2.6 Analyser Mode

Starting with TwinCAN, a so-called analyser mode has been introduced to Infineon-
microcontrollers. It is comparable to a listen-only mode. This feature gives the pos-
sibility to switch a CAN node silent. The CAN node will listen to bus and save the
understood messages with the corresponding identifiers into the message objects,
but is not taking part actively on the bus. The node will not send any acknowledge-
ment or any error signalling to the bus. If a baud rate detection is implemented, this
mode can be used to switch the node silent during the detection phase and not to
spam the bus with error messages. If the CAN module becomes active, the analyser
feature needs to be disabled, but not the complete node needs to be reconfigured.

With this feature, it is also possible to have both nodes on the very same bus,
but only one node is active. With the help of the reception on the second node, a
software comparison can be done. This is useful in case of safety application (higher

Fig. 3.11  FIFO/gateway running at different speeds

152 W. Lawrenz et al.

levels) to guarantee the correct reception. The analyser feature can also be applied to
disconnect a failing node which permanently disturbs communication from the bus
in order to enable the remaining still functional system to continue communication.

3.4.2.7 The Interrupt System

TwinCAN has 72 interrupt sources; 32 interrupt sources are for reception and another
32 for transmission, as the very same message object can trigger a receive as well
as a transmit interrupt. (In case of a remote frame) For each CAN node, four status
and error interrupts are existing. The interrupt generation of the TwinCAN module
allows to have up to eight independent interrupt routines as eight interrupt nodes can
be assigned. Therefore, it is quite easy to have a well-defined prioritization among the
events. Thus, it is possible to assign a Peripheral Event Controller (PEC) or Direct
Memory Access (DMA) to a special message object, without having a complete inter-
rupt routine and having a fast copy process from the TwinCAN to the needed memories.

The successor of the TwinCAN module is the MultiCAN module. The Multi-
CAN module can be found on the XC2000/XE16x family, the XC8xx family, and
on all devices of the Audo Next Generation, Audo Future, and Audo MAX family.
By having the same CAN module over all families, the software compatibility of
over 8-, 16-, and 32-bit microcontrollers is given to a high extent.

3.4.3 MultiCAN

Like for the TwinCAN module, first the core functions of the module will be ex-
plained briefly before discussing the most important point in very detail.

The MultiCAN module offers:

• CAN functionality, which is V2.0B active.
• A CAN bus analyser mode and baud rate detection mechanisms for each CAN

node.
• Up to 256 (dependent on the device) message objects that

− can be assigned to the CAN nodes
− can be used for transmission or reception
− offer the remote monitoring mode in case of GW
− have “Frame Counter Monitoring”.

• Acceptance filtering:
− Each message has its own local mask, which allows to receive a group of

messages.
− Each message object is able to receive and transmit messages in standard or

extended format, and by masking also both types can be received via the very
same message object.

− It is possible to have different prioritization rules on the internal arbiter, run-
ning on the message objects.

1533 Data Link Layer Implementation

− Each message object can be part of a FIFO of any size. The only limitation
is the absolute amount of message objects. The message objects are part of
a double-chained list and the FIFO is done in the very same structure. The
double-chained lists can be changed during runtime.

− Each message object can be part of a GW, rerouting messages from one CAN
bus to another.

− The list/a part of list can be rerouted to another CAN node at any time.
− Up to 16 interrupt nodes can be assigned to interrupt sources within the

module.

The MultiCAN module can include up to 256 message objects and eight CAN
nodes. Depending on the implementation, the amount of CAN nodes and mes-
sage objects can be different from one controller to another. For example, a
XC878 included two CAN nodes and 32 message objects, a TC1167/TC1767 has
two CAN nodes and 64 message objects, the TC1797 has four CAN nodes and
128 message objects and most family members of the XC2000/XE166 family
are available with six CAN nodes and 256 message objects. All members of the
Audo MAX family do include the MultiCAN module. Like the TwinCAN mod-
ule, the module is split between node logic and message objects. Node logic and
the message objects are combined and made on module by the control logic. The
message objects can be freely assigned to any of the nodes. However, they are
not part of a static structure, which is controlling the message objects, but they
are part of a list structure. Therefore, it is possible to reassign message objects
during runtime, but also to have FIFOs of any size. Figure 3.12 shows a block
diagram of the module.

Like on TwinCAN, each message object has a local mask, giving the possibil-
ity to receive a group of message identifiers. The flexibility of the FIFO has been
increased by using the list structure within the module. Therefore, all message ob-
jects (against TwinCAN being limited) can be part of a FIFO, GW, or FIFO/GW
combination. The message objects can be scattered over the RAM and do not need
to be behind each other.

Figure 3.13 shows an example, with a FIFO consisting of message objects
5, 16, and number 3. Message object 5 is the source object. The source object
does not need to be part of the FIFO. Message object 3 is the end of the list and,
therefore, pointing to itself. The current position within the FIFO is shown by the
pointer CUR(rent). The terminology in Fig. 3.13 is identical to that in the User’s
Manual.

With the help of the list structure, a GW can be built. In contrast to TwinCAN,
the number of the message object is no longer relevant to build such a GW.

As on TwinCAN, the FIFO and the GW feature may be combined to a GW/FIFO
feature. By using the list structure, it is possible to change the FIFO size during the
runtime to react flexibly on different busloads. For example, in case that a diagnosis
is activated, a different set of message identifiers becomes relevant and the software
is able to react to this change.

154 W. Lawrenz et al.

3.4.3.1 Advantages of the MultiCAN

Besides the already explained list structure, the MultiCAN module is also having an
analyser mode. This allows, for example, auto-baud detection or supervision of in-
coming traffic for safety applications with a second node. A module internal counter
also allows calculating the amount of time quanta within one bit. By having such a
function, the automatic baud rate detection becomes easier.

Fig. 3.13  List structure of the MultiCAN

Fig. 3.12  Block diagram of the MultiCAN module

1553 Data Link Layer Implementation

On MultiCAN, a feature has been introduced to measure the actual transceiver
delay and to check if the bus termination is properly done. By being able to measure
the time between a falling edge being transmitted by the CAN node, until this fall-
ing edge is received, the actual transceiver delay can be measured.

3.4.3.2 MultiCAN Supports CAN-Debugging

For safety critical applications, MultiCAN is giving some possibilities to support
fault tolerant implementations. An example is shown within this section.

If two CAN nodes are connected to the very same bus, we do have the possibility
as shown in Fig. 3.14.

Two CAN nodes, via two CAN transceivers, are connected to the very same
bus (Fig. 3.14, left). The advantage is at the same time the disadvantage of the
concept. Two transceivers are used, which means higher cost. As one mod-
ule shall only listen to bus, the transmit line does not need to be connected. The
comparison between the messages is done via software. Due to the fact that two
transceivers are used, also transceiver errors can be found, as two transceivers
are used.

In the right part of Fig. 3.14, a similar approach is shown, having only one CAN
transceiver. The advantage is on the cost side, having only one transceiver. The dis-
advantage remains that here transceiver errors cannot be found.

In case of having two separate modules, small disturbances can be seen on both
nodes at the very same time; therefore, such an issue remains undetected. The Mul-
tiCAN module helps to overcome the absolute synchronism.

Fig. 3.14  System with two redundant CAN nodes connected with two transceivers ( left) as well
as system with only one transceiver ( right)

156 W. Lawrenz et al.

3.4.3.3 MultiCAN in Analyser Mode

As already described, the CAN node is only listening to the bus, if it is switched to
the analyser mode. It is not actively participating in bus traffic. The message objects
are assigned to the nodes. If the application needs a higher safety level and, there-
fore, has to test if messages are properly received, two nodes have to be on the same
bus, receiving the same messages, and the application has to compare the received
information. As the nodes are transferring the information not exactly at the very
same time, short time disturbances can be detected. Therefore, an erratic behav-
iour between the protocol machine and the nodes can be detected. The amount of
unknown errors, relevant for high-level safety applications can be decreased (only
necessary in case of Safety Integrity Level 3, SIL3, or Automotive Safety Integ-
rity Level C, ASIL C, and higher). This concept can be implemented with one or
two transceivers, depending on the safety level. A possible solution is shown in
Fig. 3.15; the grey line shows the solution with two transceivers. Node A is taking
part in the bus traffic, whereas node B is in the analyser mode. The messages are
saved with a small offset; therefore, short time disturbances become detectable. If
further redundancy is needed, both CAN nodes can be connected, so that in case of a
failure on node A, node B can take over and signal the situation to the network and,
in case required, take over the role of the active node. These concepts are especially
interesting for safety applications, for example, with the TC1387 designed for ASIL
C and SIL 3 applications.

In addition, the MultiCAN can be used to detect errors within bus termination.
The time between the first dominant edge and the sample point can be measured
(Fig. 3.16) with the frame counter, so bus extensions are made easier.

The analyser mode and the measurement of bus termination help to detect faulty
transceiver circuitries on a bus system.

Fig. 3.15  MultiCAN in
analyser mode

1573 Data Link Layer Implementation

3.4.3.4 MultiCAN: Flexible Interrupts

MultiCAN has up to 16 interrupt nodes, called Service Request Nodes (SRN),
which can be assigned to interrupt events on the MultiCAN module. Each message
object can cause an interrupt on receive, transmit, or both. The frame counter can be
used to get time and message information. It is also having an overflow interrupt,
to enable a better monitoring of the CAN traffic. Therefore, the initialization is as-
signing interrupt events (Fig. 3.17) to interrupt nodes. All used interrupt sources are
mapped to an interrupt node (an interrupt node can handle more than one interrupt
source). This is done via bit-field setting. It is also possible to keep some interrupt
nodes on polling, but to handle others within an interrupt routine.

By having this variety of interrupt sources and interrupt nodes, it is possible to
have, for example, status information on a lower interrupt level or to poll these, but,
for example, error situations like a bus-off (Alert, ALRT) can be handled on higher
priority levels. Therefore, an appropriate reaction to an event can be assigned.

3.4.4 The XC2000 Family in GW Applications—An Application
Example Using MultiCAN

Microcontrollers of the XC2000/XE16x family do have the “C166SV2 Core” with
MAC (multiplier-accumulator, set of digital signal processor (DSP) functions) unit.
The very high-end one even includes a cache. They are the logical progression of
the previous C16x and XC16x family. The CPU and the peripherals can run up to
128 MHz. The family members do have different MultiCAN modules, with differ-
ent amount of nodes and message objects. Most of the family members, besides
the very low-end one, do have six nodes and 256 message objects. In addition,
depending on the device, up to ten Local Interconnect Network (LIN) buses can

Fig. 3.16  Tx to Rx measurement

158 W. Lawrenz et al.

be handled, in the very high-end one of the XC2000 family, in which a FlexRay
module is integrated.

In this example, the CAN module is having six nodes and 256 message objects.
The XC2000 family is a scalable microcontroller family, scalable as the usage of a
different package will not cause a change in software.

The following example also works with the TriCore family and, in a restricted
way, also with the XC8xx family.

3.4.4.1 GW Between Two CAN Bus Systems

In a GW application, different ways of message rerouting are needed. On the one
hand, there are messages, which simply need to be transferred to another bus; these
messages can be rerouted by the automatic GW feature. The GW mode is config-
ured to copy the complete message and to transfer it directly afterwards. Here no in-
teraction with software is necessary; all actions can be handled within the hardware.
Other messages have to be changed in some of the bytes. In this case, the GW mode
needs to be configured in such a way that the transfer to the destination message
object takes place, but there is no automatic sending, as the software still needs to do
the change. Nonetheless, a software transfer is not necessary. The transfer can be,
for example, signalled by an interrupt. The corresponding bytes are changed, a new
message transmission is requested, and the message object will take part in the in-
ternal arbitration process. Other messages need to be sent with a different identifier;
if it is always the very same, this change has to be done in the hardware, by using

Fig. 3.17  Assignment of interrupts

1593 Data Link Layer Implementation

the feature appropriately. In case the identifier needs to be changed depending on
the contents of the message, a software interaction is necessary. The basic actions
are comparable to the change of data bytes.

In Fig. 3.18, a GW consisting of two message objects is shown. Message object
5 is defined as the source object and number 9 as the destination object by the usage
of CUR. The different GW transfer features can be used as described above; they
can be found within the register MOFCRn (here n = 5).

3.4.4.2 Gateway Between CAN- and LIN-Bus

A LIN-compliant node on the XC2000 is implemented on the USIC (Universal
Serial Interface Controller) module. The USIC includes a module internal counter,
which eases the baud rate measurement during BREAK signal. The module in-
cludes a FIFO structure, which allows in combination with the collision detection
feature, to have only a single interrupt for the header and one for the frame response.
For frames copied from one bus system (here CAN) to another or signal groups, it
also eases the usage of writing to the module, as the information can be written at
one time. The application does not need to reserve the occupied message objects for
longer times or to buffer the messages within RAM in this case, as they can directly
be written to the FIFO of the USIC. A CAN message can be copied in only for
transactions from the CAN module to the USIC and then be sent via LIN protocol.
The received amount of interrupts can be reduced as the FIFO structure allows not
to receive the information byte-wise. The speed difference between CAN bus and
LIN is normally quite high in an automotive environment, as the LIN bus has a
maximum baud rate of shortly below 20 kBaud. Therefore, buffering LIN messages
has a high impact on the application.

3.4.4.3 Gateway from CAN to FlexRay

Depending on the XC2000 family device, it is possible either to use a device internal
FlexRay module or to use the CIC-310 as extension device, to enable FlexRay com-
munication. The different baud rates need some buffering, especially transferring
data from the time-driven high-speed FlexRay bus to the (compared to FlexRay)
low-speed event-driven CAN bus. Here the CAN module internal FIFO structures
ease handling the traffic coming from the FlexRay module and have to be sent via
CAN bus.

Fig. 3.18  Gateway—example

160 W. Lawrenz et al.

3.4.4.4 Outlook

The MultiCAN module includes several useful extensions against the TwinCAN
module. The list structure grants a high degree of flexibility to user and more free-
dom for CAN applications. The double-chained list-structure enables a highly flex-
ible FIFO structure, as the FIFO elements can be collected among the CAN module.
Therefore, the reception on faster CAN bus can be buffered in-between for the trans-
mission on a low-speed bus. The USIC on the XC2000 family rounds out this flexi-
bility to the LIN bus. The external bus controller (EBC) allows attaching an external
FlexRay device, if this is not included internally. Therefore, the currently existing
serial bus systems widely used in automotive environment are available on the de-
vice. The FIFOs within CAN and USIC, which is used for LIN, ease the implemen-
tations and reduce the overall CPU load for transferring data from one bus system
to another. However, these features become useful not only for automotive applica-
tions but also for industrial applications. The MultiCAN is used on several members
of the industrial microcontroller families, for example, the TC11xx, XE16x, and
XC8xx. These devices are optimized for automation and industrial drivers.

3.5 Xilinx CAN-Controller LogiCORE™ IP

The features of Xilinx CAN Controller are that it:

• Conforms to ISO 11898-1, CAN 2.0A, and CAN 2.0B standards
• Supports Industrial (I) and Extended Temperature Range (Q)
• Supports standard frames (11-bit identifier) as well as extended frames (29-bit

identifier)
• Supports bit rates up to 1 Mbps
• Transmits message FIFO with a user-configurable depth of up to 64 messages
• Prioritized message transmission through High-Priority Transmit Buffer
• Automatic re-transmission on errors or lost arbitration
• Receive message FIFO with a user-configurable depth of up to 64 messages
• Acceptance filtering by (a user-configurable number of) up to four acceptance

filters
• Sleep mode with automatic wakeup
• Loop back mode for diagnostic applications
• Maskable error and status interrupts
• Has readable error counters (Fig. 3.19).

3.5.1 User Interface

The external interface of the CAN controller is a subset of the Xilinx Intellectual
Property Inter-connect (IPIC) signalling. This enables the CAN controller to be

1613 Data Link Layer Implementation

interfaced to any microcontroller in a stand-alone mode. When coupled with an
on-chip peripheral bus/processor local bus (OPB/PLB) Intellectual Property Inter-
face (IPIF), which attaches to the core through the IPIC interface, the core can be
connected to the MicroBlaze. This allows the core to be used in an Embedded De-
velopment Kit (EDK) environment. Table 3.1 describes the interface signalling of
the CAN controller.

3.5.1.1 Interface Description

The CAN controller supports the following two modes of transfers

• Single read
• Single write

3.5.1.2 Single Read Transaction

For a read operation, when the transfer is enabled (Bus2IP_CS = ‘1’ and Bus2IP_
RNW = ‘1’), the core samples the address on the Bus2IP_Addr pins and returns
the corresponding read data on the IP2Bus_Data pins. Read data are returned on a
successive clock rising edge, after a wait time. IP2Bus_Ack is asserted when the
data are ready on the IP2Bus_Data pins. For a read operation, it should be noted
that address is assumed to be valid on the Bus2IP_Addr pins when Bus2IP_CS is
asserted and the core samples the address on the next rising edge of SYS_CLK.

Fig. 3.19  CAN controller block diagram

162 W. Lawrenz et al.

IP2Bus_Ack is asserted for all read transactions, irrespective of whether the
transaction is valid or not. Successive read operations require that the Bus2IP_CS
be de-asserted and reasserted. The timing diagram for a single read transaction is
shown in Fig. 3.20.

It should be noted that

• read transactions from address locations defined as reserved return all ‘0’s on the
IP2Bus_Data bus,

• read transactions from write-only address locations return all ‘0’s on the IP2Bus_
Data bus,

• read transactions from the AFR register when C_CAN_NUM_ACF = 0 return all
‘0’s on the IP2Bus_Data bus,

• read transactions on the Acceptance Filter ID Register (AFIR) and Acceptance
Filter Mask Register (AFMR) address locations when C_CAN_NUM_ACF = 0
return all ‘0’s on the IP2Bus_Data bus,

• read transactions on any or all of the AFIR and AFMR address locations when
C_CAN_NUM_ACF > 0 return the data that were written to these locations, and

• read transactions on an empty RX FIFO return invalid data.

IPIC name I/O Default value Description
1 Bus2IP_Reset Input 0 Active high reset
2 Bus2IP_Data(0:31) Input X”00000000” Write Data bus
3 Bus2IP_Addr(0:7) Input “00000000” Address Bus
4 Bus2IP_RNW Input 1 Read or Write signalling

‘1’ for a Read Trans-
action ‘0’ for a Write
Transaction

5 Bus2IP_CS Input 0 Active high CS
6 IP2Bus_Data(0:31) Output X”00000000” Read Data bus
7 IP2Bus_Ack Output 0 R/W data

acknowledgement
8 IP2Bus_IntrEvent Output 0 Active high interrupt line.

See Note 1.
9 IP2Bus_Error Output 0 Active high R/W error

signal. Reserved for
future use.

10 CAN_PHY_TX Output 1 CAN bus transmit signal
to PHY

11 CAN_PHY_RX Input 1 CAN bus receive signal
from PHY

12 CAN_CLK Input 24 MHz oscillator clock
input

13 SYS_CLK Input Input interface clock
Note 1: The Interrupt line is an edge-sensitive interrupt. Interrupts are indicated via the transition
of the interrupt line from logic ‘0’ to logic ‘1’

Table 3.1  External I/Os

1633 Data Link Layer Implementation

3.5.1.3 Single Write Transaction

For a write operation, when the transfer is enabled (Bus2IP_CS = ‘1’ and Bus2IP_
RNW = ‘0’), the core samples both address and data from the Bus2IP_Addr and
Bus2IP_Data pins, respectively, and IP2Bus_Ack is asserted on a successive clock ris-
ing edge. For a write operation, it should be noted that address on the Bus2IP_Addr bus
and data and Bus2IP_Data bus are assumed to be valid when Bus2IP_CS is asserted.

IP2Bus_Ack is asserted for all write transactions, irrespective of whether the
transaction is valid or not. Successive write operations require that Bus2IP_CS
be de-asserted and reasserted. The timing diagram for a single write transaction is
shown in Fig. 3.21.

3.5.2 Object Layer

3.5.2.1 Transmit and Receive Messages

Separate storage buffers exist for transmit (TX FIFO) and receive (RX FIFO) mes-
sages through a FIFO structure. The depth of each buffer is individually configu-
rable up to a maximum of 64 messages.

3.5.2.2 TX High-Priority Buffer

The Transfer High-Priority Buffer (TX HPB) provides storage for one transmit
message. Messages written on this buffer have maximum transmit priority. They
are queued for transmission immediately after the current transmission is complete,
pre-empting any message in the TX FIFO.

Fig. 3.20  Single read transaction

164 W. Lawrenz et al.

3.5.2.3 Acceptance Filters

Acceptance filters sort incoming messages with the user-defined acceptance mask
and ID registers to determine whether to store messages in the RX FIFO, or to
acknowledge and discard them. The number of acceptance filters can be config-
ured from 0 to 4. Messages passed through acceptance filters are stored in the RX
FIFO.

3.5.2.4 Configuration Registers

This module provides access to the registers through the external microcontroller
interface.

Table 3.2 defines the CAN controller configuration registers. Each of these reg-
isters is 32-bit wide and is represented in big endian format. Any read operations to
reserved bits or bits that are not used return ‘0’. A ‘0’ should be written to reserved
bits and bit fields not used. Writes to reserved locations are ignored.

3.5.3 Transfer Layer

3.5.3.1 Bit Timing Module

The primary functions of the Bit Timing Logic (BTL) module include:

• Synchronizing the CAN controller to CAN traffic on the bus
• Sampling the bus and extracting the data stream from the bus during reception
• Inserting the transmit bit stream onto the bus during transmission
• Generating a sampling clock for the Bit Stream Processor (BSP) module state

machine

Fig. 3.21  Single write transaction

1653 Data Link Layer Implementation

Register Name Address Access
Control Registers
Software Reset Register (SRR) 0 × 000 Read/Write
Mode Select Register (MSR) 0 × 004 Read/Write
Transfer Layer Configuration Registers
Baud Rate Presale Register (BRPR) 0 × 008 Read/Write
Bit Timing Register (BTR) 0 × 00C Read/Write
Error Indication Registers
Error Counter Register (ECR) 0 × 010 Read
Error Status Register (ESR) 0 × 014 Read/Write to Clear
CAN Status Registers
Status Register (SR) 0 × 018 Read
Interrupt Registers
Interrupt Status Register (ISR) 0 × 01C Read
Interrupt Enable Register (IER) 0 × 020 Read/Write
Interrupt Clear Register (ICR) 0 × 024 Write
Reserved
Reserved Locations 0 × 028 to 0 × 02C Reads Return 0/Write has

no effect
Messages
Transmit Message FIFO (TX FIFO)
 ID 0 × 030 Write
 DLC 0 × 034 Write
 Data Word 1 0 × 038 Write
 Data Word 2 0 × 03C Write
Transmit High-Priority Buffer (TX HPB)
 ID 0 × 040 Write
 DLC 0 × 044 Write
 Data Word 1 0 × 048 Write
 Data Word 2 0 × 04C Write
Receive Message FIFO (RX FIFO)
 ID 0 × 050 Read
 DLC 0 × 054 Read
 Data Word 1 0 × 058 Read
 Data Word 2 0 × 05C Read
Acceptance Filtering
Acceptance Filter Register (AFR) 0 × 060 Read/Write
Acceptance Filter Mask Register 1 (AFMR1) 0 × 064 Read/Write
Acceptance Filter ID Register 1 (AFIR1) 0 × 068 Read/Write
Acceptance Filter Mask Register 2(AFMR2) 0 × 06C Read/Write
Acceptance Filter ID Register 2 (AFIR2) 0 × 070 Read/Write
Acceptance Filter Mask Register 3(AFMR3) 0 × 074 Read/Write
Acceptance Filter ID Register 3 (AFIR3) 0 × 078 Read/Write
Acceptance Filter Mask Register 4(AFMR4) 0 × 07C Read/Write
Acceptance Filter ID Register 4 (AFIR4) 0 × 080 Read/Write
Reserved
Reserved Locations 0 × 084 to 0 × 0FC Reads Return 0/Write has

no effect

Table 3.2  Configuration registers

166 W. Lawrenz et al.

Figure 3.22 illustrates the CAN bit time divided into four parts:

• Sync segment
• Propagation segment
• Phase segment 1
• Phase segment 2

The four bit time parts are comprised of a number of smaller segments of equal
length called time quanta (tq). The length of each time quantum is equal to the
quantum clock time period (period = tq). The quantum clock is generated inter-
nally by dividing the incoming oscillator clock by the baud rate prescaler. The
prescaler value is passed to the BTL module through the Baud Rate Presale
(BRPR) register. The propagation segment and phase segment 1 are joined to-
gether and called ‘time segment1’ (TS1), while phase segment 2 is called ‘time
segment2’ (TS2). The number of time quanta in TS1 and TS2 vary with different
networks and are specified in the Bit Timing Register (BTR), which is passed to
the BTL module.

The Sync segment is always 1-tq long. The BTL state machine runs on the
quantum clock. During the start-of-frame (SOF) bit of every CAN frame, the state
machine is instructed by the BSP module to perform a hard sync, forcing the re-
cessive (r) to dominant edge (d) to lie in the sync segment. During the rest of the
recessive-to-dominant edges in the CAN frame, the BTL is prompted to perform
re-synchronization.

During re-synchronization, the BTL waits for a recessive-to-dominant edge. Af-
ter this is over, it calculates the time difference (number of tqs) between the edge
and the nearest sync segment. To compensate for this time difference, and to force
the sampling point to occur at the correct instant in the CAN bit time, the BTL
modifies the length of phase segment 1 or phase segment 2.

The maximum amount by which the phase segments can be modified is dictated
by the Synchronization Jump Width (SJW) parameter, which is also passed to the
BTL through the BTR. The length of the bit time of subsequent CAN bits is unaf-
fected by this process. This synchronization process corrects for propagation delays
and oscillator mismatches between the transmitting and receiving nodes. After the
controller is synchronized to the bus, the state machine waits for a time period of
TS1 and then samples the bus, generating a digital ‘0’ or ‘1’. This is passed on to the
BSP module for higher level tasks.

Fig. 3.22  CAN bit timing

1673 Data Link Layer Implementation

3.5.4 Bit Stream Processor

The BSP module performs several MAC/logical link control (LLC) functions dur-
ing reception (RX) and transmission (TX) of CAN messages. The BSP receives a
message for transmission from either the TX FIFO or the TX HPB and performs the
following functions before passing the bit stream to BTL:

• Serializing the message
• Inserting stuff bits, cyclic redundancy check (CRC) bits, and other protocol-de-

fined fields during transmission

During transmission, the BSP simultaneously monitors RX data and performs bus
arbitration tasks. It then transmits the complete frame when arbitration is won, and
retrying when arbitration is lost. During reception, the BSP removes stuff bits, CRC
bits, and other protocol fields from the received bit stream. The BSP state machine
also analyses bus traffic during transmission and reception for Form, CRC, ACK,
Stuff, and Bit violations. The state machine then performs error signalling and er-
ror confinement tasks. The CAN controller will not voluntarily generate overload
frames but will respond to overload flags detected on the bus. This module deter-
mines the error state of the CAN controller: Error Active, Error Passive, or Bus-off.
When TX or RX errors are observed on the bus, the BSP updates the transmit and
receive error counters according to the rules defined in the CAN 2.0 A, CAN 2.0 B,
and ISO 11898-1 standards. Based on the values of these counters, the error state of
the CAN controller is updated by the BSP.

3.5.5 Configuring the CAN Controller

This section covers the various configuration steps that need to be performed to
program the CAN core for operation.

The following are some of the key configuration steps:

• Choose the mode of operation of the CAN core.
• Program the configuration registers to bring up the core.
• Write messages to the TX FIFO/TX HPB.
• Read messages from the RX FIFO.

3.5.5.1 Programming the Configuration Registers

The following steps are to be performed to configure the core when the core is pow-
ered on or after system reset or software reset.

1. Choose the mode of operation
− Write a ‘1’ to the LBACK bit in the Mode Select Register (MSR) and ‘0’ to

the SLEEP bit in the MSR to choose loop back mode.

168 W. Lawrenz et al.

− Write a ‘1’ to the SLEEP bit in the MSR and ‘0’ to the LBACK bit in the MSR
to choose sleep mode.

− Write ‘0’s to the LBACK and SLEEP bits in the MSR to choose normal mode.

2. Configure the Transfer Layer Configuration Registers
− Program the Baud Rate Priscilla Register and the BTR to correspond to the

network timing parameters and the network characteristics of the system.

3. Configure the AFRs

The number of AFMR and AFIR pairs that are used is chosen at build time. To con-
figure these registers, the following steps should be taken:

• Write a ‘0’ to the UAF bit in the AFR register corresponding to the AFMR and
AFIR pair to be configured.

• Wait till the ACFBSY bit in the Status Register (SR) is ‘0’.
• Write the appropriate mask information to the AFMR.
• Write the appropriate ID information to the AFIR.
• Write a ‘1’ to the UAF bit corresponding to the AFMR and AFIR pair.
• Repeat the steps mentioned above for each AFMR and AFIR pair.

4. Write to the Interrupt Enable Register (IER) to choose the bits in the Interrupt
Status Register (ISR) that can generate an interrupt.

5. Enable the CAN controller by writing a ‘1’ to the CEN bit in the Software Reset
Register (SRR).

3.5.5.2 Transmitting a Message

A message to be transmitted can be written to either the TX FIFO or the TX HPB. A
message in the TX HPB gets priority over the messages in the TX FIFO. The TXOK
bit in the ISR is set after the CAN core successfully transmits a message.

1. Writing a Message to the TX FIFO
− Poll the TXFLL bit in the SR. The message can be written into the TX FIFO

when the TXFLL bit is ‘0’.
− Write the ID of the message to the TX FIFO ID memory location

(C_BASEADDR + 0 × 030).
− Write the DLC of the message to the TX FIFO DLC memory location

(C_BASEADDR + 0 × 034).
− Write the Data Word 1 of the message to the TX FIFO DW1 memory location

(C_BASEADDR + 0 × 038).
− Write the Data Word 2 of the message to the TX FIFO DW2 memory location

(C_BASEADDR + 0 × 03C).

Messages can be continuously written to the TX FIFO until the TX FIFO is full.
When the TX FIFO is full, the TXFLL bit in the ISR and the TXFLL bit in the SR
are set. If polling, the TXFLL bit in the SR should be polled after each write. If us-

1693 Data Link Layer Implementation

ing interrupt mode, writes can continue until the TXFLL bit in the ISR generates
an interrupt.

2. Writing a Message to the TX HPB
− Poll the TXBFLL bit in the SR. The message can be written into the TX HPB

when the TXBFLL bit is ‘0’.
− Write the ID of the message to the TX HPB ID memory location

(C_BASEADDR + 0 × 040).
− Write the DLC of the message to the TX HPB DLC memory location

(C_BASEADDR + 0 × 044).
− Write the Data Word 1 of the message to the TX HPB DW1 memory location

(C_BASEADDR + 0 × 048).
− Write the Data Word 2 of the message to the TX HPB DW2 memory location

(C_BASEADDR + 0 × 04C).

After each write to the TX HPB, the TXBFLL bit in the SR and the TXBFLL bit in
the ISR are set.

3.5.5.3 Receiving a Message

Whenever a new message is successfully received and written into the RX FIFO,
the RXNEMP bit and the RXOK bits in the ISR are set. In case of a read operation
on an empty RX FIFO, the RXNEMP bit in the ISR is set.

1. Reading a Message from the RX FIFO

The RXOK or RXNEMP bits in the ISR can be polled. In interrupt mode, the reads
can occur after the RXOK or RXNEMP bits in the ISR generate an interrupt.

• Read from the RX FIFO memory locations. All the locations must be read re-
gardless of the number of data bytes in the message.

• Read from the RX FIFO ID location (C_BASE_ADDR + 0 × 050).
• Read from the RX FIFO DLC location (C_BASE_ADDR + 0 × 054).
• Read from the RX FIFO DW1 location (C_BASE_ADDR + 0 × 058).
• Read from the RX FIFO DW2 location (C_BASE_ADDR + 0 × 05C).

After performing the read, if there are one or more messages in the RX FIFO, the
RXNEMP bit in the ISR is set. This bit can either be polled or generate an interrupt.
The process mentioned above should be repeated till the FIFO is empty.

3.5.5.4 CAN Graphical User Interface

The CAN graphical user interface (GUI) provides a single screen for configuring
the CAN core. Parameter C_BASEADDR defaults to X”00000000” in the GUI,
while the parameter C_HIGHADDR does not exist (Fig. 3.23).

170 W. Lawrenz et al.

3.5.5.5 Component Name

Base name of the output files generated for this core. The name must begin with a
letter and be composed of the following characters: a–z, A–Z, 0–9, and “-”.

3.5.5.6 Xilinx CAN Controller Design Parameters

To obtain a CAN controller that is uniquely tailored to the minimum system require-
ments, certain features can be parameterized. This results in a design that utilizes
only the resources required and gives the best possible performance. The features
that can be parameterized in the CAN controller are shown in Table 3.3. The in-
terface parameters C_BASEADDR and C_HIGHADDR need to be specified only
when the core is interfaced to the OPB IPIF. For the core generated by CoreGen,
C_BASEADDR defaults to X”00000000”. C_HIGHADDR parameter does not
exist for CoreGen cores.

Number of Acceptance Filters Valid range is from 0 to 4. This specifies the number
of acceptance filter pairs used by the CAN controller. Each acceptance filter pair
consists of a mask register and an ID register. These registers can be configured so
that a specific Identifier or a range of Identifiers can be received. This determines
the value of C_CAN_NUM_ACF.

TX FIFO Depth Valid values: 2, 4, 8, 16, 32, 64. This configures the depth of the
TX FIFO.

The TX FIFO depth is measured in terms of the number of CAN packets. For exam-
ple, TX FIFO with a depth of 2 can hold at most two CAN packets. This determines
the value of C_CAN_TX_DPTH.

Fig. 3.23  LogiCORE

1713 Data Link Layer Implementation

RX FIFO Depth Valid values: 2, 4, 8, 16, 32, 64. This configures the depth of the
RX FIFO. The RX FIFO depth is measured in terms of the number of CAN packets.
For example, RX FIFO with a depth of 2 can hold at most two CAN packets. This
determines the value of C_CAN_RX_DPTH.

3.5.6 Ordering the CAN Controller

A free evaluation version of the CAN core is provided with the Xilinx CORE Gen-
erator, which lets you assess the core functionality and demonstrates the various
interfaces of the core in simulation. After purchase, the core may be downloaded
from the Xilinx IP Center for use with the CORE Generator v9.2i and higher. The
CORE Generator is bundled with ISE Foundation v9.2i software at no additional
charge. Contact your local Xilinx sales representative for pricing and availability
about the CAN LogiCORE module or go to the CAN product page www.xilinx.
com/systemio/can/index.html for additional information.

Table 3.3  Xilinx CAN Controller design parameters
Features Feature/description Parameter name Allowable values Default

value
CAN

controllerfeatures
Depth of the RX

FIFO
C_CAN_RX_DPTH 2,4,8,16,32,64 2

Depth of the TX
FIFO

C_CAN_TX_DPTH 2,4,8,16,32,64 2

Number of accep-
tance filters used

C_CAN_NUM_
ACF

0 to 4 0

Interface Base address C_BASEADDR 32 bit address None
High address C_HIGHADDR 32 bit address None

www.xilinx.com/systemio/can/index.html
www.xilinx.com/systemio/can/index.html

173

Chapter 4
Higher Level Protocols

Gangolf Feiter, Lars-Berno Fredriksson, Karsten Hoffmeister, Joakim Pauli
and Holger Zeltwanger

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_4,
© Springer-Verlag London 2013

G. Feiter ()
Concepts & Services Consulting, Alte Landstrasse 34,
52525, Heinsberg, Germany
e-mail: gangolf.feiter.csc@online.de

L.-B. Fredriksson
Kvaser AB, Aminogatan 25 A,
43153, Mölndal, Sweden

K. Hoffmeister
Elektrobit Automotive GmbH, Max-Stromeyer-Strasse 172,
78467, Konstanz, Germany

J. Pauli
Volvo Powertrain Corporation, Gropegårdsgatan,
SE-405 08, Göteborg, Sweden

H. Zeltwanger
CAN in Automation (CiA) GmbH, Kontumazgarten 3,
90429, Nuremberg, Germany

4.1 CANopen

CANopen is a standardized communication system that specifies communication
profiles for the two lowest International Organization for Standardization (ISO)/
Open Systems Interconnect (OSI) layers as well as protocols for the ISO/OSI trans-
port and application layers. Furthermore, CANopen provides device and applica-
tion profiles in which transmitted process and configuration parameters as well as
diagnostic information are specified.

The basic idea of CANopen was developed within an Elite Sport Performance
Research in Training (ESPRIT) project. The registered association CAN in Automa-
tion (CiA) took over the first specification in 1994. Since then, the members of this
international users and manufacturers association extend and maintain the CANo-
pen specifications. Some of these specifications are freely available on the Internet,
while the remaining specifications are only available for CiA members. Within the
scope of this book, not all CANopen functionalities can be described. Further in
depth going special literature is available.

174 G. Feiter et al.

Originally, CANopen was considered for usage in “embedded” networks in ma-
chine control systems. Meanwhile CANopen is used in a variety of industrial sec-
tors as an “embedded” communication system. This also includes particular special
purpose vehicles, trains, lifts and medical devices (e.g. computed tomography (CT)
scanners) as well as ships.

4.1.1 Profiles for the Lower Layers

Currently, CANopen uses mainly the physical transmission according to ISO
11898-2. Alternative physical interfaces (ISO 11898-3 and Powerline) are being de-
veloped for specific applications. However, the bit timing is not explicitly specified
in ISO 11898-1 and ISO 11898-2. Out of this reason, the CANopen communication
profile (EN 50325-4 respectively CiA 301) defines sample points for several bit
rates. Table 4.1 shows an overview of the bit timing parameters. Other bit rates are
not allowed. Bit rates less than 50 kbit/s are not supported by all Controller Area
Network (CAN) transceivers.

Table 4.2 shows the achievable bus length, on the basis of the recommended
sample points, if direct current (DC) and alternating current (AC) voltage param-
eters for cables and connectors compliant to ISO 11898-2 are used. The actual

Table 4.1  Location of sampling point for several bit rates
Bit rate Nominal bit time tb

(µs)
Valid range for location
of sample point (%)

Recommendation location
of sample point (%)

1 Mbit/s 1 75–90 87.5
800 kbit/s 1.25 75–90 87.5
500 kbit/s 2 85–90 87.5
250 kbit/s 4 85–90 87.5
125 kbit/s 8 85–90 87.5
50 kbit/s 20 85–90 87.5
20 kbit/s 50 85–90 87.5
10 kbit/s 100 85–90 87.5

Table 4.2  Maximal recommended bus and stub length
Bit rate Bus length (m) Stub length (max; m) Accumulated stub

length (max; m)
1 Mbit/s 25 1.5 7.5
800 kbit/s 50 2.5 12.5
500 kbit/s 100 5.5 27.5
250 kbit/s 250 11 55
125 kbit/s 500 22 110
50 kbit/s 1,000 55 275
20 kbit/s 2,500 137.5 687.5
10 kbit/s 5,000 275 1,375

1754 Higher Level Protocols

achievable bus length depends also on the internal delay times of the CAN control-
ler and the CAN transceiver. For the exact design of the physical transmission, the
formulae for line theory or appropriate empirical formulae should be used.

Basically, a linear bus topology with a 120-Ω termination resistor is required.
Longer bus lengths may require the usage of a higher termination resistor. Not ter-
minated bus lines are tolerable only to a certain degree, due to the reflections that
could lead to a falsification of the bit value.

There are no detailed regulations on which bus cables or connectors should be
used. However, there are recommendations for the pin assignments for a variety of
connectors available. One of the widely used connectors is the nine-pin DIN-Sub-D
connector (DIN41652). Table 4.3 shows the pin assignment given in the recom-
mendation CiA 303-1.

CANopen uses the CAN protocol as described in ISO 11898-1. Although usage
of remote frames is not recommended, they are basically allowed in some CANo-
pen protocols. The various implementations of remote frames in CAN controllers
could lead to problems when using CANopen protocols.

Some CANopen protocols use the base frame format (11-bit identifier) exclu-
sively for data and remote frames, whereas other CANopen protocols allow the us-
age of the extended frame format (29-bit identifier). Error and overload frames are
transparent for CANopen protocols. They are automatically processed by the CAN
controller and lead, in case of an error frame, to an automatic retransmission of the
interrupted frame or to a shutdown of the device (bus-off). Under rare conditions,
it is to be kept in mind that a frame can be sent twice. Because of this situational
condition, relative data or toggle commands shall not be transmitted.

4.1.2 Device Model

A CANopen-compatible field device features, from the hardware point of view,
at least one CAN driver module and a CAN controller which implements the
CAN protocol. Every CANopen device has to have its own object dictionary.

Table 4.3  CANopen pinning for the nine-pin DIN-Sub-D connector
Pin Signal Description
1 – Reserved
2 CAN_L CAN_L bus line (dominant low)
3 CAN_GND CAN ground
4 – Reserved
5 (CAN_SHLD) Optional CAN shield
6 (GND) Optional ground
7 CAN_H CAN_H bus line (dominant high)
8 – Reserved
9 (CAN_V+) Optional CAN external positive supply (dedicated for supply of

transceiver and optocouplers, if galvanic isolation of the bus node
applies)

176 G. Feiter et al.

Table 4.4 shows the structure of this parameter list. Table 4.5 shows the structure of
the communication profile parameters. The single parameters of the object diction-
ary are addressable through a 16-bit index and an 8-bit sub-index.

If a field device implements several CANopen devices, it contains several object
dictionaries as well. Additionally, it can provide bridge or gateway functionality.
For example, the specification CiA 302-7 describes a CANopen-to-CANopen gate-
way with up to 32 CANopen devices, each having its own interface.

Three of the general communication parameters are mandatory:

• Device type (Object 1000h)
• Error register (Object 1001h)
• Identity object (Object 1018h)

Table 4.4  Structure of CANopen object dictionary
Index range Object
0000h Not used
0001h–001Fh Static data types
0020h–003Fh Complex data types
0040h–005Fh Manufacturer-specific complex data types
0060h–025Fh Device profile-specific data types
0260h–03FFh Reserved
0400h–0FFFh Reserved
1000h–1FFFh Communication profile area
2000h–5FFFh Manufacturer-specific profile area
6000h–67FFh Standardized profile area 1st logical device
6800h–6FFFh Standardized profile area 2nd logical device
7000h–77FFh Standardized profile area 3rd logical device
7800h–7FFFh Standardized profile area 4th logical device
8000h–87FFh Standardized profile area 5th logical device
8800h–8FFFh Standardized profile area 6th logical device
9000h–97FFh Standardized profile area 7th logical device
9800h–9FFFh Standardized profile area 8th logical device
A000h–AFFFh Standardized network variable area
B000h–BFFFh Standardized system variable area
C000h–FFFFh Reserved

Table 4.5  Structure of the communication parameters
Index range Object
1000h–1029h General communication parameters
1200h–12FFh SDO parameters
1300h–13FFh CANopen safety parameters
1400h–1BFFh PDO parameters
1F00h–1F11h SDO manager objects
1F20h–1F27h Configuration manager parameters
1F50h–1F58h Parameters for program control
1F80h–1F91h NMT parameters

1774 Higher Level Protocols

Only the vendor ID has to be implemented in the identity object; all other param-
eters (product code, revision number and serial number) are optional. CiA uniquely
assigns the vendor ID. Together with the other manufacturer-managed identity sub-
parameters, every CANopen device can be addressed uniquely. The error register
provides information if an error occurred in the device. The device type indicates
which device or application profile is supported by the interface. The device-type
parameter is a 32-bit value with the structure illustrated in Fig. 4.1. If the device
does not support a standardized device or application profile, the profile number
field shows a zero. If the CANopen device implements a standardized profile from
CiA, it is shown through a number in the profile number field.

The value FFFFh in the additional information field indicates that this CANopen
device supports several profiles. All other values are interpreted as profile specific.

The object dictionary provides space for eight logical devices (see Table 4.4). In
case of several logical devices, the device type of the first logical device is imple-
mented in index 67FEh. Each logical device has an 800h address section available
for profile parameters. The device-type object of the second logical device has the
index 6FFEh.

Every logical device could contain several virtual devices. A minimum imple-
mentation of a virtual device may exist out of only one process date. More complex
virtual devices comprise various process data and provides (if necessary) configura-
tion data. The internal structure of a field device with several CANopen devices is
illustrated in Fig. 4.2.

Every CANopen device must be assigned by the system developer with a unique
7-bit node ID. Because the node ID zero is reserved, a maximum of 127 devices
is addressable in a CANopen network. The CAN identifiers, used in a variety of
communication profiles to transmit and receive data frames, derive out of these
node IDs. The setting and allocation of the node ID is not generally standardized
in CANopen. The device manufacturer could, e.g. use a dual inline package (DIP)
switch or provide an additional configuration interface. Another possibility is the
coding of the connector: The device receives its node ID through an additional
plug-in connection. In the CANopen profile for building door control systems, the
patented node ID claiming procedure is used. When the CANopen interface is ex-
clusively available, the Layer Setting Service (LSS), described in the specification
CiA 305, can be used.

Every CANopen device must implement a communication state machine also
referred to as network management (NMT) finite state automation (FSA) machine.
Additional device-specific state machines could be necessary in the virtual devices.
The NMT-FSA is part of the NMT, which is explained in the next subsection.

Fig. 4.1  Structure of the
device-type parameter

178 G. Feiter et al.

4.1.3 Network Management

The NMT is based on the master/slave principle. Only one active NMT master
exists per CANopen network. The master controls all NMT-FSAs (referred to as
NMT slave state machine) of the NMT slave devices. This also includes the FSA
of its own CANopen NMT slave. To avoid misunderstanding, even the CANopen
manager, which contains the NMT master, has to have an NMT slave state machine
and an object dictionary. The so-called CANopen masters that do not have their own
object dictionary are by definition not a CANopen device!

The NMT slave state machine supports four states (see Fig. 4.3): the volatile state
“initialization” as well as the “pre-operational”, “operational” and “stopped” states.
The state transition from initialization to pre-operational takes place automatically.
When the device reaches the pre-operational state, it starts its boot-up protocol, i.e.
it sends its boot-up message, a single CAN data frame with a CAN identifier built-
up out of the 4-bit function code (most significant CAN-ID bits) 1110b as well as
the 7-bit node ID (least significant CAN-ID bits). The boot-up message has a 1-byte
data field that contains a zero. It is used to introduce the device after power-on or
reset to the other members in the network. The same data frame is used in pre-oper-
ational and operational states to send the periodical heartbeat protocol. It contains

Fig. 4.2  Field device model

1794 Higher Level Protocols

in 6 bits of the 1-byte data field the NMT state in which the device is situated at the
moment (see Fig. 4.4). The frequency of the heartbeat could be configured in the
producer-Heartbeatheartbeat-time (1017h) parameter. If a CANopen device shall
receive a heartbeat from another device, it has to be configured in the parameter
set consumer-heartbeat-time (1016h). Of course, the consumer time always has to
be bigger than the corresponding producer time; otherwise, the device is always
considered to be “lost”.

If the consumer heartbeat time expires without reception of the corresponding
heartbeat message, it will lead to an event (heartbeat event) in the heartbeat ap-
plication of the device. The action is taken because this event is device or profile
specific.

The state transitions are normally commanded by the CANopen device with
NMT master functionality. For this purpose, the NMT master sends the CAN data
frame with the highest prior identifier (CAN ID = 0). In this 2-byte message, the first
byte contains the command (command specifier) and the second byte contains the
node ID of the device that shall perform the state transition. In case of an error, the
devices are able to change their states autonomously. The value 0 is interpreted as
broadcast command, meaning all nodes have to perform this command. The execu-
tive state transition could be configured in the error-behaviour (1029h) parameter.

For applications where no master/slave NMT is allowed due to safety issues,
flying master solutions, as specified in CiA 302, are available. The protocols, speci-
fied in this standard, allow that if a device with NMT master functionality has a
failure another device activates its NMT master functionality. In fact, it is possible
that more than one device with “sleeping” NMT masters are located in the network.
If the NMT master with the highest priority returns into a functional state, after a
temporary failure, it could reclaim the NMT with the help of the specified protocols.

Fig. 4.3  CANopen NMT slave state

180 G. Feiter et al.

4.1.4 Transport Protocols

The CANopen specification (EN 50325-4 respectively CiA 301) does not explicitly
describe transport protocols. However, implicitly the service data object (SDO)
protocols could be regarded as transport protocols in terms of the ISO/OSI refer-
ence model. The SDO protocols always work after the client/server model. The
communication initiative always comes from the client and the server reacts to
the “customers’ wishes”. SDO communication is allowed in pre-operational and
in operational state. With SDO protocols, it is possible to write or read an object
dictionary entry. Addressing takes place through the 16-bit index and the 8-bit sub-
index. The two 8-byte data frames making an SDO are needed for: one, that the
client could send his commands (command specifier) and if necessary the param-
eter data, and, the second one, so that the server could reply if the command was
executed and could transmit in case of a read access the desired parameter data.

Fig. 4.4  Heartbeat protocol

1814 Higher Level Protocols

Figure 4.5 illustrates the protocol for parameter with a maximal length of 4 bytes
(expedited SDO). The 8-byte data field consists of 1-byte command specifier,
3-byte index/sub-index and up to 4 bytes of parameter data.

If data, to be read or written, are larger than 4 bytes, they are segmented and
transmitted with the same CAN data frames (segmented SDO) one after another
(see Fig. 4.6). By doing so, every segment is confirmed. The first segment contains
4-byte parameter data. The following segments consist of up to 7-byte parameter
data. Principally, the parameter data can have any length. An end-identification is
sent in the command specifier of the last transmitted segment.

Fig. 4.5  SDO download protocol for not segmented data (m = index and sub-index)

Fig. 4.6  SDO upload proto-
col for segmented data

182 G. Feiter et al.

To recognize if a segment was sent twice, every segment consists of a toggle bit.
If a segment is sent twice, the server responds with an abort code. Both client and
server are able to send an abort code in their SDO messages that aborts the current
SDO communication, when problems occur.

Every CANopen device has to implement at least one SDO server to assure that
at least one other CANopen device (normally the device with NMT functionality) is
allowed to access (write or read) the object dictionary. The two needed CAN identi-
fiers depend on the allocated node IDs: 1100b + node ID for the to-be-received SDO
message and 1011b + node ID for the responded message. Every device is able to
build up an SDO client and an SDO server relationship with all other devices in the
CANopen network. Because there are no existing predefined CAN identifiers for
these additional SDO connections, the connections have to be configured. Corre-
sponding server and client SDO parameter sets are provided in the object dictionary
(1200h–127Fh or 1280h–12FFh). Figure 4.7 illustrates the format of the configura-
tion parameters for the CAN identifier. The 32-bit value consists of a valid byte
for generating and deleting the data frame. The dyn-bit denotes if it is a static or a
dynamic SDO connection. The frame-bit defines the frame format to be used and
the CAN-ID bits with which the message shall be transmitted or received.

To improve the data throughput, the SDO block transfer exists. By using the
SDO block transfer, only a configurable amount of segments, instead of all seg-
ments, are confirmed.

4.1.5 Application Protocols

Besides the NMT, boot-up, heartbeat and SDO protocols, CANopen also specifies
protocols that uniquely assign the application layer of the ISO/OSI reference model.
These include the process data object ( PDO) protocol used for the transmission of
time critical process data, the emergency protocol used for the notification of device
and application failures, the synchronization ( SYNC) protocol used for the synchro-
nization of data capturing and data actuation as well as the time protocol used to set
the system time.

Every CANopen device can transmit up to 512 PDOs and can receive up to 512
PDOs. PDOs are only allowed to be transmitted and evaluated during the opera-
tional state. PDOs use a CAN data frame and are sent according to the producer/
consumer principle, which means there is always exactly one producer and one or
more consumers of the CAN data frame. The complete 8 bytes of the data field

Fig. 4.7  Structure of the SDO COB-ID sub-parameter

1834 Higher Level Protocols

are available for the, to be transmitted, process data (see Fig. 4.8). Due to this the
PDO does not need an overhead, in contrast to the CAN protocol, and therefore no
additional bus bandwidth is necessary. The PDOs are configured with the help of
two parameter sets: PDO communication parameter and PDO mapping parameter.
The communication object identifier (COB ID), the transmission type, the inhibit
time, the event timer and the SYNC start value belong to the PDO communication
parameters. The 32-bit parameter COB ID consists of besides a few control bits,
similar to the corresponding SDO parameter (see Fig. 4.7), the CAN identifier used
for transmitting or receiving. The parameter transmission type defines how the PDO
is to be transmitted or sent. The transmit PDO (TPDO) differs between a cyclic syn-
chronous and an event-driven (asynchronous) transmission. When using the event-
driven transmission, the event has to be defined in the device or application profile
(transmission type: 255) or by the manufacturer (transmission type: 254). The event
could be a temperature increase of 1°C or the change of a binary signal. The event
could also be the expiration of the event timer. In this case, the PDO is sent periodi-
cally with the time (in milliseconds) configured in the event time parameter. If a
signal-specific event and the event timer are defined, the PDO will be transmitted
directly after the signal-specific event occurs. If no signal-specific event occurs, the
PDO will be transmitted after the event timer has been elapsed. The event timer is
restarted after every PDO transmission.

When a PDO gets transmitted cyclic synchronously (transmission type: 1), the
process data are updated and transmitted after receiving a SYNC message. In order
not to unnecessarily increase the busload with low-frequency signals, the PDO can
be sent with only every second or 240th SYNC message (transmission type: 2–240).
With the parameter SYNC start value, it is possible to configure the counter-value
of the SYNC message ( sync counter) to determine the first transmission. A pos-
sibility of reducing the busload lies in the usage of an acyclic synchronous trans-
mission (transmission type: 0) in which the SYNC message has to be received and
additionally a defined event has to occur. For receive-PDOs (RPDOs), a differentia-
tion is only made with asynchronous or synchronous reception. With asynchronous
reception the process data are immediately handled, whereas with synchronous re-
ception the device waits for the next SYNC message to actuate the received data.

Fig. 4.8  PDO protocol

184 G. Feiter et al.

Figure 4.9 shows the synchronous transmission of PDOs. Synchronous PDO com-
munication is especially common in the electric and hydraulic drive technology and
in data acquisition of time-dependent linked values. The frequency of the SYNC
message and the CAN identifier, on which the message is received or transmitted,
are configurable via SDO.

Requesting PDOs via remote frames is possible in CANopen (transmission type:
252 and 253) but not recommended. Besides the additional busload, the variety of
different implementations in the CAN controllers is problematic.

The inhibit time is the communication parameter in which the transmission of a
PDO can be delayed for a certain time. With this method, the system developer can
prevent the PDO from using the entire bus bandwidth. During the time period in
which the highest priority PDO is not allowed to be sent, the second highest priority
PDO becomes the highest priority PDO. With the usage of inhibit times, it is pos-
sible to achieve a completely deterministic behaviour of the PDO communication.

PDO mapping parameters determine what process data are to be received or
transmitted via PDO. The PDO mapping parameters are defined by the device
manufacturer or they are specified in the CANopen profiles. The entries in the
mapping parameters contain pointers (index and sub-index) and determine which
object dictionary entries are mapped into a PDO. Due to the fact that index and
sub-index are local device addresses, the TPDO could contain pointers other than
the corresponding RPDOs. The process data can be locally stored to different ad-
dresses in the object dictionary when more than one device receives the same PDO.
Principally, the 8-byte data field of a PDO could be organized bitwise: This is the
reason why a maximum of 64 mapping parameters is provided per PDO. If four
16-bit values are packed into a PDO, only four mapping parameters are needed.
Simple CANopen devices only support static PDO mapping, i.e. the mapping set
by the manufacturer is not configurable. When using variable mapping, the user
is able to change the process data transmitted in the PDO, when the device is in
pre-operational state. As a consequence, an optimization of the PDO transfer is
possible. The user is able to group the needed process data for his/her application
in one PDO. If the content of PDOs is changed when the device is in operational

Fig. 4.9  Principle of the synchronous PDO communication

1854 Higher Level Protocols

state (dynamic PDO mapping), the user has to pay attention to the data integrity of
the PDO producer and consumer.

If the 512 TPDOs and the 512 RPDOs per device are not enough, it is possible
to define a PDO as a multiplexed-PDO (MPDO). Similar to an SDO, it is only pos-
sible to transmit one process data in an MPDO. An MPDO contains the source or
destination address of the object dictionary entry. Thus, a protocol overhead exists,
but no confirmation about the reception of the MPDO is sent.

The emergency protocol is a special PDO that could be received by every other
CANopen device if the emergency consumer parameter (1028h) is configured. The
emergency message consists of 8 bytes in which a standardized 2-byte emergency
error code, the 1-byte error register and the manufacturer- or profile-specific 5-byte
error field are transmitted (see Fig. 4.10). The CAN identifier, with which the emer-
gency message is sent, is described in the emergency COB ID parameter (1014h) and
could be reconfigured if desired. The default value of the CAN identifier is 0001b +
node ID. It is reasonable to configure the emergency inhibit time (1015h) to prevent
an overload of emergency messages on the bus. In fact, it could happen that an er-
ror triggers a further error in another device, which could lead to a domino effect
whereby many devices could start transmitting error messages over and over again.

The SYNC message is also transmitted after the producer/consumer principle.
The SYNC message has no data field or a 1-byte data field containing the SYNC
counter. The user can configure the counter (1019h): 0 means that the counter-byte
is not transmitted, and 2–240 represent the highest value that the counter supports.
The other values are reserved. The SYNC message can be configured regarding
the used CAN identifier, for transmitting and receiving (COB ID: 1005h) as well
as for the communication cycle period (1006h) and the synchronous window length
(1007h) in microseconds. The synchronous window length serves as a measure for
the producer and the consumer to indicate if a synchronous PDO was transmitted
or received in the expected time. If the producer is not able to send the PDO (e.g.
because bus access was denied), he could send an emergency message instead of
the PDO. Same applies for the consumer: If a synchronous PDO is not received in

Fig. 4.10  Emergency protocol and structure of the message (EEC = emergency error code and
ER = error register)

186 G. Feiter et al.

the configured time, an emergency message is sent and the delayed reception will be
ignored. The SYNC message is transmitted by default with the CAN identifier 128.

The time message is also based on the producer/consumer principle. The mes-
sage contains a 6-byte value given in milliseconds after the 1 January 1984. The
predefined CAN identifier is 256 and can be configured in the corresponding time
COB ID (1012h). With the time message, it is possible to do a network-wide time
synchronization of the local timer units in the CANopen devices.

For transmission of safety-oriented information, special CANopen safety pro-
tocols, described in CiA 304, are available. The safety-related data object (SRDO)
protocol uses two CAN identifiers that differ in at least 2 bits. Both frames are
transmitted periodically, whereas the time interval between them is not allowed to
exceed a certain value. The data of both frames are bitwise inverted and are double-
checked by the consumers of the data. This concept of serial redundancy with inte-
grated time expectation is able to detect all single faults. Due to this, the CANopen
safety protocol is suitable for a safe data transmission up to Safety Integrity Level
(SIL) 3 according to International Electrotechnical Commission (IEC) 61508.

4.1.6 Device Profiles

CANopen is one of the most standardized communication systems. This does not
only apply to the communication protocols, specified in CiA 301 and CiA 302,
but also apply to a variety of generic and application-specific device profiles (see
Table 4.6). Device profiles specify the interface to the application program of a
device in terms of process data and configuration parameter, which are normally
writable and/or readable, in the range of 6000h–67FFh in the object dictionary.

Table 4.6  Generic and application-specific CANopen device profiles
Number Description Status
CiA 401 Generic I/O modules Free available
CiA 402 Drives and motion control Only for members
CiA 404 Measuring devices and closed-loop controllers Free available
CiA 406 Encoders (rotating and linear) Free available
CiA 408 Fluid power technology Free available
CiA 410 Inclinometer Free available
CiA 412 Medical devices Only for members
CiA 413 J1939-to-CANopen gateways Only for members
CiA 414 Weaving machines Free available
CiA 418 Battery modules Free available
CiA 419 Battery charger Free available
CiA 420 Extruder downstream devices Free available
CiA 425 Medical add-on devices Only for members
CiA 444 Crane add-on devices (e.g. spreader) Only for members
CiA 445 RFID reader Only for members
CiA 446 AS-Interface gateway Only for members

1874 Higher Level Protocols

The device-type object (1000h) is described in detail in the device profiles. It
does not only show which device profile is implemented but also show the avail-
able functions in the device. Figure 4.11 shows the structure of the device-type
parameter for generic input/output (I/O) modules according to CiA 401 (Table 4.7).

The device profiles also determine the PDO communication and the PDO map-
ping parameters. The first four TPDOs as well as the first four RPDOs can each
be assigned with a CAN identifier. The assignment, done in the device profiles,
follows the same scheme as in other CANopen protocols. The four bits with the
highest priority of the CAN identifier correspond to a PDO function (see Table 4.8),
and the seven other identifier bits represent the node ID of the device.

This assignment guarantees that no CAN identifier is assigned twice. In oth-
er words, it is not possible that two CANopen devices send data frames with the
same identifier leading to a not solvable bus access conflict. The CANopen device
with the NMT master functionality is normally a programmable controller that has
the corresponding RPDOs and TPDOs. Thus, per default there is only one master/
slave relation concerning PDOs. If a system developer wants to realize PDO cross-
communication or wants to implement more than one controller in the network, the
configuration of PDO identifiers is necessary. This procedure is also known as PDO
linking and is supported by software tools. In this way, it is even possible to realize
distributed PLC systems.

Fig. 4.11  Structure of a device-type parameter for CiA 401 modules

Table 4.7  I/O parameters for CiA 401 modules
Field name Definition
Device profile number 401d
I/O functionality—Bit 16 1b = digital input(s) implemented

0b = not implemented
I/O functionality—Bit 17 1b = digital output(s) implemented

0b = not implemented
I/O functionality—Bit 18 1b = analog input(s) implemented

0b = not implemented
I/O functionality—Bit 19 1b = analog output(s) implemented

0b = not implemented
I/O functionality—Bit 20 to Bit 22 Reserved
M(apping of PDOs) 1b = device-specific PDO mapping is supported

0b = predefined, generic PDO mapping is supported
Note: Any combination of digital/analog, inputs and outputs is allowed; one of the bits 16–19

shall be 1b

188 G. Feiter et al.

The most frequently implemented device profile is the profile for generic I/O
modules (CiA 401). It supports digital and analog inputs and outputs. The user is
able to parameterize the modules in a standardized way regarding the I/O func-
tionality. With the parameter set “error value output (6207h)”, it is possible to set
the value of the digital outputs that should be used, when an internal device error
occurs. Another example is the parameter set “analog input interrupt trigger selec-
tion (6421h)”. By this parameter set conditions can be defined under which a PDO
transmission is triggered by an analog input, which has been mapped into a TPDO.
These conditions can be exceeding or falling below a certain threshold or the pre-
defined change of a given value. It is also possible to set the limit and delta values
under a fixed address (index and sub-index) in the object dictionary.

Figure 4.12 shows the block diagram of a digital output module, and Fig. 4.13
shows the block diagram of an analog input module. The device profile CiA 401

Table 4.8  Default CAN identifiers for TPDOs and RPDOs
Name Function code Resulting CAN-IDs
TPDO1 0011b 385 (181h)–511 (1FFh)
RPDO1 0100b 513 (201h)–639 (27Fh)
TPDO2 0101b 641 (281h)–767 (2FFh)
RPDO2 0110b 769 (301h)–895 (37Fh)
TPDO3 0111b 897 (381h)–1023 (3FFh)
RPDO3 1000b 1025 (401h)–1151 (47Fh)
TPDO4 1001b 1153 (481h)–1279 (4FFh)
RPDO4 1010b 1281 (501h)–1407 (57Fh)

Fig. 4.12  Block diagram of a digital output module according to CiA 401

1894 Higher Level Protocols

Fi
g.

 4
.1

3 
B

lo
ck

 d
ia

gr
am

 o
f a

 d
ig

ita
l i

np
ut

 m
od

ul
e

ac
co

rd
in

g
to

 C
iA

 4
01

190 G. Feiter et al.

also defines a default PDO mapping. According to the defined PDO mapping, 8 × 8
digital input signals are located in the first TPDO and 4 × 16-bit analog input values
in the following three TPDOs. In the first RPDO 8 × 8 digital output signals and
in the three following RPDOs 4 × 16-bit digital output values are located. Further
digital and analog I/O signals could be placed in manufacturer-specific PDOs. All
default PDOs are valid and have a predefined CAN identifier. They are transmitted
event driven (transmission type: 255). The event is a configured trigger condition.
Furthermore, all TPDOs that are not switched off generally are transmitted when a
transition from pre-operational state into operational state occurs.

The device profile CiA 401 supports a digital granularity of 8 bytes per default.
1-bit, 16-bit and 32-bit accesses are optionally provided. Analog modules have a

16-bit resolution specified per default. Alternatively, analog 8-bit values, 32-bit val-
ues as well as floating-point arithmetic and manufacturer-specific analog formats
can be implemented.

Some of the CANopen device profiles also specify application-specific state ma-
chines. The state machine, shown in Fig. 4.14, is described in the drives and mo-
tion control profile CiA 402 (see IEC 61800-7). It is controlled by a control word
(6040h) received via RPDO. After a state transition, the CANopen device transmits
the status word (6041h) to the host controller for purpose of acknowledgement on
the application level.

Fig. 4.14  State machine of an electrical drive according to CiA 402

1914 Higher Level Protocols

In the drives and motion control profile, all necessary parameters for operation
are listed in the object dictionary as defined addresses (index and sub-index). Even
setpoints or actual values are transmitted via PDOs. The drives and motion control
profile CiA 402 is suitable for simple frequency converters as well as for complex
servo controller and stepper motor controls.

For some industries, specific device profiles were developed. Such profiles sim-
plify in particular system integration in modular mechanical engineering. The sys-
tem developer does not have to link generic digital and analog inputs and outputs
together but is able to integrate a complete subsystem on a higher level. Typical ex-
amples are collimators and dosimeters in the field of medical devices, thread-feeding
equipment in weaving machines or spreaders in crane systems. The members of CiA
will keep publishing generic and branch-specific device profiles in the future.

4.1.7 Application Profiles

With the approach of the device profiles, the system developer is allowed to in-
tegrate devices from various manufacturers in a CANopen network with one or
several programmable controllers. By doing so, the plug and play functionality is
limited to a master/slave relation concerning the PDO communication. Although it
is possible to configure a PDO cross-communication between any of the devices,
cross-communication is not predefined. Out of this reason, branch-specific applica-
tion profiles were made particularly to meet these requirements.

Application profiles describe all interfaces of a CANopen application in an ob-
ject dictionary. The object dictionary entries have identical meaning in all devices.
Application profiles specify functional units, also referred to as virtual devices. A
CANopen device is able to integrate up to eight application profiles (each located
in a logical device). Each logical device, on the other hand, contains a number of
virtual devices. The information on what virtual devices are implemented could
be found in the device-type parameter (1000h) or in an application profile-specific
parameter. With the concept of virtual devices, it is possible to describe transparent
CANopen bridges/gateways in an easy way.

Furthermore, the concept of the application profiles opens the possibility of
implementing, in an extreme case, only one virtual device in a single CANopen
device and all other virtual devices in another CANopen device as well as the com-
bination of both of these devices through a CANopen network. It is also possible
to implement every virtual device in a CANopen device and let them communicate
through CANopen. It is not possible to spread a virtual device over more than one
CANopen device. Out of this reason, it is very important to ensure, when creating
an application profile, that the granularity of the virtual devices is suitable for future
requirements. Table 4.9 shows the already published application profiles and the
application profiles that are still in development.

The application profile for lift control systems (CiA 417) specifies several virtual
devices (see Table 4.10). The object dictionary (range 6000h–9FFFh) is divided into

192 G. Feiter et al.

800h segments. Every segment could represent a lift control, i.e. it is possible to
describe a group control containing up to eight lift shafts with this profile. Every
virtual device has several configuration parameters that are readable or writable via
SDO as well as process data, that is transmitted or received, in PDOs.

Every CANopen device according to CiA 417 supports a Transmit-MPDO and
up to 127 Receive-MPDOs as well as, depending on the implemented virtual de-
vice, further dedicated TPDOs and RPDOs. Due to the fact that all PDOs have an
assigned CAN identifier (see Fig. 4.15), the system developer must not assign any
CAN identifiers. However, if the devices support PDO linking, he/she is able to
optimize the PDO communication in his/her lift application with regard to priority
and data content.

The CANopen lift application profile supports up to 254 floors per lift control. In
total, 32 times 254 digital inputs per lift control are addressable. When using eight
lift controls, a total of 65,024 digital inputs are available.

Table 4.9  CANopen application profiles
Number Description Status
CiA 415 Road construction machine sensors Only for members
CiA 416 Building door control systems Only for members
CiA 417 Lift control systems Free available
CiA 421 Train vehicle control networks Only for members
CiA 422 Municipal vehicles Only for members
CiA 423 Rail vehicle power drive systems Only for members
CiA 424 Vehicle door control systems Only for members
CiA 426 Exterior rail vehicle lighting Only for members
CiA 430 Auxiliary rail vehicle lighting Only for members
CiA 433 Interior rail vehicle lighting Only for members
CiA 436 Construction machineries Only for members
CiA 437 Grid-based photovoltaic systems Only for members
CiA 447 Special-purpose car add-on devices Only for members
CiA 455 Drilling machines Only for members

Table 4.10  Virtual devices of the CANopen lift application profile
Virtual device Function
Call controller Receives all call requests
Input panel unit In-car call panel or floor call panel
Output panel unit In-car display panel or floor display panel
Car door controller Transmits commands to the car door unit
Car door unit Cabin doors
Light barrier unit Light barrier in the cabin doors
Car position unit Position measurement of the car (according to CiA 402)
Car drive controller Transmits commands to the car drive unit
Car drive unit Drive unit (according to CiA 406)
Load measuring unit Measuring of current load of the car
Sensor unit Glass breakage, smoke, pressure, temperature sensor, etc.

1934 Higher Level Protocols

It is possible to implement up to eight application profiles in a single CANopen
device, if the object dictionary entries of a logical device are used for the applica-
tion profile. This possibility could be used in the application profiles for train ve-
hicle control systems. From a logical point of view, it is a hierarchically arranged
virtual network that can be mapped one-to-one on the physical CANopen network.
However, it is also possible to represent up to eight virtual networks on a CANopen
interface. The implementation flexibility of the application profiles allows the pos-
sibility of using the same specification in a simple and in a complex system. The
“bridges” needed for the implementation of several physically separate CANopen
networks are PDO transparent, i.e. the PDOs are just reached further due to their
system-wide validity. If it is wished to configure the entire system from one single
point via SDO, it is necessary to implement CiA400, which enables remote SDO
communication. It is therefore necessary to assign every network with a unique
network ID.

4.2 AUTOSAR

4.2.1 Introduction

4.2.1.1 AUTOSAR Foundation

“AUTOSAR” is the abbreviation for “AUTomotive Open System Architecture”.
The organization of the AUTOSAR standard was founded in 2003 as a development
partnership of international automobile manufacturers and supplier industry. The
goal is to develop a standardized software architecture and standardized software
interfaces for automotive electronic systems.

The development of such standards for software development in the automotive
industry was long overdue. The software functionality within vehicles increases a

Fig. 4.15  PDO assignment in a CANopen-lift network system compliant to CiA 417

194 G. Feiter et al.

lot and the complexity is growing. At the same time there is a high demand to deliv-
er high-quality software, partly also due to the growing amount of functional safety-
related systems. Some of the original equipment makers (OEMs) react to this global
trend with own standardized software platforms, for example, the BMW Standard
Core.1 This software platform was provided by BMW to the Tier 1 already in 1998.
Because of the existence of different OEM-specific automotive middleware, the
Tier 1 always needs to adapt their application software to these quasi-standards.
The integration costs of these adaptations are sometimes beyond the application
development costs. In parallel to these technical requirements, there is a change
in the market environment. The major sales regions are saturated. This forces the
OEM to change their strategy for vehicle production. In addition, niche markets will
be addressed with special vehicle models and the model change will be faster. The
pressure for vehicle development, and hence also for automotive software develop-
ment, increases.

The only way to develop more complex system in a shorter time—and still con-
trol them—is to standardize a horizontal basic software while reusing the applica-
tions more and more. A first step to the right direction is the AUTOSAR standard.

The following pages will give a brief overview about the AUTOSAR standard
by focusing the CAN-based communication path through the layered software ar-
chitecture.

4.2.1.2 AUTOSAR Concept

One of the main ideas of AUTOSAR is the clear separation of hardware-dependent
software from hardware-independent software. Therefore, an abstraction layer is
placed between the microcontroller hardware and the application software. The
AUTOSAR runtime environment (RTE) is on top of the layered architecture. It is
the only visible interface from the application point of view. Below the RTE several
software layers exist, from services via operating system (OS) down to the lowest
software layer, the microcontroller abstraction layer (MCAL). Figure 4.16 shows an
AUTOSAR compliant software architecture.

The AUTOSAR RTE defines the interface from the application to the basic soft-
ware. For data exchange, the RTE implements, e.g. a client–server and/or a sender/
receiver communication model.

All interactions of application software, called “application software compo-
nents” in the AUTOSAR language, run via the RTE. This results in a hardware-
independent application. This enables the exchange of applications among the dif-
ferent electronic control units (ECUs). If there is a lack of resources on one ECU,
e.g. no more random access memory (RAM) left to run a special RAM-intensive

1 Standard Core is a typical name for a complete automotive middleware respectively for the soft-
ware between application and hardware of an electronic control unit (ECU). Additional to the pure
runtime software a Standard Core contains support functions like a generic make environment or
complex configuration tools.

1954 Higher Level Protocols

application algorithm, it can be executed on another ECU if the input and output
signals of these application software component are also available on the other
ECU.2 With this independence from hardware it is in addition possible to reuse
the application software component on another hardware architecture, e.g. on the
next generation of the ECU. Software will become also a “carry-over part” for the
automotive development.

The basic software itself is also structured in hardware-dependent and hardware-
independent software parts. The only real hardware-related software part is the OS
and the MCAL—all other software can be reused, too. With this portability major
parts of the basic software can become a carry-over part with all the benefits of
reused standard software.

4.2.1.3 New Methodology

After the successful separation of application software and hardware-dependent
software, new methodologies within the automotive vehicle development can be
applied. Function-oriented development will replace ECU-oriented development.
AUTOSAR defines a complete methodology for the function-oriented develop-
ment. The methodology is not a complete process description, this was never the
goal of AUTOSAR, but it gives a brief structure in the overall development process.
In brief, the AUTOSAR methodology starts with the pure software functions, which
are represented by the application software components. The inputs and outputs of
these functions, the signals, are defined and the connections are known. All this
information is collected in a so-called “System Configuration Description”, which

2 And the timing requirements to the signals are fulfilled (e.g., availability and, maximum jitter).

Fig. 4.16  The layered architecture of an AUTOSAR Standard Core. (Elektrobit Automotive
GmbH, AUTOSAR—Getting Started)

196 G. Feiter et al.

is an Extensible Markup Language (XML)-based data structure defined by the AU-
TOSAR meta-model. The system configuration description contains the description
of all software components, the ECU resources and the system constraints for a
complete vehicle. The next step, after the definition of many system parameters,
the configuration of one ECU is extracted from this global vehicle description. This
extract of the system configuration forms together with the configuration of the ba-
sic software the so-called ECU configuration description. Within this ECU-specific
configuration, the exact definition, e.g. of OS tasks is done. System configuration
and ECU configuration are two processes with high interaction and are done usually
by two different developer groups.

With AUTOSAR, the role model of the automotive industry might change. The
classic supplier pyramid will be replaced by a network of suppliers because the
tasks, especially the software related, can be done in future a little bit more inde-
pendently and in parallel. The software companies will play an important role; they
provide the software platforms where all the applications will run on top. In addi-
tion, the same or different software suppliers can provide pure software functions as
a product. If the standard is established, these software can be used in several cars,
independent of the OEM.

4.2.2 The AUTOSAR Platform

4.2.2.1 Overview

The legacy software platforms from each OEM differ in interfaces and content. The
goal of the AUTOSAR standardization is to form a universal standard which need
not have to be adapted for each OEM.

The AUTOSAR specifications deal with many software modules, needed for an
ECU development. Old standards, like the OSEK/VDX “Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug / Vehicle Distributed eXecutive”
standard, comprised less functionality, e.g. the mentioned OSEK standard only
defines an OS, a communication model and NMT. The implementation of these
standard modules found their way into many cars of many OEM, but AUTOSAR
is going beyond; Fig. 4.16 shows a much broader approach and shows much more
standardized modules of the AUTOSAR-layered architecture.

In principle, every module can be assigned to one of the four layers: the ap-
plication abstraction layer, service layer, ECU abstraction layer and MCAL. The
application abstraction layer forms the only interface to the applications. The imple-
mentation of this layer is the RTE, and the RTE is the “glue code” which connects
the applications to the lower layers. The service layer implements system services,
memory access services, communication services and the OS services. The ECU
abstraction layer is used to implement an abstraction of the peripheral I/O, mem-
ory (e.g. flash memory or electrically erasable programmable read-only memory
(EEPROM)) and communication. The services are based on this abstraction layer
and the abstraction layer itself connects, e.g. different communication channels by

1974 Higher Level Protocols

using the lowest layer, the MCAL. In this lowest layer, the drivers for accessing the
hardware are implemented. This lowest layer has to be developed for each new mi-
crocontroller—it is the only piece of software which is not hardware independent.

4.2.2.2 Microcontroller Abstraction Layer

As mentioned above, the MCAL is the only layer which depends on the hardware.
The above layers have no dependency any more, except the OS. This principle is the
basis for an easy adaptation of the basic software to new hardware architecture or a
new derivative; only this deepest layer will be exchanged. The layers above will be
tested together with the exchanged lower layers in an integration test system. There
are exceptions within the higher levels of software if special hardware features shall
be used there, too. If these features are not able to be implemented only in the
MCAL, a hardware dependency is placed in the higher level software—the supplier
of this basic software has to check if this dependency is maintainable and/or if the
costs for hardware dependency are less than the, e.g. speed advantage gained by
using special hardware features.

The drivers, of the MCAL, can be subdivided into the following four groups:

• Microcontroller drivers—they contain software to control the microcontroller
core (Micro-Controller Unit (MCU) driver), timer modules (General Purpose
Timer (GPT) driver) and on-chip watchdog (watchdog driver).

• Memory drivers—these are the drivers to access EEPROM and FLASH memory.
• Communication drivers—these are used to connect bus systems like Serial Pe-

ripheral Interface (SPI) bus for inter-ECU communication, e.g. to connect an
external SPI EEPROM device, and to access common used bus systems like
CAN, Local Interconnect Network (LIN), FlexRay and also Ethernet.

• I/O drivers—these drivers connect the on-chip peripherals like digital I/O, ana-
log digital converter (ADC), input capture unit, pulse width modulation (PWM)
and the port driver for the configuration of each port pin functionality.

Within the AUTOSAR architecture, hardware access will be enabled by two soft-
ware modules: the driver of the MCAL and the corresponding interface of the layer
above—the ECU abstraction layer.

4.2.2.3 ECU Abstraction Layer

For almost each driver of the hardware-dependent layer exists an interface to en-
capsulate the lowest layer. The access to this interface layer is always identical for
all layers above. For example, multiple CAN modules can be summed-up abstract
by the interface layer, e.g. by controlling several CAN drivers. The AUTOSAR
COM module in the service layer can access the CAN interface always in a same
way, sending only a protocol data unit (PDU)3 to the interface. The interface is

3 PDU: protocol data unit.

198 G. Feiter et al.

configured to forward the PDU to the dedicated bus system—in this example, to a
dedicated CAN bus. An exception to this driver/interface relationship is the group
of the I/O driver. There exists no interface layer for the I/O drivers—instead there
is an “I/O hardware abstraction” module to implement the bridge between the low-
level hardware-dependent driver and the highest layer of the application abstraction
layer. The specification of this I/O hardware abstraction is more like a guideline for
the implementation than a real implementation with application program interface
(API) specification, etc. The reason is the various possibilities of connecting I/O to
a microcontroller; hence, the implementation of this I/O hardware abstraction is in
many cases project specific and peripheral specific. There could be, for example,
power switches which need already a combination of two I/O (ADC plus PWM)
or an algorithm implemented in this I/O hardware abstraction (e.g. debouncing of
digital input).

4.2.2.4 Service Layer

The service layer of an AUTOSAR-based software architecture provides many ser-
vices which can be accessed from the applications via the RTE. The modules of
this layer are complex state machines, e.g. the ECU state manager which controls
the state of the ECU like OFF, RUN and SLEEP. The module groups of the service
layer are as follows:

• State manager—it manages all the states of an ECU, communication and, e.g. of
the Watchdog.

• Memory manager—it controls the access to persistent memory. The non-vol-
atile RAM manager (NVRAM-Manager) is a core module of the memory ser-
vices. This module manages the non-volatile memory blocks of an EEPROM, a
FLASH–EEPROM emulation or other external memory devices. The tasks are,
for example, write, read access, initialization of memory-mapped blocks and
check if the cyclic redundancy check (CRC) is still valid.

• Vehicle communication services—services of this service module group enable
the communication across the border of the ECU. The lower layers support the
known protocols like CAN, LIN and FlexRay—in future also Ethernet. The jobs
of these services are the abstraction of the access via standardized interfaces and
data encapsulation via abstract PDUs instead of protocol-specific messages, con-
trol of the network by support of NMT services and access to diagnostic services.

• OS services—the OS provides several services. For example, the management
of the central processing unit (CPU) time for tasks and interrupt service routines.
There are event mechanisms and protection mechanisms for time and memory
access if provided by hardware. The memory protection is only possible if the
controller has a memory management unit (MMU) or memory protection unit
(MPU). The AUTOSAR OS also provides mechanism for time synchroniza-
tion—e.g. to synchronize the internal schedule with an external clock, provided
by FlexRay.

1994 Higher Level Protocols

4.2.2.5 Application Abstraction Layer

The highest layer of the AUTOSAR-layered architecture is the interface to the appli-
cation. This application abstraction layer is the only interface of an AUTOSAR ap-
plication to the AUTOSAR basic software. No AUTOSAR application shall access
functions from the basic software direct. Out of the application perspective, there are
no tasks or interrupts anymore and basic software interfaces do not exist. This high-
est layer will be implemented only by one software module: the AUTOSAR RTE.

The RTE implements the connection of all communication paths and the ab-
straction of the runtime management. An AUTOSAR compliant application—
application software component—implements a software function. This application
software component consists out of a formal description in XML, the Software
Component Description (SWC-D) and the implementation in C source code. The
RTE itself will be generated with XML input data of the ECU configuration and all
the application software component descriptions. The API of the RTE depends on
the software components, their signal names and internal structure. The RTE is the
implementation of the virtual function bus (VFB), which is the core element of the
AUTOSAR architecture.

The VFB is the communication medium for all functions and provides sender/
receiver or client/server communication methods. In the world of the VFB, it is
not relevant where the function is executed and how the data are transported. The
“mapping” of functions to ECUs is part of the system design process—the result of
this process is the system description. The path for the signals will be defined by
the distribution of the application software components to real physical ECUs. For
the application it is irrelevant how the data are transported; this will be done by the
configured basic software and the RTE. A signal could be a direct result of a digital
input line or it could be a part of a CAN message (Fig. 4.17).

4.2.2.6 AUTOSAR Applications

AUTOSAR compliant applications are connected via the RTE to the basic software
platform. The API of the RTE provides many possibilities of designing an applica-
tion. In principle, the communication is running via “ports” and the activation of
runtime parts is done by the execution of the so-called “runnable entities”. The
communication ports can be of the type sender/receiver or client/server. The client/
server type represents the typical function call, which is needed to call, e.g. library
functions (e.g. mathematical functions). As already mentioned, the information
from where the RTE gets the data is part of the RTE configuration (which is part
of the ECU configuration). With this method it is possible to develop application
software and define later the final communication path for each input or output
signal. This is the basis for shifting application functions within the vehicle ECU
topology—one of the goals of AUTOSAR. An ECU is in future AUTOSAR systems
only one piece of the whole platform which host application software.

200 G. Feiter et al.

The requirements of the software components to their host environment are
described in a standardized formal format. This format, the software component
description, contains all information about the internal structure of the software
component: Communication ports are described with their interfaces as well as the
internal implementation details of the runtime parts. These runtime parts are called
runnable entities and part of the description is how they are executed respectively
by the event that triggers them. Trigger events can be set, e.g. by a cyclic clock or
by the reception of a signal (data-received event).

The goal of the RTE is to hide all lower software layers. As such RTE hides the
I/O driver layer and the communication layers as well as the access to the operating
system. The application developer shall not write source code with direct access
to counter, alarms and semaphores anymore. It is no longer necessary to define
tasks and control respectively configure the task activation in the OS configuration.
Instead, all runtime components of the applications will be represented by the run-
nable entities. It is the job of the RTE to manage all runnable entities, to map them
into OS tasks and hence to predefine parts of the OS configuration. With this ab-
straction, it is possible to design, develop and test application software components

Fig. 4.17  From model to implementation. (Elektrobit Automotive GmbH, AUTOSAR—RTE
User’s Guide)

2014 Higher Level Protocols

independent of the final architecture. The configuration of the RTE, with all the
architecture information, will be done later by the integration engineers (Fig. 4.18).

4.2.3 AUTOSAR Communication—An Example

4.2.3.1 Overview

The communication within an AUTOSAR architecture is running only across the
ports of the application software components. The characteristic of a port is defined
by its interface description. Available communication models are sender/receiver
model for the transport of signals and client/server model for the execution of (re-
mote) function calls. The receiver respectively the server can be on the same ECU
(the so-called intra-ECU communication) or on different ECUs (the so-called inter-
ECU communication). If the signals are shared across ECUs the data will be trans-
ported by the known automotive bus systems CAN, LIN and FlexRay.

With the abstraction of the communication channels, the bus protocols become
invisible for the application developers. These developers do not need to know the
details of the protocols or the register structure of the communication hardware mod-
ule. The CAN module will be controlled by the CAN driver, and the “packaging”
of the signals into CAN messages will be done by the COM module respectively by
the CAN interface. These standard modules will be partly configured by the system
configuration—there are communication parameters which have global validity. The
CAN identifier and the position of signals in CAN frames (FlexRay, etc.) for all
ECUs are the same and hence part of the system configuration. The message buffer
configuration of the CAN hardware (e.g. used in first in, first out (FIFO) mode, ring-

Fig. 4.18  Principle of a software component with ports and runnable entities (Elektrobit Automotive
GmbH, AUTOSAR—RTE User’s Guide)

202 G. Feiter et al.

buffer or other) is part of the ECU configuration and will be defined by an integration
expert who is integrating basic software with the application software.

4.2.3.2 Communication Path Through the Basic Software

AUTOSAR defines several modules which are taking part to send or receive a sig-
nal. On a first view, the modularity is complex and oversized. The advantages of the
clear separation of functionality seem to be bought very costly—if at each module
border, e.g. a buffer is needed to store the data temporarily. If each module is devel-
oped to be 100 % exchangeable the buffers may be needed, and if the modules are
bundled it is possible to apply optimizations across the borders with the result that
resources are not wasted. This can be done also if the configuration tooling has a
clear view to the overall configuration, knowing all the facts and hence be able to
provide an optimized configuration.

The following example shows how a signal will run through the AUTOSAR-
layered architecture from a sender to a receiver application software component.
The example refers to the CAN stack.

4.2.3.3 AUTOSAR Application

Within the application, information will be represented as a signal. For example, the
actual vehicle speed could be an 8-bit value from 0 to 255, representing the speed
in km/h. The port of the application, through which the signal is sent, is defined by
an interface containing an 8-bit data element. The interface and the data type are de-
fined within the software component description (XML). The generation of the RTE
will also generate a component header (C-code) where these data types are defined.
The RTE has two modes for the generation: In the contract phase, all c-headers with
all data definitions are generated which are needed by the application software com-
ponents (data types, constants, interface structures, function prototypes of the RTE
API, etc.). In the second phase, the RTE generation phase, also the implementation
of the functions will be generated. This is only possible if the complete path of the
signal is known, i.e. the receiver and the medium for transport are defined (another
software component on the same ECU, an output port of the microcontroller or
something on another ECU).

If the interface and data types are defined in the software configuration descrip-
tion, the port can be configured. The name of the port is later a part of the RTE-send-
API within the application software component. A runnable entity with the name
MyRunnable can call the send function of the port pPortname with the value Value
and data element Speed like shown in the following code-fragment:

2034 Higher Level Protocols

void MyRunnable (Rte_Instance self)
{
 static SpeedValueType Value = 0;
/* Compute Value */
…
/* Send Value */
 Rte_Send_pPortname_Speed(self, Value)
}4

The parameter self is the instance handle of the runnable entity which is calling this
function. This is needed to implement a methodology to use multiple instantiation
of one (code) identical application software component. It is similar to the “this”
pointer of a C++ class.

Calling the RTE send function will forward the value—depending on the con-
figuration—to the lower software layers of the AUTOSAR architecture.

4.2.3.4 AUTOSAR RTE

The RTE contract phase generates prototypes of the send function. The RTE genera-
tion phase will generate the content of the send function. The RTE generator knows
now the path of the signal. In this example, we assume that the signal shall be sent
to another software component on another ECU by using the CAN bus. Hence, the
RTE will forward the signal to the AUTOSAR COM module, which is responsible
for all external communication. At the “sender signal mapping” (part of the ECU
configuration), the interface data element of the port is mapped to a signal of the
COM module (in the example the signal with the name COM_SIGNAL_1). The
names can be different, but the data types have to be identical.

/* Rte_Send API function for DemoComponent */
Rte_StatusType Rte_Send_pPortname_Speed (SpeedType value)
{
 Status = Com_SendSignal (COM_SIGNAL_1, (void*) &value);
/* error handling, etc. */
}

If the receiver of this Speed-Signal would be on the same ECU, the implementation
of this function could write direct into the memory of the receiver component. If
this signal would be sent to a physical output port of the microcontroller, the I/O
hardware abstraction would be called. This makes visible how deep the implemen-
tation of the RTE depends on the configuration. The RTE is simply the C-code
representation of the configuration and unique for each ECU. In this example, the
path continues at the AUTOSAR COM module.

4 All used code examples are taken from the EB tresos AutoCore—they are only fragments and
not complete.

204 G. Feiter et al.

4.2.3.5 AUTOSAR COM

The COM module receives the signal from the RTE and executes the “packaging”
of the signal into a PDU. A PDU bundles several signals and will be forwarded to
the lower layers. In the opposite way, the COM receives PDUs, extracts the sig-
nals and triggers actions of the RTE (e.g. by calling COM-callback-functions which
fire an RTE event). The COM module implements many additional functions like
timeout monitoring, byte conversion, different notification mechanisms, different
transfer mode and so on. The lower levels of the communication stack do not know
“signals” any more—they only handle PDUs.

The C-code of the application function and the RTE was straightforward and
simple. The Com_SendSignal function of the COM module is very complex and
does not fit to one page of paper. The core functionality of this function is the
correct packaging of the signals into the PUD and the final triggering of the send
mechanism of lower layers. Depending on the signal type, the packaging is complex
or simple. A bool signal is easy; the correct placement of a byte array is more com-
plex. For all operations, it is important to keep the data consistency, and the access
shall be atomic. Hardware-specific library functions provide this atomic operation
by using microcontroller-specific atomic functions.

If the signals are placed at the correct position of the corresponding PDU, two
scenarios exist: If the PDU is send cyclic, it is sufficient to update the data—the
function returns without further actions. In another context of the COM module
all cyclic send operations will be processed independent, and the PDU will be sent
to the configured time slot respectively with the configured cycle time. If the user
defined, within the configuration, an instant sending of the signal or PDU, the lower
layers will be called direct. From the COM module the path continues to the PDU
router; the PduId for the message to be sent and a pointer to a complex data struc-
ture will be given to the transmit function:

PDU RouterPduR_ComTransmit(PduId, &pduinfo);

4.2.3.6 PDU Router

The job of the PDU router is to abstract the physical communication bus systems
from the higher software layers. By using static routing tables the PDU router trans-
fers PDUs from higher layers (e.g. the COM module) to lower layers (e.g. the CAN
interface) and vice versa. The static routing tables, e.g. for the Tx-PDUs, contain for
each PDU a target send function of the interface layer.

This is the first point in time where the concrete physical bus is relevant. The
example signal shall be sent via the CAN bus; hence, the PDU will be handed over
to the CAN interface. Defined by the configuration there exists a routing table
entry for this PDU with a send function pointer to the CAN interface function
CanIf_Transmit. The function PduR_ComTransmit itself is small and simple; it
collects some information out of the configuration data structures and forwards all

2054 Higher Level Protocols

to the correct interface function. In this example, it is called the CanIf_Transmit
function.

CanIf_Transmit(CanTxPduId, &pPduInfoPtr);

4.2.3.7 CAN Interface

The CAN interface is the last hardware-independent module in the AUTOSAR-layered
architecture; it has the job to connect the hardware-dependent CAN driver. The CAN
interface gets the PDUs from the above layers, adds the data the CAN driver needs
and implements buffering functions (if the hardware is occupied) and acknowledge-
ment functions for the send and receive signalling. Furthermore, the CAN interface
controls the operating modes of the CAN controller (sleep mode and error modes) and
signals changes of these modes to the higher layers (wake-up and bus-off).

The function CanIf_Transmit, which is called by the PDU router, takes the cor-
responding configuration for the given PduId and calls the CAN driver. The mini-
mal configuration-related information is, for example, on which CAN channel the
message shall be sent and which CAN ID shall be used. After assembling these
data the driver function is called. It is possible that the CAN interface is able to call
several drivers—e.g. if an external CAN module is used. In general, the on-chip
CAN modules will be supported by one single CAN driver; hence, the use case with
several CAN drivers is rare. The CAN driver function gets as parameter the unique
hardware transmit handle ( Hth) and a pointer to the data structure PduInfo, where
the CAN ID, DLC and a pointer to the payload data are stored.

Can_Write(CanIf_CTxPdus[txPduIndex].hth, &canPduInfo);

4.2.3.8 CAN Driver

The CAN driver is the last piece of the communication path of an AUTOSAR com-
pliant software platform. The driver initializes the register of the CAN module with
correct values and sets the right bits for actions or data transfer. The access to these
control and data registers will be provided by standardized functions to the higher
software layers. Another important functionality is the implementation of all inter-
rupt service routines Receive (Rx), Transmit (Tx), error, etc.). The driver receives
the data to be transmitted by the CAN interface, copies it into a hardware-mailbox
of the CAN controller and triggers the sending process. In the opposite direction,
the CAN driver signals the reception of a new CAN message via callback mecha-
nism, e.g. triggered by the receive interrupt.

Today’s CAN controller provides complex, intelligent mechanisms implemented
in hardware, for example, FIFO buffering or filtering mechanisms. Universal drivers,
easy to port and maintainable on various hardware platforms, use these hardware func-
tions not very often. For example, FIFO buffering implemented in software is not effi-

206 G. Feiter et al.

cient; respectively, the valuable resource CPU-time of the microcontroller is dissipated
in this case. With AUTOSAR, the hardware will become more comparable: With stan-
dardized interfaces, it is possible to do a benchmark test easier on the driver layer than
on the direct hardware layer. With this comparability on driver layer, it becomes more
important to have a highly optimized driver, which uses the available CAN control-
ler hardware mechanisms perfect to save other resources. This is also valid for other
protocol drivers, like the FlexRay driver, and of course for the peripheral drivers at all.

4.2.3.9 Conclusion

The AUTOSAR standard enables the possibility of microcontroller manufacturers
to provide highly optimized driver for their hardware. These drivers can be used by
the software vendors within their basic software platforms. With an overall accepted
AUTOSAR standard, the huge investment into the drivers and higher software layers
is safe—there is a chance to get a return on the investment. The CAN driver is now
a piece of a much bigger picture and standalone nothing special, but together with
the overall AUTOSAR concept, the model of a layered architecture makes sense.
A legacy software was able to access direct the lowest software layer—the drivers.
It prepares the data, implements all needed mechanisms and calls, e.g. Can_Write
direct. This direct access was implemented in the past ECU development very often.
Some developers already use quasi-standards for the driver layer to avoid double de-
velopment of the same functionality. Within the higher software layers some modules
were standardized, e.g. the OS was OSEK/VDX compliant. In future, it is needed to
get a high total reuse rate for each single piece of software. A standardized platform
like the described AUTOSAR platform gets more and more important for efficient
software development. The use of this platform pays off as soon as there are first
applications which can be completely reused for a second vehicle generation—not
to be developed again due to a “simple” hardware change (due to cheaper hardware
availability). Another contribution for cost reduction will be the reduction of integra-
tion effort for each single project: Due to standardized methods and increasing AU-
TOSAR knowledge in the overall development community, the integration will be
faster. This cost reduction will only take effect if the AUTOSAR standard is used by
many and every Tier 1 can use the same basic software platform for various OEMs.
The success or failure of this standardization of automotive software architecture is in
the hand of the AUTOSAR core members, especially the OEM. Only if all OEMs use
the AUTOSAR standard “as it is”, the overall AUTOSAR project will be successful.

4.3 Automotive Diagnostic Implementations on CAN

ISO 15765 Road vehicles—Diagnostic communication over Controller Area Net-
work (DoCAN) was initially developed in the late 1990s. The purpose of the docu-
ment set is to standardize the diagnostic communication-related OSI layers for the
purpose of diagnostic and normal message communication.

2074 Higher Level Protocols

ISO 15765 consists of the following parts, under the general title Road vehicles—
DoCAN:

• Part 1: General information and use case definition.
• Part 2: Transport protocol and network layer services.
• Part 3: UDS on CAN implementation (UDSonCAN; will be replaced by

ISO 14229-3 in 2010).
• Part 4: Requirements for emission-related systems.

Table 4.11 shows the relevant ISO and SAE standards as they are applicable to the
OSI layers and how they relate to the following categories (columns in Table 4.1):

• Vehicle manufacturer-enhanced diagnostics.
• Legislated On-Board Diagnostics (OBD).
• Legislated World-Wide Harmonized On-Board Diagnostics (WWH-OBD):

shows the legislator-approved ISO and Society of Automotive Engineers (SAE)
implementations.

The application layer (OSI 7) services for the:

• Vehicle manufacturer-enhanced diagnostics are defined in ISO 14229-3 UDSon-
CAN (former ISO 15765-3). This part of ISO 14229-1 is an implementation of
Part 1 onto CAN.

• Legislated OBD are defined in ISO 15031-5 Road vehicles—Communication
between vehicle and external equipment for emission-related diagnostics—
Part 5: emission-related diagnostic services. This standard is referenced by the
European Commission (EC) directives for EURO 4, 5, 6 (passenger cars and

A
pp

lic
ab

ili
ty

OSI
layers

Vehicle
manufacturer
enhanced di-

agnostics

Legislated OBD
(On-Board Diag-

nostics)

Legislated WWH-OBD
(World Wide Harmonized On-

Board Diagnostics)

Se
ve

n
la

ye
r a

cc
or

di
ng

 to
 IS

O
74

98
-1

 a
nd

IS

O
/IE

C
 1

07
31

Application
(layer 7)

ISO 14229-1
ISO 14229-3 ISO 15031-5 ISO 27145-3

ISO°14229-1
SAE J193
9, -71, -73

Presentation
(layer 6)

Vehicle
Manufacturer

specific
or ISO 22901

ODX

ISO 15031-2, -5, -
6,

SAE°J1930-DA,
SAE°J1979-DA,
SAE°J2012-DA

ISO 27145-2,
SAE °1930-DA,
SAE°J1979-DA,
SAE°J2012-DA,

SAE°J1939 Top Level

SAE J193
9 Top
Level

Session
(layer 5) ISO 14229-2 N/A

Transport
(layer 4)

ISO 15765-2
ISO°

15765-
2

ISO
15765-4

ISO 15765-4
/

ISO°15765-
2 ISO°

27145-
4

SAE J193
9-21

Network
(layer 3)

SAE J193
9-31

Data link
(layer 2) ISO 11898-1 ISO°

11898-
1, -2

ISO 15765-4
/

ISO°11898-
1, -2

SAE J193
9-21

Physical
(layer 1)

ISO°11898-2,
-3, -4, -5

SAE J193
9-15

Table 4.11  Enhanced and legislated OBD diagnostic specifications applicable to the OSI layers

208 G. Feiter et al.

light-duty vehicles (LDV)) and directives for EURO IV, V, VI (heavy-duty ve-
hicles (HDVs)). The technical equivalent standard of ISO 15031-5 is SAE 1979
E/E diagnostic test modes, which is referenced by the California Air Resources
Board (ARB) and Environmental Protection Agency (EPA) for the federal states.

• Legislated WWH-OBD is defined in ISO 27145 Road vehicles—Implementa-
tion of emission-related WWH-OBD communication requirements. This upcom-
ing standard is still under development (2010) and will long term replace the
ISO 15031-5/SAE J1979 standards. The legislators in Europe and the USA have
also approved several parts of SAE J1939 Recommended Practice for a Serial
Control and Communications Vehicle Network:
– SAE 1939-73, Application Layer—Diagnostics (includes DM—diagnostic

modes and data items: parameter group numbers (PGNs) and suspect param-
eter numbers (SPNs).

– SAE 1939-71, Vehicle Application Layer (includes normal in-vehicle com-
munication messages and data items: SPNs).

The presentation layer (OSI 6) services for the:

• Vehicle manufacturer-enhanced diagnostics are:
– either specific to the manufacturer or
– the manufacturer defines the diagnostic data according to ISO 22901, Road

vehicles—Open Diagnostic data eXchange (ODX).
• Legislated OBD are defined in:

– ISO 15031-2, Road vehicles—Communication between vehicle and exter-
nal equipment for emission-related diagnostics—Part 2: Guidance on terms,
definitions, abbreviations and acronyms with reference to the Digital Annex
of SAE°J1930-DA, electrical/electronic systems diagnostic terms, defini-
tions, abbreviations and acronyms (includes all standardized terms and
abbreviations).

– ISO 15031-5, Road vehicles—Communication between vehicle and external
equipment for emission-related diagnostics—Part 5: Emission-related diag-
nostic services with reference to the Digital Annex of SAE°J1979-DA E/E
diagnostic test modes (includes all standardized data items: parameter identi-
fiers (PIDs), test identifiers (TIDs), monitor identifiers (MIDs) and infoType
identifiers (ITIDs).

– ISO 15031-6, Road vehicles—Communication between vehicle and exter-
nal equipment for emission-related diagnostics—Part 6: with reference to the
Digital Annex of SAE°J2012-DA, diagnostic trouble codes (includes all stan-
dardized DTCs).

• Legislated WWH-OBD are defined in:
– ISO 27145-2 Road vehicles—Implementation of WWH-OBD communication

requirements—Part 2: Common data dictionary (CDD). This standard refer-
ences the same SAE Digital Annexes as ISO 15031 (emission-related OBD):

 ○ SAE°J1930-DA, electrical/electronic systems diagnostic terms, defini-
tions, abbreviations and acronyms (includes all standardized terms and
abbreviations).

2094 Higher Level Protocols

 ○ SAE°J1979-DA, E/E diagnostic test modes (includes all standardized data
items: PIDs, TIDs, MIDs, ITIDs).

 ○ SAE°J2012-DA, diagnostic trouble codes (includes all standardized DTCs).
 ○ SAE°J1939, top level (includes all standardized SPNs and PGNs).

The session layer (OSI 5) services are defined in ISO 14229-2 Road vehicles—
Unified diagnostic services (UDSs)—Part 2: Session layer services. This standard
provides a protocol-independent standardized service primitive interface between
application layer services and transport protocol/network layer services. This stan-
dard is not limited to the standards as listed in Table 4.11.

The transport protocol layer (OSI 4) and network layer (OSI 3) services are de-
fined in:

• ISO 15765-2 Road vehicles—DoCAN—Part 2: Transport protocol and network
layer services. This part of the standard is applicable to all three categories. The
legislated categories (OBD and WWH-OBD) have additional requirements de-
fined in ISO 15765-4, which are related to CAN identifier definition, transport
protocol timing, etc.

• SAE 1939-21, transport protocol is only applicable to WWH-OBD.
• SAE 1939-31, network layer is only applicable to WWH-OBD.

The data link layer (OSI 2) requirements are defined in:

• ISO 11898-1, Road vehicles—Controller area network (CAN)—Part 1: Data
link layer and physical signalling. This standard is applicable to all CAN net-
works independent of the upper OSI layer implementations.

• SAE 1939-21, Data link layer is only applicable to WWH-OBD.

The physical layer (OSI 1) requirements are defined in various parts of ISO 11898.

• Vehicle manufacturer-enhanced diagnostics can be implemented on any of the
following physical layer standards:
– ISO°11898-2, Road vehicles—Controller area network (CAN)—Part 2:

High-speed medium access unit (majority of automotive implementations).
– ISO°11898-3, Road vehicles—Controller area network (CAN)—Part 3: Low-

speed, fault-tolerant, medium-dependent interface.
– ISO°11898-4, Road vehicles—Controller area network (CAN)—Part 4:

Time-triggered communication.
• Legislated OBD is only allowed on ISO°11898-2, Road vehicles—Controller

area network (CAN)—Part 2: High-speed medium access unit.
• Legislated WWH-OBD is allowed on:

– ISO°11898-2, Road vehicles—Controller area network (CAN)—Part 2:
High-speed medium access unit.

– SAE J1939-15, Reduced Physical Layer, 250K bits/sec, Un-Shielded Twisted
Pair (UTP).

Figure 4.19 illustrates the most applicable application implementations utilizing the
DoCAN protocol.

210 G. Feiter et al.

Fig. 4.19  Diagnostic communication over CAN document reference according to OSI model

2114 Higher Level Protocols

4.3.1 OBDonCAN—ISO 15031 emissions-related OBD
on ISO 15765-4 DoCAN

With the introduction of ISO 15765 DoCAN as a legislator-approved emission-re-
lated system OBD data link the ISO 15031-5/SAE J1979 emission-related diagnos-
tic services/test modes have been slightly modified to benefit from the ISO 15765-
2 DoCAN transport protocol and network layer services standard. ECU response
messages, which used to be split into multiple response message for the non-CAN
protocols (SAE J1850, ISO 9141-2 and ISO 14230-4), are now assembled into one
response message, consisting of multiple CAN frames. The payload data of the
PDU are identical between all ISO 15031-5/SAE J1979-defined diagnostic mes-
sages (DMs).

The requirements and features of the OBDonCAN protocol can be summarized
as follows:

• Tester can request up to sic PIDs in a single functionally addressed request mes-
sage. Non-CAN protocols allow only for one PID in the request message.

• Either baud rate is allowed:
– 250 kBit/s
– 500 kBit/s

• A maximum of eight emission-related OBD ECUs is allowed to respond on ISO
15031-5 requests.

• Tester is only allowed to send functionally addressed request messages (11 bit
CAN ID = 0 × 7DF). Flow control from the tester and response messages from the
ECU use the physical request and response CAN IDs (Table 4.12).

• Vehicle manufacturer, which decides to use 29-bit CAN IDs on their CAN bus,
must use the 29-bit CAN IDs as specified in ISO 15765-4 (Table 4.13).

• The ISO 15765-2 DoCAN transport protocol and network layer services stan-
dard supports up to 4.095 bytes in a message. Reception of messages up to six (6)
or seven (7) data bytes is performed via reception of a unique N_PDU (Figs. 4.20
and 4.21).

• The ISO 15765-2 DoCAN multiple-frame message transfer. The flow control
mechanism allows the receiver to inform the sender about the receiver’s capa-
bilities. Since different nodes may have different capabilities, the flow control
sent by the receiver informs the sender about its capabilities. The sender shall
conform to the receiver’s capabilities (Fig. 4.22).

• The ISO 15765-2 DoCAN—Transport protocol and network layer services
timeout and performance requirements are more stringent in ISO 15765-4
(Table 4.14).

• The external test equipment shall use the following network layer parameter val-
ues for its FlowControl frames, sent in response to the reception of a FirstFrame
(Table 4.15 and 4.16).

212 G. Feiter et al.

4.3.2 UDSonCAN—ISO 14229-3

As mentioned earlier, UDSonCAN is originally based on ISO 15765-3. The revi-
sion of ISO 15765-3 currently under work at ISO will be published as ISO 14229-
3. The reason for the renumbering of the well-established standard in the automo-
tive industry is based on the fact that ISO 14229-1 UDS shall be implemented
on many different protocols and data links (CAN, FlexRay, Internet Protocol,
K-Line, etc.) according to the OSI model. Fig. 4.23 illustrates the implementation
concept of UDS.

ISO 14229-1 UDS specifies the DMs in a protocol-independent manner. This
document is currently under revision by the ISO TC22/SC2/WG1/TF5 diagnostic
requirements task force. All lessons learnt and implementation feedback from sys-
tem suppliers, vehicle manufacturers and tool suppliers is under implementation.

Table 4.12  11-bit legislated OBD/WWH-OBD CAN identifiers
CAN identifier Description
0 × 7DF CAN identifier for functionally addressed request messages sent by external

test equipment
0 × 7E0 Physical request CAN identifier from external test equipment to ECU #1
0 × 7E8 Physical response CAN identifier from ECU #1 to external test equipment
0 × 7E1 Physical request CAN identifier from external test equipment to ECU #2
0 × 7E9 Physical response CAN identifier from ECU #2 to external test equipment
0 × 7E2 Physical request CAN identifier from external test equipment to ECU #3
0 × 7EA Physical response CAN identifier from ECU #3 to external test equipment
0 × 7E3 Physical request CAN identifier from external test equipment to ECU #4
0 × 7EB Physical response CAN identifier ECU #4 to the external test equipment
0 × 7E4 Physical request CAN identifier from external test equipment to ECU #5
0 × 7EC Physical response CAN identifier from ECU #5 to external test equipment
0 × 7E5 Physical request CAN identifier from external test equipment to ECU #6
0 × 7ED Physical response CAN identifier from ECU #6 to external test equipment
0 × 7E6 Physical request CAN identifier from external test equipment to ECU #7
0 × 7EE Physical response CAN identifier from ECU #7 to external test equipment
0 × 7E7 Physical request CAN identifier from external test equipment to ECU #8
0 × 7EF Physical response CAN identifier from ECU #8 to external test equipment
While not required for current implementations, it is strongly recommended (and may be

required by applicable legislation) that for future implementations the following 11-bit CAN
identifier assignments be used:

0 × 7E0/0 × 7E8 for engine control module (ECM)
0 × 7E1/0 × 7E9 for transmission control module (TCM)

Table 4.13  Summary of 29-bit CAN identifier format—normal fixed addressing
CAN-Id ID bit position 28 24 23 16 15 8 7 0
Functional CAN IDId 0 × 18 0xDB TA SA
Physical CAN IDId 0 × 18 0xDA TA SA
Note: The CAN identifier values given in this table use the default value for the priority informa-

tion in accordance with ISO 15765-2

2134 Higher Level Protocols

ISO 14229-2 UDS specifies common session layer services to provide inde-
pendence between UDS (Part 1) and all network/transport protocols (ISO 15765-2
CAN, ISO/WD 10681-2 FlexRay, ISO/CD 13400-2 DoIP, ISO 14230-2 K-Line,
LIN, MOST, etc.).

Fig. 4.20  Example of a single-frame (SF) transmission

Fig. 4.21  Example of a multiple-frame transmission (segmentation and reassembly)

214 G. Feiter et al.

A common service primitive interface is specified between OSI layer 4 (Transport)
and layer 5 (Session) via the so-called service request/confirmation/indication primi-
tives. This interface allows seamless implementation of ISO°14229-1 UDSs with
any communication protocol titled “DoXYZ/CoXYZ” like ISO°15765 DoCAN—
diagnostic communication over controller area network, ISO°13400 DoIP—diag-
nostic communication over Internet protocol, ISO°10681 CoFlexRay—communica-
tion over FlexRay, ISO°14230 DoK-Line—diagnostic communication over K-line.

ISO 14229-3 UDSonCAN is based on a common document template for UDS
implementations on a specific protocol like ISO 15765 DoCAN. This specific part
of ISO 14229 specifies implementation requirements related to the following:

• The diagnostic services to be used for diagnostic communication over CAN.
• The server memory programming for all in-vehicle servers connected to a CAN

network with an external test equipment.

Fig. 4.22  Flow control (FC) mechanism

2154 Higher Level Protocols

It does not contain information related to any requirement for the in-vehicle CAN
bus architecture.

Figure 4.24 illustrates all referenced documents according to the OSI layers.

4.3.2.1 UDSonCAN Services Overview

The purpose of Table 4.17 is to reference all UDSs as they are applicable for an
implementation of UDSonCAN. The table contains the sum of all applicable ser-
vices. Certain applications using this part of ISO 14229 to implement UDSonCAN
may restrict the number of useable services and may categorize them in certain
application areas/diagnostic sessions (default session, programming session, etc.).

Table 4.14  Network layer timeout and performance requirement values
Parameter Timeout value Performance requirement value
N_As/N_Ar 25 ms –
N_Bs 75 ms –
N_Br – (N_Br + N_Ar) < 25 ms
N_Cs – (N_Cs + N_As) < 50 ms
N_Cr 150 ms –

Table 4.15  External test equipment network layer parameter values
Parameter Name Value Description
N_WFTmax WaitFrame

transmission
0 No FlowControl wait frames are allowed for

legislated OBD/WWH-OBD. The FlowCon-
trol frame sent by the external test equipment
following the FirstFrame of an ECU response
message shall contain the FlowStatus FS set
to 0 (ClearToSend), which forces the ECU to
start immediately after the reception of the
FlowControl frame with the transmission of the
ConsecutiveFrame(s)

BS BlockSize 0 A single FlowControl frame shall be transmitted
by the external test equipment for the duration
of a segmented message transfer. This unique
FlowControl frame shall follow the FirstFrame
of an ECU response message

STmin SeparationTime 0 This value allows the ECU to send Consecutive-
Frames, following the FlowControl frame sent
by the external test equipment, as fast as possible

If a reduced implementation of the ISO°15765-2 network layer is done in a legislated OBD/
WWH-OBD ECU, covering only the above-listed FlowControl frame parameter values (BS,
STmin), then any FlowControl frame received during legislated OBD/WWH-OBD communi-
cation and using different FlowControl frame parameter values as defined in this table shall be
ignored by the receiving legislated OBD/WWH-OBD ECU (treated as an unknown network
layer PDU)

216 G. Feiter et al.

Service Id Description
0 × 01 Request current powertrain diagnostic data

The purpose of this service is to allow access to current emission-related data
values, including analog inputs and outputs, digital inputs and outputs and
system status information. The request for information includes a parameter-
identification (PID) value that indicates to the on-board system the specific
information requested. PID specifications, scaling information and display
formats are included in SAE J1979-DA

0 × 02 Request powertrain freeze frame data
The purpose of this service is to allow access to emission-related data values in

a freeze frame. This allows expansion to meet manufacturer-specific require-
ments not necessarily related to the required freeze frame, and not necessar-
ily containing the same data values as the required freeze frame. The request
message includes a parameter identification (PID) value that indicates to
the on-board system the specific information requested. PID specifications,
scaling information and display formats for the freeze frame are included in
SAE J1979-DA

0 × 03 Request emission-related diagnostic trouble codes
The purpose of this service is to enable the external test equipment to obtain

“confirmed” emission-related DTCs
Send a Service 0 × 03 request for all emission-related DTCs. Each ECU that has

DTCs shall respond with one (1) message containing all emission-related DTCs.
If an ECU does not have emission-related DTCs, then it shall respond with a
message indicating no DTCs are stored by setting the parameter of DTC to 0 × 00

0 × 04 Clear/reset emission-related diagnostic information
The purpose of this service is to provide a means for the external test equipment

to command ECUs to clear all emission-related diagnostic information. This
includes the following:

• MIL and number of diagnostic trouble codes (can be read with Service 0 × 01,
PID 0 × 01)

• Clear the inspection/maintenance (I/M) readiness bits (can be read with Ser-
vice 0 × 01, PID 0 × 01)

• Confirmed diagnostic trouble codes (can be read with Service 0 × 03)
• Pending diagnostic trouble codes (can be read with Service 0 × 07)
• Diagnostic trouble code for freeze frame data (can be read with Service

0 × 02, PID 0 × 02)
• Freeze frame data (can be read with Service 0 × 02)
• Status of system monitoring tests (can be read with Service 0 × 01, PID 0 × 41
• On-board monitoring test results (can be read with Service 0 × 06)
• Distance travelled while MIL is activated (can be read with Service 0 × 01,

PID 0 × 21)
• Number of warm-ups since DTCs cleared (can be read with Service 0 × 01,

PID 0 × 30)
• Distance travelled since DTCs cleared (can be read with Service 0 × 01, PID

0 × 31)
• Engine run time while MIL is activated (can be read with Service 0 × 01, PID

0 × 4D)
• Engine run time since DTCs cleared (can be read with Service 0 × 01, PID

0 × 4E)
• Reset misfire counts of standardized test ID 0 × 0B to zero (can be read with

Service 0 × 06)

Table 4.16  Emission-related diagnostic service definition OBDonCAN (ISO 15031-5 on ISO
15765-4)

2174 Higher Level Protocols

Service Id Description
0 × 05 Request oxygen sensor monitoring test results

Service 0 × 05 is not supported for ISO 15765-4. The functionality of Service
0 × 05 is implemented in Service 0 × 06

0 × 06 Request on-board monitoring test results for specific monitored systems
The purpose of this service is to allow access to the results for on-board diag-

nostic monitoring tests of specific components/systems that are continuously
monitored (e.g. misfire monitoring for gasoline vehicles) and non-continuously
monitored (e.g. catalyst system)

0 × 07 Request emission-related diagnostic trouble codes detected during current or last
completed driving cycle

The purpose of this service is to enable the external test equipment to obtain
“pending” diagnostic trouble codes detected during current or last completed
driving cycle for emission-related components/systems. Service 0 × 07 is
required for all DTCs and is independent of Service 0 × 03. The intended use of
this data is to assist the service technician after a vehicle repair, and after clear-
ing diagnostic information, by reporting test results after a single driving cycle.
If the test failed during the driving cycle, the DTC associated with that test shall
be reported. Test results reported by this service do not necessarily indicate a
faulty component/system. If test results indicate a failure after additional driv-
ing, then the MIL will be illuminated and a DTC will be set and reported with
Service 0 × 03, indicating a faulty component/system. This service can always be
used to request the results of the latest test, independent of the setting of a DTC

0 × 08 Request control of on-board system, test or component
The purpose of this service is to enable the external test equipment to control the

operation of an on-board system, test or component
The data bytes will be specified, if necessary, for each test ID in SAE J1979-DA,

and will be unique for each test ID
Possible uses for these data bytes in the request message are as follows:
• Turn on-board system/test/component ON
• Turn on-board system/test/component OFF
• Cycle on-board system/test/component for ‘n’ seconds
Possible uses for these data bytes in the response message are as follows:
• Report system status
• Report test results

0 × 09 Request vehicle information
The purpose of this service is to enable the external test equipment to request

vehicle-specific vehicle information such as vehicle identification number
(VIN) and calibration IDs. Some of this information may be required by regu-
lations and some may be desirable to be reported in a standard format if sup-
ported by the vehicle manufacturer. InfoTypes are defined in SAE J1979-DA

0 × 0A Request emission-related diagnostic trouble codes with permanent status
The purpose of this service is to enable the external test equipment to obtain all

DTCs with “permanent DTC” status. These are DTCs that are “confirmed”
and are retained in the non-volatile memory of the server until the appropriate
monitor for each DTC has determined that the malfunction is no longer present
and is not commanding the MIL on

Service 0 × 0A is required for all emission-related DTCs. The intended use of this
data is to prevent vehicles from passing an in-use inspection simply by discon-
necting the battery or clearing DTCs with a scan tool prior to the inspection. The
presence of permanent DTCs at an inspection without the MIL illuminated is an
indication that a proper repair was not verified by the on-board monitoring system

Table 4.16 (continued)

218 G. Feiter et al.

4.3.3 Development Trends

4.3.3.1 History

Today two CAN-based protocols exist which are legislator-approved protocols for
emission-related OBD:

• ISO 15031-5 on ISO 15765-4 OBDonCAN
• SAE J1939

ISO 15031-5 is technically identical with SAE J1979 and defines specific services/
test modes to exchange data with the emission-related system in the vehicle. The
services support the request of current PID information, stored freeze frame data,
readout of DTC: current, pending and permanent status, clearing of DTC-related
data, readout of monitoring test results, request control of on-board system (test or
component) and request of vehicle information.

Service Id Description

Permanent DTCs shall be stored in non-volatile memory (NVRAM) and may not
be erased by any diagnostic services (generic or enhanced) or by disconnecting
power to the ECU

A confirmed DTC shall be stored as a permanent DTC no later than the end of the
ignition cycle and subsequently at all times that the confirmed DTC is com-
manding the MIL on (e.g. for currently failing systems but not during the 40
warm-up cycle self-healing process)

Permanent DTCs may be erased if:
• The OBD system itself determines that the malfunction that caused the per-

manent fault code to be stored is no longer present and is not commanding the
MIL on, e.g. three consecutive complete driving cycles with no malfunction,
or as specified by the OBD regulations

• After clearing fault information in the ECU (i.e. through the use of a diagnos-
tic service or battery disconnect):

• For monitors subject to minimum in-use ratio requirement, the diagnostic
monitor for the malfunction that caused the permanent DTC to be stored has
fully executed (i.e. has executed the minimum number of checks necessary
for MIL illumination) and determined the malfunction is no longer present,
e.g. one complete driving cycle with no malfunction or as specified by the
OBD regulations

• For monitors not subject to minimum in-use ratio requirement, the diagnostic
monitor for the malfunction that caused the permanent DTC to be stored has
fully executed (i.e. has executed the minimum number of checks necessary
for MIL illumination) and determined the malfunction is no longer present,
e.g. one complete driving cycle with no malfunction or as specified by the
OBD regulations and the vehicle has completed a standard driving cycle used
to increment the in-use general denominator

• Permanent fault codes may be erased when the ECU containing the perma-
nent DTCs is reprogrammed if the readiness status for all monitored compo-
nents and systems is set to “not complete” in conjunction with the reprogram-
ming event

Table 4.16 (continued)

2194 Higher Level Protocols

Fig. 4.23  Implementation concept of unified diagnostic services (UDSs)

Fig. 4.24  Overview of unified diagnostic services to the OSI layers

220 G. Feiter et al.

Diagnostic service name
(ISO 14229-1)

SID value SFID value Sub-function name

Diagnostic and communication management functional unit
DiagnosticSessionControl 0 × 10 0 × 01 defaultSession

0 × 02 programmingSession
0 × 03 extendedSession
0 × 04 safetySystemDiagnosticSession

ECUReset 0 × 11 0 × 01 hardReset
0 × 02 keyOffOnReset
0 × 03 softReset
0 × 04 enableRapidPowerShutDown
0 × 05 disableRapidPowerShutDown

SecurityAccess 0 × 27 0 × 01 requestSeed
0 × 02 sendKey

CommunicationControl 0 × 28 0 × 00 enableRxAndTx
0 × 01 enableRxAndDisableTx
0 × 02 disableRxAndEnableTx
0 × 03 disableRxAndTx

TesterPresent 0 × 3E 0 × 00 zeroSubFunction
SecuredDataTransmission 0 × 84 N/A N/A
ControlDTCSetting 0 × 85 0 × 01 on

0 × 02 off
ResponseOnEvent 0 × 86 0 × 00 stopResponseOnEvent

0 × 01 onDTCStatusChange
0 × 02 onTimerInterrupt
0 × 03 onChangeOfDataIdentifier
0 × 04 reportActivatedEvents
0 × 05 startResponseOnEvent
0 × 06 clearResponseOnEvent
0 × 07 onComparisonOfValues

LinkControl 0 × 87 0 × 01 verifyModeTransitionWithFixed-
Parameter

0 × 02 verifyModeTransitionWith-Specific-
Parameter

0 × 03 transitionMode
Data Transmission Functional Unit
ReadDataByIdentifier 0 × 22 – N/A
ReadMemoryByAddress 0 × 23 – N/A
ReadScalingDataByIdentifier 0 × 24 – N/A
ReadDataByPeriodicIdentifier 0 × 2A – N/A
DynamicallyDefineData-

Identifier
0 × 2C 0 × 01 defineByIdentifier

0 × 02 defineByMemoryAddress
0 × 03 clearDynamicallyDefinedDataIdenti-

fier
WriteDataByIdentifier 0 × 2E – N/A
WriteMemoryByAddress 0 × 3D – N/A
Stored data transmission functional unit
ReadDTCInformation 0 × 19 0 × 01 reportNumberOfDTCByStatusMask

Table 4.17  Overview of applicable ISO 14229-1 unified diagnostic services and data ranges

2214 Higher Level Protocols

Diagnostic service name
(ISO 14229-1)

SID value SFID value Sub-function name

0 × 02 reportDTCByStatusMask
0 × 03 reportDTCSnapshotIdentification
0 × 04 reportDTCSnapshotRecordByDTC-

Number
0 × 05 reportDTCSnapshotRecordByRecord-

Number
0 × 06 reportDTCExtendedDataRecordBy-

DTCNumber
0 × 07 reportNumberOfDTCBySeverityMas-

kRecord
0 × 08 reportDTCBySeverityMaskRecord
0 × 09 reportSeverityInformationOfDTC
0 × 0A reportSupportedDTC
0 × 0B reportFirstTestFailedDTC
0 × 0C reportFirstConfirmedDTC
0 × 0D reportMostRecentTestFailedDTC
0 × 0E reportMostRecentConfirmedDTC
0 × 0F reportMirrorMemoryDTCByStatus-

Mask
0 × 10 reportMirrorMemoryDTCExtend-

edDataRecordByDTCNumber
0 × 11 reportNumberOfMirrorMemoryD-

TCByStatusMask-
0 × 12 reportNumberOfEmissions-Relate-

dOBDDTCByStatusMask
0 × 13 reportEmissionsRelatedOBD-

DTCByStatusMask
0 × 14 reportDTCFaultDetectionCounter
0 × 15 reportDTCWithPermanentStatus
0 × 41 reportWWHOBDNumberOfDTCBy-

MaskRecord
0 × 42 reportWWHOBDDTCByMaskRecord
0 × 55 reportWWHOBDDTCWithPerma-

nentStatus
ClearDiagnosticInformation 0 × 14 – N/A
Input/output control functional unit
InputOutputControlByIdentifier 0 × 2F – N/A
Remote activation of routine functional unit
RoutineControl 0 × 31 0 × 01 startRoutine

0 × 02 stopRoutine
0 × 03 requestRoutineResults

Upload/download functional unit
RequestDownload 0 × 34 – N/A
RequestUpload 0 × 35 –
TransferData 0 × 36 –
RequestTransferExit 0 × 37 –

Table 4.17 (continued)

222 G. Feiter et al.

The ISO 15031-5 diagnostic services are very specific to emission-related OBD
systems. The automotive industry has developed the so-called enhanced diagnostic
protocols like ISO 14230 Keyword Protocol 2000 and SAE J2190 E/E Enhanced
diagnostic test modes to be able to diagnose non-emission-related OBD systems as
well as the functionality beyond the requirements included in the legislation.

At the time when the emission-related systems of the HDVs were referenced in
the legislation (with EURO IV), the SAE J1939 protocol became an allowed data
link in addition to ISO 15031-5. Both protocols support the CAN bus but are very
different in their messages and functionality.

Since that time the HDV manufacturers have two choices to fulfil the emission-
related OBD regulations. Two different diagnostic tester implementations are re-
quired to diagnose the HDV’s emission-related OBD systems.

4.3.3.2 Requirements of the Legislators

The passenger car industry has harmonized the requirements for emission-related
systems in the vehicle (connector, diagnostic services, trouble codes, communica-
tion protocol, etc.) during the past two decades.

The HDVs are using two alternative communication protocols:

• ISO 15765-4
• SAE J1939/73

Both will exist in parallel for some period of time.
The United Nations Economic Commission for Europe (UNECE) World Fo-

rum for Harmonization of Vehicle Regulations (WP.29) decided to develop a global
technical regulation (GTR) concerning emission-related OBD systems for HDVs
and engines (UNECE GTR No 5—Technical requirements for OBD systems for
road vehicles). Consequently, a single OBD protocol is required to fulfil the com-
munication requirements of this future regulation.

The emissions control systems on highway vehicles are not the only systems
with OBD capability. The non-standardized diagnostics in all other systems in the
vehicle cause negative implications on maintenance and inspection procedures.
This was one of the driving factors of the WWH-OBD working group to design a
modular structure of the GTR such that further OBD functionalities for, e.g. safety-
related systems could be added any time in the future when appropriate.

The GTR consists of a base module (general requirements) and an emission-
related system module.

4.3.3.3 ISO 27145 WWH-OBD

WWH-OBD is one of the objectives of the GTR No 5. A single protocol solution is
highly desired by the legislators to be developed by the automotive industry.

2234 Higher Level Protocols

ISO TC22/SC3/WG1 Data Communication, SAE and JSAE (Japanese SAE) set-
up a joint task force to define the principles and concept for a future single protocol
solution. This activity started in early 2003 with a document from the WWH-OBD
informal group called:

GENERAL PERFORMANCE CRITERIA FOR HDV EMISSION-RELATED
OBD

Communication protocols
WWH-OBD meeting 6/7 November 2002—DECISION 10
This document included requirements related to the following topics:

1. Needs for a common HDV OBD Communication Protocol:
– Today, there exist two competing communication protocols for the applica-

tion of OBD to HDVs—SAE J1939 and ISO 15765.
– In the short term, it seems that both communication standards will exist in

parallel but the primary aim must be to have one common protocol, which
would be to the benefit of all sectors operating under the umbrella of “the
automotive industry”.

2. Needs for the legislator:
– The scope of the standard must include both current chassis control and emis-

sion control systems and must provide for the seamless addition of further
control systems (both simple and complex) as the market develops.

– The standard must offer the capability to react to the wishes of the legislator
in a quick and effective manner. This particularly encompasses the following
likely future requests:
a. the standard should be extendable to passenger cars and light commercial

vehicles and
b. the standard should offer the ability to retrieve the data necessary for in-

use compliance testing, e.g. to identify vehicle operation in/out of a “Not
to Exceed” (NTE) zone (if NTE remains a valid concept in the future),
cumulative time/distance travelled in/out of an NTE zone, operation of
auxiliary control devices, torque/load readings for engine testing or to
enable the use of portable emission measurement systems (PEMS).

– The standard must include the possibility for the application of wireless com-
munication between the OBD system and a remote interrogation unit.

– The standard must offer the ability to retrieve in-use OBD performance data,
e.g. OBD monitoring frequency, vehicle operation frequency and time of
operation.

– Clear and precise specifications within the communication protocol, with
minimal variations that will result in a minimum chance of difference in inter-
pretation that could lead to vehicles being produced that are unable to com-
municate fully with a generic scan tool (note: some vehicles may not actually
utilize hard-wired scan-tools in the future).

– Availability of test equipment that can verify that communication protocol
specifications are being adhered to on production vehicles.

3. Needs for inspection and maintenance (I/M) testing (roadworthiness testing or
roadside spot-checks):

224 G. Feiter et al.

– Clear identification of the class of each malfunction, i.e.:
 ○ Hierarchical safety-related malfunctions.
 ○ Malfunctions that result in pollutant emissions exceeding a pre-set legisla-

tive threshold.
 ○ Malfunctions that do not result in pollutant emissions exceeding a pre-set

legislative threshold, but which could result in pollutant emissions exceed-
ing a pre-set legislative threshold at some time soon.

 ○ Malfunctions that do not need to be covered by legislation but are neces-
sary for an efficient diagnostic and maintenance function.

– Ability to communicate ‘readiness’ data to confirm if the vehicle is ready to
be inspected and has not had its fault memory cleared recently 1 (e.g. key
starts/warm-up cycles/distance travelled since memory cleared, how many
diagnostics have run and been completed, ability to see if a previously active
fault has been cleared by a scan tool but not fixed).

– Ability to transmit roadworthiness-related fault information (e.g. malfunction
indicator (MI) status and MI commanding ‘on’ fault codes, odometer read-
ings, distance travelled with MI on, emission “severity/priority” of fault).

– Ability to transmit vehicle identification information 1 (e.g. vehicle identifi-
cation number (VIN), software version, odometer reading, engine ID, trans-
mission ID, vehicle weight rating/class information).

– Ability to help combat tampering 1 (e.g. unauthorized clearing of diagnostic
information).

– Ability to help identify tampered or corrupted software at the time of
inspection.

– Ability to help identify (potentially) tampered hardware at the time of
inspection.

– Ability to identify and retrieve roadworthiness-related information from all
electronic control modules (ECM, TCM, etc.) through a single process and by
wireless connection.

– Compatibility with I/M equipment ([connector], hardware, software etc.).
– Additional specific inspection needs (e.g. mode $ 08-type commands for

smoke opacity test etc.).
– Compatibility with potential future telematics-based vehicle systems, e.g.

bluetooth, IEEE 802.11b (or later specification).

4. Needs for the technician (i.e. repairer, replacement part maker, tool maker, etc.)
are as follows:
– Data update rates (e.g. how fast can real-time sensor data be displayed for

technicians, communication speed, ability to obtain multiple PID’s with sin-
gle requests etc.).

– Access to established and extendable to non-established chassis control
related fault codes and real-time data in a standardized manner.

– Mode $ 06 test results (data available in a standardized, understandable for-
mat without need to refer to a service book).

2254 Higher Level Protocols

– Freeze frame data (e.g. number of frames supported, data available in the
frame, usefulness of data in the frame to technicians).

– Ability to clear memory and exercise monitors (e.g. post repair) to reset readi-
ness codes for inspection and validation of repairs.

– Cost/compatibility/upgrade potential for new and existing service tools.

4.3.3.4 The WWH-OBD Task Force also Established Requirements Related
to Diagnostics and Flash Programming of ECUs.

Objectives agreed by the task force:

1. To achieve the timetable proposed and have a DIS available by January 2007.
2. To enable the separation of vehicle-level technology and communication stan-

dards from the tool-level technology.
3. Single ‘off-board’ protocol with a single set of services to communicate at a

minimum:
– OBD legislated data
– Enhanced diagnostic data
– Reprogramming

4.3.3.5 Decisions on How to Proceed with the Development Work:

1. The solution must encompass:
– OBD legislated diagnostics
– Enhanced vehicle diagnostics
– Reprogramming functionality

2. There is no desire to mandate something different for OBD legislated diagnostics
than that which is used for other vehicle data access.

3. The benefits this brings are as follows:
– Consistent use of services in development will improve the quality of the

protocol implementation.
– Consistent use of services will alleviate many of the currently identified com-

munication and data-formatting problems.
– Reduced development cost per vehicle module.
– De-proliferation of protocols and service sets across the automotive industry

will result in fewer implementation issues.
4. The combination of these functions will pave the way for the extension of OBD

diagnostics across the whole vehicle and vehicle type (HDV, medium-duty vehi-
cle (MDV) and LDV).

5. Existing automotive and IT standards will be recognized and analysed in deter-
mining the final solution:
– ISO 14229-1 (UDSs), ISO 15765-x and SAE J1939-x.

226 G. Feiter et al.

– Analysis of current IT standards, e.g. for transport and network protocols to
current automotive standards.

6. Recognize the need for common services and data:
– Analyse existing data definitions from SAE J1939–21/71/73 and ISO

15031–5/6.
– Re-use OBD legislated definitions.
– Explore the impact of hierarchical DTC’s.

7. Our vision of a ‘Single Solution’ encompasses the need for CAN, wireless and
wired Ethernet.

8. This vision provides a modular, structured methodology to achieve and support
wireless communications for OBD.

9. Our view of a ‘Single Solution’ across all vehicles is as follows:
– A single communication protocol for all off-board tester applications (e.g.

OBD, enhanced and reprogramming).
– A single set of services to retrieve and download information.
– A single set of OBD legislated data.
– A framework for the consistent ‘look and feel’ for the presentation of OBD

legislated data to the user.

Based on above-mentioned objectives and requirements from all parties involved an
implementation concept based on existing standards was developed and published
09/2006.

ISO/PAS 27145 Road vehicles—Implementation of WWH-OBD communica-
tion requirements consisting of four parts were developed:

• Part 1: General information and use case definition.
• Part 2: Common emission-related data dictionary.
• Part 3: Common message dictionary.
• Part 4: Connection between vehicle and test equipment.

Part 1 specifies three main use cases:

• Use case 1: Information about the emission-related OBD system state—The pur-
pose of this information package is to provide the minimum data set specified
as necessary by the WWH-OBD GTR to obtain the vehicle or engine state with
respect to its emission performance as specified in the WWH-OBD GTR. A typi-
cal use of this information package may be a ‘roadside check’ performed by an
enforcement authority.

• Use case 2: Information about active emission-related malfunctions—The pur-
pose of this information package is to provide access to the expanded data set
specified as necessary by the WWH-OBD GTR to determine vehicle readiness
and characterize the malfunctions detected by the OBD system. A typical use of
this information package may be a periodic inspection by enforcement authori-
ties.

• Use case 3: Information related to diagnosis for the purpose of repair—The pur-
pose of this information package is to provide access to all OBD data required by
the WWH-OBD GTR and available from the OBD system. A typical use of this

2274 Higher Level Protocols

information package may be the diagnostic servicing of the vehicle or system in
a workshop environment.

Part 2: Common emission-related data dictionary defines all regulatory emission-
related data elements of ISO/PAS 27145. A new part may be added in the future
upon availability of new legislated WWH-OBD GTR modules. The data elements
are used to provide the external test equipment with the diagnostic status of the
emission-related system in the vehicle. All data elements are communicated with
the UDSs as defined in ISO/PAS 27145-3 common message dictionary. Data ele-
ments are DTCs, PIDs, MIDs, TIDs/routine identifiers (RIDs) and ITIDs.

Part 2 defines three (3) different sets of data elements:

• A legacy (backward compatible) data set as defined in SAE J1939-71/-73 and
ISO 15031-5/SAE J1979, ISO 15031-6/SAE J2012.

• A unified data set (new data definition according to ISO/PAS 27145-2).
• A manufacturer data set (defined by manufacturer).

Part 3: Common message dictionary definition of ISO/PAS 27145 specifies the
implementation of a subset of UDSs as specified in ISO 14229-1. The diagnostic
services are used to communicate all diagnostic data as defined in “ISO/PAS 27145-
2 Common emissions-related data dictionary”.

The subset of UDSs derives from the requirements stated in the WWH-OBD
GTR. The common message set defined in this part is independent of the underlying
transport, network, data link and physical layer. This document does not specify any
requirements for the in-vehicle network architecture.

Part 3 includes a superset of a modified version of ISO 14229-1. Several sig-
nificant modifications are included in this part in order to support the data set of
SAE J1939, ISO 15031-5/SAE J1979 and ISO 15031-6/SAE J2012.

Part 4: Connection between vehicle and test equipment of ISO/PAS 27145 de-
fines the requirements to successfully establish, maintain and terminate communi-
cation with a vehicle that implements the requirements of the WWH-OBD GTR.
This requires plug and play communication capabilities of the vehicle as well as any
test equipment that intends to establish communication with a vehicle. This docu-
ment details all the OSI layer requirements to achieve this goal.

An ISO Publicly Available Specification (PAS) requires a worldwide ballot after
3 years of publication. The outcome of the ballot was to convert and establish ISO
27145 as an international standard with the addition of a Part 5 conformance test
and Part 6 external test equipment.

Figure 4.25 illustrates all referenced documents according to the OSI layers.
Two protocols are supported:

• ISO 15765 DoCAN (diagnostic communication over CAN).
• ISO 13400 DoIP (diagnostic communication over Internet protocol).

ISO 27145-1 defines the general structure of the documents and the WWH-OBD
applicable use cases as specified in the PAS.

228 G. Feiter et al.

Fig. 4.25  Overview of all referenced UDS or rather WWH-OBD standards

2294 Higher Level Protocols

ISO 27145-2 common data dictionary references the following documents con-
taining emission-related data definitions:

• SAE°J1930-DA, electrical/electronic systems diagnostic terms, definitions, ab-
breviations and acronyms (includes all standardized terms and abbreviations).

• SAE°J1979-DA E/E diagnostic test modes (includes all standardized data items:
PIDs, TIDs, MIDs, ITIDs).

• SAE°J2012-DA, diagnostic trouble codes (includes all standardized DTCs).
• SAE°J1939, top level (includes all standardized SPNs and PGNs).

ISO 27145-3 common message dictionary specifies the implementation of a subset
of ISO 14229-1 UDS diagnostic services.

ISO 14229-2 UDS session layer services define the standardized service primi-
tive interface between the OSI layer 5 (session) and OSI layer 4 (transport). Through
this interface the implementation of the UDS diagnostic services is independent of
the underlying communication protocols (CAN, IP). This is important when the
vehicle manufacturer is required to transition from CAN to Internet protocol based
on future legislation.

Table 4.18 provides an overview of the ISO 15031-5 OBD services and the map-
ping to ISO 27145-3 (ISO 14229-1 UDS) diagnostic services and associated sub-
functions and data ranges.

4.4 SAE J1939

SAE J1939 is a set of standards for both in-vehicle normal ECU to ECU com-
munication protocol and diagnostic communication protocol. The standards cover
relevant OSI layers and specify physical link (cable), how the messages are built
up, NMT, in-vehicle communication with data items, diagnostic communication
with DMs and data, name claiming and conformance test specification. Parts of the
set of standards are used in heavy-duty and medium-duty applications worldwide.

When SAE J1939 was introduced, CAN was not mentioned but it was soon
included. First, the -71 layer was introduced for normal in-vehicle communication
and later the J1939-73 diagnostic layer was introduced.

The protocol is used in HDVs including trailers, agricultural machines, off-road
equipment, boats and stationary engines and it has been discussed for residential
vehicles also. The main reason is that the protocol has been implemented in engine
control modules (ECMs) for medium-duty/heavy-duty diesel engines as a standard.

The situation in the USA is that a truck may be a chassis from an OEM, with an
engine from an engine manufacturer and a transmission from a transmission sup-
plier. It is possible for the customer of the vehicle to equip the vehicle with systems
from different suppliers. A fleet manager maybe have different truck brands (e.g.
Navistar, Volvo and Freightliner) but wants to keep the same engine manufacturer
(e.g. Cummings) for the complete fleet and the same for the different systems, e.g.
transmission and brakes.

230 G. Feiter et al.

O
B

D
 S

ID
IS

O
 1

50
31

-5
/S

A
E

J1
97

9
se

rv
ic

e
W

W
H

-O
B

D
 S

ID
, S

FI
D

IS
O

 2
71

45
-3

/IS
O

 1
42

29
-1

U

D
S

se
rv

ic
e

na
m

e
IS

O
 2

71
45

-3
/IS

O
 1

42
29

-1
 su

b-
fu

nc
-

tio
n

na
m

e/
da

ta
 ra

ng
e

(a
ll

da
ta

 a
re

 re
f-

er
en

ce
d:

 S
A

E
J1

97
9-

D
A

, J
20

12
-D

A
)

0 ×
 01

R
eq

ue
st

 C
ur

re
nt

 p
ow

er
tra

in

di
ag

no
st

ic
 d

at
a

0 ×
 22

, 2
-b

yt
e

D
ID

 (3
 P

ID
s m

ax
.)

R
ea

dD
at

aB
yI

de
nt

ifi
er

PI
D

s:
 0

xF
40

0–
0x

F5
FF

 (l
ow

by

te
 =

 P
ID

#)
0 ×

 02
R

eq
ue

st
 p

ow
er

tra
in

 fr
ee

ze
 fr

am
e

da
ta

0 ×
 19

, 0
 ×

 04
, 3

 b
yt

e
D

TC
#,

Fr

am
e#

 0
 ×

 19
, 0

 ×
 06

, 3
 b

yt
e

D
TC

#,
 E

xt
R

ec
or

d#

R
ea

dD
TC

In
fo

rm
at

io
n

re
po

rtD
TC

Sn
ap

sh
ot

R
ec

or
dB

yD
TC

-
N

um
be

r r
ep

or
tD

TC
Ex

te
nd

ed
D

a-
ta

R
ec

or
dB

yD
TC

N
um

be
r

0 ×
 03

R
eq

ue
st

 e
m

is
si

on
-r

el
at

ed

di
ag

no
st

ic
 tr

ou
bl

e
co

de
s

0 ×
 19

, 0
 ×

 42
, F

G
ID

, D
TC

St
at

us
-

M
as

k,
 D

TC
Se

ve
rit

yM
as

k
R

ea
dD

TC
In

fo
rm

at
io

n
re

po
rtW

W
H

O
B

D
D

TC
B

yM
as

kR
ec

or
d

FG
ID

 =
 F

un
ct

io
na

lG
ro

up
 ID

 (e
.g

.
em

is
si

on
s,

sa
fe

ty
, …

)
0 ×

 04
C

le
ar

/re
se

t e
m

is
si

on
-r

el
at

ed

di
ag

no
st

ic
 in

fo
rm

at
io

n
0 ×

 14
, g

ro
up

O
fD

TC
C

le
ar

D
TC

In
fo

rm
at

io
n

gr
ou

pO
fD

TC
 =

 3
by

te
 D

TC
 0

xF
FF

FF
F

fo
r a

ll
D

TC
s

0 ×
 05

R
eq

ue
st

 o
xy

ge
n

se
ns

or
 m

on
ito

rin
g

te
st

 re
su

lts
0 ×

 22
, 2

-b
yt

e
D

ID
 (M

ID
)

R
ea

dD
at

aB
yI

de
nt

ifi
er

M
ID

s:
 0

xF
60

0–
0x

F7
FF

 (l
ow

by

te
 =

 T
ID

of

 m
on

ito
r)

0 ×
 06

R
eq

ue
st

 o
n-

bo
ar

d
m

on
ito

rin
g

te
st

re

su
lts

 fo
r s

pe
ci

fic
 m

on
ito

re
d

sy
st

em
s

0 ×
 22

, 2
-b

yt
e

D
ID

 (M
ID

)
R

ea
dD

at
aB

yI
de

nt
ifi

er
M

ID
s:

 0
xF

60
0–

0x
F7

FF
 (l

ow

by
te

 =
 O

B
D

M
ID

#)

0 ×
 07

R
eq

ue
st

 e
m

is
si

on
-r

el
at

ed
 D

TC
s

de
te

ct
ed

 d
ur

in
g

cu
rr

en
t o

r l
as

t
co

m
pl

et
ed

 d
riv

in
g

cy
cl

e

0 ×
 19

, 0
 ×

 42
, F

G
ID

, D
TC

St
at

us
-

M
as

k,
 D

TC
Se

ve
rit

yM
as

k
R

ea
dD

TC
In

fo
rm

at
io

n
re

po
rtW

W
H

O
B

D
D

TC
B

yM
as

kR
ec

or
d

FG
ID

 =
 F

un
ct

io
na

lG
ro

up
 ID

 (e
.g

.
em

is
si

on
s,

sa
fe

ty
, …

)
0 ×

 08
R

eq
ue

st
 c

on
tro

l o
f o

n-
bo

ar
d

sy
st

em
, t

es
t o

r c
om

po
ne

nt
0 ×

 31
, 0

 ×
 01

, 2
-b

yt
e

R
ID

R
ou

tin
eC

on
tro

l
st

ar
tR

ou
tin

e,
 R

ou
tin

e
ID

 (e
.g

. 0
 ×

 01
,

0 ×
 02

, …
) 2

-b
yt

e
R

ID
 (l

ow

by
te

 =
 T

ID
 o

f s
er

vi
ce

 0
 ×

 08
)

0 ×
 09

R
eq

ue
st

 v
eh

ic
le

 in
fo

rm
at

io
n

0 ×
 22

, 2
-b

yt
e

D
ID

 (I
TI

D
)

R
ea

dD
at

aB
yI

de
nt

ifi
er

IT
ID

s:
 0

xF
80

0–
0x

F8
FF

 (l
ow

by

te
 =

 In
fo

Ty
pe

#)
0 ×

 0A
R

eq
ue

st
 e

m
is

si
on

-r
el

at
ed

 D
TC

s
w

ith
 p

er
m

an
en

t s
ta

tu
s

0 ×
 19

, 0
 ×

 55
, F

G
ID

R
ea

dD
TC

In
fo

rm
at

io
n

re
po

rtW
W

H
O

B
D

D
TC

W
ith

Pe
rm

an
en

t-
St

at
us

 F
G

ID
 =

 F
un

ct
io

na
lG

ro
up

 ID

(e
.g

. e
m

is
si

on
s,

sa
fe

ty
, …

)

Ta
bl

e
4.

18
  M

ap
pi

ng
 e

m
is

si
on

-r
el

at
ed

 sy
st

em
 O

B
D

 w
ith

 W
W

H
-O

B
D

 G
TR

2314 Higher Level Protocols

SAE J1939-71 makes the in-vehicle communication between the different ECUs
possible, no or small (e.g. tuning of ECU addresses) adaptions are needed.

The ECUs are more or less “of the shelf”.
The same situation for passenger car is that every OEM sets up his own network

protocol and all ECUs must be adapted to co-exist in the vehicle.

4.4.1 Structure of SAE J1939

The structure of SAE J1939 is the same as the OSI layers. The following stan-
dards will be focused on in this document: SAE J1939-21, SAE J1939-71 and SAE
J1939-73.

The lowest layers (SAE J1939-11 and SAE J1939-15) are almost similar to ISO
11898, i.e. -15 specifies an unshielded twisted cable and -11 specifies a shielded
twisted cable and the CAN bus speed is currently 250 kbps and the CAN identifier
length is 29 bits.

SAE J1939 is working on extending the CAN bus speed to 500 kbps.
SAE J1939-13 defines the connector, which is a nine-pin round Deutz connector

with two pins for CAN and two pins for SAE J1708 which is the physical layer of
SAE J1587. It is not allowed in the USA to use the SAE J1962 (“ISO” or D-shaped)
connector together with SAE J1939 protocol. This specific requirement does not
exist in Europe and Volvo truck and Volvo bus use SAE J1939 together with the
D-shaped connector.

The usage of J1939 is for controlling vehicle or engine application. SAE J1939-
71 is commonly used in heavy-duty applications for at least powertrain applica-
tions. Some OEMs use it also for complete vehicle applications.

There is an in facto agreement in the USA to use SAE J1939-73 for legislated
OBD diagnostics, and some OEMs use the same protocol as an enhanced protocol
for the complete vehicle and have implemented services for software download and
everything which is needed for workshop fault tracing and repair.

Trucks in the rest of the world usually have adopted an ISO protocol, usually ISO
14230 (“Keyword Protocol (KWP) 2000 on CAN”) or ISO 15765-3 (also known as
ISO 14229-3 or DoCAN).

The ISO protocol does not interfere with J1939-71 which is used for vehicle
control.

It is not allowed to implement both SAE J1939-73 and ISO 15765-4 for legislat-
ed OBD protocol. The reason is that independent scan tools will utilize an algorithm
to detect as to which type of legislated OBD protocol is implemented in the vehicle.
The algorithm is based on scanning through all allowed protocols and the tool stops
when it has detected the first protocol.

It would be too advanced for the tool to try to use two completely different pro-
tocols and combine the data.

232 G. Feiter et al.

The SAE J1939-73 is allowed for legislated OBD communication for US 10
emission legislation, Euro IV, Euro V and the upcoming Euro VI emission legisla-
tions.

Volvo is probably the only OEM in Europe which has implemented SAE J1939-
73 as legislated OBD protocol for Euro IV and Euro V emission legislations. The
company will transfer to ISO protocols in the future (Table 4.19).

4.4.2 SAE J1939-21 Data Link Layer

The SAE J1939-21 defines how the PDU is built up.
A SAE J1939 PDU consist of 3 bit priority (P), 1 reserved bit (R), 1 bit for data

page (DP), 8 bit for PDU format (PF), 8 bit for PDU specific (PS) and 8 bit for
source address (SA) plus up to 64 bit of data (8 byte) (Fig. 4.26).

• The priority bits set the priority during arbitration and 0 is the highest priority,
7 the lowest. A recommended priority is assigned to all PGNs listed in the stan-
dard, but the receiver should ignore the priority bits; this is due to the fact that
the priority may be changed.

• Reserved bit is not the CAN reserved bit, but reserved for future expansion of the
standard.

• Data page: All PGNs must be assigned to page 0 before page 1 is used.
• PDU format, PF, is used to determine the PGN.
• PDU specific, PS, can be either the destination address or a group extension. If

the PS is below 240 then it is a destination address, otherwise it is a group exten-
sion.
– Destination address: It specifies the ECU (or address) that should listen to the

message. 255 is a global address for all ECUs.
– Group extension: It provides 4,096 data groups per DP plus the 240 extra

PDUs (PS < 240). In total, there are (4096 + 240)*2 possible data groups.
• Source address is the ECU sending the message. The addresses are defined in

SAE J1939-81.
• PGN is based on reserved bit, DP bit and then 16 more bits.
• Data field: up to 8 byte of information in a single frame. Non-used data bits

should be set to non-available (padded to ‘1’), which would mean in practice that

Table 4.19  OSI layers as a function of the SAE J1939
Application layer SAE J1939-71 SAE J1939-73
Presentation layer – –
Session layer – –
Transport layer SAE J1939-21 –
Network layer SAE J1939-31 –
Data link layer SAE J1939-21 –
Physical layer SAE J1939-15 SAE J1939-11

2334 Higher Level Protocols

the CAN protocol will include bit stuffing and extend the number of bits in the
message.

Some messages are longer than one single CAN frame (8 byte), e.g. VIN which
consist of 17 ASCII characters. When a long message (up to 1785 bytes) should be
transmitted, it is possible to send the message as a segmented message using the
transport protocol function and there are two methods:

4.4.2.1 Transport Protocol (TP)

Method 1: Broadcast Announce Message, TP_BAM TP_BAM: A message with
a global address, which means that all ECUs listen to the message. The message
starts with a Connection Management (CM) message, PGN 00EC00 with a control
byte indicating TP_BAM and then the PGNs with an inter-frame time of minimum
50 ms. This method should not be used if it is not specified in the applicable standard
(i.e. SAE J1939-71, SAE J1939-73 or SAE J1939-03). The main reason is that all
ECUs have to listen to something which may be a message between one ECU and a
scan tool and therefore spend resources on a message which does not concern them.

One of the examples when a TP_BAM could be used is during scan tool initial-
ization before the tool knows which ECUs are installed in the vehicle. It can at that
time broadcast a message in order to identify all that support the service or data.

To identify if a vehicle is utilizing SAE J1939-73 as a legislated OBD protocol,
the DM 5 (Readiness 1) is used (Fig. 4.27).

Method 2: Connection Management, TP_CM The other method is called TP_CM:
A message is sent from point to point. The sending ECU sends a CM message indi-
cating Request to Send (RTS). The receiver responds with a Clear To Send (CTS)
with the number of packets (buffer size) it may accept and the sequence number of
the expected packet.

The parameter group, together with the data is then transmitted in several data
transfer messages (DT), wherein the first byte indicates the sequence number in
each case. It is possible to pause the communication and to abort. This method is
the preferred one when it comes to diagnostic communication to an off-board client
(scan tool) (Fig. 4.28).

Fig. 4.26  SAE J1939-21 PDU and the CN-identifier assignment

234 G. Feiter et al.

Request: Normal in-vehicle control data are sent periodically on the bus but
sometimes some data are needed and they are not usually sent on the bus. It is pos-
sible to request the data (or PGN) in those situations. One example is VIN which is
used to identify the vehicle by a scan tool. The VIN is 17 characters and there is no
need to send it periodically, so the scan tool needs to request the data from the ECU
which has the information.

Data: The ECU either sends a negative acknowledge, NACK, if it does not have
the data or respond to data. If one data element is not used in the PGN, then the bits
for that suspect parameter number shall be set to 1.

The response time is 200 ms but the requesting equipment needs to wait up to
1.25 s before it times out. The main reason is that bridges (gateways or routers) can
delay the message.

4.4.3 SAE J1939-31—Network Layer

The SAE J1939-31 network layer standard defines how a complete network should
be designed. The standard describes gateway and router functionalities (Fig. 4.29).

Gateways can be within the vehicle to isolate different buses from each other
(e.g. one private network for brake system, another network for the cab controller, a
third for powertrain) or to act as bridges between, e.g. a tractor and a trailer.

4.4.4 SAE J1939-71 71—Vehicle Application Layer

SAE J1939 has relationship to SAE J1587 which is usually implemented on SAE
J1708 bus.

J1939-71 defines signals for normal communication, point-to-point in-vehicle
communication. The signals are defined as SPNs.

Fig. 4.27  J1939 trans-
port protocol—broadcast
announce message

2354 Higher Level Protocols

The SPN is a fictive number which usually only exists in the standard and is not
seen on the bus, except for some services, e.g. DM 24 which reports which SPNs are
implemented as data stream, freeze frame parameters5 or test values.6

The SPN is defined with length and scaling information and is connected to a
PGN, which is more or less a part of the CAN identifier for the message.

Some SPNs, e.g. SPN 237 = VIN, are longer than a CAN frame and must be sent
as a segmented message.

5 Freeze frame is data which has have been frozen at the occurrence of the detection of a fault. The
intention is that the information in the freeze frame may help the service technician to reproduce
the conditions which existed when the malfunction was detected. Example of a freeze frame pa-
rameters are engine speed and ambient air temperature. The electronic control module will store
these two parameters when it detects a malfunction.
6 Test value is the value which is compared to the fault limits of a monitor to judge if the latest
evaluation was pass or fail. It can be seen as an analogue value of a fault (diagnostic trouble code),
e.g., if the test value is 0 × 8340 and the fault limit is 0 × 8000 then there should be a fault code
stored in the electronic control module.

Fig. 4.29  Connection between tractor and trailer via network bridges

Fig. 4.28  J1939 transport
protocol—connection
management

236 G. Feiter et al.

The SPN can be sent either on request (as for diagnostic information) or as a
periodic transmission.

The request of an SPN is done by requesting the PGN and then decoding the SPN
from the data field of the CAN frame (Fig. 4.30).

This specific PGN (EEC1) is transmitted as a function of engine speed, i.e. low
engine speed = low transmission frequency, high engine speed = high transmission
frequency. The SPN for engine speed is 190 and the value of SPN190 is 16,000.

In order to translate the information, which is received as the data field in a CAN
frame, it is just to copy the content of data byte 4 and 5 and multiply it to 0.125 and
the engine speed is given in rpm. The definition of EEC1 and the different SPNs can
be found in SAE J1939-71.

The other SPNs in EEC1 are 899 (Engine Torque Mode), 4154 (Actual Engine
Per cent Torque High Resolution), 512 (Driver’s Demand Engine Per cent Torque),
513 (Actual Engine Per cent Torque), 1483 (Source Address of Controlling Device
for Engine Control), 1675 (Engine Starter Mode) and 2432 (Engine Demand Per
cent Torque). The value of 15 in data byte 7 indicates “no information”.

4.4.4.1 SPN and Fault Information

Since the main purpose of SPN is for in-vehicle communication, i.e. from ECU A to
ECU B, then a fault information concept has been developed. The valid data range
for a 1-byte SPN is 0–250 and 0xFE is used to indicate that the source of the signal
cannot be trusted due to a fault and 0xFF indicates that the signal is not updated. It
is up to the receiving ECU to decide which default action it should take. It could be
that the latest valid data are used or a default value, e.g. 20 degrees as ambient air
temperature, is used in the application.

The method of using 0xFB–0xFF can be useful for normal in-vehicle communi-
cation, but it makes it impossible to store raw or un-defaulted data in a freeze frame
or to report un-defaulted data stream data to a scan tool.

Un-defaulted data are defined as the data after linearization and converted to an
engineering unit, e.g. the ADC measures voltage and uses a look-up table to convert
the voltage to a temperature.

The defaulted data are when a malfunction is detected and the value of the pa-
rameter is changed to, e.g. 20 degrees, or, if sent on CAN, to 0xFE to indicate to

Fig. 4.30  Example for number-dedicated SPNs

2374 Higher Level Protocols

another ECM that the signal is not valid. If the defaulted value is stored in a freeze
frame, then the data will not help the service technician, i.e. he/she will not know at
which temperature the malfunction was detected.

4.4.5 SAE J1939-73—Diagnostics

Diagnostic communications are based on SAE J1587 and include special PGNs
called DMs. They can be considered as equal to diagnostic services in ISO 15031-5
or ISO 14229-1. Most of the DMs are sent on request. The main exception is DM1
which is used as communication message to the instrument cluster in order to il-
luminate warning lamps. If the ECU does not support the request DM, then it will
respond with a NACK. The DTC contains the 19-bit SPN with a 5-bit failure mode
indicator (FMI) (Fig. 4.31).

SPN is the suspect parameter number of the failed component. FMI is the fail-
ure mode indicator (comparable to failure type byte of ISO 14229-1). The CM is a
conversion method, since there has been at least four different methods on how to
represent the DTCs. At the moment there is just one method, #4 Intel format with 19
bit SPN + 5 bit FMI and CM0, which is allowed for legislated OBD communication.
The other versions shall not be used. Finally, OC is an occurrence counter, which
counts the number of times the fault has been gone from an InActive (previously
Active) state to an Active state.

This method of using the signal as the part of the DTC is useful for simple diag-
nostic function, e.g. if an ambient air temperature sensor detects an electrical fault,
then it will be clear for the service technician on which signal he should check or
read. As said, this will work fine as long as there is a one-to-one relationship, i.e.
the monitor is based on one signal/sensor. OBD II usually requires more advanced
functions, e.g. the catalyst monitor for a gasoline engine maybe utilize the intake
manifold airflow sensor and the rear oxygen sensor plus some other sensor values
to check if the conversion ratio in the catalyst is OK. This is a multiple sensors to
one DTC scenario and it is not possible to read a single sensor anymore and the SPN
is more “fictive”. The detection mechanism of a fault is usually called a monitor.

Fig. 4.31  Example for SPN 190 trouble code (engine speed)

238 G. Feiter et al.

4.4.5.1 Fault Codes

The first DM for reading fault codes is DM1 to read active DTCs.
A DTC is active when it is detected after debounce filtering and the service is

intended mostly to inform the instrument cluster to illuminate an appropriate lamp,
red, yellow or white lamp. The DM1 service is sent periodically to the instrument
cluster. It includes 4 bits, 1 bit per warning indicator, i.e. malfunction indicator
lamp, red stop light, yellow warning and white information light. After the lamp
information, the fault codes are sent.

DM2: Previously active DTCs. The service is sent on request and includes the
warning light information plus all DTCs which are no longer detected as active faults.

The states for emission-related DTCs are more complicated after US10:
First, the DTC will show up as a pending DTC (DM6) in the first failed driving

cycle.
If the monitor fails in the next consecutive driving cycle, then it will transit to an

emission-related active DTC (DM12) and will not be reported in DM6. When the
DTC heals, it will transit to previously active emission-related DTCs (DM23) and
it will disappear completely after 40 fault-free warm-up cycles.

The DTC will also be reported as a permanent DTC (DM28) as long as the MI
is commanded on.

N.B. It is allowed to report a DTC as both pending and emission-related active
DTCs according to the standard, but any emission-related ECU which does will not
fulfil California legislation (Table 4.20).

A note must be mentioned regarding DM24 and DM25.
DM24 reports which SuspectParameterNumbers are implemented as data stream

parameters, as freeze frame parameters and as test values. It is not clear which
SuspectParameterNumbers should be reported as data stream parameters: All ac-
cording to legislation, all according to what is sent on the bus or those SuspectPa-
rameterNumbers that are broadcasted on request? The service is clearer on freeze
frame parameters since the freeze frame is well defined.

Requesting latest test value from a non-continuous executing monitor is the
same as Service $ 06 of ISO 15031-5, but first the DM25 is read and the SuspectPa-
rameterNumbers for test results are reported in the response.

The SuspectParameterNumber and the correct FailureModeIndicator (which is
not reported by DM25) must be put into the DM7 request. It may also be possible to
request FailureModeIndicator = 31 which means all FailureModes.

The response is sent by the ElectronicControlUnit as a DM30 response including
the SuspectParameterNumber and the FailureModeIndicator, followed by a SLOT
identifier which includes length and scaling information for the next parameter, the
TestValue. The SLOT identifier should always report that the TestValue has a length
of 2 bytes in DM30.

The TestValue is the value which the specific monitor compares with the fault
limits to judge if the result from the monitor is a pass or fail. The TestLimits are also
reported in DM30. The intention of DM7/DM30 is to show how close to the fault
limit the monitor is, e.g. if the TestValue is 90 % of the test limit, then the monitor

2394 Higher Level Protocols

could detect a failure during some conditions. The TestValues will usually differ
each time the monitor is executed since they are affected by component deviation,
component ageing and also driving and environmental conditions.

4.4.5.2 Scan Tool Initialization

The scan tool initialization procedure is easier than for a scan tool for ISO 15765-4
since there is currently only one allowed bus speed, 250 kbps and all Electronic-
ControlUnits shall utilize 29-bit CAN identifiers.

First, the tool will check for PGN 61444 EEC1 which is always transmitted
if there is an engine ElectronicControlUnit on the network. Then it will send a
DM5 Diagnostic Readiness 1 request as a BAM request. All ECUs that utilize SAE
J1939-73 will respond with the information of, e.g. the number of active DTCs, the
number of previously active DTCs, the monitor groups that have executed since last
clear DTC and the OBD compliance (similar to PID $ 1C of ISO 15031-5).

It is possible that vehicles prior 2010 in the USA do not utilize SAE J1939-73 for
diagnostic communication, and in Europe it is quite common to use SAE J1939-71

Table 4.20  Relation of emission-based diagnostics standards
ISO 15031-5 ISO 27145-3 SAE J1939-73

US10
SAE J1939-73
EURO VI

Request data
stream

Service $ 01 Service $ 22 SPNs + DM21,
DM5, DM 26,
DM32, DM33,
DM34

Request freeze
frame

Service $ 02 Service $ 19 04 DM25

Request pending
DTCs

Service $ 07 Service $ 19 42 DM6 DM41, DM44,
DM47, DM50

Request confirmed
DTCs

Service $ 03 Service $ 19 42 DM 12 DM42, DM45,
DM48, DM51

Request permanent
DTCs

Service $ 0A Service $ 19 55 DM28

Request previous
DTCs

Service $ 19 42 DM23 DM43, DM46,

DM 49, DM52
Clear DTCs Service $ 04 Service $ 14 DM 11 DM11
Request test results Service $ 06 Service $ 22 DM7, DM30 DM7, DM30
Command test Service $ 08 Service $ 31 DM8 DM8
Request infoType Service $ 09 Service $ 22 DM 19, DM20,

+SPN
DM 19, DM20,

+SPN
Note: ISO 15031-5 (SAE J1979) is allowed for legislated OBD communication for HDVs in the
USA and for HDVs until Euro VI legislation in Europe. It uses Service $ 01–0A for retrieving the
legislated communication. ISO 14229-1 (ISO 15765-3 DoCAN) is used for enhanced diagnostics
in both passenger cars and some HDVs. The Euro VI column shows that there is a different set of
DMs for fulfilling Euro VI legislation

240 G. Feiter et al.

together with ISO 15765-4/ISO 15031-5 for OBD communication. It is therefore
not enough to check the ParameterGroupNumber 61444 EEC1 to distinguish if the
vehicle utilizes SAE J1939-73.

The scan tool will build a list of the ElectronicControlUnits that has responded
to this request and the OBD compliance will be an input of the services that are
implemented. Table 1 of SAE J1939-73 states which DMs and which information
are needed to comply with different OBD legislations. It is not clear how to handle
smart sensors or smart actuators since these simple devices have a limited imple-
mentation of the diagnostic protocol. They have maybe only implemented DM1
active DTCs, DM11 clear DTCs, DM 19 CALibrationIDentification/Calibration-
VerificationNumber and DM5 for scan tool initialization, but the vehicle needs to
comply to FinalRegulationOrder 1971 which is for US10 legislation in California.

4.4.6 SAE J1939-81 81—NMT

SAE J1939-81 includes NMT, i.e. how to handle if two ECUs are connected to the
same network with the same ECU address. Normally two ECUs shall never share
the same SA, but in some type of vehicles, this may happen, e.g. a tractor with two
trailers with both trailers having a brake system.

It uses a NAME field and a method to claim addresses. If there are multiple
ECUs with same address, then the ECU with the lowest NAME will win and the
others have to claim other addresses. The claiming can be seen as an ECU address
arbitration. This works as the best in theory but there are problems in real life; the
ECUs detect bus-off before they could claim the address, they misunderstand the
response since maybe both ECUs respond to the same Name claim response and get
the same response, i.e. they cannot know if the data are intended for the own ECU
or the other ECU and both will react as for communication faults.

4.4.7 SAE J1939-84

The standard is a conformance test, but not equal to SAE J1699-3 for LDVs. The
J1699-3 is a conformance test for a complete vehicle and J1939-84 is a very thin test
specification for a single ECU. The implementation of the standard can also be down-
loaded as a Dynamic Link Library (DLL) on www.sourceforge.org. The standard is
used to verify that the application in the ECU fulfil the SAE J1939-73 standard.

4.5 CanKingdom

CanKingdom (CK), first published in 1990, is considered the ancestor of the CAN-
based higher layer protocols (HLP). In many respects, it is quite different from later
CAN HLPs:

2414 Higher Level Protocols

• It is not really a HLP; it is a meta-HLP, i.e. a protocol for constructing a protocol.
• It is not a communication protocol, but a system control protocol.
• It is designed to maximize the composability of a system.
• It is designed for achieving high performance at low cost throughout the life

cycle of a system.
• It is intended for hard real-time and safety critical systems.
• It is designed to allow a mix of time-triggered, event-triggered and sequential

schedules.
• It is designed to minimize development time of systems and modules by separat-

ing the system design and module design tasks as far as possible.
• It is designed to allow a system to be individually optimized at any time during

its lifetime.
• It is designed to allow changes between modes during run time, e.g. from normal

mode to a limp home mode.
• It is not compliant with the OSI model.
• CK uses a unique vocabulary for essential terms to make them unambiguous.

CK is based on an unorthodox approach to Distributed Embedded Control Systems.
Most CAN systems are based on the seven-layer OSI model, where the different
applications in a network are separated by an independent communication layer.
However, this approach can lead to severe timing and synchronization problems
because the timing of CAN messages is not controlled. A great advantage of CK is
that it allows the system designer to take full control of message transmissions by
scheduling them in time or sequence, as well as having unschedulable messages (as
alarms) to be transmitted when needed. In the approach for CK the whole system
is viewed as a combination of devices, such as joysticks, actuators, sensors, etc.,
all controlled by one imaginary application. This imaginary application is broken
down into a number of real sub-applications, with each sub-application residing in
a module of its own and integrated into the respective device. Sub-applications have
two parts: A local part takes care of everything needed for the device it resides in
and the other part interacts with other devices. In this way, we have two clear lay-
ers: an imaginary system layer and a module layer. The imaginary system layer is
brought to reality by a third “glue” layer that integrates the sub-applications with
each other. This glue layer provides a common application programming interface
(API) that is partly based on a serial communication. Thus, the communication is
not a separate layer as in the OSI model; it is an inherent part of the system, gluing
sub-applications together to run as one common real-time application. The restric-
tions imposed by the serial bus communication make the interfaces between the
respective sub-applications very clean and predictable in time and sequence.

CAN is the serial communication of choice and the basis of the glue layer in
CAN Kingdom. Each module has primitives of the glue layer that are completed by
information sent during a configuration phase. A specific system module containing
all necessary information needed to harmonize each module to the system require-
ments controls this phase. In this way, generic modules can be easily combined into
complex, high-performance systems. In a simple system, the system module can
be disconnected after the setup procedure. However, in more advanced systems,

242 G. Feiter et al.

the system module is an integrated part of the system, taking a monitoring and
supervising role during run time, allowing for hot swaps of modules, changing of
modes, etc. CK can be implemented in a modular way. A full implementation re-
quires roughly 5.5 K flash and 100 K RAM.

4.5.1 Background

In the early 1980s, the Swedish company Rovac developed an advanced factory au-
tomation system based on distributed embedded controllers. The whole factory was
seen as one big application that included robots, material supply, mould positioning,
heat control, etc. This application was broken down into as small pieces as possible
and each piece was executed in a separate micro-controller, physically integrated
into the device it controlled or monitored. As an example, a robot was constructed
of a set of actuators connected by structural parts, tubes and swivels. In this way,
special robots could be easily designed using standard parts. The micro-controllers
were grouped according to their functions and the members of each group were con-
nected to each other and to a central computer by a serial communication bus. The
central computer coordinated and supervised the groups to act in concert in a safe
manner. The concept, designated ‘Trainet’, turned out to be very flexible and effi-
cient, but the bit rate of the communication, 9,600 bps, limited the update frequency
to 25 Hz, i.e. any feedback control loop had to be executed locally.

When CAN became available in 1988, high-speed bus communication was avail-
able at a reasonable cost. As the concept of CAN is to minimize the need for run-
time bandwidth by defining as much as possible off-line, it was a perfect match with
the Rovac ideas. The combination of Trainet features and CAN resulted in CK, first
 published in 1990 by the company Kvaser. It was developed further and version 3 was
made available at CiA 1992 and reached a broader audience. CK v. 3 formed the basis
for the US DoD CDA 101 project for a common CAN-based protocol for different
types of airborne and seaborne targets. During the development period of CDA 101,
from 1996 until 2001, CK was further improved to meet the high requirements for any
aspect of an embedded CAN, such as adding improved support for hard real-time and
synchronization, composability, membership verification, safety, troubleshooting, etc.

Being a meta-HLP, CK is used as a base for proprietary HLPs, e.g. the Mercury
“SmartCraft” for pleasure boats and the Sauer–Danfoss “Plus+1” for off-highway
machines.

4.5.2 The Concept Behind CK

A cornerstone of the concept is the notion of a system: An electro-mechanical sys-
tem is constructed of a number of modules, each with an ECU that is connected to a
serial communication of some kind. Each module has a specific role in the system,
e.g. a steering wheel or joystick, a gearbox, a motor, an actuator, a sensor, etc. They

2434 Higher Level Protocols

are all connected as nodes in a system network. A system designer has to combine a
number of modules and make them perform in concert.

In this way, we have three concise layers:

• System layer
• Glue layer
• Module layer

The system is also seen as one big application, broken down into sub-applications
that reside in respective nodes and are coordinated by the glue layer. The glue layer
can then be seen as an API built upon a specific serial communication protocol.
The qualities of the glue layer are therefore highly dependent on the qualities of the
chosen communication protocol.

This concept has many advantages:

• The glue layer makes a clean and simple interface between interacting modules
as it is only control and data messages that are transmitted and received accord-
ing to need.

• Module designers can concentrate on the performance of the module and need
not know much about the system.

• The system designer has only to see to it that each module receives and transmits
messages as needed to perform in concert with the other nodes and does not need
to know much about each ECU.

• The performance of each module can be easily checked individually as a stream
of messages can be used to simulate the rest of the system. If the module re-
sponds to commands and is able to transmit messages according the specifica-
tion, it is OK.

• Modules and systems can be developed in parallel, saving time and money.

This concept does not fit the OSI model. The OSI model is based on a concept
where modules just need to exchange information and do not require any form of
coordination between communication sessions.

CAN is very well suited as the basis for a glue layer:

• It conveys 11–93 bits at a time from one node to all other connected nodes in a
safe, predictable way.

• Any bit rate between 10 kbps and 1 Mbps is supported.
• It can be used for any scheduled and/or unscheduled transmissions.
• Time scheduled, sequence scheduled and unscheduled messages can be transmit-

ted simultaneously with a guaranteed latency time.

4.5.3 Overview

CK is a glue layer based on CAN. It contains a set of rules—all in all 18—that
separate the module layer and system layer as much as possible. Only three of these
rules are mandatory (Table 4.21).

244 G. Feiter et al.

A full implementation of CK requires roughly 5.5 K flash memory and 100 K
RAM.

4.5.4 CK Vocabulary

In order to make the CK rules and functions unambiguous, it uses a unique vocabu-
lary and specific CK terms are spelt with a capital letter. The description is based on
a simile of a kingdom where the King in his Capital sets the rules for the Kingdom.
The Kingdom has Cities, each of them ruled by a Mayor. The Kingdom is designed
by a Kingdom Founder, i.e. the system designer and Cities by City Founders, i.e.
module designers. Any information exchange between Cities in the Kingdom is
made via a Postal System. The Capital and each City has a Post Office with a Post-
master (a CAN controller) (Fig. 4.32).

The only way to communicate within a Kingdom is to use Letters (CAN mes-
sages). Each Letter has an Envelope (CAN ID) and a Page (CAN data field). A Page
is built up of 0–8 Lines (bytes in the CAN data field) and a Line can be constructed
of 0–8 Dots (bits in a byte in the CAN data field). Pages are organized in Docu-

Table 4.21  Rules of the CanKingdom glue layer
Rule Description
1 Start/stop modes. To force a module to stop and go into silent mode Mandatory
2 Initiate. To establish an exclusive communication between a module and

the configuration tool
Mandatory

3 Assign CAN IDs to receive and transmit data in a module Mandatory
4 Assign groups. Make a module a member of a group to receive group

commands
–

5 Remove groups. To expel a module from a group –
6 Trigger setting. To make a module trigger a task on a message or an

event
–

7 Assigning modules to product or producer-specific groups –
8 Assigning a physical address to a module identified by its serial number –
9 Change the physical address of a module –
10 Bit timing register setting –
11 Inhibit time. To prevent a module from retransmitting a message until a

certain time has elapsed
–

12 Circular time base setup. To create a global clock –
13 Repetition rate and open window setup. To set up a time-triggered

communication
–

14 Giving common system wide identifications to messages or groups of
messages

–

15 Create CAN messages from local parameters –
16 Create CAN messages where the data field is extended into the ID field –
17 Creating bit filter masks –
18 Creating advanced message filters –

2454 Higher Level Protocols

ments. The Document is the key for the Cities to encode or decode the Pages. A
Document can contain one un-enumerated Page or more enumerated Pages. Cities
have matching Documents for coordinated tasks; one is set up for transmission and
the other ones for reception. The King uses a King’s Document to configure each
City. In this process, he assigns Envelopes to matching Documents. Then no CAN
ID (except the one for the King’s Document) is predefined and a system designer is
free to give any message its proper priority. A Document can contain not only data
but also tasks, e.g. a Letter with a blank Page or even a Letter for another City can
be used for triggering the execution of tasks in one or more Cities. A programmer
may see the transmission entities as threads (Fig. 4.33):

4.5.5 King’s Document

The King’s Document contains many Pages, one for each rule. The Kingdom
Founder has to implement all King’s Pages supported by any City he/she will use
in his Kingdom in order to set up each City in a proper way. The King’s Document
contains then at least three Pages (the mandatory rules) but also any Pages corre-
sponding to additional rules implemented by selected Cities. All King’s Pages use
the Envelope 0 (CAN ID 0 Std) as default. (This number can be changed if neces-

Fig. 4.32  Structure of CanKingdom

246 G. Feiter et al.

sary, but then each module has then to be updated before it is integrated into the
system.) The first Line (first byte in the CAN data field) is a Group or City address.
Any module in a system needs to have a physical address, a number between 1 and
255, before it is connected to the system. All Cities in the Kingdom belong to a
Group with the address 0. This address can be used for broadcasting purposes. It is
also possible to assign a City to additional Groups. The Group address is given by
the King and can be any number between 1 and 255 not used as a City address. This
feature can, for example, be used to freeze a part of the Kingdom in an emergency
situation. The second Line is the King’s Page number. Numbers 0–31 are reserved
for the core CK rules, 32–127 for future additions needed to enable the integration
of other HLPs. The numbers 128–255 can be used for City-specific needs. King’s
Page 0 is shown in Table 4.22.

4.5.5.1 Action Mode

It relates to actual City Mode and Communication Mode. The reset behaviour may
be different in different Communication Modes regarding stored bit-timing register
settings and stored parameter values. Action Modes have to be defined by the City
Founder. It is recommended that the City supports at least the following Action Modes:

• Run: The City is functional and operating.
• Freeze: The City takes a safe state, still responding to King’s Letters.
• Reset: The City performs a restart including the Start-up procedure in Sect. 9.

The 200 ms at 125 Kbit/s sequence may be omitted.

Fig. 4.33  Organizational structure of the CanKingdom messages

2474 Higher Level Protocols

Table 4.22  Form of the King’s Page 0

248 G. Feiter et al.

4.5.5.2 Communication Modes

• Silent: The Postmaster will be silent but still receives Letters and notifies the
Mayor when Letters are accepted. The Postmaster will transmit neither acknowl-
edgement bit nor error or overload frames.

• Listen Only: The Postmaster will be fully active but the Mayor will send Letters
only upon the King’s request.

• Communicate: Normal communication.

4.5.5.3 City Mode

City-specific modes, e.g. configuration mode, service mode, working mode, etc.
For each City Mode the City Founder has to define how the City will work on Ac-
tion Mode and Communication Mode commands from the King.

4.5.6 Mayor’s Document

Each Mayor has a Document with some Pages and an Envelope of his own by which
he can respond to the King. The King will broadcast a Base Number and the Mayor
will use the Envelope that equals the sum of the City Address and the Base Number.
The Mayor’s Pages 0 and 1 are mandatory (Table 4.23 and 4.24):

A City is fully identified by the Mayor’s Page 1 and 2. Any King’s Page can be
mirrored by a Mayor’s Page and the current setup of a City can be checked by ask-
ing for those Pages.

4.5.7 City Organization

The City Founder (the module designer) always knows what information his City
must receive and what it can transmit in different situations but frequently he does
not know how his City will be used in a specific Kingdom. It is only known by the
Kingdom Founder (the system designer). A convenient way for the City Founder
to escape the problem of how to receive and transmit information is to leave it to
the Kingdom Founder. This is done by organizing the City information into Lists
where selectable information blocks are referenced by records. Lists are enumer-
ated from 0 to 253 and each list can hold up to 256 records. The King can use some
King’s Pages to order the Mayor to construct new Pages by referring to records in
the Lists and place them in new Documents. In this way, modules can be optimized
to the system requirements and the use of bandwidth optimized as only required
data are transmitted. No profiles like the ones in CANopen and DeviceNet have to
be defined.

A full-blown City may have all of the following Lists:

2494 Higher Level Protocols

1. Document List: The King selects Documents for transmission and reception by
placing Documents into Folders. Available Documents are listed in Document
Lists. These Lists are of two different types: Receive or Transmit.

2. Page List: A City can offer the King the opportunity to construct Documents from
predefined Page Forms. These Forms are then listed in one or more Page Lists.

3. Line List: A City can offer the King the opportunity to construct Pages by pre-
defined Line Forms. These Forms are then listed in one or more Line Lists.

Table 4.23  Form for the Mayor’s Page 0

250 G. Feiter et al.

4. Dot List: A City can offer the King the opportunity to construct Lines by pre-
defined Dot Forms. These Forms are then listed in one or more Line Lists.

5. Item List: In a Compressed Page, data can be placed not only in the CAN data
field but also in the CAN ID field. A City supporting Compressed Pages or Let-
ters has an Item List where available constants, parameters, variables, etc. and
information about them can be found. By using references to List and Record
numbers, the King can instruct the Mayor where to place or read specific data
anywhere he likes in a CAN message. Data can then be extended into the CAN
identifier or integrated as a part of the identifier field.

4.5.8 The Folder

A Folder is the link between a Document and the Postal System. One or more Enve-
lopes are assigned to a Folder that contains one Document. A Folder Label contains
all necessary Postal information for the exchanging of Letters between Cities.

A City can have up to 256 different Folders for incoming or outgoing Docu-
ments. The Mayor puts the Documents for the information that he will send or

Table 4.24  Form for the Mayor’s Page 1

2514 Higher Level Protocols

receive into these Folders. The King will then assign Envelopes to Folders contain-
ing a Document of interest for the Kingdom. A Folder can be fixed, i.e. the Docu-
ment in the Folder is predefined or dynamic, i.e. the King can order the Mayor to
put a Document into a given Folder. The advantages of letting the King to decide
which Documents will be put into which Folders are that matching Documents in
different Cities will have a common identification throughout the Kingdom. The
disadvantage is that this requires some software and a City Founder may find it
too expensive and choose to have the Documents placed in fixed Folders to save
memory.

4.5.9 Folder Label

A Folder always has a label, the Folder Label. It contains the following information:

• Folder Number.
• Document List Number.
• Document Number.
• Transmit/Receive mark.
• The CAN Control Field according to the CAN specification.
• Remote Envelope(s).
• An Envelope can be set as “remote” according to the CAN specification by the

RTR bit. How RTR set to 1 is interpreted is dependent on the application cor-
responding to the Document in the Folder and has to be defined in the City docu-
mentation.

• Enable/disable the Folder.
• By disabling the Folder, any CAN communication by the application corre-

sponding to in this Folder is interrupted.
• Envelope(s) assigned to this Folder.
• Envelope(s) enable/disable.
• The use of an Envelope can be switched on or off with an enable/disable tag.

How a Page is identified in a Transmit Form List and put into a transmit Document
is depicted in Fig. 4.34. Receiving Cities use the same Page Form in their corre-
sponding Receive Document.

As shown, a City Founder (module designer) does not have to care about how
his module will exchange information with other modules in a system. He has de-
fined what information his module needs and the timing constrictions. He has also
specified what kind of information the module can make available to other modules.
A Kingdom Founder can later on adapt the module to the needs of his system by
transmitting King’s Pages at a start-up procedure and even dynamically tune it dur-
ing run time. Thus, the system designer can adapt and control the system using
the King in the Capital. Some diagnostics can only be made at the system level by
monitoring the traffic and getting internal information from modules. Any internal

252 G. Feiter et al.

status and parameter value in a module can be made available to the King in the
Capital. Consequently, any decision on what to do in specific situations can be left
to the system designer to decide among a set of alternatives.

A small CK system is depicted in Fig. 4.35. City 1 measures oil temperature
and City 2 measures water temperature. Each City only measures temperature and
makes the measured values available to the system. They do not have to know
what they are measuring and when to transmit. City 3 receives both temperature
values and has to distinguish between the two. This is easily done by assigning
an Envelope to the Temperature Transmit Document in City 1 and the same En-
velope to the oil temperature Receive Document in City 3. The temperature in
City 2 is connected to the water temperature in City 3. With CK, no profiles are
necessary as the King can set up a City to match the needs of the system. The
module designer has great freedom to integrate a variety of options to meet the
requirements of different HLPs and profiles. The module can then be adapted to
a specific HLP and profile using proper King’s Pages at an end of line program-
ming. A system designer can also integrate modules made for other HLPs into
his system by adapting other modules to the runtime behaviour of the integrated
ones. Any HLP-specific start-up procedure, e.g. the “Duplicate MAC ID check”
in DeviceNet or “Address Claim” in J1939 can be simulated by the King to make
the integrated module happy.

Fig. 4.34  Identification of a sending system in a transmission document list

2534 Higher Level Protocols

4.5.10 Composability and Membership

The composability in CK relies on the King, i.e. the system needs to have a Capital
(a system node) and the start-up procedure. During the start-up procedure, all con-
nected Cities are identified. Any new City can be properly configured. For a safe
cold start, the following are necessary:
• Each module conducts a self-test.
• Each node connects to the CAN network in silent mode, i.e. without transmitting

ACK bits, and listens for a specific message at 125 kbps for 2 s.
• Switch to stored bit rate for the current system.
• When a valid message is received, the module switches to listen-only mode, i.e.

it participates in the CAN error checking and acknowledgement, but does not
transmit and waits for the King’s Page 1 with the Base Number.

• The King sends King’s Page 1, either with the Group Address 0 or with individ-
ual addresses, to make every module respond with its European Article Number
(EAN) and serial number (Fig. 4.36).

In this way, the King has complete control of the system. The King can check that
all anticipated modules are connected and working correctly before the system is
turned into runtime mode. During runtime mode, the King can supervise the system
and check for different types of errors as missed schedules, unauthorized bus traf-
fic, mismatching values, etc. The King can also act as a gateway to external tools
or systems and provide full documentation of the settings of each node and their
respective states.

Fig. 4.35  CanKingdom basics

254 G. Feiter et al.

If any module is set to a false bit rate, it will not disturb the network as it stays in
silent mode. An external setup tool (or the King) will always be able to connect at
125 kbit/s and correct the bit-timing register settings.

Fig. 4.36  CanKingdom setting

255

Chapter 5
Applications

Guenter Reichart, Gabriel Leen, Nathalie Courmont, Ralph Knüppel,
Christian Schmid and Markus Brockmann

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_5,
© Springer-Verlag London 2013

N. Courmont ()
Airbus France S.A.S., 316 Route de Bayonne, 31060 Toulouse Cedex 03, France
e-mail: Nathalie.Courmont@airbus.com

G. Reichart
BMW AG, Petuelring 130, 80788, Munich, Germany

G. Leen
University of Limerick PEI, Limerick, Ireland
e-mail: gabriel.leen@ul.ie

R. Knüppel · C. Schmid
Airbus Deutschland GmbH, Hünefeldstr. 1-5, 28199 Bremen, Germany
e-mail: ralph.knueppel@knueppel-online.de

C. Schmid
e-mail: Christian.Schmid@airbus.com

M. Brockmann
WILO AG, Nortkirchenstrasse 100, 44263 Dortmund, Germany

5.1 Electronic system architectures of Automobiles
Application of CAN Bus

5.1.1 Bus Systems in Automobiles

Bus systems in automobiles allow the communication, which means the exchange
of data between the electronic control units (ECUs), smart sensors and actuators.
Depending on the respective requirements, different bus systems are used. Typi-
cal requirements consist of required data rate, allowed message length, number
of connectable nodes (ECUs), required topologies, requirements on deterministic
transmission capability and in further reliability, availability or safety-oriented re-
quirements. Further requirements address aspects of physical characteristics, like
tolerance against voltage deviations, temperature stability, impacts on wiring har-
ness (electromagnetic compatibility (EMC), copper wire, plastic or glass fibre,

256 G. Reichart et al.

unshielded twisted pair (UTP) cabling or shielded twisted pair (STP) cabling) and
last but not least, cost aspects.

In automotive engineering, bus systems are differentiated according to the so-
called Society of Automotive Engineers (SAE) classes:

5.1.1.1 Class A

Bus systems for simple applications with low data rates of up to 10 kbit/s, e.g., sen-
sor data or simple control commands. The main application domains are relatively
simple functions without safety relevance in the body domain. The transmitted mes-
sages are mainly short and event triggered with a low data rate. The application area
is relatively cost sensitive and demands therefore a rather cheap interconnection
technology.

5.1.1.2 Class B

Bus systems for applications with data rates of 10 kbit/s and up to 125 kbit/s (e.g.,
many more complex body functions).

5.1.1.3 Class C

Bus systems for applications, which require real-time behaviour with data rates of
125 kbit/s and up to 1 Mbit/s (engine domain and chassis domain). In these applica-
tions, domains at high data rates with defined low latencies of data transmission are
required.

5.1.1.4 Class D

Bus systems for the data transmission of long data streams with high bandwidth.
These requirements prevail mainly in the area of infotainment and entertainment,
e.g., for the transmission of audio/video streams.

International Organization for Standardization (ISO) differentiates bus systems
only in two steps:

• Low-speed communication (bit rates < 125 kbit/s) and
• High-speed communication (bit rates > 125 kbit/s).

All these classifications are not really satisfying to adequately describe all the rel-
evant requirements. A classification which is mainly focused on bandwidth is not
sufficient to describe the requirements of the different application domains. Due to
the development towards higher bandwidth and towards wireless data transmission,
this traditional classification concept has to be reconsidered anyway.

2575 Applications

The controller area network (CAN) bus protocol is currently applied in two dif-
ferent variants which correspond to class B and class C of the SAE logic.

Figure 5.1 shows typical bus protocols for automotive applications which are ei-
ther already in use or in development. They are ranked according to their bandwidth.

Simple functions can be covered by the Local Interconnect Network (LIN) bus
which allows for a data transmission of up to 20 kbit/s. The low-speed CAN bus can
operate with a data rate of 5 kbit/s and up to125 kbit/s and in a network of up to 32
nodes. The strengths of the low-speed CAN are fault tolerance and the possibility to
transmit over a single wire connection.

Due to the ever-increasing data rates and the ongoing trends towards higher
functional integration along with a decreasing cost advantage of the low-speed
CAN versus the high-speed CAN (Class C), low-speed CAN will soon go out of
use. There is a trend visible that, in future vehicle architectures, the cost-effective
LIN will be used for rather elementary functions. More demanding functions will
be realized using the high-speed CAN and/or FlexRay, especially for time-critical
or safety-critical applications. Media Oriented Systems Transport (MOST) will be
used for multimedia applications in the infotainment and entertainment domain. In a
broader perspective, Ethernet will play a significant role for system interconnection
and can replace some of the traditional bus protocols. First applications for vehicle
flash and diagnostic access are already in the market.

The electronic system architectures which we find today in modern cars will
not change suddenly. Different bus protocols will be used even in the coming years
since a radical change of the architecture would create huge costs and high quality
risks. Even if the goal of the system architect remains to establish a more homoge-

Fig. 5.1  Bus protocols and their bandwidth

258 G. Reichart et al.

neous network and therefore a reduction of the number of different protocols, the
only solution can be to establish a clear and feasible migration plan.

5.1.2 The Application of CAN in Today’s Vehicle Networks

The CAN protocol is, in today’s vehicle networks, primarily used for the following
three domains:

• Body electronics and active systems of passive safety,
• Chassis domain and driver assistance and
• Engine domain.

The main applications in the body domain deal with the control of windows, doors
and flaps, mirror adjustment, control of lights, seat adjustments, climate control and
comfort access. For cost reasons, the low-speed CAN plays a significant role but is
in competition with the LIN bus. The safety electronics require a fast and safe data
transmission; thus, the interconnection of the ECUs is, in most cases, realized by
the high-speed CAN.

Chassis control systems as well as driver assistance functions put rather demanding
requirements on the safety of the data communication and on the timing. Even if the
high-speed CAN does not allow for a deterministic data transmission, high bandwidth
can provide a sufficiently low latency in many applications. This implies, however,
that only 50 % of the maximal data-transfer capacity can be exploited. Experience
has shown that, beyond this level, non-deterministic latencies begin to rise. The CAN
protocol contains a number of supervisory functions and error recognition concepts:

• Cyclic redundancy check (check of test sums),
• Frame check (check of frame length and structure),
• ACK error (proof of acknowledgment),
• Bit stuffing (error check on bit level by stuff bits) and
• Level monitoring (monitoring of the bus level by the connected ECUs).
• These features and the multi-master concept for the bus access are the founda-

tions why the CAN bus has become a very reliable interconnection technology
which has extended, beyond its original scope, the automobile into field bus ap-
plications in automation technology.

5.1.3 CAN and AUTOSAR

For the software architecture of ECUs, the international AUTOSAR standard has
become increasingly widespread. The acronym AUTOSAR means AUTomotive
Open System ARchitecture (see also Sect. 6.2). Within the software, one can speak
of architecture if the application level as well as the system basis level is realized in
a defined, structured manner. One speaks about an open architecture if the interfaces
are standardized and disclosed. Usually, a certain independence from technologies

2595 Applications

by the introduction of abstraction layers is also a prerequisite. Based on these char-
acteristics, AUTOSAR allows a transferability of software modules within or be-
tween ECUs. Moreover it can support, in the longer run, the exchange of software
modules between different original equipment manufacturers (OEMs) if they com-
ply with the AUTOSAR standard.

The system basic functions comprise, e.g., system services (operating system
(OS), memory, network, diagnostic and ECU management), the microcontroller
abstraction, device driver, driver for communication and communication services,
communication hardware abstraction, etc.

The application layer docks on the so-called Run Time Environment (RTE) by
means of standardized interfaces. The RTE is frequently called a Virtual Function
Bus, a middleware layer, which allows the communication of the software modules
within and between the ECUs (Fig. 5.2).

Ports implement the interface according to the communication paradigm (here:
client–server-based).

They are the points of interaction of software components. The communication
works through the RTE. The communication layer of the system basis software is
encapsulated and not visible at the application layer.

To support the existing variety of bus technologies, one has to establish tailored
standard solutions for the system basis functions. These solutions are packed in so-
called stacks (e.g., CAN stack and FlexRay stack) and are offered by a number of
first and second tiers. Up to now, it was not possible to standardize the system basis
functions to such a level that one standard solution would meet the requirements of

Fig. 5.2  Communication within and between ECUs according to the AUTomotive Open System
ARchitecture (AUTOSAR) Standard. (According to Simon Fürst, AUTOSAR Guided Tour 2010)

260 G. Reichart et al.

all OEMs. For that reason, those parts of the system basis functions which are still
company specific are allocated in the so-called Complex Device Drivers.

Figure 5.3 shows a solution for the control of headlights.
The interconnection of ECUs with AUTOSAR software architecture can be real-

ized without any problem.

5.2 Time-Triggered Controller Area Network
(TTCAN)—Applications

The following application example is a research educational prototype steer-by-
wire and brake-by-wire system which is built on a basic software implementation
of the time-triggered controller area network (TTCAN) protocol.

5.2.1 Software Implementation of TTCAN X-by-Wire

A current trend in the automotive industry is to replace certain mechanical compo-
nents in vehicles with ultra-dependable fault-tolerant electronic systems, referred to
as X-by-wire systems. Mechanical components such as drive belts, water pumps,
hydraulic brakes and steering columns can be replaced with electronic systems.

Fig. 5.3  Function allocation on electronic control units (ECUs)

2615 Applications

This initiative should result in a lighter, safer, more fuel-efficient and less expen-
sive X-by-wire vehicle which exhibits additional functionality. In such vehicles,
there are fewer environmentally unfriendly fluids to contend with, and the systems
are self-diagnosing, reconfigurable and easily adapted across vehicle platforms. X-
by-wire systems allow the tightest possible integration of distributed functionality
within the vehicle, in contrast to the discrete, often disjoint, operation of conven-
tional mechanical systems. The introduction of an X-by-wire vehicle infrastruc-
ture facilitates the implementation of many active safety improvements, based on
advanced electronic systems; examples include autonomous cruise control, colli-
sion avoidance, automated parking assist and autonomous driving. The European
SPARC Project is an example of an X-by-wire accident-avoiding vehicle with a
Safety Decision Control System (SDCS). A necessary prerequisite to such highly
integrated X-by-wire systems is a fault-tolerant communication infrastructure. The
following section describes a prototype experimental brake-by-wire and steer-by-
wire system based on TTCAN.

5.2.2 TTCAN Network Implementation

At the time this X-by-wire prototype was developed, there were no TTCAN proto-
col engines available in silicon. As a result, a system based on the Infineon C515C
microcontroller and an application layer based on the TTCAN protocol with level
1 synchronization was implemented in software. Figure 5.4 illustrates the TTCAN
message matrix used. The cycle matrix consists of two basic cycles. Each basic
cycle commences with a reference message, which is followed by either a steer-
ing wheel position message or a brake pedal angle message, and terminates with
a feedback message. The reference message is used to synchronise the network by
resetting the cycle time in each network node. The reference message also contains
the current basic cycle count, which is used to help to ensure that all nodes observe
the correct schedule pattern. The TTCAN local clock is implemented using the mi-
crocontroller’s on-chip timers and the TTCAN triggers are implemented using real-
time interrupts generated by the overflow of these timers.

Fig. 5.4  Message cycle matrix

262 G. Reichart et al.

Each network node monitors the transmission and reception of relevant mes-
sages; this and additional information are used as input to an error state machine.
For example, if an expected message is not transmitted or received, a corresponding
message status counter (MSC) is incremented. If any MSC reaches a predefined
limit, an error is flagged and an appropriate action is taken. In this case, the node is
reconfigured and attempts to rejoin the network; see Fig. 5.5 for an overview of the
TTCAN error state machine.

Fi
g.

 5
.5

  T
im

e-
tri

gg
er

ed
 c

on
tro

lle
r a

re
a

ne
tw

or
k

(T
TC

A
N

) e
rr

or
 st

at
e

m
ac

hi
ne

2635 Applications

5.2.3 Steering Implementation

In the prototype, the vehicle steering column was removed and replaced with a
position sensor as seen in Fig. 5.6. A rotational absolute encoder is used to measure
the angular position of the steering wheel. The sensor measures 128 positions per
revolution and, therefore, has a resolution of 2.81 degrees. The sensor is read by
the user interface microcontroller, and its position sent over the TTCAN network
in the steering wheel position message. More accurate sensors with greater resolu-
tion were considered along with the possibility of gearing this sensor for greater
resolution; however, for this concept demonstration model, such accuracy was not
considered necessary. A real steer-by-wire system would probably require a sensor
with a resolution in the order of 0.5 degrees, or better.

At the rack and pinion end (actuator end), a servo-controlled 12-V direct current
(DC) motor is used to change the road wheel steering angle. A rotational position sen-
sor connected to the rack and pinion drive provides feedback. Magnetic limit switch-
es at the extremities of motion are used to detect the left and right maximum steering
lock positions. Figure 5.6 shows the steering system used. The actuator ECU receives
the requested wheel angle via the TTCAN network and rotates the wheels to the re-
quired position. In a production implementation, sensors, actuators and communica-
tion channels would most likely be replicated to provide redundant backup systems.

5.2.4 Brake Implementation

The system brake pedal uses a linear potentiometer to measure the extent to which
the brake pedal is pressed as seen in Fig. 5.7. The voltage drop across the potenti-
ometer is read by an 8-bit analog-to-digital converter (ADC) and its value transmit-
ted over the network in the brake position TTCAN message.

The floating calliper brake unit is modified and incorporates a linear stepper motor
to adjust the position of the brake pad, thus applying the braking force. In practice, a
servo motor would be more appropriate. The actuator ECU receives the brake pedal
position via the TTCAN network and adjusts the position of the brake pad accordingly.

Fig. 5.6  Steer-by-wire system

264 G. Reichart et al.

5.2.5 Feedback Message

No physical force feedback was implemented in this prototype. Nevertheless, a
feedback message is sent from the rack and pinion to the steering wheel, containing
information relating to the steering angle. This message was included to demon-
strate that a feedback message could be easily incorporated into TTCAN’s network
traffic.

5.2.6 Final System

The final prototype is illustrated in Fig. 5.8. The steer-by-wire and brake-by-wire
systems were implemented on a single TTCAN network. The network was operated
at 250 Kbaud with a Network Time Unit (NTU) of 1.2 µs. The time windows are
2 ms long. The reference and feedback messages take 0.236 ms each to be transmit-
ted, and the steering and brake messages take 0.276 ms each to be transmitted. This
results in a total network bandwidth usage, excluding error frames, of 12.8 %. It
should be noted that in this configuration the network is only running at one-quarter
of its maximum speed of 1 Mbaud.

5.3 CAN in Aircraft World

5.3.1 Why CAN?

A large amount of information crosses through an aircraft. Many systems coexist
ranging from high critical avionics systems (displays, flaps command, engine fire
detection, etc.) to cabin systems such as ventilation, water and galleys (kitchens).

Fig. 5.7  Brake-by-wire system

2655 Applications

Networking is already an old story: aircrafts have been using ARINC 429 since
30 years. Why then a change towards a “non-avionics” network as CAN?

5.3.1.1 From ARINC 429 to CAN

First of all, a few words on the Aeronautical Radio Incorporated (ARINC) label:
The Airlines Electronic Engineering Committee (AEEC) is an international

standards organization, comprising major airline operators and other airspace users.
The AEEC establishes consensus-based, voluntary form, fit, function and inter-
face standards that are published by ARINC and are known as ARINC Standards.
ARINC Standards specify the air transport avionics equipment and systems.

ARINC 429 is very well defined and largely used and known communication
system. The first specification was delivered in 1977.

The physical layer is robust to the aeroplane environment and is characterized
by:

• Rreturn-to-zero (RZ) bipolar modulation and tri-state modulation consisting of
“HI,” “NULL” and “LO” states,

• Nnominal voltages values as described in Table 5.1 and
• Cables and nodes with 75 Ω impedance.

Nevertheless, main drawbacks have limited the application and increased wires:

• It has a low bit rate, with high-speed operation at 100 kbits/s and low-speed op-
eration around 12 kbits/s.

• Labels (equivalent to CAN identifiers) are too strictly defined.

Fig. 5.8  Time-triggered
controller area network
(TTCAN)-based X-by-wire
prototype

266 G. Reichart et al.

• Components are handled by the aeronautics industry.
• The ARINC 429 word is 32 bits with 20 bits maximum for data field as shown in

Table 5.2.

Moreover, the communication happens through one transmitter/multiple receivers.
It is highly reliable but increases number of wires (Fig. 5.9).

System designers and aircraft manufacturers therefore decided to apply an al-
ready worldwide established important standard for their increasing communication
demands - that is why CAN is chosen.

The main advantage seen with CAN is that it is the automotive standard. It is not
that airframers “copy” automotive ideas but component obsolescence is a very criti-
cal factor. The long life of aircrafts (30 years) but the small amount of units (around
1 per day gets out from Boeing and Airbus assembly lines) pushes us to follow a
size market that gives quantities.

The “open” standard, the large number of tools offered and the price have con-
tributed to CAN’s success in aircrafts. CAN also offers good error detection and
high electromagnetic immunity.

Table 5.1  ARNIC 429 emitter voltage values
HI (V) NULL (V) LO (V)

Line A to line B +10 0 −10
Line A to ground +5 0 −5
Line B to ground −5 0 +5

Table 5.2  ARINC 429 word structure
32 31 30 29 11 10 9 8 1
P SSM Data SDI Label
The label is used to determine the data type of the remainder of the word and, therefore, the method
of data translation to use
P parity bit, SSM sign/status matrix, SDI source/destination identifier

Fig. 5.9  ARINC 429 and controller area network (CAN) communication design

2675 Applications

5.3.1.2 History and Future …

Two different worlds coexist in aviation: general aviation (GA) with small aircrafts
and helicopters and airframers (Airbus and Boeing).

Airframers CAN started with cabin systems (ventilation, smoke detection and
water/waste) on A318 and A340, developed by a unique supplier with low bit rate
(83 kbps). It was so appealing that the use was largely extended on A380 within
avionics high critical systems (power distribution, control panels, engine fire detec-
tion, door monitoring, etc.) leading to more than 500 CAN nodes and 75 busses
per A380. A380 was also the starting point of the backbone avionics communica-
tion with AFDX (avionics full duplex Ethernet; switched Internet ARINC 664). The
redundancies are not shown in Fig. 5.10.

The redundancies are not shown on this drawing.

General Aviation Uses CAN for backbone communication and major avionics
buses. Therefore, it has to fulfil all the requirements of a flight safety network.
National Aeronautics and Space Administration (NASA) has also used CAN for
research program.

A specific application layer was developed: CANaerospace, the initial version cre-
ated in 1998. The story does not stop there as the Boeing B787 Dreamliner also
hosts a large number of CAN systems, and Airbus as well as Boeing have chosen
CAN as a basis for subsystems communication. A CAN standard ARINC 825 is
ready for all applications on board aircraft.

Why is an ARINC standard needed, one could ask. The following sections give the
answer: aircrafts are specific….

Fig. 5.10  A380 CAN (controller area network) in the global avionics network architecture

268 G. Reichart et al.

5.3.2 Aircraft-Specific Physical Layer Constraints

Compromise between wire length, number of equipment and baud rate is critical
and aircraft systems reach the CAN physical layer limits.

5.3.2.1 EMC and Lightning Stress

Exposition zones are defined depending on the system installation area (pressurised
and non-pressurised) and the EMI and lightning stress levels. Maximum bulk cur-
rent injection (BCI) levels are 75 mA for A380, which are not that far from automotive
constraints. Installation without shielding is possible. On A400M military aircraft, the
BCI maximum level is 300 mA and installation with efficient and maintained shielding
is necessary. Future aircrafts will apply GLAss-fiber REinforced aluminum (GLARE)
for weight reduction purpose. This will increase the design constraints even more.

Lightning protection, designed with transorbs, is added in each equipment,
which increases the node internal capacitance up to 300 pF.

5.3.2.2 Installation

The total length of A380 cables is 500 km. Routes are defined for cable and side
segregation—M1 and M2 with no specific requirements and S1 and S2 for specific
signals constraints: for example, few millivolts of audio signals.

The installation of a CAN network is a large part of the CAN adaptation to air-
craft world. The constraint of maximum 30 cm stub length can not be met sue to
cable routeing weight reduction constraints. This is especially true for cabin instal-
lation. Some systems are more than 150 m long, which is out of automotive use.

Some CAN wires go from the cockpit to the aircraft tail (Fig. 5.11) and go
through different sections, which are produced in different European sites. The wire
connection between sections is called a production break. At this point, the wire is
untwisted and impedance is then modified.

Fig. 5.11  Controller area network (CAN) wires layout

2695 Applications

Signal quality estimation by simulation and mock-up are run in order to antici-
pate potential risks for system design.

At node termination, the connector type is a regular avionics one: ARINC 600 or
circular EN3646 type as shown Fig. 5.12.

5.3.3 DAL, Safety, Certification

DAL (stands for Design Assurance Level from A to E. DO178B) classifies effects
of a functional failure on aircraft safety. Safety analysis is run for all systems and
loss of equipment/component (wire, etc.) is classified. Redundancies are built up
to reach the system safety requirement. The loss effects classification is as follows:

• E—no safety effect,
• D—minor,
• C—major,
• B—hazardous and
• A—catastrophic.

A loss of a CAN network is no more than major. In specific high critical networks,
we have up to three CAN wires and equipment redundancies.

5.3.3.1 Certification

The US Federal Aviation Administration (FAA) and the European Aviation Safety
Agency (EASA) are two independent administrations that allow an aircraft to trans-
port passengers. Numerous CRIs (Certification Review Items) will assume that
CAN is related to CRI-F40 for A380 and the objectives are:

1. To ensure that the bus perform its intended function under the most demanding
conditions and

2. To evaluate effect of abnormal behaviour and ensure the safety consequence.

Fig. 5.12  ARINC 600 and EN3646 connector type

270 G. Reichart et al.

The following issues are documented for all systems:

• Safety study,
• Data integrity,
• Performance,
• Design assurance,
• EMC,
• System configuration management and
• Continued airworthiness.

For more information, contact the FAA or EASA. Another CRI is related to CAN
with the CRI-F09 for critical components; the CAN controller enters this category.

5.3.4 Example: Smoke Detectors Interfaced by a Safety-Critical
Aircraft-Based CAN-Bus Network

5.3.4.1 Abstract

Classic architectures of aircraft systems contain equipment using interfaces with
digital, analogue or discrete signals. The electrical network to interface the equip-
ment varies between the applications. Some equipment require a dedicated power
supply and provides information on an analogue current loop, while others use pro-
prietary digital busses or discrete input/outputs (I/Os) for information exchange.

Initially, CAN was developed for use in the automotive industry, but is nowadays
being used in an increasing number of applications. One of these areas is aviation,
where in the past 5 years CAN has grown from being an exotic newcomer to an
established and widely accepted solution. Within the Fire Protection System on
an Airbus, smoke detectors are installed in various areas overall in the pressurised
zones of the aircraft like lavatories, equipment bays and cargo compartments. As the
CAN bus defines only layers 1 and 2 of the Open Systems Interconnection (OSI)
communication model, additional higher layer features are necessary to achieve the
level of operational assurance required for a safety-critical application, namely fire
protection on an aircraft.

This example is particularly focused on the development of a safety-critical
CAN bus network with strict configuration control of smoke detectors in the scope
of an aircraft application. In 2003, international airworthiness authorities approved
the application in the frame of the Airbus A318 Type certification.

5.3.4.2 Introduction

The objective of the new smoke detection system was to replace the proprietary cur-
rent modulated supply and communication loop with an open, non-proprietary bus
standard. The overall system reliability and performance were aimed to match or

2715 Applications

surpass the existing architecture while keeping development and purchasing costs
at a comparative level.

The latter was feasible by reusing the existing smoke detector core and fitting it
with an altered communication and power interface (see Figs. 5.13 and 5.14).

The communication medium had to meet a number of requirements for eligibil-
ity in a safety-critical application:

• Advanced data integrity and error detection features,
• Deterministic behaviour,
• Operability in challenging EMC environments and
• High degree of flexibility in choice of network size and topology.

Considering the 30-year design life of a modern passenger aircraft, the long-term
availability of electronic components was scrutinized in order to minimize the risk
of equipment redesign resulting from component obsolescence throughout the life
cycle of the aircraft.

The CAN bus was deemed the most suitable communication medium capable of
fulfilling the above requirements.

5.3.4.3 Protocol

The CAN protocol, as defined in ISO 11898 [ISO11898], covers layers 1 and 2 of
the OSI communication model. The remaining layers, up to layer 7, have to be man-
aged by additional services up to the application. Various standardised higher layer
protocols such as CANopen are available and widely used in industrial applications.
Instead of selecting a generic high layer protocol, a specific to-type application
layer protocol was developed and documented in a System Interface Document
[SCHMID] in order to ease compliance with RTCA/DO-178 [DO178B] guidelines.

Fig. 5.13  Smoke detection system using proprietary detector supply and communication loop

272 G. Reichart et al.

Analysis of the communication needs to result in the following protocol require-
ments:

• Every individual smoke detector on the network must be uniquely identifiable,
• Messages generated by a smoke detector must contain information about its

identity and
• The detector must support a master–slave communication model.

CAN Identifier The 29-bit extended identifier is utilized and partitioned into the
subfields as shown in Fig. 5.15.

Message Type The purpose of the Message Type is to categorize messages accord-
ing to their overall relative priority and indicate whether the Module ID contains a
transmitter or receiver address. Two classes of Message Type, Process Data Object
(PDO) and Service Data Object (SDO) are instantiated either as Transmit or as
Receive objects, T_PDO and R_PDO as well as T_SDO and R_SDO, respectively.
A Transmit Data Object (T_xDO) denotes that Module ID contains the network
address of the transmitter, whereas a Receive Data Object (R_xDO) contains the
network address of the intended receiver in the Module ID field.

Fig. 5.14  Smoke detection system using an open standard controller area network (CAN) bus-to-
interface detector

2735 Applications

Function Code (bits 24…15) Every application function is designated a unique
Function Code within its respective Message Type. In addition to describing the
next level of arbitration priority, the Function Code is used to transport logical data
without the use of the actual CAN data fields. In this case, the Data Length Code
(DLC) is 0, enabling efficient use of data bandwidth, particularly for R_PDOs and
R_SDOs which contain mostly status requests directed at smoke detectors and do
not carry any further information than the request itself.

Module ID (bits 14…5) The Module ID field contains the unique network identi-
fication of the CAN node. This may also be a broadcast identification when a mes-
sage is directed at several nodes simultaneously. Two subfields Module Type and
Module Address split the Module ID into equipment classes and their individual
addresses. The entire Module Address space may be reused for every Module Type
on the network.

System ID (bits 4…0) The System ID is used to tag the CAN identifier with a
unique system identification code. All smoke detectors and other fire protection
components are assigned a fixed value.

Data Frames A Data Frame is generated by a transmitter to transfer application
data to one, or in the case of a broadcast, several receivers. Within the Data Frame,
the Data Field consisting of 1–8 bytes carries the application data. A Data Frame
may contain an empty Data Field (DLC = 0). In this case, data are carried through
the Function Code alone.

A smoke detector’s 8-byte status Data Field is as defined in Table 5.3 with the
meaning of the data bits in Table 5.4.

5.3.4.4 Network Management

It is of utmost importance that the system configuration and availability of re-
sources (smoke detectors) are known to the network master. Lack of configuration
control through the network master device would jeopardize safety and disqualify
the system. From a safety assessment point of view, the worst-case condition is an
undetected configuration error leading to an incorrect compartment designation in
case of fire; an alarm reported in the aircraft’s forward cargo compartment while the
real fire occurrence is in the aft cargo compartment and vice versa. Such a case is

Fig. 5.15  Controller area network (CAN) identifier

274 G. Reichart et al.

classified as catastrophic. A catastrophic event is defined as an occurrence leading
to total loss of the aircraft and occupants and must be ruled out with a defined level
of probability of failure < 1 × 10−9. Therefore, various network management mecha-
nisms are necessary to ensure proper system configuration during initialization and
normal operation.

5.3.4.5 Power-Up Configuration Control

The normal expected configuration of smoke detectors is fixed in a lookup table
within the network master’s operational software. At power up or system initializa-
tion, the current configuration is compared with the expected through a mechanism
called Configuration Check Request. During the Configuration Check Request pro-
cess, the network master broadcasts the Configuration Check Request as an R_PDO

Table 5.3  Smoke detector data field
Data byte MSB LSB Description Format
1 7 5 Spare/not used -

4 4 Detector Warning Discrete
3 3 Prefault threshold exceeded Discrete
2 2 Detector standby Discrete
1 1 Detector alarm Discrete
0 0 Detector failure Discrete

2 7 0 Trouble shooting data Binary
3 7 2 Spare/not used -

1 0 MSB contamination level Binary
4 7 0 LSB contamination level Binary
5 7 2 Spare/not used -

1 0 MSB smoke level Binary
6 7 0 LSB smoke level Binary
7 7 2 Spare/not used -

1 0 MSB temperature Binary
8 7 0 LSB temperature Binary

Table 5.4  Meaning of the status bits
Designation bit Meaning
Failure 0 The smoke detector is no longer able to detect smoke or to

communicate this information in a reliable manner
Alarm 1 Smoke is detected and confirmed
Standby 2 The smoke detector is able to detect smoke and communicate

this information in a reliable manner
Prefault 3 The smoke detector optical cell contamination level

has exceeded the internal threshold for triggering a
corresponding maintenance message

Warning 4 The CAN TX error counter has exceeded 96

2755 Applications

with the broadcast Module ID to all smoke detectors. These in turn reply with T_
PDOs containing their individual Module Address, enabling the network master to
make a comparison of the received replies with the expected replies and, thereby,
detect the following failure cases (Figs. 5.16, 5.17 and 5.18):

• The network master is incorrectly configured for the intended installation,
• An expected smoke detector has not replied (missing smoke detector on net-

work) and
• An unexpected smoke detector has replied (excessive smoke detector on network).

Thus, comparison of the configuration present on the network with the expected
configuration is a prerequisite for determined network behaviour.

5.3.4.6 Normal Polling Operation

The CAN bus is operated in the master–slave mode (Fig. 5.19). The network master
cyclically acquires the status of each smoke detector by an explicitly addressed re-
quest frame. Not to be confused with CAN remote-request frames, the request mes-
sage is a regular data frame of type R_PDO containing the individual Module ID of
the subject smoke detector and is replied to by a T_PDO data frame containing the
Module ID of the replying transmitter.

Fig. 5.16  Normal configuration check request/reply process

Fig. 5.17  Failure of expected smoke detector to reply

276 G. Reichart et al.

Each polling request is monitored by a timeout in which the reply is expected.
The polling cycle is repeated every 2 s.

5.3.4.7 Failure Detection/Reconfiguration

The response time of the smoke detector is 60 ms, including internal processing
time and retry mechanisms inherent to CAN. A reply is considered timed out by the
network master when not received prior to the following polling cycle, 2 s later. An
outstanding reply increments a counter C in the network master. The reception of a
normal polling reply while the counter is 1 ≤ C < 5 leads to a reset of the counter to
0 and the smoke detector is restored to normal operation. Once the counter reaches
5 outstanding replies (10 s), the smoke detector is declared inoperable and is no
longer polled, thereby resulting in a reconfiguration of the system. System deter-
minism is ensured through the request–reply time window and the polling cycle as
shown in Fig. 5.20.

In summary, the polling process abides by the following rules:

• Only expected smoke detectors are polled,
• A smoke detector determined missing during power up is not polled,
• A smoke detector is no longer polled following five consecutive timeouts and
• A smoke detector is no longer polled when declared failed.

Fig. 5.18  Unexpected smoke detector reply

Fig. 5.19  Normal polling operation

2775 Applications

5.3.4.8 Smoke Detector Monitoring

In addition to the network-based configuration and time monitoring, the smoke de-
tector is monitored for proper functional behaviour by the network master.

Normally, the smoke detector is in the standby condition (bit 2 on data byte 1 is
TRUE). In case of alarm, the standby bit becomes false while the alarm condition
(bit 1 on data byte 1) is TRUE. These conditions are by definition mutually exclu-
sive and are therefore monitored for proper behaviour. If two consecutive polling
replies are received with neither the standby nor the alarm bit set to TRUE, or both
bits set to TRUE, the smoke detector is declared failed and is no longer polled. In
Boolean terms:

Failed alarm s dby alarm s dby= +(* tan) (* tan). (5.1)

5.3.4.9 Network Topology

The smoke detectors are connected with the network in a linear bus topology with
stubs departing from a central bus line. Bus termination is accomplished through
resistors implemented within the network master at one end of the network and the
last smoke detector at the other end (Fig. 5.21). Each item of equipment is qualified
to operate on a CAN bus of length 150 m, with 32 nodes connected through 2-m-
long stubs to the main bus line.

Depending on the aircraft compartment being monitored, either a single- or dual-
redundant bus line is incorporated depending on the reliability requirements and
whether the compartment is accessible or not during flight. The dual-redundant ar-
chitecture implies two smoke detectors at each location within a compartment. This
is the case for the cargo compartments in the lower deck of the aircraft. Each lava-
tory, on the other hand, is fitted with a single smoke detector.

Fig. 5.20  Timeout expired

278 G. Reichart et al.

5.3.4.10 Development Process

The safety philosophy in aviation defines quantitative safety objectives and assigns
acceptable probabilities. The overall probability for a failure with catastrophic con-
sequences must be extremely improbable. This must be demonstrated to the air-
worthiness authorities for certification. The demonstration is endorsed through a
complete, detailed and documented safety analysis, which is one of the integral
parts of the software development process.

Guidelines for development of aviation software in the USA are defined in the
DO-178B. Since its production by the RTCA, the DO-178B has become a de facto
standard. The FAA’s Advisory Circular AC20-115B established DO-178B as the
accepted means of certifying all new aviation software.

DO178-B is primarily concerned with development processes. As a result, cer-
tification to DO178-B requires delivery of multiple supporting documents and re-
cords. The quantity of items needed for DO178-B certification, and the amount of
information that they must contain, is determined by the level of certification being
sought.

The higher the consequences of a potential failure of the software (catastrophic,
hazardous-severe, major, minor, or no-effect) are, the higher is the DO178-B cer-
tification level. The levels are from A for the highest certification level through B,
C and D to E.

This aviation-specific development process had to be followed on an equipment
and on a system level.

5.3.4.11 Conclusion

Through clever system design and network management, a CAN bus-based safety-
critical smoke-detection system with deterministic behaviour, capable of fulfilling
the safety and reliability requirements, was developed and approved by airworthi-
ness authorities. The robustness and reliability of CAN in this airborne application

Fig. 5.21  Network topology

2795 Applications

are being closely monitored, with some 1.45 × 107 accumulated flight hours (in-
cluding multiple equipment factor) having been accumulated in the period between
mid-2003 and February 2006.

5.4 The Geniax System Decentralised Heating Pumps

“Geniax” is a real technical revolution in the field of heating technology. It is based
on several miniature pumps at the heating surfaces or in the heating circuits instead
of using thermostatic regulating valves. The conventional “supply-oriented heat-
ing” with one central heating pump is replaced in this way by “demand-oriented
heating”—pumping only takes place when heat is needed (see Fig. 5.22, which
demonstrates the basic principle of Geniax).

Also new is a central control intelligence for the whole heating system. It main-
tains the heating system in a hydraulically optimal state and generally improves
precision, speed and energy efficiency. Fields of application include new buildings
and upgrades of older buildings. The system can be installed in both single- and
multi-family houses as well as in commercial properties such as office buildings.
The central advantage—besides improved hydraulics and comfort—is the signifi-
cant reduction in heating energy consumption by an average of 20 %.

A further decisive component of the decentralised pump system—besides the
miniature pumps and their pump electronics—is a central management unit with an
interface to the heat generator: the Geniax server. It is responsible for the coordina-
tion of heating needs in the individual rooms and, using the present specifications
from the room user interfaces, the management of all components in the entire heat-
ing system. The Geniax server’s control signals to the pump electronics are used to
variably control the pump speed and therefore also the mass flow of the pumps and
the heating performance in a needs-based fashion. Beyond this, the server controls
the displays of the room user interfaces, monitors all connected components, col-
lects data for diagnostic purposes and controls the heat generator via the 0–10 V
interface (see Fig. 5.23).

As already indicated above, the Geniax system is a master–slave system in
which all slaves are dependent on the communication with the Geniax server. With
this concept, Wilo SE also takes an unusual path for a traditional individual room
temperature regulation system, where all the rooms to be regulated typically work
on their own.

In the Geniax system, the server works with all the system’s information so that
individual pumps, if need be, can even be handled according to preference or can
perform anticipatory work as a result of learning processes.

As is the case for any master–slave system, the Geniax system requires a suitable
communication medium. Since a Geniax pump has a maximum power consump-
tion of approximately 3.5 W, there is no need for a permanent battery supply for the
components integrated in the system. This led to the decision to use a cabled system
at the start of the newly developed system.

280 G. Reichart et al.

From the many established bus systems, a preselection was made and a bench-
mark was carried out on this selection.

The selection was to be made among the following bus systems: EIB, LON,
BACnet and CAN.

The following reasons finally led to the decision in favour of CAN as the me-
dium for the Geniax system.

• Comparatively low costs per communication node of about 1 €,
• EIB and LON are partially subject to license costs, leading to node costs of more

than 10 €,
• Long-term availability of standardized transceivers from the automotive industry,
• The energy-saving functions of the CAN transceiver to be used for further en-

ergy saving at every individual node and
• The possibility to develop an exact proprietary protocol to meet the needs of the

Geniax system.

Besides the relatively high costs for the hardware design of each communication
participant, EIB, BACnet and LON already have a fixed protocol format which
cannot be used directly with the Geniax system.

Not the least for this reason, a bus system was selected for the Geniax system
which is adaptable when it comes to speed and protocol format and is also becom-
ing better established in other areas of house and building automation.

After the decision was made to use the CAN bus, the transfer speed had to be
determined. This would implicitly determine the maximum network expansion. By
using low baud rates, a huge expansion of the topology of more than 2,000 m is
possible, theoretically. This expansion exceeds the expected network expansion in

Fig. 5.22  Basic principle—throttle control compared to pump control

2815 Applications

a single- or multi-family house. Even for the installation in a functional building,
such a greatly expanded system is not supportable due to reliability.

In addition, the greatly extended lines will inevitably lead to voltage drops and
the associated earth offset, causing problems for reliable operation and communica-
tion between the participants linked by the bus. Beyond this, building construction
factors place demands on the installation, which deviate from the linear bus topol-
ogy, is specified by the CAN standard.

For this reason, the Geniax system is supplemented by the so-called bus coupler.
With the help of the bus coupler, it is possible to segment a greatly extended system
into logical subsegments. Every subsegment formed with a bus coupler is galvani-
cally isolated from the upstream subsegment and has its own power supply. Due
to the galvanic isolation of individual CAN segments, it is possible to implement
nearly any topology without violating the CAN principles. This allows even a con-
voluted star topology to be done without complicated calculations of termination
resistance.

This means that clever planning of bus couplers can lead to a system with higher
overall availability of the existing heating surfaces than would be the case for tradi-
tional operation of a single pump in the basement.

Taking such a system into consideration, if, for example, the power supply in a
subsegment fails or there is a short circuit in a particular subsegment, the subseg-

Fig. 5.23  Schematic representation of the main system components

282 G. Reichart et al.

ments located upstream of this bus coupler will continue to work without a problem
(see Fig. 5.24). Naturally, the Geniax server recognises that there is a problem in the
system and passes this information on accordingly.

Besides the physical advantages of using the bus coupler, its protocol-level op-
eration produces system-stabilising effects.

Since every message from every bus coupler must first be completely received
before it is forwarded to upstream or downstream subsegments, CAN “Error
Frames”, for example, in one subsegment are automatically filtered out and, there-
fore, will not be propagated in the entire system.

To summarise, the following can be stated:
In order to guarantee CAN communication in extended networks with high ex-

pected load currents in particular, dividing up the network into smaller segments
that are galvanically isolated from each other is a recommendable measure. It is
important for the individual CAN segments that all communication nodes within a
subsegment are connected to the same reference GND.

Fig. 5.24  System overview of the controller area network (CAN) topology with bus couplers

283

Chapter 6
Testing

Wolfhard Lawrenz, Federico Cañas, Maria Fischer, Stefan Krauß,
Lothar Kukla and Nils Obermoeller

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_6,
© Springer-Verlag London 2013

M. Fischer () L. Kukla · N. Obermoeller
C&S group GmbH, Am Exer 19b, 38302, Wolfenbüttel, Germany
e-mail: Maria.Fischer@cs-group.de

F. Cañas
Quellweg 27, 13629 Berlin, Germany
e-mail: federico.canas@gmail.com

W. Lawrenz
Waldweg 1, 38302, Wolfenbuettel, Germany
e-mail: W.Lawrenz@gmx.net

S. Krauß
Vector Informatik GmbH, Ingersheimer Strasse 24, 70499 Stuttgart, Germany
e-mail: stefan.krauss@vector-informatik.de

6.1 Conformance Test Methodology

Technical products are tested in different ways sometimes even already in the con-
cept design phase, and finally while the production process is ongoing and at the
end of the production itself. Various test methods are applied such as module tests,
integration tests, system tests and qualification tests in order to assure that systems
or system components finally provide the desired functionality and comply with
their related requirements. The need for conformance tests especially is obvious
recognizing the immense progress in technologies over the last decades.

In order to master complexity of current systems, modularization as well as
composition of systems from standardized components, being supplied by different
manufacturers, became key factors. Currently, it is almost impossible to provide all
technical knowledge about a system as a whole just within one single company. The
example of cars industries clearly demonstrates this fact: Almost none of the car
manufacturers provide an in-house production depth of 40 %. Not only components
but also more and more complete (sub-) systems are supplied by third parties. Even
tier 1 suppliers integrate components supplied by tier 2 suppliers and so on.

284 W. Lawrenz et al.

The application of standard components is reasonable because of economic rea-
sons as their wider usage implies higher quantities and this, in conjunction with
pressure from inter-companies’ competition, results in reduced cost. In order to
make standard components from different suppliers acceptable, they must be com-
patible and functionally homologous. That is, what standards shall guarantee? Un-
fortunately, it is not a self-fulfilling prophecy ensuring that different suppliers pro-
vide identical products, while applying the same standard—why?

The driving factor for the development of a product basically is a need for that
product, being compliant to specific requirements and desired functions and proper-
ties. The specification of requirements is the first step towards a product. In a next
step, a component specification is derived from the requirements and the possibly
already-existing (partial) solutions, which then serves as the basis for all implemen-
tation processes. Requirements must be expressed in one way or another and from
there unique definitions and description of the functionalities and their implementa-
tions must be derived.

The difficulties when specifying the requirements, properties and functions
come from the limitation of resources in human imagination, human linguistic ca-
pabilities and description means. It is almost impossible to describe requirements
in an arbitrary way. Furthermore, none of the product designers is able to express
all of his or her ideas and describe them correspondingly in a formal language.
The number of designers for a specific product mostly is very limited. As such, it
is quite natural that these persons are not able to express the personal knowledge
completely or they even are not willing to do so. Specifications are textual docu-
ments in most cases. This is mostly due to the fact that purely formal languages are
not widely known or correspondingly needed tools are not available. Quite often,
it seems to be easier to describe certain mechanisms by words than to express them
in formulas and diagrams. On top of this, the application of a formal language such
as Specification and Description Language (SDL) or Unified Modelling Language
(UML) does not guarantee per se that such a description is understood in the same
way by everybody.

When mapping ideas into text and diagrams as well as into formal languages as
there are the system description languages and modelling languages, there is a gap
between the author’s thoughts and the reader’s comprehension. Any of the require-
ments descriptions and any of the specifications contain certain ambiguities which
may have more or less effect depending on the quality of the description and the
qualification of the reader. This consequently results in different implementations,
which should be avoided.

Currently standards are developed in cooperation with multiple companies. As
such, the quality of the specification documents under development is checked by
a consortium of persons. However, the implementation of the specified compo-
nent mostly is done by single companies only. The interpretation of a specification
of only a few persons consequently bares the risk that small deviations between
specification of a component and its implementation may occur. This effect shall
be called “interpretation deviation”. It can be observed too that when regarding the
definition of requirements and their specification, difficulties while implementing

2856 Testing

certain requirements may become an important issue, referring to the previously
mentioned step (see Fig. 6.1).

The implementation of component specifications may include (unfavourable)
misinterpretations and “real” mistakes. If a mechanism was not understood in the
same way as originally intended, it may be difficult to call it a mistake. A specifica-
tion may lead to a logically correct conclusion, which, simply said, had not been
intended by the designer. Nevertheless, the major goal must be kept in mind that
products of different suppliers shall be sufficiently compliant and in accordance
with the standard.

6.1.1 Important Terms

• Conformance
According to ISO 9000 (see [ISO9000], §§ 3.6.1, 3.8), conformance corresponds to
“fulfilment of a requirement”, while a mistake is “non-fulfilment of a requirement”.
Furthermore, this standard emphasizes testing as an appropriate means for objec-
tive proof of conformance. An implementation is proven to be conformant if it is
compliant to all specified requirements.

• Conformance Tests
Conformance tests check the behaviour of an implementation against the corre-
spondingly specified standard. These tests are functional tests, belonging to the
group of dynamic test methods (see Fig. 6.2).

Fig. 6.1  Deviation of specification and implementation of components

286 W. Lawrenz et al.

• Conformance Test Specification
The conformance test specification lists test cases (TCs) as well as constraints for
the tester implementation and the test execution. When generating the conformance
test specification, the derivation and precise definition of the TCs are important as
well as formal requirements such as the independence of the test description from
any specific implementation, from test houses, as well as from any specific test
environment, if not explicitly required.

6.1.2 Purpose, Benefits and Intention of Conformance Tests

Distributed systems consisting of components from different suppliers can only op-
erate reliably if all components provide a compliant functionality in a correspond-
ingly timely manner. Any deviation from that functionality and timing may lead to
failures in a distributed system.

As such, a conformance test directly aims at the interpretation deviations as pre-
viously mentioned. However, not to be misunderstood, conformance tests too are
derived from requirements, descriptions and specifications by humans. Therefore,
conformance tests possibly may contain false interpretations. However, it is good
to know that conformance tests typically are generated under the supervision of a
group of users, cooperating companies or consortia of the related standard. Insofar,
quality of conformance test specifications is comparable to the quality of the related
component specifications. Particularly, long discussions take place on restrictive,
demanding TCs, which, at the end, result in how the related parts of the component
specifications are to be understood. As such, the precise meaning is clarified and put
into a binding conformance test.

Fig. 6.2  Principle of conformance tests

2876 Testing

Quite often weaknesses of the component specification are discovered, when
developing the related test scenarios. As such, even the process of TCs generation
per se makes sense, as for that purpose especially checks of the individual functions
of the implementation are done, which require a unique interpretation of the com-
ponent specification. When performing a conformance test only unique verdicts
are allowed, which discriminate clearly whether or not a test candidate performs as
required by the component specification. Thus precisely defined limits are given,
within which an implementation must perform, if it shall be compliant to the stan-
dard. The benefits of this kind of tests obviously help to discover and avoid interpre-
tation vagueness. This vagueness inevitably would lead to problems in a system, in
the event that components must be exchanged and/or implementations of different
manufacturers are used in the same networked system.

Well-known companies integrating those standardized components require con-
formance tests as the basic precondition, if those components of a specific supplier
are to be applied. This is not only the case in automotive industries, but also in most
technical areas. Especially, conformance tests apply when using such components
in communication-related areas such as telecommunication up to high-speed com-
puter interfaces. Again this results from the application of components in networked
systems, which are supplied by different manufacturers.

When applying tests in general and especially conformance tests, problems can
be detected in an early phase and not just in the late phase of integration into the fi-
nal end product. At that late phase, problems may be even difficult to discover; may-
be they even can only be observed under very specific conditions. When performing
conformance tests on a single component partially, very specific and detailed test
scenarios are applied, while systems tests typically focus on known application cas-
es and error cases. As such, a potentially non-standard-conform component may fail
when used by the end user. This can lead to a recall action and thus cause tremen-
dous cost for correcting that problem. Typically, before going into the integration
phase, the supplier of a component himself applies various tests. However, these
tests are based on the interpretation of that specific supplier. As such, these tests do
not guarantee this component to be compliant to the standard (see Fig. 6.3).

For currently developed standards, the specification of related conformance tests
is done in parallel. Quite often, this is done by consortia, which are put together
especially for that purpose (in automotive industries, there are, e.g. FleyRay con-
sortium or AUTOSAR consortium). This procedure makes sure that from the begin-
ning, only components are applied which are conforming to the standard. In addi-
tion, this procedure avoids that standards must be altered in a later phase, to make
them compliant to the already-available implementations. Obviously this procedure
does not make sense.

• Some purposes of conformance tests

− Proof of functions and timely behaviour of different implementations as
required by the standard.

− When developing conformance tests, the related component specification
is analysed very deeply, discovering various ambiguities and problems as

288 W. Lawrenz et al.

well as clarifying the original intention of its designer. Unfortunately, it is
not always possible to find retroactively unique expressions for that speci-
fication. Nevertheless, the test specification describes clearly the expected
behaviour and the limits within which conforming implementations must be
operating.

− Conformance tests are developed in cooperation of many companies and
persons. This may be possibly supervised by consortia. Clear limits between
compliant and non-compliant behaviour are defined. This effectively protects
against supplier-specific interpretation vagueness. Supplier tests, however,
check the supplier’s interpretation of a “correct” behaviour.

− Clear instructions concerning the test-system implementation and the test
process ensure a standardized test execution, generating comparable results.
Therefore, all implementations are tested under the same constraints.

− While applying identical evaluation criteria, a high degree of correspon-
dence of different implementations is ensured. If the component specifica-
tion describes interoperable components, then the compliant implementations
very likely will be interoperable, too. However, the following paragraph
explains in detail why anyhow conformance tests as well as any other test
cannot guarantee interoperability.

− Implementations which do not correspond to the standard are reliably disco-
vered. The correctness as a whole cannot be proven, but there is absence of
failures in all areas which are covered by the test scenarios.

6.1.2.1 Relation Between Conformance and Interoperability

A conformance test provides evidence that the behaviour of an implementation of
a component exclusively and comprehensively complies with the corresponding
specification of that component. This fundamental issue is the reason for the above
statement that no conformance test can ever guarantee interoperability of con-
forming components: Conformance tests absolutely only focus on the component

Fig. 6.3  Error removal cost
after development phase

2896 Testing

specifications. As such, a component specification could define a component which
is not interoperable with other components of its kind.

An undiscovered error in the component specification could result in compo-
nents conforming to the specification but, nevertheless, not working appropriately.
As such, the quality of implementations not only depends on the coverage and ex-
cellence of the conformance tests, but also depends significantly on the quality of
the component specification itself. This specification is responsible for the defini-
tion of a component with an appropriate functionality corresponding to the system
requirements. Failing this, the conforming implementations could not operate ap-
propriately as this was a contradiction to the specification.

As for the end customer, finally interoperability is the utmost goal; they mostly
require tests proving interoperability. However, this cannot be achieved by mere
testing. Nevertheless interoperability tests do exist, mostly connecting various im-
plementations under laboratory conditions resulting in the verdict “OK” or “NOT
OK”, when applying specific test scenarios. The value of this verdict, however, is
rather limited with respect to the applied test scenarios, as due to this concept, tech-
nically and practically it is not feasible to check any possible scenario. As such, any
effort claiming to guarantee interoperability by testing is dubious.

Assuming a specification is properly done, in general, the risk of non-interop-
erable specified components is low. Consequently, the chance for interoperability
is increasing with the degree of compliance between the implementation and its
specification. The compliance is proven by conformance tests.

As mentioned above, the quality of the specification is supported by develop-
ment of conformance tests while precisely analysing the component specification
and pushing for its non-ambiguous interpretation. As such, a high-quality compo-
nent specification and related conformance tests will result. The risk of non-interop-
erable components is estimated to be rather low, especially when findings from the
development of the conformance tests are fed back into the subsequent revision of
the component specification resulting in non-ambiguous statements. Unfortunately,
the constructive feedback very often does not quite easily have its effect, because
standards quite often rather quickly become “untouchable”.

In conclusion, conformance tests as well as any other tests cannot guarantee
absolute interoperability, but they increase the chance to it.

6.1.3 Test Methods, Test Standards and Test Rules

Various test objects require different implementations of test systems, especially
related to the coupling of the test object to the test system. Most of the test systems
are based on the principle of accumulating findings from experience in order to
come to better solutions. Many of the characteristics, excellence and advantages of
existing test systems can be transferred to other test systems.

The standard ISO 9646 (see [ISO 9646]) specifies conditions and the methodol-
ogy for the design and execution of conformance tests according to well-defined

290 W. Lawrenz et al.

procedures. This standard has been developed for conformance tests of layered pro-
tocol implementations which are oriented on the well-known seven layers model
corresponding to ISO/International Electrotechnical Commission (IEC) 7498. Stan-
dardized test procedures and related constraints are required in order to achieve
reproducible, comparable test results. For that purpose, ISO 9646 defines guidelines
for the specification of abstract TC collections, and gives recommendations for the
description language of tests as well as for the test implementation. Furthermore, it
specifies requirements and guidelines for test laboratories and their conformance
test customers and it lists further support such as how to handle alternative versions
and optional characteristics of test objects and how to handle declarations of the cus-
tomers on the abilities of its implementation, which are to be tested (See Table 6.1).

The ISO 9646 standard exclusively defines general rules and explicit guidelines
but no specific test techniques nor test systems. Nevertheless, those definitions are
applicable on almost any specific case and, therefore, to be considered correspond-
ingly.

As a starting point, the ISO 9646 standard defines an abstract test architecture
surrounding and embedding the implementation under test (IUT). Only the external
behaviour of the IUT can be accessed by the tests; its internal realization is invisi-
ble—like a black box. The test object is assumed to be part of a layered architecture,
the behaviour of which shall be tested on its interaction towards the borderlines
to the higher and lower layers. The Upper Tester (UT) controls and monitors the
interface to the next higher layer. The Lower Tester (LT) does the same on the next
lower-layer interface. These interfaces are called the Points of Control and Observa-
tion (PCOs). UT and LT are both responsible for the translation of the Abstract Test
Services (ASP) into real commands for the IUT. They are both controlled by the
Test Coordination Procedure (TCP) and they both communicate back the data re-
ceived from the PCOs to the TCP. Comparing the monitored data with the reference

Table 6.1  Typical, basic terms related to conformance tests
Abbrevations Term Meaning
IUT Implementation

under test
Test object—the implementation of a component, a protocol

layer particularly, which is to be tested
SUT System under test In most cases, the IUT is embedded in a complementing

system, which cannot be separated from the IUT when
performing the tests on the IUT

PCO Point of control
and observation

Interface of the IUT for its stimulation and monitoring

UT Upper tester Entity accessing the IUT from next higher protocol layer in
order to control and monitor the IUT

LT Lower tester Entity accessing the IUT from next lower protocol layer in
order to control and monitor the IUT

TCPs Test coordination
procedures

TCPs serve for management and control of UT and LT

ASP Abstract service
primitive

Commands to UT and LT for stimulation and monitoring
of specific services. An implementation-non-depending
description between service client and service provider

2916 Testing

data results in the test verdict in the TCP. All data are stored for the purpose of later
evidence of correct test execution. There are some test-system implementations in
which the UT operates within the system under test (SUT) virtually as an embedded
system (see Fig. 6.4).

In addition to the generic tester architecture ISO 9646 specifies various condi-
tions and requirements for conformance tests and the corresponding specification.
These criteria are of major importance for the quality and significance of confor-
mance tests. Some of the most important ones are listed below and their meaning
is explained:

• The test description language must be human readable and preferably computer
executable. For instance, Test and Test Control Notation (TTCN) is such a re-
commended language for which there are compilers and interpreters which allow
execution of test descriptions on computers. The representation is abstract; it is
not real time executable. When applying current Personal-Computer-technologies
(PC-technologies) specific operating systems, a time resolution in the range of
some milliseconds can be achieved, unfortunately, quite often, with a large jitter.
Alternatively, human-readable script languages are applied for configuring real
time capable measurement devices. Resolution and accuracy of this methodolo-
gy only are limited by the characteristics of the applied measurement devices.
As such, high-precision data acquisition and corresponding analysis of timely
behaviour of the test object are feasible.

• The test specification shall be independent from the test object and the applied
specific test-system implementation. The test methodology shall be defined in
an abstract way. The test methodology describes, among others, which interfaces
of the test object must be served and whether there is a single test object only or

Fig. 6.4  Generic test-system architecture according to ISO 9646

292 W. Lawrenz et al.

a multitude of networked test objects. The tests themselves shall be subdivided
into single abstract test steps. A test step, for instance, specifies the generation of
a specific test stimulus or the check for a specific response of the test object.

• It shall be feasible to organize the individual TCs into groups which are oriented
on the features of the test object. It is recommended that a test suite shall allow
the selection of single tests or groups of tests depending on the test object.

• Clear and detailed specified test sequences in conjunction with non-ambiguous
evaluation criteria assure comparable and repeatable tests. Tests always must
start at a well-defined initial state. The kind of tests must be identical for all
IUTs. A repetition of tests must issue the same results.

• Any specific capability (option) of a test object must be checked whether it is
implemented and if so its functionality must be tested. Any capability which,
according to the supplier, is supported by the test object must be checked by the
conformance test. Options which are not supported are not tested and conse-
quently they are not confirmed in the test report. None of any specified specific
options shall be evaluated as “not supported” retrospectively if they do not meet
their functional requirements in the prior test. Any of the obligatory features and
the ones which are assured by the supplier shall be checked. In case of a failure
of a single test, the overall test verdict is “fail”. The individually failed tests
must be listed in the test report. The supplier of a test object specifies which
functionality is supported by his implementation. The supplier declares the con-
formance of his implementation to the components specification in the so-called
conformance declaration. The conformance declaration quite often is structured
in the form of a questionnaire listing all the options which are specified by the
standard. The conformance test correspondingly confirms or contradicts the con-
formance declaration.

• All TCs shall be specified in an abstract and configurable way in order to ease
testing of test objects options. This allows, for instance, optional signals to be
stimulated, monitored and evaluated only if they had been implemented in the
specific test object. As such, the same tests are suitable for test objects with mi-
nimal and extended functionality.

• The chosen test method and the process of controlling the interfaces of the test
object must adequately correspond to the technical conditions.

• Test results must be non-ambiguous and reproducible. The test verdict shall be
limited to “pass” or “fail” only. No other verdict grades are allowed. Reproduci-
bility includes the existence of a human-readable log file, which memorizes the
exact test sequence with its stimulation and reaction of the test object.

• When testing according to ISO 9646, if possible, each single protocol layer shall
be separately handled from its adjacent layers in order to limit the efforts to a
reasonably low complexity. Insofar, test systems quite often are optimized and
adapted to a specific component or protocol layer of a communication system
correspondingly.

2936 Testing

6.1.3.1 Testing Technologies and Their Implementation

Any actions which are to be performed by the UT and LT must be predefined in the
test description concerning their performance and timely behaviour. The test coor-
dination fully depends on the test description and its resulting execution. In some
cases, a simple sequence of the specified actions is sufficient. Time-critical actions
obviously require the specification of the points of time by when those test steps are
to be executed.

In general, there are various ways to perform tests. Typically there is the execu-
tion of the test description at runtime as well as its separation into a preparation
phase, test runtime phase and a post-processing phase. Both of these methods have
the characteristic advantages and disadvantages. The runtime execution, for exam-
ple, allows specific reactions on the behaviour of the test object—decisions can be
taken at runtime. However, the second method with its preparation phase is the only
one which is real time capable. In the preparation phase, the complete TC is read
and all of the participating entities of the test system are initialized and configured
according to the test sequence. After the test starts, the test runtime is executed in
real time. But in this case, the correct behaviour of the test object must be entirely
predictable, because typically a dynamic reaction on the behaviour of the test object
is not feasible. In most cases, this is not required, because according to the speci-
fication of the test object, its behaviour on a specific stimulus is predefined. TCs
must be defined in such a way that only a unique reaction on a test scenario is the
correct one. Whether a test system, in general, can react dynamically or whether it is
real time capable does not depend so much on the choice of the test description lan-
guage but more on how the test execution is performed. Presumably, nevertheless,
response time and the sequential order of reactions monitored at various interfaces
of the test object can be of interest. Therefore, the application of a non-dynamic but
real time capable and thus fully deterministic test method may be recommended.

6.1.4 Functional Tests, Timing Behaviour and Performance

Conformance tests are functional tests. As such, the false conclusion seems to be
quite likely that in such tests only checks on the expected reactions on distinct
stimuli are sufficient. However, specifications quite often specify timing relations
too, which must be met as well by conforming implementations. As such, reactions
are specified and to be checked not only with regard to their content but also with
regard to their timing behaviour.

Distributed systems require synchronous actions although their various members
have different time bases. These synchronous actions, for instance, are required
for distributed control execution and for a synchronous state change of the whole
network. Otherwise, if there are problems with regard to the synchronous behav-
iour, for instance, the stability of the distributed application may be disturbed and
subsystems may drop out or a desired state cannot be reached, such as a sleep or
power-down state. The reasons for such failures may come from any one of the

294 W. Lawrenz et al.

hardware or software layers of the communication system. Therefore, testing of all
involved components is a condition sine qua non. Especially, non-widely applied
and non-standardized software may lead to problems because independent tests do
not exist which may have discovered any misinterpretation of the original standard
or the specification correspondingly. Quite often, the problems are due to the design
and not (only) due to the implementation. If a supplier performs tests of his imple-
mentation against his design on its own, the supplier is not being able to discover
such kinds of problems, because he or she performs tests on the implementation but
not on the design specification. Standardized solutions are less vulnerable, as more
commonly conformance tests are applied for quality assurance.

Synchronization between UT and LT is required when timing measurements are
to be performed. Furthermore, more precise and complex test scenarios can be per-
formed, if a common time base at all interfaces of the test object is available. With-
out that common time base certain features even cannot be tested. Tests executed on
the target hardware give a clear example for that situation, because actions onto the
software interface of the test object are required to be correlated with test messages
on the bus.

Particularly the software of the driver layers always must be tested in conjunc-
tion with the corresponding target hardware. There are evident reasons for that. The
interface between driver and target hardware is not standardized and as such would
require complex efforts for interfacing the IUT to any one of the test systems. How-
ever, the interfaces of the drivers to the higher software layers (the offered services)
as well as the bus itself represent the nearest standardized and adjacent accessible
interfaces which are independent from any corresponding target hardware.

For synchronized test scenarios, it quite often turns out to be a good solution to
install the common time base for UT and LT within the LT itself. The LT provides
the well-known and constant performance as compared to the host microprocessor
of the target platform on which the UT is executed. For highly accurate measure-
ment tasks, the UT can be stimulated by distinct trigger signal to execute actions
at predefined points of time. However, as mentioned above, this requires the pre-
defined specification of the desired actions at the occurrence of the next trigger
event which causes problems for the interpretation of the TC description at runtime.
Fully deterministic, sequentially and timely predictable test scenarios can only be
achieved by a test runtime phase in real time as well as corresponding preparation
and post-processing phases. In the preparation phase, the corresponding measure-
ment devices are initialized and the desired message and control data files are set
up, which are executed interrupt-free at test runtime and thus at distinct speed.

Adaptation efforts of a test system to all test candidates of a kind are the same if
those test candidates provide unique and standardized interfaces. As such, tests not
only require comparably low set-up efforts, but also require top benchmarks, e.g.
data throughput over time and reaction times can be explicitly measured. Thereby,
implementations of various suppliers can be compared.

2956 Testing

6.1.5 Verification and Validation of Test Systems

Test systems are implemented following the requirements given by the tests to be
executed as well as by general requirements specified for the environment of the
test object. From these requirements, functions or features of the test system are
derived which must be implemented correspondingly. Most important for trustwor-
thiness of test-system implementations is that all functions of the test systems are
checked on functional correctness, such as communication with the test object, ex-
ecution of TCs, derivation of the test verdict and logging of those data.

This is done in the verification phase of the test system, which should be formal
and carefully planned as well as correspondingly well documented. Any one of the
functions should be tested individually. Especially the decision thresholds for auto-
matic evaluation methods must be checked, because they directly influence the test
result. However, the generation of individual stimuli for either software or hardware
interfaces also must exactly match the expectations. The verification process proves
that all test means, all “test tools” operate reliably and as expected. Therefore veri-
fication is the precondition before applying a (verified) test tool on a component/
module/system which is to be tested.

Not only is the test system itself requested to operate correctly and to accomplish
its intended purpose, but also the TCs, which are executed on the test system, must
be applied appropriately. At this point an important issue follows, which is the check
whether the test system as well as the implemented tests together are well suited for
their operational range. Along with its verification it was proven that the functions
of the test system work as anticipated. Now the focus is on its intrinsic value, plau-
sibility and applicability. These features are checked in a validation process.

As widely known TCs result from appropriate combinations of various test func-
tions for stimuli generation, monitoring and evaluation. It must be proven that this
is the case for any one of the implemented TCs. In particular it must be checked
whether the combined test functions are applied in an appropriate order in conjunc-
tion with the correct parameters and the correct timely context, in order to imple-
ment the given test scenarios of the test specification. The correct stimuli must be
applied at the correct point of time to the correct interfaces of the test object, as well
as all of its relevant interfaces must be monitored meanwhile in the predefined time
window. Although, known from the test scenario and component specification, the
correct reaction of a conforming implementation always is predictable, but as how-
ever the chances for erroneous behaviour practically are indefinitely high, test runs
must be independent from the correct reaction of the test object or, more generally,
test runs must not be dependent on how the test object may react. Otherwise, in case
of a failure this could result in blockades and thus disturb the test process.

A test is validated if it is suited to prove that testing of the requirements of the test
object is accomplished. A sequence of test functions definitely may be inappropriate
to prove a distinct requirement, equivalently to a behaviour. As such, a test is useless
if, e.g. for checking the error-detection feature of a test object, the timely sequence of
test steps reads the error memory of the test object just before the error is stored. Ac-
cording to the component standard, the test object ought to store the error in the error

296 W. Lawrenz et al.

memory, but this cannot be accomplished anticipatorily. Obviously, first the error
must be stimulated and then subsequently the error memory can be read in order
to perform the error-detection check. Additionally the entry must not be persistent.

A simple trial-and-error process to check whether a TC with a test pattern can be
successfully applied is not suited for a validation process. If, as described above, a
test does not adhere to an appropriate sequence of test steps or initial states are not
checked, tests erroneously may lead to a “fail” or “pass” verdict. Referring to the
example, a standard conforming implementation erroneously would result a “fail”
only because the error memory would not yet have stored the expected error when
reading the error memory. Vice versa, there are cases in which wrong implementa-
tions may erroneously be judged as conforming implementations. Referring to the
above example, this would be the case, if the erroneous test object would perma-
nently indicate an error and the tester would not check the—wrong—initial state.

A validation must prove that such kinds of errors do not exist and that only a
conforming behaviour of a test object results in a “pass” verdict. In order to meet
the process requirements of ISO/IEC 17025 (see [ISO17025]), a technically appro-
priate and fully documented validation of a test system is a condition sine qua non,
which nevertheless corresponds to a rather high quality level.

6.2 CAN Transceiver Conformance Tests

This section addresses the testing of controller area network (CAN) transceiver.
They are a part of the CAN physical layer. The general standardization of CAN has
already been described in earlier sections. In Sect. 6.2.1, first the standardization of
physical layer of CAN will be discussed. Section 6.2.2 gives an introduction to why
it is necessary to submit systematic tests to the CAN transceiver before their use
in real applications. Subsequently, the test idea underlying the tests is presented in
terms of test method and test principle in Sect. 6.2.3. The structure of the test system
is described in Sect. 6.2.4. At the end of this section, the TCs and their focal points
for different CAN transceiver implementations are described in Sect. 6.2.5.

6.2.1 Standardization of the Physical Layer of CAN

For a general history and standardization of CAN, see the sections before.
The parts 2, 3 and 5 of the ISO 11 898 are the relevant standards of the CAN

physical layer and are briefly introduced below.

ISO 11898-2: High-speed, medium-access unit The standard ISO 11898-2 is the
most implemented standard of CAN physical layer. It describes the functional1
and physical2 interface to the transmission medium. Also, the specification of the

1 Functional interface: Medium-Dependent Interface (MDI).
2 Physical (electrical, optical) and mechanical interface: Physical Medium Attachment (PMA).

2976 Testing

physical transmission medium (bus) is part of the standard. The defined data rate is
a bit rate of up to 1 Mbit/s.

ISO 11898-3: Low-speed, fault-tolerant, medium-dependent interface This stan-
dard was developed as part of Generalized Interoperable Fault-tolerant CAN trans-
ceiver (GIFT)/International transceiver conformance test (ICT) projects (see 9.2.3)
and also defines the functional and physical interfaces to the transmission medium
as well as the physical transmission medium. The data rate is defined up to a maxi-
mum of 125 kbit/s. The standard also specifies a fault management to implement a
fault-tolerant behaviour.

ISO 11898-5: High-speed, medium-access unit with low-power mode The standard
ISO 11898-5 is an extension of the standard ISO 11898-2.

The extension consists mainly in the description of the behaviour in the low-power
mode, or in the description of transitions between the possible modes of operation.
Implementations according to this standard (ISO 11898–5) can be used in conjunc-
tion with implementations according to the standard ISO 11898-2 in one network.

6.2.2 The Need for CAN Transceiver Testing

Section 6.1 has already given an introduction to the topic of testing. In this section,
this is specifically discussed and why it is necessary to test CAN modules and—as
part of them—CAN transceiver.

6.2.2.1 Use of CAN in Complex Bus Systems

Once bus systems were introduced in luxury automobiles, they have made their
way into all classes of vehicles in the automotive industry. Here CAN is the most
important and most widely used serial bus system. Almost every car today has at
least one CAN network on board.

CAN is used not only in automobiles but also in industrial control systems, con-
trol systems of ships, trains and airplanes, in plants of agriculture technology and
building automation, medical technology and renewable-energy systems.

The bus system is thus used in areas where high reliability and fault tolerance
are required. Within the bus system, CAN bus modules with different functions and
from different manufacturers are linked together via a common data line.

Those CAN bus modules have to work properly due to the application in safety-
relevant areas and meet all requirements which are placed on them. The require-
ments are defined in detail in the standard ISO 11898 (see Sect. 6.2.1). Core of the
specification is the data exchange between modules.

If each CAN module—irrespective of the manufacturer—which is involved in
a CAN network is compliant with the standard, it can therefore be assumed that
the components work together void of errors and the network as a whole meets its
duties.

298 W. Lawrenz et al.

The first step on the way to a desired interoperability of CAN modules from dif-
ferent manufacturers in a CAN bus system was so taken with the publication of the
standard ISO 11898.

6.2.2.2 Risks of Complex Bus Systems

Due to the use of CAN in exceedingly complex and safety-related systems, a use
of CAN modules without prior checking is not feasible. Several risk factors can
restrict the proper communication between the CAN modules in such a significant
way that the entire bus system is no longer able to fulfil its function:

• Faults in the implementation: Standardized interfaces are only the “outside”, but
not the realization of the implementation. By implementing this freedom, can
faults be built into a device, at which the blur of interpretation3 has an important
part? Especially those errors which lie in the blur of interpretation may not be re-
cognized in the accompanying development tests. Errors in the implementation
are often only seen when the module is embedded in its real environment with
all its influences and interactions.

• Interdependence of a module with its environment: The interdependence of a
module with its environment is one of the most common sources of faults in a
bus system. The networks themselves and their tasks are characterized by a very
large and still growing complexity. Therefore runs the number of possible events,
event sequences and combinations of events that result from the interaction of
the various components and the effects of component and network environment,
gets very large indeed. Thus, the probability is very low that in the specification
of the module all requirements are defined, which result from later applications.

• Gaps or errors in the underlying implementation of a standard: Information ab-
out the first publications of the ISO 11898 standards can be found at [CIA10] the
citation “[….] the ISO standard 11898 for CAN was published in November of
1993. [….] Unfortunately, all published CAN specifications and standardizati-
ons contained errors or were incomplete”. These early times are long gone, yet
gaps can occur in a standardized specification or subsequently become relevant.
During the development of a specification, the boundary conditions of the sub-
sequent use of the object of specification are often not considered or considered
just insufficiently. The reason for this lies mainly in the fact that not all later
applications are known and can be known. The type and depth of the aforemen-
tioned interdependence of a module with its environment are often ignored when
creating the specification. The development of a test specification is therefore
always a kind of “test for completeness” of the relevant product specification.

3 According to Sect. 6.1, blur of interpretation means: in the interpretation of a specification for
the purpose of implementation, small deviations between the intended content of specification
(goal of the author) and implementation (interpretation of converter ligands) can occur.

2996 Testing

6.2.2.3 Error-Poor Systems by Testing

In considering the above risk factors for buses, it is clear that errors in newly devel-
oped CAN modules are very probable, despite the underlying ISO standard 11898.

This results in a high risk potential with possibly dramatic consequences. This
risk potential can be reduced by detecting the errors before the modules are used in
their real environment.

The solution is therefore testing: The indispensable method for locating errors in
the modules is the implementation of systematic and elaborate tests.

A CAN module consists of several layers in the sense of the ISO/Open Systems
Interconnection (OSI) model (see Sect. 6.2.1). To determine the origin of a detected
error, the layers are each considered and tested in isolation.

This section describes the CAN transceiver as part of the physical layer of the
CAN modules. Sought are a test idea and a test system with which implementations
of the CAN transceiver can be tested to ensure that as many errors as possible are
found: “Testing is the execution of a program with the intent of finding errors”.

6.2.3 The Concept of Testing the CAN Transceiver

The need of testing the CAN transceiver is indisputable according to the statements
of the previous sections. However, with an increase of only representative tests, fol-
lowing an appropriate test concept, the probability of error-poor systems increases.
Test methods and test principles must be chosen in a way that the implementation
of the tests minimizes the effects of the risk factors listed in Sect. 6.2.2. In 1999, a
group of semiconductor and automobile manufacturers with partners started proj-
ects in the field of the physical layer of CAN to develop, among other things, an
appropriate test system for the physical layer of CAN.

6.2.3.1 GIFT-Project and ICT-Project

The use of bus systems in fields where high reliability and fault tolerance are re-
quired requires as a solution not only the redundancy4 which is not always feasible,
but also, in particular, the fault tolerance. A fault-tolerant product fulfils its basic
functionality with reduced performance in case an error occurs.

The lowest layer according to the ISO/OSI model is especially vulnerable. Cable
breaks and short circuits can have a momentous effect on the functionality of the
lowest layer and ultimately on the whole system.

The need for a fault-tolerant bus system led to the development of a low-speed
CAN transceiver that includes a fault-tolerant concept and is able to automatically

4 The principle of redundancy is the following: If a system fails, another one is available that takes
the tasks of the failed system.

300 W. Lawrenz et al.

match line faults. Thus, together with other CAN controllers, fault-tolerant bus sys-
tems are built. The concept of this transceiver was well received.

A working group was set up, which had set itself the task of developing in two
projects a general specification of a fault-tolerant transceiver and the tests for this
transceiver. The working group is composed of automotive and semiconductor man-
ufacturers. Chairman of the working group is still the C&S group (see Table 6.2).

• The project GIFT had the objective of specifying and standardizing a fault-tole-
rant CAN low-speed transceiver to ensure interoperability of CAN modules with
transceivers from different manufacturers. The specification is now published as
ISO 11898-3 standard (see Sect. 6.2.1).

• Within the project ICT, the conformance tests5 for this standard were developed.
The C&S group,6 one, at this time, already-established test house for CAN chips,
in cooperation with the GIFT/ ICT partners, was responsible for the specifica-
tion of TCs and their implementation in a test system. The test specification
was published in 2001 under the title International CAN Low-Speed Transceiver
Conformance Test.

The group continued to work after completion of the projects, and expanded the
standard ISO 11898-2 to ISO 11898-5 (see Sect. 6.2.1).

In this standard also, the C&S group was responsible for the specification and
implementation of TCs, in cooperation with the GIFT/ICT partners. The specifica-
tion is titled CAN High-Speed Transceiver Conformance Test.

Test Method and Test Principles

At the beginning of the development of a test specification and a test system, de-
cisions must be made about the principle way of implementation in terms of test
method, test setup and determination of the TCs.

5 A conformance test verifies the conformity of the features of a test object with the requirements
that are put to the test object. These requirements are described in the specification of the test
object.
6 At that time, a group within the University of Applied Sciences Braunschweig/Wolfenbuettel;
today: C&S group GmbH.

Table 6.2  GIFT/ICT: Partner
Automotive manufacturer Semiconductor manufacturer Chairman
Audi BMW Freescale C&S group

(Testhouse)
Daimler Ford Infineon
PSA Volkswagen Philipsa

STMicroelectronics
a Today: NXP B.V.

3016 Testing

6.2.3.2 Conformance Test

The CAN transceiver tests are implemented as a conformance test (see Sect. 6.1). A
CAN transceiver is part of a CAN communication module and is therefore working
inherently together with transceivers from other CAN communication modules, in
one CAN network. Each CAN transceiver is at any point in a particular state and
changes in reaction to network events in a different state. The CAN transceiver has
to go through a change of state or a sequence of changes according to the underlying
part of the standard ISO 11898.

Whether this change of state occurs, and whether it occurs at all CAN transceiv-
ers at the right time window, is checked by conformance testing.

The CAN transceiver is initialized and stimulated according to the possible states
and events in a CAN network. The reactions of the CAN transceiver are observed
and the observed change of state is compared with the expected change of state. A
match of observed and expected change of state indicates conformance of the CAN
transceiver with its specification for the item tested with the particular TC. Confor-
mance tests are aimed at minimizing the risk factor, Error in the implementation
mentioned in Sect. 6.2.2 (see also Sect. 6.1).

6.2.3.3 Black-Box Test

The standard ISO/IEC 9646 Information Technology—Open System Intercon-
nection—Conformance Testing Methodology and Framework describes a general
approach to test an implementation for conformance to the specification. Con-
formance testing by ISO/IEC 9646 aims to increase the probability that different
implementations of the protocols and interface services of the ISO/OSI layers can
work together. They should be “interoperable”.

The internal structure of the implementations is not important as long as they
meet the standardized “outside” requirements.

The tests of CAN transceivers are therefore performed as so-called black-box
testing: The transceiver is seen as a “black box”; the internal structure is not known
and is not considered.

Whether the interfaces to the outside meet the requirements on the functionality
of the CAN transceiver, which are specified in the standard ISO 11898, is tested.

6.2.3.4 Network Test

The CAN transceiver is a communication module and in the standards for the CAN
transceiver, a minimum number of CAN modules for each CAN network is defined.
Hence, the focus in the design of the test is the consideration of the common com-
munication behaviour of several CAN transceivers in a CAN network.

302 W. Lawrenz et al.

For that reason, the conformance testing of the CAN transceivers is performed in
a network that consists of a defined number of CAN nodes7. Thereby, the behaviour
of each individual CAN transceiver is observed and compared with the behaviour
expected of it. At the same time, however, the behaviour of the CAN transceiver in
its entirety is considered in a network. The TCs are determined such that during the
testing each CAN transceiver communicates with the other.

The respective maximum specified in ISO 11898 is chosen as the number of
considered CAN transceiver.

The structure of the network is specified in detail as a so-called default network
in the test specifications for CAN transceiver. The definition of the standard net-
work was developed under the ICT project and takes into consideration the realistic
and relevant conditions of use for CAN modules.

There are two types of network tests.

• Homogeneous network: For homogeneous network tests, the standard network
is equipped with CAN transceivers of only one manufacturer.

• Heterogeneous Network: In a CAN network, CAN transceivers from different
manufacturers must communicate as error poor as possible. By that reason, for
heterogeneous network tests CAN transceiver from different manufacturers are
considered in their joint behaviour. When equipping the standard network, the
positions for the CAN transceivers from the different manufacturers are defined
in the test specification.

The decision to carry out conformity tests as network tests, in conjunction with
a systematic TC determination, impacts a significant reduction of the risk factors
listed in Sect. 6.2.2, entanglement of a module with its environment.

6.2.3.5 Test Case Determination

It has already been mentioned that a test object, must not only demonstrate that it
meets the functionality defined in its specification, but also show that it meets the
specified functionality even under conditions that correspond to its later field of use.

Ideally, conditions and events that describe the environment of a test object in
a broader sense are listed in the specification. In practice, this is unfortunately of-
ten not the case. The specification of the CAN transceiver and the associated test
specifications, however, were developed or revised in cooperation with users (au-
tomobile manufacturers), manufacturers (semiconductor manufacturers) and a test
house. Therefore, it can be assumed that the determination and compliance with
real application conditions is well done, because the group members have different
perspectives and at the same time a wealth of experience.

In practice, the test of a product can generally only be a selection from a very
large amount of possible TCs. This clearly shows that a systematic test case deter-

7 Another reason is the difficulty to satisfactorily emulate the bus–side interface of the CAN trans-
ceiver with its complex dynamic impedance and time response by appropriate generators.

3036 Testing

mination as a basis for a relevant selection of TCs is of major importance. The basis
for such a systematic TC determination is the method of the system operation vector
space (SOVS). The SOVS goes—among others—back to an idea of Prof. Dr. W.
Lawrenz, and forms the basis for an effective TC determination. In the SOVS, each
condition and each event are represented by a vector, which must be independent.
With this kind of representation, all possible TCs can be determined if the associat-
ed parameters are assigned to the vectors and if then appropriate variations between
the parameters are made—assuming that all conditions, events and parameters were
recognized.

The subsequent selection of relevant TCs from the set of all possible TCs uses
techniques such as equivalence class analysis8 and boundary value analysis9 and
logical thinking. A very important tool is the insertion of experimental values.

Exemplary Table 6.3 shows excerpts from the SOVS for the CAN low-speed
transceiver. The parameter assignment can be found in the test specification for
each CAN transceiver.

The systematic TC determination is of importance for minimizing the risk fac-
tors which are listed in Sect. 6.2.2. In applying the SOVS method, the environment
of the object under test is considered in real-use situations. Therein lays the great
opportunity to discover, even gaps and errors in the specification of the object.

6.2.4 The Test System for CAN Transceiver

It was both realized: a test system for CAN low-speed transceiver as well as a test
system for CAN high-speed transceiver. The basic design of these test systems,

8 The stimuli, to which a test object is to be exposed, are divided into a finite number of classes.
From the values within each class, it is believed that they deliver an equivalent result, and therefo-
re, only one value from each class must be considered.
9 Extension of the equivalence class analysis: the limits of the classes and the values directly above
and directly below the limits are considered.

Table 6.3  Vectors and subspace vectors of the system operation vector space for CAN transceiver
SOVS for CAN low-speed transceiver conformance tests:
{system configuration}x{communication}x{power supply}x{ground shift}x{failure}x{operatio-
nal mode}
System operation vector Under vectors
{System configuration} {Baudrate}, {termination}, {topology}, {number of nodes},

{composition}, {environmental conditions}
{Communication} {Bus communication}, {identifier}, {data}
{Power supply} (Parameter in vector power supply)
{Ground shift} (Parameter in vector ground shift)
{Failure} {Single bus failure}, {double failure recovery}, defined failure

position
{Operational mode} (Parameter in vector operational mode)

304 W. Lawrenz et al.

however, is very similar. Therefore, in the following description of the test system it
will be spoken from the viewpoint of the test system only. The differences are main-
ly in the parameterization of the individual components of the test systems. The
parameterization can, in detail, be found in the test specifications (see Sect. 6.2.5).

Following the test methods defined in the standard ISO/IEC 9646 (see Sect. 6.1)
as the Local Test Method is the method of choice for the testing of the CAN trans-
ceiver. The implementation of this method is illustrated in Fig. 6.5 by the example
of the CAN low-speed transceiver test system.

Using the standard terminology of the ISO 9646, the components of the test sys-
tem can be described as follows:

6.2.4.1 Standard Network (IUT)

The tested object is called IUT and is embedded in the SUT. Considered as the IUT,
it is the entirety of the CAN transceiver in a standard network. In this entirety, how-
ever, simultaneously each single CAN transceiver is stimulated and observed. The
properties of the standard network are specified in detail in the test specification for
each CAN transceiver.

The standard network consists each of a defined number of CAN nodes.10 Each
node is designed the same way and is in particular concerning bus interface and data

10 The number of CAN nodes in the standard network is different for the testing of CAN low-speed
transceivers and high-speed transceivers.

Fig. 6.5  Network tests of the CAN low-speed transceiver

3056 Testing

communications defined exactly. In addition, the structure of the standard network
is specified by further definitions:

• The types of CAN lines, topology and cable lengths are defined.
• During testing, the standard network nodes communicate with each other. In

this, each node communicates with each node. The type of communications and
content of the messages communicated are defined the same way as the order
and the time delay, in which each node sends messages.

• During several tests, errors are generated and the behaviour of the transceivers is
checked out. The position of the errors in the default network is defined exactly.

• In some tests, a ground shift must be generated; realization, position and value of
the ground shift are defined.

Details of these definitions can be found in the test specification for each CAN
transceiver. Figure 6.6 shows schematically the structure of the standard network
using the example of the CAN low-speed CAN transceiver testing.

6.2.4.2 Upper Tester

Via the—according to the layers of the ISO/OSI model—“upper” interface of the
standard network (IUT), the UT manages and controls the standard network with
the therein-contained nodes and thus has the function of the next higher layer.

The UT offers services11 that allow the selection and initiation of different types
of ring communication or of single messages. The status of communication and the
standard network can be queried. The UT initiates and monitors changes between
the operating modes of the CAN transceivers and allows the readout of these modes.

6.2.4.3 Lower Tester

At the “bottom” interface of the standard network the LT undertakes the function of
the next lower layer. The LT controls the technical peripherals within the test sys-
tem. The services of the LT allow the generation and control of various defined er-
rors and of the ground shift. The supply voltage can be controlled and, for example,
a resistor decade for the defined application of ohmic bus loads can be switched.
Also the control of the measuring devices takes place via the services of the LT.

6.2.4.4 Supervisor

UT and LT are controlled and coordinated by the TCP (see Fig. 6.4). The TCP is in
the test system for CAN transceiver realized as the so-called Supervisor (SV).

11 Details of these services can be found in the test specification for each CAN transceiver.

306 W. Lawrenz et al.

Fi
g.

 6
.6

  S
ta

nd
ar

d
ne

tw
or

k
fo

r C
A

N
 lo

w
-s

pe
ed

 tr
an

sc
ei

ve
r c

on
fo

rm
an

ce
 te

st
s

3076 Testing

The SV coordinates the entire test sequence from the initialization of the test
system to the generation of the test report. The individual testing procedures are
controlled by using the LT and UT and the measured test data are stored. The Su-
pervisor compares the stored test data with the expected values and generates a list
of errors and deviations and at last the test report with the relevant information and
the corresponding test result.

6.2.5 The Test Cases of CAN Transceiver Tests

This chapter describes the test flow followed by an overview about performed tests
in CAN Low-Speed and CAN High-Speed area. Afterwards, the so-called CAN
ISO Tests will be mentioned.

Besides, a detailed test report and also result files concerning communication be-
haviour, measured values and diagrams can be provided. In case of fail behaviour it
will be separately documented in the Problem History of the report. In addition, the
customer will receive the Authentication sheet: one hard-copy document containing
the scope of tests and the rating on one page.

6.2.5.1 The Test Flow

The test execution is defined in the test specification and is always the same:

• Initialization: The standard network and the CAN transceiver under test will be
set to a defined state according to the test specification.

• Stimulation: The standard network and the CAN transceiver under test will be
exposed to special events/stimuli according to the test specification.

• Recording and evaluation/verification: The behaviour of the standard network
and the transceiver under test will be recorded. After test completion, the result
data will be compared with the expected behaviour and evaluated.
− PASS: The observed and recorded behaviour matches the expected behaviour.
− FAIL: The observed and recorded behaviour does not match the expected

behaviour.

The test execution is fully automated which gives some advantages:

• At the test execution and evaluation, the human error will be reduced.
• Because of the automatic test settings, each TC can be repeated in a defined way

and is independent of test executor and test conditions by accident.

Each TC performed within these CAN transceiver tests is autonomous and can be
performed as single TC.

308 W. Lawrenz et al.

6.2.5.2 Test Cases of CAN Low-Speed Transceiver Tests

The CAN Low-Speed Transceiver tests are based on the following specifications:

• Transceiver specification:
− ISO 11898-3:2006 Road vehicles—Controller area network (CAN)—Part 3:

Low-speed, fault tolerant, medium-dependent interface
• Test specification:

− International CAN Low-Speed Transceiver Conformance Test, Test Specifi-
cation V1.5

6.2.5.3 Behaviour at Short Circuits

The main part at CAN Low-Speed transceiver tests consists of short circuit tests
applied to the bus lines. The reason for that is the Fault Tolerance of this transceiver
type: Every time the short circuit voltage exceeds a threshold, the differential 2-line
signalling has to switch to 1-line bus communication. Despite the loss of differen-
tial noise compensation, it is a sufficient compromise for a moment (as a “cheaper”
CAN implementation, there exists also a Single Wire CAN with only one bus line).

The short circuit voltages are in the range from −1.5 V up to 16 V and will be
applied to either CAN_High or CAN_Low line (under consideration of ground shift
effects).

According to the deviations in a 12V-standard on-board power supply, the tests
will be performed with three supply voltages:

• 7.5 V for case of under-voltages
• 12 V nominal voltage
• 27 V for case of static over-voltages

Main reasons for this are the supply voltage-dependent thresholds for fault detec-
tion in many devices. Especially in mixed networks, this results in non-compatible
2-/1-line subnet areas.

In a car, the technically given voltages for shorts are:

• Battery voltage (12 V)
• Generated supply voltage for the electronic components (3.3–5 V)
• Ground (0 V)

When the short circuit detection with 2-line/1-line switching occurs, this will be
stabilized by switching off the terminations of each transceiver: One device detects
the short circuit first and disables its nominal termination; thus the bus line will be
shifted a little more to the failure voltage, resulting in an avalanche effect and (all)
other devices of the same type will switch to the new state. In addition, the tests will
be performed with some devices under ground shift, because ground shift represents
no separate failure state but should be included within the normal fault tolerance
handling.

3096 Testing

For an accurate determination of the switching level, the short circuit voltage
will be incremented in 0.1 V steps. Thus, also singular implemented deadlocks can
be detected. The short circuit voltages will be applied via resistors to the bus lines;
0 Ω up to 50 kΩ are available, so the reaction to all possible voltage-resistor com-
binations can be evaluated.

Due to the fact that at the switching edges the communication may be not totally
complete, the car manufacturer defined valid areas enclosing the three main short
circuit voltage-resistance areas. There the communication has to work properly. The
areas had been fixed in this way that the switching levels of the standard transceiver
at that time are outside the area limits. This was valid for the homogeneous standard
network and also for the heterogeneous network (see Chap. 6.2.3), which consists
of a defined composition of the “standard devices” for comparison12.

Due to the different implementations of the components in the mixed network,
the resulting common “negative” edges are close to the allowed limits, so each addi-
tional device under test has to sufficiently conform to the others and not to prolong
the edges into the valid area which would cause a failed test.

6.2.5.4 Behaviour of the Transceiver States and Their Mode Changes

Besides the behaviour in Normal Mode state the Low-Power mode with its low cur-
rent consumption is to be examined, which is very important for a working battery,
e.g. ‘next morning’. The Low-Power mode has to be reachable also under failure
conditions and should be stable at not allowed wake-up events. The only way to
wake a node should be the Wake-Pin for local wake-up or a message on the bus to
wake all nodes of the network.

6.2.5.5 Ground Shift

• It will be applied at all Normal Mode tests with 12 V supply voltage: Four of the
network nodes are shifted with 1.4 V against the other 36 nodes.

• At one node the ground will be shifted until shutdown of the test board to de-
termine the max possible shift for fault-free communication of the remaining
network.

6.2.5.6 Recovery from Double Failures

120 different combinations of the following will be tested: applying two bus failures
and removing one. Afterwards, the devices have to work under the one remaining
failure. Due to possible different state changes of the devices, groups of transceiv-

12 Manufacturer: Philips, Infineon, Motorola, STM.

310 W. Lawrenz et al.

ers may switch off the “wrong” line resulting in stable subnets which can no longer
communicate with the “other” nodes.

6.2.5.7 Loss of Power/Ground

When a node has a disconnected Power or Ground line, it is not allowed to disturb
the communication of other nodes, e.g. by corrupted frame transmission caused by
backward-supplying from the bus lines.

6.2.5.8 Signal Propagation Delays

In a dedicated network the transmission time of signals will be measured. The “digi-
tal signal” will be applied to the transmit-pin (TxD) of the transceiver; there it will
be transformed into the “physical” bus signal. Afterwards, it can be received by
the other nodes and also by the sending node. While receiving, the transceiver will
retransform it to a “digital” signal and puts it out at the receive-pin (RxD). The al-
lowed delays between TxD of the sending node and RxD of the sending and another
receiving node are limited. Also the delays under ground shift and bus failure condi-
tions will be evaluated.

6.2.5.9 Verification of the Functionality of Further Essential Mechanisms

For the working of the correct state changes required by fault tolerance, some spe-
cial implementations are essential. So, e.g. the transceiver has to distinguish be-
tween “hard” and “weak” short circuits at the bus line because the differing bus
levels in Low-Power mode “behave” like weak shorts.

6.2.5.10 Test Cases of CAN High-Speed Transceiver Tests

The CAN High-Speed Transceiver tests are based on the following specifications:

• Transceiver specification:
− ISO 11898-2:2003 Road vehicles—Controller area network (CAN)—Part 2:

High-speed medium access unit
− ISO 11898-5:2007 Road vehicles—Controller area network (CAN)—Part 5:

High-speed medium access unit with low-power mode
• Test specification:

− CAN High Speed Transceiver Conformance Test, Test Specification V1.0

Due to the fact that the CAN High-Speed transceiver owns no “active fault toler-
ance” (auto-switching into one or two line mode, depending on failure occurrence/
recovery), at that test only “hard” failures will be applied. At some failures, the

3116 Testing

communication may be possible, at others, never. So, the Recovery behaviour will
be mostly tested: After application of a failure for 10 s followed by removal, the
transceiver still has to work properly and must not be damaged anyhow.

Transceiver with Low-Power mode must be able to switch into this mode under
all failure conditions. So at least, no unwanted current consumption would be pos-
sible.

Ground Shift and Loss of Power/Ground failures will be tested at all nodes, one
after the other.

6.2.5.11 CAN-ISO-Tests for CAN Transceiver

In the network tests described above, the electrical parameters of the transceiv-
ers as bus levels and thresholds will be tested only implicitly on the basis of the
communication behaviour. These parameters should be stated reliably in the data
sheets, but nevertheless some car manufacturers require them to be tested. So it
has to be evaluated if the exact limiting values will be met as they are listed in the
corresponding specifications of ISO 11898 standard. To fulfil the requirements over
the whole temperature range, the tests will be also performed at low and high tem-
perature (−40°C/ + 125°C).

6.2.6 Conclusion

CAN transceiver tests and, in particular, the presentation of the test idea on which
these tests are based were subject of this chapter. These test ideas combine appro-
priate test methods and test principles so that the risk factors that are critical for the
proper functioning of a CAN network can be minimized.

These test ideas were realized in the test systems for CAN transceiver tests; their
functionality and basic structure were also described in this chapter.

The test systems are located at C&S group GmbH, Wolfenbuettel. Since 2001,
newly developed CAN transceivers are tested there. Statistics show that the proce-
dure of CAN transceiver testing is reasonable and of utmost importance, because
not all of the tested transceivers were without faults in the first run.

If the manufacturer permits the publication, the name of the respective tested
CAN transceiver together with the manufacturer’s name is included on a list. This
list is available on the website of C&S group GmbH.

The test system is modular. This makes it possible to adapt the proven test idea
to new requirements resulting from revisions and extensions of the CAN specifica-
tions.

The test specifications mentioned in this chapter are public and can be viewed
on the website of C&S group GmbH. Beyond this, the website provides also further
information about the testing activities of the group.

312 W. Lawrenz et al.

6.3 CAN Data Link Layer Conformance Testing

The CAN Conformance Test plan is described in the ISO 16845. It provides the
methodology and abstract test suite necessary for checking the conformance of any
CAN implementation specified in ISO 11898-1.

The empirical findings in this area have proven that additional efforts are needed
in order to obtain a better test coverage. Therefore, C&S Group had extended the
ISO CAN Data Link Layer (DLL) Conformance Tests, based on the experience
gained while having performed such tests for many emulated and silicon CAN
implementations. Due to the fact that the extended tests include the standard tests,
the extended CAN Conformance Tests can be looked at as a super set of the ISO
standard, giving a much greater certainty that a CAN device under test meets its
standard specification requirements.

6.3.1 Architecture and Implementation of the Test Environment

The test system is implemented based on the architecture described in the ISO 964,
presented in the preceding sections.

The test platform presented in Fig. 6.7 consists of the “SUT”, usually a micro-
controller evaluation system running a specific software module named UT. The
UT is normally embedded in a microcontroller and it is linked to the stand-alone
CAN implementation (IUT). In case that the CAN implementation is integrated on
a microcontroller, the microcontroller will be used as UT host. The Underlying Ser-
vice Provider consists of the CAN receive (CAN RX) and CAN transmit (CAN TX)

Fig. 6.7  General test method according to the ISO 9646

3136 Testing

signals. These signals are directly connected to the test system avoiding the use of
transceivers in order to obtain better signal manipulation and precise timing.

The UT is remote controlled—via CAN bus—from the LT, a specially equipped
PC. The test coordination is performed by a program executed on this PC.

The TCs are defined as ASCII script files. The script allows defining the frames
that will be sent by the LT and the expected IUT reaction. The script language per-
mits the complete manipulation of the CAN frames at sub-TQ level, allowing the
test engineer to debug the IUT and generate appropriates test reports.

As it is described in Fig. 6.8, the test system consists of:

• A PC running on MS Windows®.
• The test controller software (C&S CAN CONFORMANCE TESTER v3.0).
• The test scripts.
• A logic analysis system equipped with a pattern generator. They are used to mea-

sure and generate the CAN frames respectively with high accuracy and reprodu-
cibility (see Fig. 6.9).

• A coupler box that facilitates the signal interface with the IUT.

6.3.2 Main Test Types

The C&S Group classifies three main test types to be executed to ensure a sufficient
test coverage of a CAN node. These main test types are:

Fig. 6.8  C&S CAN Conformance DLL Tester architecture

314 W. Lawrenz et al.

• ISO test types (ISO16845 + C&S add-on tests)
• Processor interface test types
• Robustness test types

Some CAN implementations present advanced features leading to customer-spe-
cific tests:

• Gateway tests
• DMA tests, etc.

6.3.3 Test Types, Classes and Test Cases

According to ISO Conformance Test specification the main test types are:

• Receiver frame type,
• Transmitter frame type or
• Bidirectional frame type.

A TC normally belongs to one of the test classes:

• Valid frame format,
• Error detection,

Fig. 6.9  C&S CAN Conformance Tester V3.0

3156 Testing

• Active error management,
• Overload frame management,
• Passive error state and bus-off,
• Error counters management or
• Bit timing.

A TC may contain several elementary tests in case the TC itself depends on param-
eters. Each elementary TC is realized in one test script. An automatic test script
generator ensures the proper creation of the different script variations.

The valid frame format TCs have a very limited scope; they are used to deter-
mine whether the basic functions, like send and receive a CAN frame, work cor-
rectly. Sufficient basic functions are the prerequisite for further and more deepened
testing. The basic function TCs are performed at the initial stage of the test session.

The ISO test suite consists of about 500 TCs. Depending on the functions imple-
mented in the device, the needed TCs are selected from the test suite and form the
so-called selected test suite, against which the implementation will be checked.

The Processor Interface group represents a particular case, since each CAN
implementation provides different interfaces towards the central processing unit
(CPU); therefore, implementation-specific TCs must be defined by the test engi-
neer.

Testing experience showed that sporadic errors occurring under particular condi-
tions are covered neither by short deterministic TCs nor by simulation tests. These
problems are usually caused by clock skew or a wrong internal variable whose
values are not explicitly tested in simulation and they lead, only after a complex
sequence of events, to a visible error. Being aware of the problem that a fair number
of short deterministic TCs cannot reach 100 % coverage, the so-called random TCs
have been developed. The Robustness Test is based on the simultaneous exchange
of pseudorandom messages at 100 % bus load between the LT and the IUT.

6.3.3.1 The ISO Test Types

The ISO 16845:2004 Road vehicles—Controller area network (CAN)—Confor-
mance test plan defines and describes all the TCs of the ISO test type. The C&S
group offers a specific test suite covering all the ISO Tests mentioned by ISO 16845
and additional TCs defined by C&S.

Scope of the ISO CAN Conformance Tests

The CAN specification covers the ISO OSI layers 2 (DLL) and 1 (physical layer)
as shown in Fig. 6.10.

Nowadays, the CAN network interfaces are usually made from two separate
chips: One chip covers the upper part of the physical layer—physical signalling
sublayer (PLS)—and another chip for the DLL including the full logical link control
(LLC) part, which is representing the final interface to the processor.

316 W. Lawrenz et al.

The ISO conformance test is covering the lower part of the DLL and the up-
per part of the physical layer. The access points for the tests are given by the TX/
RX lines from the physical layer side. For the DLL side, the access points for the
tests are given by a unified virtual receive and transmit register interface. This sim-
plification was necessary, because real CAN chip solutions differ very much in
the register architecture, representing the processor interface. As no such standard
interface is available, a virtual standard register interface was artificially defined.
When performing these tests on the tester, the virtual registers must be mapped by
accordingly tuned test software onto the actual real register interface.

As mentioned above, the ISO standard conformance test only covers the so-
called CAN cell or core. The standard tests neither cover the individual processor
interface nor the line driver part. However, there are extended conformance test
solutions as described in the next sections.

6.3.3.2 The Processor Interface Test Types

Standard Conformance tests are performed on the assumption of a standardized
simplified received and transmitted register interface between the CAN device un-
der test and the UT. This simplification never corresponds to a real CAN imple-
mentation. However, obviously the real CAN register implementation with their
corresponding control bits have a great influence on the proper function of a CAN
device. As a result a set of additional “de facto” standard register TCs was devel-
oped. Each of these extended register TCs is dedicated to perform specific checks
on special characteristics of CAN registers.

Fig. 6.10  ISO CAN Conformance Test coverage

3176 Testing

For solutions comparable to the basic CAN architecture, there are different im-
plementations to be checked such as transmit buffer registers with/without internal
prioritization, different write capabilities onto the transmit register queue which in-
fluence heavily the overall arbitration process and thus the latency times of message
transfers, etc. Concerning CAN solutions comparable to the full CAN architecture,
specifically adapted checks must be executed to test the individual solution of struc-
ture and number of transmit and receive registers, the kind of masking capabilities,
the access techniques to the registers, etc. There are various solutions for the status
and control registers which must be checked such as receive/transmit error coun-
ters, time stamps, transmission success checks, interrupts, non-unified position and
definition of status/control bits and so on.

6.3.3.3 The Robustness Test Types

According to the ISO 9646 standard, a test suite usually consists of short determin-
istic TCs whereas each TC focuses only on a particular function of the protocol.
This approach neglects the complex interaction between various state machines of
the implementation. When checking a state machine, it is not sufficient to check
each of the various paths individually only. The behaviour of a state machine is
dependent on the sequential order of the paths too. Therefore, these dependencies
ought to be checked, also in CAN devices, in order to ensure their compliance to
the CAN standard.

Therefore, C&S Group has done many efforts to develop generic robustness tests
verifying the correctness of the implementation under various bus loads and during
a long period of time. As the number of combinations of sequential paths in CAN
is very large, these test sequences are generated randomly. These robustness tests
cover implementation problems like clock skew due to critical timing, sporadic
errors occurring only under very particular conditions and other protocol or proces-
sor-interface problems not covered by the limited scope of the deterministic TCs.

The test sequences typically run for hours up to a couple of days, depending on
the complexity of the CAN device and the number of correspondingly required tests
cases. There are various parameters modified while producing the sequential order
of “standard” and “extended” TCs such as random generation of identifiers with
standard or extended length and coding, random length and random content of data,
various baud rates, very high bus load such as ~100 % and ≥ 50 %, with/without er-
rors, etc. All the tests are executed in real time. The verification of the tests is done
in real time at message level.

6.3.3.4 Characteristics of the Robustness Test

• Bus Load
Each robustness test is executed at ≤ 100 % bus load. The maximal baud rate used to
run the tests at 100 % bus load depends on the computing power of the UT. The UT

318 W. Lawrenz et al.

must be able to calculate the random values and generate the random messages to
be transmitted guaranteeing a bus load of minimum 50 %. In parallel, the UT must
generate the random messages expected to be received from the LT and to check
them before the next reception.

As both, LT and UT try to send at 100 % bus load, arbitration occurs at each
transmission. At lower bus load, the transmitter part of the UT is delayed by hard-
ware limitations and LT is delayed by test configuration.

• Error generation
The robustness tests can be classified in two main groups:

− Robustness tests without error
− Robustness tests with errors

The errors are generated by the test environment (Pattern Generator) as follows.
The test environment forces a bit sequence of the frame transmitted by the IUT, to
dominant. Depending on the error sequence, the IUT will stay in Active Error State,
reach the Passive Error State or even go to BUS OFF. Whether Active, Passive or
even BUS OFF will be reached depends on the error sequence frequently generated,
possibly disabling the IUT to recover its error counters between subsequent error
bursts.

• CAN Frame generation
The messages transmitted by the LT and the UT during the robustness tests are
randomly generated. For each message, identifier, data length code and data are
generated with a 16-bit pseudorandom generator.

The same random generator is implemented on the LT and on the UT, but differ-
ent start values are used for the random generator leading to various random values,
hence various CAN messages.

To avoid errors caused by the simultaneous transmission of the same identifier
but different data by the LT and the UT, during one test odd identifiers will be used
by one component only (e.g. LT) and even identifiers by the other component. Both
configurations will be used to ensure the IUT is able to handle the whole range of
IDs the random generator could provide.

• Verification
To verify the correct behaviour of the IUT during the robustness test, checks are
performed at processor interface level.

At the processor interface level, the verification is performed by the LT and
the UT. The LT checks at runtime that every message sent by the IUT matches the
expected random message. This verifies that the IUT sends all messages to the LT
correctly and in the right order.

The UT checks at runtime whether every message received by the IUT matches
the expected random message. This verifies that the IUT receives all messages from
the LT correctly. To ensure this verification process, each component must calculate
the random messages it has to transmit, and in addition, it expects to receive the
random messages in the right sequence.

3196 Testing

The logic analyser stores the last messages transmitted before an error has been
detected by the LT or the UT. These data on the logic analyser are necessary to re-
constitute and investigate the sequence which has led to the faulty behaviour.

6.3.4 Conformance Test Results

The experience from more than 15-year testing of CAN cores has shown that al-
most all the new implementations have not passed the conformance test in the first
attempt. Problems with bit timing and synchronization are the usual cause of the
failures. Thanks to the actual field-programmable gate array (FPGA) technologies,
the CAN implementers are able to test the cores during the development phase,
avoiding finding unexpected errors in the silicon version of the device.

Consolidated CAN cores are usually adapted to new families of microcontrollers.
The statistics show that in approximately 30 % of the cases, issues are found during
the processor interface or the robustness tests.

6.4 CAN Software Testing

The term CAN-software comprises communication functions which make use of
the CAN hardware for data exchange between electronic control units in order to
enable the operation of application and network management (NM). CAN-software
is required on each control unit, for instance, in order to configure and control the
corresponding CAN controller(s) and bus drivers, or to compile and transmit data
packets when requested by the application, as well as to provide the packet contents
at the receiver - Communication layer (COM), or as well to monitor and control the
state of the network (NM). For classification purposes, quite often CAN-software is
subdivided into layers, for which the higher layer always makes use of the services
offered by the lower layer. The term CAN-Software-Stack is applied synonymously.

6.4.1 Test Objects in Software Tests

The individual functional units of a CAN-Software-Stack can be subdivided into
layers depending on their individual objectives. Lower layers are directly hardware
dependent while higher layers can be designated as hardware independent—at least
from a logical point of view. This becomes more plausible when considering the
tasks of the individual layers.

The interface for configuration and control of a CAN controller, the message
buffer structure as well as the connection and the control of a bus driver to a micro-
controller are all specific to their supplier or to the component or Electronic Con-
trol Unit (ECU) respectively. As such, addresses, assignment and functionality of

320 W. Lawrenz et al.

configuration registers of a CAN controller all are different as well as, for example,
connection mode and applied ports of the bus drivers. Depending on the implemen-
tation they can be either controlled by digital control lines or by serial buses such as
Serial Peripheral Interface (SPI). The abstraction from the underlying communica-
tion hardware and hardware driver layers depends on the hardware itself.

Any one of the higher layers for management, compilation of data packets, seg-
mentation of long messages, etc. are functionally hardware independent. However,
any software nodule on these higher layers becomes hardware specific whenever it
is compiled down into machine language for a specific target hardware. However,
any original source code written in a higher level programming language can be
reused if no ECU-specific functions had been applied. In conclusion, this implies

Fig. 6.11  Example of a CAN-Software-Stack with objectives-oriented layers

3216 Testing

preferably to standardize any hardware-independent software layers, to specify
clearly their functions and interfaces. As such, no further adaptation is required for
any individual application purpose. Merely software for ECU abstraction layers
and driver layers cannot be fully standardized due to the differences in the hardware
to be controlled and the varying functionalities and options of it. Nevertheless, the
basic functionality as well as the minimum interface towards the higher software
layers can be standardized (see Fig. 6.11).

6.4.2 Trend Towards Standardization

In the past, software for communication functions often was not developed from
standards but often from scratch always for each new application. The reason for
that certainly was the need to save limited resources of the applied micro-controller
as well as to differentiate from competitors. The trend started from non-standard-
ized solutions, then moving from partial standardization of specific components
(e.g. OSEK/VDX COM and NM, where OSEK/VDX stands for “Offene Systeme
und deren Schnittstellen für die Elektronik im Kraftfahrzeug / Vehicle Distributed
eXecutive”) and customer-specific guidelines as well as quasi-standards of auto-
motive manufacturers (e.g., BMW-kernel) towards open and customer-independent
standards (e.g., Automotive Open System Architecture, AUTOSAR) in the future.

Many benefits arise from standardization such as reuse of once implemented
components, substitution ability of standardized software modules by different sup-
pliers, comparability and long-term reduction of development time and cost. The
generalized applicability of a software module in conjunction with its included par-
tially complex functions which may not even be needed in specific applications,
however, implies the drawback of increased resources consumption, bigger com-
plexity and higher development cost.

Obviously standardization of components only pays off if those components pro-
vide a sufficiently high quality and thus a broad market acceptance and long life-
time. A solution, which due to its high complexity hardly can be handled, and which
despite of the application of standards does not meet the goals of exchangeability
and comparability or which frequently fails, will not prevail the market, which is
characterized by an enormous cost pressure and high-quality requirements.

Therefore, the key is quality of the generated standard software modules as well
as their exchangeability, correctness, performance and comparability. In order to
safeguard these characteristics standardized tests are required which must provide
a preferably high level of quality at reasonable costs. Only this prevents a com-
plex system, consisting of various software modules, which typically are sourced
by different suppliers, from having a correspondingly high risk of failures which,
after the integration phase, are even difficult to be reproduced and localized. This
finally turns out to be a very costly task if and even if the erroneous module(s) can
be identified at all.

322 W. Lawrenz et al.

6.4.3 Requirements on Tests and Test Systems

Standards require conformance tests checking whether an implementation is com-
pliant to its corresponding standard. This does not imply that all such implementa-
tions must provide the same source code. However, they must match the given spec-
ification, e.g. their interfaces, functionality and configurability if specified so. As
such, e.g. software modules for communication systems such as CAN must match
some requirements which are explained subsequently.

6.4.3.1 Hardware-Dependency, Test Support on Target Platform

Some parts of the CAN-Software-Stack are hardware dependent. Therefore, drivers
for CAN controllers are significantly different with regard to their interfaces to the
hardware while the interface towards the higher software layers can be standard-
ized, as it is the case, for example, in AUTOSAR. Functionality and performance of
a CAN driver can only be reasonably tested in conjunction with the target hardware
which, in most cases, is an embedded CAN controller. Finally, this is the only way
to check whether the control function of the driver achieves the desired behaviour
of the CAN controller towards the bus. A CAN driver applied onto the wrong CAN
hardware is not functional. This implies that the real hardware cannot be substituted.

Under the assumption that the applied CAN controller is proven to be confor-
mant, any potential failure must come from the software when performing further
tests. The standardized and accessible interfaces to the test candidate, therefore, are
the software interfaces towards the next higher software layers as well as the digital
signals and, in conjunction with a CAN bus driver, the analog bus signals. Insofar,
the lower layer of the CAN controller software is accessed while passing through
the CAN controller. This is a typical method which is applied if the direct interface
of a test candidate is either not standardized or not directly accessible. Test descrip-
tions and test system must consider this kind of structure. From an abstract point of
view the addressed protocol layers below the tested layer belong to the service pro-
vider which only acts as a transfer station for test messages or stimuli. AUTOSAR
identifies the combined tests of software modules as “class B” tests.

6.4.3.2 Test of Hardware Independent Software Module in Absence
of a Target Platform

The said class B tests are neither new nor unusual. Software such as OSEK/VDX
NM and implementations of customer specific quasi-standards of automotive man-
ufacturers quite often are tested in conjunction with the target hardware or target
platform correspondingly. This is performed in most cases while applying a cor-
responding evaluation platform and specific test solutions. This is a reasonable
process, because the software code is developed, applied and optimized for spe-
cific micro-controllers. Class B tests therefore are not new, but very common. The
AUTOSAR “Class A” tests for hardware independent PC-based modules are only

3236 Testing

feasible because of their hardware independency and corresponding programming
on PCs. This is quite a new approach. However, this makes it even more difficult
for software-module suppliers to generate highly optimized code, which contradicts
the idea of a generalized applicability. Nevertheless, this method allows the test
of embedded software while not requiring any specific target hardware. In order
to execute the embedded code on a PC the object code must be generated for PC
execution. The resulting object code and its timing behaviour obviously are not
comparable with a code dedicated for an embedded system application.

6.4.3.3 Support of a Script Language for Test Implementation

All up to now widely spread solutions, which are based on a partial standard or a
quasi-standard of some automotive manufacturers, typically provide a textual docu-
ment form for test specification which finally must be transferred into an executable
code. Typically, this is achieved by a non-standardized script language, which is
adapted to the specific test object and which is human readable. Any one of these
script languages finally provide well-defined services, which can be combined in
different ways, configured and parameterized in order to specify a specific TC.
Calling these services implements the access to the functions of the test system such
as to the measurement tools, signal generators, log files and the evaluation.

6.4.3.4 Support of TTCN-3 Test Descriptions

AUTOSAR defines TTCN-3 as the notation form for any of its standardized test
specifications for conformance tests of all specified AUTOSAR software modules.
This also includes all of those software modules, which are applied in an AUTO-
SAR CAN software stack. Applying a compiler or interpreter on the TCs of this
test description language makes them executable. As such, this human-readable test
code is a test specification and, at the same time, an implementation of it. Any
one of the newly implemented AUTOSAR software modules must be checked for
conformance by well-defined, module-specific conformance tests in the future. For
that reason, a test system is required which executes the TTCN-3 conformance test
specification (abbrev. “CT-Spec”). This is to be applied for the so-called class B
tests in conjunction with the target hardware as well as for the PC based class A
tests. It is favourable to have the same, identical solution for both of these classes
in order to avoid specific and costly special solutions for one class only or only for
just some few software modules.

6.4.3.5 Adaptation of Test Candidates, Connection Between Test Object and
Test System

Neither tests written in TTCN-3 nor tests written in a script language can be ap-
plied without any further efforts to test a specific test candidate. Any test candidate

324 W. Lawrenz et al.

requires a certain adaptation to the software/hardware interfaces offered by the test
system. A software interface, e.g. may differ from others in the kind and coding of
the data types. A hardware interface, e.g. may have distinguished signal voltages,
pinning, kind of connections, etc.

For any specific interface of the test system, a link is required to the abstractly
defined test steps. The link abstracts the specific test object. The communication
towards the test description and test evaluation is implemented by communication
channels and—if required—also by appropriate electrical interface hardware. This
kind of connecting tests is applied for embedded platforms (typical, AUTOSAR
class B) as well as for PCs (AUTOSAR class A), while in the latter case inter-
process communication is applied instead of electrical communication media.

6.4.3.6 Influences on the Test Result, Independence of the Adaptation
and Execution

A kind of test candidates requires only a one-time adaptation to the test system,
if all its interfaces are standard. In that case, any other test candidate of this kind
makes use of the same generated links. Obviously the more open a specification is,
the more a deviation in the functionality and in the interfaces of the corresponding
implementation arises. This implies the need for adaptations. It is needless to say
that adaptations of the link between test candidate and test system, especially with
regard to the TC description and the test evaluation, may directly influence the test
result. As such, this must be performed with special care. With respect to public test
specifications and the comparability of solutions by different providers, it is recom-
mended that an independent entity performs checks of the test candidate adaptation
as well as the test execution.

6.4.3.7 Extensibility, Adaptation Ability, Flexibility

In the past, quite often existing standards were extended, revised and altered by
software suppliers and automotive manufacturers for various reasons. Some of the
reasonable examples for these efforts are saving of micro-controller resources, mak-
ing use of special functions or special features of the applied hardware or optimiz-
ing of inappropriately specified mechanisms. A standard is obviously stable only as
long as there is no good reason to modify it.

Consequently, a corresponding test must be adapted or extended. There is a need
for cost effective and fast definition of customer-specific adapted tests, but which
must be clearly distinguished from the official standard tests. A flexible system with
an extension potential and a comprehensible, easy to apply test description language
is required. Comparably, minor modifications of the test should not require a re-de-
sign of the test implementation. This risk quite often is underestimated for the sake
of an alleged better solution. Therefore, the design of a test system shall consider
that none of its components is fully loaded by the already-known tests.

3256 Testing

6.4.3.8 Test of Time Behaviour, Performance, Throughput

CAN software modules are expected to provide sufficient throughput to handle all
message traffic even at high bus loads. All this is expected from any of the soft-
ware layers of the CAN software stack; otherwise buffer overruns, loss of data
must be encountered and finally predictability and application functionality would
fade away. Besides this worst-case scenario and because of competition reasons,
it makes sense to specify, require and measure throughput as well as performance.
A comparably excessively slow implementation will not prevail in the market, as
well as a faulty or resources-wasting one—all this is for the benefit of the appli-
cants. Therefore, it is highly recommended to specify appropriate benchmarks for
standardized software modules which evaluate and compare the performance of
implementations. Such kinds of tests focus directly on the timing behaviour of soft-
ware modules and their target systems. Therefore, corresponding methods for test
execution in real time, timing control and synchronization of test-system entities
are required. Up to now these kinds of tests have not been discussed so much and
they are not widely applied. Insofar the customers—mostly automotive manufactur-
ers—must rely on corresponding statements of their suppliers. However, nota bene,
standardization is an important prerequisite for comparability. It is recommended
to do performance-comparing tests when interfaces and functionality are the same.

6.4.4 Test-System Architecture for Embedded Software Tests

Assuming a modular design, software can be tested module by module. As such,
software is comparable to layers of the ISO/OSI-layered model. The basic prin-
ciples of ISO 9646 standard are applicable as well. All accessible interfaces of the
software module are surrounded by the tester, whereas the logical assignment of LT
and UT to higher or lower software layers can be done either way, depending from
the orientation of the interfaces.

Interfaces of neighbour modules of the same layer are served as well by the tes-
ter. In order to avoid conflicts coming from the assignment of either UT or LT—this
problem cannot be resolved sufficiently clearly due to the ambiguous orientation to
either the higher or lower logical layer—temporarily the term “lateral tester” can
help out, which addresses those interfaces.

6.4.4.1 The Residual System, Tests in Conjunction with the Application

Quite often, a software module cannot be fully separated from its surrounding sys-
tem, for instance, if it requires a specific operating system or if it is highly interwo-
ven with the application. These parts of the surrounding system must remain on the
target platform and can be called “residual system” (RS). As the RS has an impact
on the test, the specific characteristics of the RS must be taken into account when

326 W. Lawrenz et al.

testing. This is the reason why the CPU of a micro-controller cannot be exclusively
assigned only to the test execution, but this assignment nevertheless should have a
high priority. If the application cannot be completely substituted by the test code,
the application typically limits the applicable test scenarios. In addition quite sig-
nificant adaptation efforts are required in order to achieve a distinct behaviour. In
other words the test object is quasi-shielded by the surrounding RS. There is only an
indirect and fuzzy visibility and accessibility onto the test object.

The characteristics of the RS are mostly not standardized. Insofar, standard tests
are not applicable. With regard to their distinctions, applications react completely
different on specific bus messages or failure scenarios. They ignore, for instance,
any messages which are not addressed to them. There are limited possibilities to
influence and control applications and very detailed knowledge of the surrounding
components is required in order to test the covered test object sufficiently. If this is
not the case, it is an encapsulated test object scenario which more or less modifies or
filters all input and output signals. For test execution, the impact of the encapsulation
must be fully known and the test steps must be modified correspondingly in order to
get the desired signals provided at the test object itself and to purify the output sig-
nals from their encapsulation effect. This process, in general, can be automated but
not automatically generated. Ideally, all components surrounding the test object are
substituted by well-defined test code in order to exclude any non-desired influence.

6.4.4.2 Implementation and Synchronization of Upper and Lower Tester

UT and if required lateral tester for testing of software modules of a CAN stack are
implemented in software, whereas the LT applied for the above-mentioned com-
bined tests of driver software together with the underlying hardware can also be
implemented using measurement tools and electrical signal generators. Synchro-
nization signals are provided for precise timing control of the time base, which
typically is located in the LT, and the driver software in the micro-controller. This
enables test scenarios with precisely tuned timing behaviour as well as precise tim-
ing measurements of the test object.

All functions for stimulation and control of the software interfaces of the test
object usually are pooled within a separate software unit. This unit simultaneously
generates the designated stimuli, provides the functions which can be called by the
test candidate, logs all actions and reactions and adopts as well the abstraction of
specific features of the test object. However, the stimulation and control of electri-
cal signals are mostly implemented by separate real time capable devices which are
specialized for their particular purpose.

6.4.4.3 Control of Electrical Signals, Reliable Measurement and Self-Control

Control of all relevant electrical input and output signals is most important for tests
on the target platform. This not only allows monitoring the reactions of the test

3276 Testing

object but also enables control and recording of the applied stimuli. In general, it
is recommended also to log all of the applied signals in order to achieve a com-
prehensive image of the complete test sequence. This enables the self-control and
the continuous consistency check as well as the later proof of the correct operation
of the test system. When only checking the output signals of the test object, the
only assumption can be concluded that all test scenarios had been applied properly,
which by no means can be recommended. In order to assure the reliability and
availability of the applied control and signal-recording devices, it is recommended
to apply calibrated and commercially available measurement technology only. This
allows a realistic and pure image of the applied test sequences.

6.4.4.4 Time Resolution, Sampling Rate and Buffers

The sampling rate or the time resolution of all devices shall be chosen so that a sig-
nificant over-sampling of all electrical and test-relevant signals is achieved. The ap-
plication of a device with a just sufficient performance can lead to problems if, for
example, another recording channel is required or another specific TC with a higher
time resolution is required. For any of the software modules of the CAN software
stack in this context, based on experience reaction times, time-outs, delay times
or intervals in the range of milliseconds are specified. Therefore, a test system is
recommended which allows a test coordination with tolerances in the range of some
few milliseconds. Of course, the applied measurement tools must be capable to read
CAN bus messages with a sufficient over-sampling rate to make them reproducible.

6.4.4.5 Test Control, Important Services and Test Installation in General

A test system must be able to perform various tasks, which are described subse-
quently.

On one hand, the applied test description method must be supported which is
either the execution at runtime or separation into a preparation phase, runtime phase
in real time and post-processing phase. An ideal solution is to not only allow the
interpretation of the test description at the runtime phase, but also support the prepa-
ration and post-processing phases in order to, e.g. initialize the test installation or
prepare time-critical phases for easy activation at later times. As such, the benefits
of both test-performing solutions are combined, whereas the real time capable in-
terface hardware typically does not allow the preparation of too many sequences
which can be either executed if required or even dynamically.

On the other hand, services are required for communication with UT/Lateral/LT
over different communication channels, data logging, test evaluation, presentation,
management, as well as for the control of various measurement devices, interface
hardware and stimuli generators. The aforesaid interface hardware can also serve as
part of a communication channel to the test system surrounding the test object, which
can be applied, for instance, for communication towards the UT of the host micro-

328 W. Lawrenz et al.

processor on the target platform when executing software or hardware combined
tests. Interface channels once made available are applied as abstract ones. Therefore,
they can be used for tests of various software modules on the same target platform.

6.4.4.6 General Test-System Architectures for Embedded Software Tests

Figure 6.12 depicts the recommended architecture of a test system for communica-
tion stack software tests on the target hardware in conjunction with a test object
(IUT) together with its enclosed behavioural modules/features (VH = VerHalten =
behavior (German)).

On the right hand side is the test-system kernel with its associated tasks such as
linking of the TC description, driver pool control of interface hardware and mea-
surement devices, providing communication channels, test evaluation, logging, etc.
With regard to test control, test signals to and from the test object are to be prepared
correspondingly. Thereby, the test object gets the appropriate signals and thus the
test-object reactions can be uniquely reproduced. This job is performed by the en-
capsulation adapter. Control information is derived from the TCs and transferred
through the encapsulation adapter to the interfaces of the measurement devices and
the target platform where they are applied to the test environment as IUT test sig-
nals. The encapsulation is performed on the test object and also on the RS. Insofar,

Fig. 6.12  Schematic presentation of a test system for embedded-software tests

3296 Testing

pure and predictable test signals are applied to the test object. The reaction of the
test object is bounced back through correspondingly similar signal paths for further
TC evaluation in order to check whether these signals match the required behaviour
(RB). The RB data are either derived from an executable model or by a correspond-
ingly generated database. Quite often, there is no comprehensive reference model of
the test object which can be applied in a test system. As such, a manual prediction of
the desired behaviour for each TC is the only solution. Test results are collected in a
report, while any other test relevant information such as generated stimuli, measure-
ment data and evaluation steps are continuously recorded in a log file. As such, at
any time a reproduction or a reevaluation of the executed TC is feasible.

On the left hand side in Fig. 6.12, there is the general architecture of a test ob-
ject on an embedded platform. All the interfaces are surrounded by the RS, which
ideally is represented by test code, but which may also contain, an application or
additionally an embedded operating system. The RS encapsulates the actual test
object. Therefore, the pure test signals applied directly to the test object may not be
visible to the outside world. All electrical input and output signals are generated,
monitored and controlled by real time capable measurement devices. The test object
runs in its intended environment. Its functionality is directly checked together with
the applied target platform. The applied real time capable interface hardware and
measurement technique can be virtualized and thus is flexible; real devices can be
easily substituted by other ones.

This test architecture allows tests of various kinds, from driver modules to higher
layer software up to complete software stacks.

6.5 Model-Based Testing

Currently tests are not only executed when real test objects exist. Quite often, cus-
tomers require that tests must be executed on models which, for example, is the
case when performing tests on physical layer models. Automotive manufacturers
expect from these early tests a reduction of their development costs and a signifi-
cant increase of test quality for electronic systems in cars and other applications.
Model checking13 though is in its beginning stages with regard to standardization
or harmonization. In the area of networking, there are almost no standards with re-
spect to implementation models or how to analyse these models, for instance, with
regard to conformance. That is why up to now only some few manufacturers dared
carefully to do their first steps in this area, mostly based on proprietary solutions.
Under these circumstances, models, test runs and test results are neither comparable
among themselves nor repeatable.

Going into details makes the benefits of simulation for automotive manufactur-
ers become more visible. On one hand, a model bares the opportunity to analyse

13 This is related to the scope of this section with regard to the physical layer of automotive net-
worked electronics. In other application area, such as mechanical engineering, modeling and
model checking are more typical.

330 W. Lawrenz et al.

borderline cases, which are difficult to implement in the physical world. Such a re-
alistic worst case scenario, for instance, is the network topology layout of networks,
whereas one control unit under the hood may operate at + 100°C while another
one in the trunk may be at −40°C. Different environmental temperatures influence
significantly the operation characteristics of the corresponding physical bus drivers.
Simulating such a scenario only under the assumption of typical or almost ideal
environmental conditions bares a high risk for corrupted signal integrity and finally
for the safe operation of the whole end product as well. On the other hand, simula-
tions can easily consider tolerances of the physical bus drivers as well. Topologies,
therefore, can be analysed in high-frequency range as well as charged with non-
typical loads in order to generate borderline cases. Among others, the number of
nodes applied in a topology has great influence, because not only the bus drivers but
even the chosen bus lines influence the signal quality.

In order to meet the requirements for high-quality tests correspondingly, ap-
propriate models supplied by the component manufacturers are required. Unfortu-
nately, thereof the first area of problems arises: As there is no standardized valida-
tion method, there is no way to check these models for compliance to the require-
ments of the standard. Furthermore there is no compatibility among the different
languages which are applied for model specification. On one hand, there is the
traditional language SPICE14 which unfortunately is not well suited for generat-
ing more complex models such as for bus drivers. SPICE quite obviously has its
weaknesses when functional or behavioural descriptions are required. On the other
hand, non-open specified description languages are applied; one of them is MAST,
a proprietary language. That is why, there is a certain interest to create standards for
generic and specific requirements on models, requirements on simulation environ-
ments and requirements on model test specifications. Only when following this
path independently, reproducible and comparable test results and a corresponding
quality evaluation on model basis can be achieved.

Subsequently, a model-based test method is presented. This test method not only
is well suited for checking transceiver implementations against their existing stan-
dards, but also can be applied to check the overall physical network with special
focus on the integrity of signals on the communication media. As such, two major
aspects with regard to analysis of the signal integrity are met: on one hand the vali-
dation of individual components and on the other hand the observation and evalua-
tion of a complex topology.

6.5.1 VHDL-AMS

VHDL-AMS (Very High Speed Integrated Circuit Hardware Description Language - Analog
and Mixed Signals) is an extension of VHDL (see [IEEE1076]) for simulation support
of digital, analog and mixed signals systems and technologies. VHDL AMS allows

14 Simulation Program with Integrated Circuits Emphasis—there are optimized and commercially
available versions such as PSPICE or HSPICE.

3316 Testing

the description of the continuous behaviour15 of systems. Furthermore conserva-
tive16 as well as non-conservative17 systems can be modelled. They can be con-
nected to each other and jointly simulated.

Because VHDL-AMS is the only standardized hardware description language
for digital, analog and mixed signal systems, VHDL-AMS is in conjunction with
the before mentioned characteristics the preferred means for modelling of automo-
tive networks on analog, physical level. Neither SPICE nor any other proprietary or
non-standardized language provides a comparable flexibility. Furthermore SPICE
net lists can be translated into VHDL-AMS without any problems. Therefore, in-
tegration of existing models is feasible. That is why VHDL-AMS is required by
various specifications and standards as the sole description language for automotive
network components. Since quite a while work groups with the broad participation
of automotive and semiconductor industries and others provide specifically tailored
model libraries for the application in the physical layer network area.

6.5.2 Test Methodology

The most significant characteristic of this test method is the systematic structuring
of the individual components of the test system following the guidelines of ISO
9646 for conformance tests according to the distributed method. The term “model-
based testing” only indicates that the test object (IUT) must be provided in the form
of a model. There is no further indication on what is outside of the test object and
as such there is plenty of freedom for further interpretations and implementations.
Subsequently more than the simple alternative of mapping the IUT solely into a
model is discussed. The reasoning will be explained.

The modelled IUT is stimulated by distinct test signals while a TC is executed.
This correspondingly requires that stimuli must be available as models, too. This is
mainly due to the fact that stimuli typically are analog signals within a conservative
system description influencing the IUT correspondingly. These stimuli can be clas-
sified as host stimuli or bus interface stimuli depending on the model alternative.
The same is true for corresponding measurement devices. Furthermore, a model of
the environment (e.g. power supply) is required complementing the IUT model. UT,
LT and the environment model with its stimuli generators, measurement devices,
etc., are fully translated into the VHDL-AMS model description of this virtual pro-
tocol test system.

Tests of an executable model description are run on a simulator. Such simu-
lations are performed by either the algebraic solution of a set of equations in a
well-defined time period of a closed system or by the description of a fixed system
described before the simulation is started correspondingly. In the latter case, the test

15 Continuous behaviour with regard to time and/or data.
16 Based on the law of conservation of energy; e.g., Kirchhoff laws.
17 Signal flow systems for e.g. transfer functions in control systems.

332 W. Lawrenz et al.

bench18 cannot actively19 be either controlled nor its structure be manipulated from
outside while the simulation is ongoing. Therefore, the executing simulator is not
able to address and control the UT and LT of the test system coded in VHDL-AMS
modelling language. This fundamental statement is of important significance when
recognizing the continuously ongoing transition from test system for real, physi-
cal systems towards model-based testing. The major difference to a non-simulation
based test-system implementation is that an additional device level is inserted be-
tween the test coordination and the IUT when applying a simulator. This implies
that the device models of the UT and LT no longer can be addressed directly. In-
sofar, also the test coordination—with its main responsibility to perform the test
sequence control and which, therefore, is defined as a set of sequences of statements
for the devices of the UT and LT—cannot be completely performed from outside
of the simulator. That is why test scripts containing TC-specific model parameters
must be provided to the test bench. Therefore, a solution is required for the integra-
tion of the test sequence control into the model description.

6.5.2.1 Integration into Models

There are various versions and integration levels. In a first version, all the complete
test coordination is integrated into the model. This implies that any required pro-
cedures which are needed for test coordination must be converted into the model
description. In this case enormous efforts are required for the parameterization and
the complexity of the model, especially with regard to measurement data evaluation
and test-report generation. This is feasible due to the VHDL-AMS feature to read
and write external data from and to a host system. Any interfacing to real tests is
difficult though, because existing test scripts cannot be applied as they are, they first
must be converted into model descriptions. In this version, a test script simply is
a configuration in the VHDL-AMS language, which parameterizes the individual,
modeled components of the test system and links TC-specific implementations to
the interfaces of the components (see Fig. 6.13).

6.5.2.2 Integration Outside the Simulator

In the second version, the measurement data evaluation and test report generation
are outside of the model descriptions. As such, validated functionalities of existing
test systems can be applied. Interfacing to those physical test systems therefore can
be easily done. Furthermore, this integration version allows adopting test from the
physical tests scripts for the devices control of UT and LT. This also supports the
comparability of virtual and physical tests. On one hand, this may bare the poten-

18 Top-level model description of a simulation.
19 By external programs through the simulator or by the simulator itself.

3336 Testing

tial disadvantage that the device models must provide the implementations of all
functionalities for selection which are needed for all TCs; this increases complexity.
On the other hand, these device models can be applied in a more versatile way; there
is no need for modifications, if the application purpose varies.

For the evaluation and application of textual test scripts by model descriptions
in VHDL-AMS, the test bench requires a so-called script interpreter. Unfortunately,
the script interpreter again enhances the complexity of all model descriptions. When
designing its model-based test system C&S FACTS. Sim,20 C&S group GmbH de-
cided to choose this version. The focus was on the reusability of test system com-
ponents of the existing FACTS-based test systems as well as on a high degree of
reproducibility and comparability of model-based tests. The complexity of both of
the integration versions is in the same range and therefore this should be of minor
importance, when voting for one version or the other (see Fig. 6.14).

20 FACTS stands for Flexible Adaptable Customizable Test System. This is the generic product
name of various test products applied at C&S such as FACTS.CAN.COM/NM and FACTS.
AUTOSAR.

Fig. 6.13  Test environment
integration into the model

Fig. 6.14  Installation of the
test environment outside of
the model

334 W. Lawrenz et al.

There is still one aspect open to be discussed: For measurement data evaluation
on one hand and for general reproducibility on the other hand outside, it must be as-
sured that those measurement data of the simulator are stored persistently. Because
those data are to be recorded from the corresponding measurement device models,
the VHDL-AMS feature of reading and writing external data can be applied. Cur-
rent simulators offer graphical evaluation tools, but these tools are too much differ-
ent and therefore would increase the complexity of the simulator interfaces between
simulator and test system.

Independent from the chosen version the advantages of model-based testing are
obvious. Model-based testing allows safeguarding of the whole development cycle
of systems while starting with the development of the individual network compo-
nents up to the complete topology layout. Simulation and model-based test enable a
broader spectrum of analysis (e.g. borderline checks and variation of components)
and thus can reduce the risks significantly while increasing the test quality, espe-
cially when applied in conjunction with real, physical measurements. On top of this,
the development costs can be significantly reduced when applying models instead
of physical prototypes. The proliferation of simulator tools together with the con-
tinuously ongoing enhancements of VHDL-AMS on language coverage and inte-
gration abilities—as it is the case, e.g. for C&S FACTS—fosters more and more the
application of model-based tests.

Continuous proliferation of simulation tools as well as especially the support
of encryption technologies for securing models for better protection of intellectual
property when sharing models with other parties will give an additional push to the
acceptance and application of model-based testing.

6.6 CAN ECUs Emulation

A first verification step, as described in the previous chapter, is typically used to
check whether the nodes in a CAN network meet basic conformance requirements
(see Sect. 6.1). This ensures that the controllers, transceivers and physical proper-
ties of the respective CAN nodes allow for secure communication between nodes.
Now the question is: will the contents of the individual node applications work
together? To address this question, the next step checks the logical properties of the
applications, individually as well as jointly in an ECU network.

Because CAN plays an important role in the automotive industry, the examples
in this section are based on ECU networks used in automobiles. The information
provided here also applies, without restriction, to other sectors where devices are
networked using CAN.

6.6.1 Overview and Requirements

Modern CAN networks, as used in the current generation of automobiles, are com-
plex systems. The transmission of large numbers of signals in combination with

3356 Testing

content-based and time-based dependencies can lead to a large number of possible
errors, some of which can be difficult to reproduce. In sectors such as the automo-
tive industry, CAN systems are sold in products that are built in large quantities but
then used in highly customized ways. For this reason, customers sometimes experi-
ence exotic errors, which can result in high costs (e.g. for product recalls). Reputa-
tional damage is also a risk, as a number of striking examples from the automotive
industry have shown. Beyond the economic impact of undetected errors, safety is
also a consideration. With the increase in distributed functions, safety aspects are of
increasing importance.

Comprehensive testing is therefore indispensable. The functionality of any CAN
network needs to be tested under all the different conditions in which the system
will later operate. It is also important to check ECU behaviour in error situations as
well as inconsistent states, e.g. when protocol specifications are violated. It is often
precisely such theoretically “impossible” cases which lead to particularly unpleas-
ant problems in practical operation. For this reason, it is important that the ECU
reacts as defined in all situations.

Typical test scenarios are aimed at stimulating the ECU and then observing and
interpreting its reactions. This generally requires at least a partial simulation of the
ECU’s environment. For instance, it is rarely possible to operate ECUs on a CAN
bus without functioning NM. Similar conditions apply to hardware inputs and out-
puts. Actuators and sensors are partially checked by the ECU. When such a check
fails, the ECU enters an error state. Sensor/actuator inputs/outputs therefore need to
be addressed correctly in every case.

Errors that are difficult to reproduce are often caused by time-based dependen-
cies. A specific software error may only appear after specific events occur in a very
specific sequence. The test system therefore needs to be able to reproduce time
sequences and constraints (e.g. cycle times) in exactly the same way as these would
occur in reality. However, it should also be possible to create erroneous or unrealis-
tic states in a targeted and reproducible way.

As a broad preventative measure, testing is required from the earliest develop-
ment phases. This is because it is far more cost-effective to detect, analyse and
eliminate errors in earlier development phases than later on in the development
process. The large number of possible system states, combined with the need to
maximize the utilization of available bandwidth for efficiency reasons, means that
tests can be significant in scope. The only efficient way to handle such large-scale
testing requirements is to use automated test sequences.

6.6.2 Testing Methods

6.6.2.1 Protocol Tests

Communication at message level is tested using the so-called protocol tests. Such a
test does not use the abstraction layers available in the tester (which, e.g. represent
signals on messages and ensure cyclical message transmission); rather, it communi-
cates directly with the ECU SUT.

336 W. Lawrenz et al.

Protocol tests are generally set up in the following way: The tester stimulates the
SUT by sending it a message or message sequence and waiting for the reaction. The
test program then checks whether the observed reaction matches the expected one.
Depending on the reaction received, the tester then sends another stimulation, waits
for a further reaction, checks this reaction, etc.

Individual stimulations and reactions can also consist of input/output (I/O) op-
erations, e.g. activation of an ECU output line. Test sequences can also contain
complex conditions and operations. Such a “ping-pong” exchange of actions and
reactions, where the tester examines each of the SUT’s reactions, is a typical char-
acteristic of this test concept (see Fig. 6.15).

A typical use case for a protocol test is to check the ECU’s transport protocol
implementation. In this type of test, data items of varying length that are distributed
across various messages (CAN frames) are sent to the ECU. The ECU’s reaction
reveals whether it received and interpreted the message sequences correctly. This
also applies in the opposite direction, where the ECU is made to transmit segmented
messages. The test system can also send erroneous message sequences in order to
interpret the ECU’s reaction to these.

Test sequences and check conditions are very tightly interwoven. Test sequenc-
es replicate the specified behaviour of the SUT very precisely in order to check
whether the SUT behaves in the specified manner. Because the test program itself
implements the communication protocol, it can generate exceptional situations and
test the SUT’s reaction to these. Beyond testing simple protocol sequences, it is also
possible to test message contents and timing conditions.

Complete implementation of such protocols within a TC does, however, require
a degree of effort when creating the test sequence. Furthermore, the tight linkage

Fig. 6.15  Basic sequence for protocol tests

3376 Testing

between the tester and the SUT means that any changes made to the SUT have to be
taken into consideration.

It is also necessary to know exactly what constitutes correct behaviour on the
part of the SUT, even if individual TCs are not always precisely formulated, i.e.
when permissible value ranges are used instead of a concrete value. All of this in-
creases the difficulty involved in maintaining and reusing TCs.

6.6.2.2 Application Tests

Application tests are primarily used to test ECU functionality in a complex, net-
worked environment. The objective here is, e.g. to check whether the switch states
for light switches, door contacts, control units in roof consoles, light sensors, etc.,
transmitted via the CAN bus cause the lighting ECU to activate the specified lamps.

To simplify test programs, the tester uses an abstraction layer compatible with
the system running on the SUT. The test program thus acts as an ECU application
when it communicates with the SUT via a system-compliant communication layer
(see Fig. 6.16).

Like a protocol test, an application test also uses a test sequence to stimulate the
SUT and then receive and interpret its reactions. Prior to the actual communication,
abstraction is implemented via an interaction layer. This means that incoming and
outgoing signals are generally read and set in the CAN area. The interaction layer
is used to define and implement how and when these signals are sent and received
via the CAN bus.

Use of an interaction layer greatly simplifies test sequences, since the alternative
is to force the test sequence to replicate all of the properties of the communication
protocols precisely. This works on the assumption that the interaction layer is free
of errors, which is easier to ascertain by its frequent use. The reduced complexity of
the TCs improves their quality and makes it easier to reuse them.

Fig. 6.16  The test program runs on the same abstraction layer as the ECU software being tested

338 W. Lawrenz et al.

Protocol tests are largely event-driven, i.e. the TC reacts directly to perceived
events. Such events can include, e.g. receipt of a specific message or measurement
of a change in voltage at an ECU port. Application tests, by contrast, tend to be
more state based. A test sequence will often wait for a specific minimum interval
before it checks whether the expected final state has been reached (see Fig. 6.17).
This makes it easy to test complex reactions that involve, e.g. several messages.

It is possible to further increase the degree of abstraction in an application test
so that the tester itself no longer actively participates in the communication. In such
cases, the test program controls the SUT’s simulated environment and interprets the
resulting simulation states. This approach is also generally used with hardware-in-
the-loop tests. It requires a suitable simulation of the environment and, in particular,
of the ECUs on the CAN bus.

6.6.2.3 Invariant Tests

With invariant or observing tests, the SUT is operated under different constraints
and its compliance with specified parameters is checked continuously. These pa-
rameters are invariants, i.e. conditions that must be adhered to. Such conditions
may relate to specific states of the environment or ECU, which means they can be
situation dependent.

An example of an invariant condition in a CAN network is the message cycle
time. Errors in the cycle time may not necessarily be caused by a software error.
They may, under some circumstances, also arise from an overload of the ECU.
The cycle time should not be measured while the bus is booting up. An invariant

Fig. 6.17  Application tests check for an expected state after a defined interval

3396 Testing

condition can also be made to depend on a specific bus state, and the invariant test
can be started at a later point in time if desired. The actual test consists of constant
monitoring of the invariant condition while the SUT is subjected to different situa-
tions. The latter can be done, e.g. by employing a defined “drive cycle” or by con-
ducting a real test drive. The test is passed when the condition is not violated at any
time (see Fig. 6.18). Invariants can be derived from the specification for the SUT,
since they essentially describe its properties.

In this testing strategy, stimulation and check conditions are independent of one
another and can be developed separately. When developing the stimulation, it is
important to run through all the possible types of operational situation as well as all
exceptional situations to the fullest extent possible (code coverage, feature cover-
age, etc.). Developing the stimulation is relatively easy, since the reaction of the
ECU being tested does not need to be interpreted. A stimulation sequence can also
contain random elements (catchphrase: “playing with the controls”); however, this
impacts the repeatability of the test and makes planning test coverage more diffi-
cult. On the other hand, random sequences often lead to the identification of errors
that may not have been considered by anyone until then. A certain degree of ran-
domness in such tests is therefore advisable, and is certainly unavoidable in real-life
environments such as road tests.

Defining sensible invariant conditions can be a tricky task, especially when the
goal is to guarantee a wide range of ECU functionality. This is because it is often
the case that only a portion of the invariant conditions can be derived from the exist-
ing formal specification. For this reason, it may often be preferable to run tests via
direct communication when testing complex sequences (see “Application Tests” in
Sect. 6.6.2).

Fig. 6.18  Invariant tests check the communication and behaviour of the SUT

340 W. Lawrenz et al.

6.6.3 Simulating the CAN Network

A functional test for a CAN ECU requires the involvement of the other devices
on the bus for two reasons: Firstly, the ECU only works correctly when its infra-
structure, e.g. NM, is present and functioning correctly. Secondly, many errors in a
networked device can only be observed when it is operating under the same condi-
tions as would apply in a real network. This includes, e.g. the various signals sent
cyclically by other ECUs which the SUT must interpret in parallel to the test task. It
goes without saying that such loads can impact the SUT’s behaviour. In the automo-
tive industry, different vehicle ECU’s are typically developed by several suppliers
at the same time. For this reason, the ECUs of other manufacturers are generally not
available during the development phase. To carry out the necessary testing despite
this, the remaining CAN network is usually simulated during this phase.

It makes sense to generate the so-called remaining bus simulation from a suitable
network description. The Vector Data Base for CAN communication (DBC) format
is widely used for this purpose, as it retains not only messages and signals, but also
attributes such as cycle times. In other words, it provides a complete description of
the CAN communication, and is often referred to as a database or K-Matrix.21

With a remaining bus simulation, it is not necessary to simulate the actual appli-
cation itself. This means, e.g. that it is sufficient for an ABS ECU in a simulated or
partially simulated CAN vehicle network to receive signals relating to wheel revo-
lutions, brake pressure, brake pedal position, etc. and to transmit defined control
signals with appropriate values and in compliance with the specified cycle times
and protocols. It is not necessary to implement the actual ABS braking algorithm
for this purpose.

Remaining bus simulations do not just serve as a simple replacement for CAN
network components that are not yet available. They also make it easier to simulate
error situations such as the absence or loss of individual messages, which could
not be as easily implemented with a real ECU. It is the flexibility of the software-
based simulation that is so helpful here, inasmuch as it is easily controlled by the
test program. This makes it easy to implement controls for the participating ECUs
needed for functional tests in the test program. This is an important prerequisite for
test automation.

A remaining bus simulation can also be used prior to running an actual test on a
real ECU. The simulation makes it possible to detect possible problems in a CAN
network early on and to analyse the impact of changes to the communication def-
inition. The communication definition, in combination with the very illustrative
remaining bus simulation, also serves as a specification document for the develop-
ment of individual CAN ECUs.

21 K-Matrix stands for communication matrix because the database also describes which signal is
sent and received by which node.

3416 Testing

6.6.4 Testing with Vector CANoe

A number of programs can be used to develop test systems for CAN ECUs and
networks. Here we briefly outline the advantages of automated testing using Vector
Informatics widely used CANoe tool suite. CANoe supports the analysis simulation
and testing of CAN networks. Because vehicle systems tend to encompass bus sys-
tems other than CAN, e.g. MOST for the infotainment system, CANoe is capable of
accessing these buses just like it accesses CAN. This enables comprehensive testing
of the ECU in question. Various interfaces can also be used to address measurement
instruments as well as the hardware interfaces of the SUT and/or the devices in the
SUT’s environment (e.g. a climatic chamber; see Fig. 6.19).

Test automation is an integral part of CANoe. It enables the execution of test
programs that can be formulated in different languages, depending on the applica-
tion, and can support a wide range of test methods (as described in Sect. 6.6.2). The
test program is capable of directly accessing the remaining bus simulation, and can
thus control the SUT’s environment directly. It can also access protocol layers, such
as the transport protocol, NM or signal abstraction, which are integrated as DLLs.

To develop automated tests efficiently it is important to choose the right abstrac-
tion layer. Using tried and tested protocol DLLs reduces the likelihood of the TCs
themselves containing errors. Protocol tests and the simulation of certain error con-
ditions require direct access to messages, which is also possible in CANoe.

An ECU’s diagnostic and calibration interfaces also play an important role in
testing. These interfaces are the only way of evaluating the ECU’s internal state
by means of a test program without modifying the ECU’s code. For instance, a
diagnostic interface can be used to check whether the ECU correctly interprets an
externally generated error pattern.

Fig. 6.19  Test cases executed in CANoe can use a range of interfaces to access the SUT

342 W. Lawrenz et al.

The diagnostic and calibration protocols used to access the ECU are integrat-
ed into CANoe and can thus be readily used in a test program. CANoe interprets
the description files (e.g. ODX, ASAP) that define the relevant capabilities of the
SUT. The network description is used to automatically generate the remaining bus
simulation. Because the transmission behaviour of a CAN system depends on the
manufacturer’s approach to communications and because various protocols may be
used at the same time (transport protocol, NM, etc.), Vector provides manufactur-
er-specific add-on packages. These contain the components needed to generate a
manufacturer-specific remaining bus simulation.

The so-called simulation model builds the basis of the three-phase development
of a CAN system in CANoe (see Fig. 6.20). This process enables ECU developers
to carry out testing early on, and makes it easy to integrate individual components
into a viable overall system. In addition, it enables the use of simulations to solve
many problems, which leads to fewer misunderstandings between manufacturers
and suppliers.

Fig. 6.20  Development
of a CAN system in three
phases: network design, ECU
development and system
integration

3436 Testing

Phase 1: Network design In the first development phase, the manufacturer speci-
fies the complete CAN network and defines the communication between the indi-
vidual nodes. This design can be simulated in CANoe in its entirety, which lets
developers verify that specifications regarding bus load and latency times are adhe-
red to (See Fig. 6.20 upper section).

Phase 2: ECU development In the second phase, the system description is pro-
vided to ECU suppliers as an executable specification. The supplier’s developers
can now check the communication behaviour of the SUT using the remaining bus
simulation (See Fig. 6.20 middle section).

Phase 3: System integration In the third development phase, the manufacturer
integrates ECUs from different suppliers one by one to form the overall system.
The simulated ECUs are now switched off and CANoe is used to test the real CAN
communication (See Fig. 6.20 lower section).

345W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0,
© Springer-Verlag London 2013

Bibliography

[AUTO01] AUTOSAR GbR, AUTOSAR erreicht ersten Meilenstein—Erste Spezifikationen werden
veröffentlicht, Pressemitteilung, 2. Mai 2006, URL: www.autosar.org, Home > Media > Media
Releases

[CIA10] CAN in Automation (CiA): URL: http://www.can-cia.org, 2010 Home > Device design
> Technology > CAN > CAN history

[CSG10] C&S group GmbH: URL: http://www.cs-group.de, 2010 Home > Conformance Tests > CAN
osi-1 > CAN OSI1—Tested Products

[DO178B] Radio Technical Commission for Aeronautics (RTCA), DO-178B Software Conside-
rations in Airborne Systems and Equipment Certification, RTCA, Washington D. C., 1. Dez.
1992

[ETEM02] Berufsgenossenschaft Energie Textil Elektro, Grundsatz für die Prüfung und Zerti-
fizierung von „Bussystemen für die Übertragung sicherheitsrelevanter Nachrichten“, Fachaus-
schuss Elektrotechnik, Mai 2002 URL: http://www.bgetem.de/praev/praev_pruefgrundsaetze.
html

[HEUR06] Heurung T (2006, 20. März) In-vehicle network design methodology, 2nd IEE Auto-
motive Electronics Conference. The IEE, Savoy Place, London

[HUDI09] Hudi R (2009, 15.–16. Juli) Die E/E Entwicklung im Wandel auf dem Weg zur Elektro-
mobilität, Automobil Elektronik Fachkongress Elektronik, Ludwigsburg

[IEEE1076] IEEE 1076, VHDL Language Reference Manual, IEEE, 2009 ISBN: 978-0-7381-
5801-3

IEEE 1076.1, VHDL Analog and Mixed-Signal Extensions, IEEE, 2007 ISBN: 0-7381-5627-2
[ISO9000] DIN EN ISO/IEC 9000 (2005) Qualitätsmanagementsysteme—Grundlagen und

 Begriffe, ICS 01.040.03, ICS 03.120.10, ISO
[ISO9646] ISO/IEC DIS 9646-1 … 7 (1994–1998) Information technology—Open Systems

 Interconnection—Conformance testing methodology and framework, ICS 35.100.01, ISO
[ISO11898] ISO, Road vehicles—Interchange of digital information—Controller area network

(CAN) for high-speed communication, ISO, 1993 (zurückgezogen, revisioniert durch ISO
11898-1:2003 und ISO 11898-2:2003)

ISO 11898-1 (2003) Road vehicles—Controller area network (CAN)—Part 1: Data link layer and
physical signalling, ISO

ISO 11898-2 (2003) Road vehicles—Controller area network (CAN)—Part 2: High-speed me-
dium access unit, ISO

[ISO16845] ISO 16845 (2004) Road vehicles—Controller area network (CAN)—Conformance
test plan, ICS 43.040.15, ISO

[ISO17025] DIN EN ISO/IEC 17025 (2005) Allgemeine Anforderungen an die Kompetenz von
Prüf- und Kalibrierlaboratorien, ICS 03.120.20, ISO

[KRUE08] Krüger M (2008) Grundlagen der Kraftfahrzeugelektronik—Schaltungstechnik, 2nd
edn. Hanser Verlag, München

http://www.bgetem.de/praev/praev_pruefgrundsaetze.html
http://www.bgetem.de/praev/praev_pruefgrundsaetze.html

Bibliography

[LUEB04] Lübke A Car-to-Car Communication—Technologische Herausforderungen. In: VDE-
Kongress 2004, Innovationen für Menschen, Band 2: Fachtagungsberichte DGBMT, GMM,
GMA, VDE Verlag, Berlin

[MOST06] MOST—Media Oriented Systems Transport, Multimedia and Control Networking
Technology, MOST Specification. Revision 2.5, MOST Cooperation, Oktober 2006

[MYER89] Myers GJ Methodisches Testen von Programmen, 3nd edn. Oldenbourg Verlag, Mün-
chen, 1989 ISBN-10: 3-486-21317-2, ISBN-13: 978-3-486-21317-1

[ODVA01] ODVA, CIP Networks Library, Volume 1, Common Industrial Protocol, Edition 3.7,
© 2001 bis 2009, ODVA, Inc., November 2009

[ODVA05] ODVA, CIP Networks Library, Volume 5, CIP Safety, Edition 2.2, © 2005 bis 2009,
ODVA, Inc., May 2009

[ODVA94] ODVA, CIP Networks Library, Volume 3, DeviceNet Adaptation of CIP, Edition 1.8,
© 1994 bis 2009, ODVA, Inc., November 2009

[OEM10] Audi, BMW, Daimler, Porsche, Volkswagen: Hardware Requirements for Partial Net-
working, Version 1.1, 28.5.2010

[PFEI03] Pfeiffer O et al (2003) Embedded Networking with CAN and CANopen, 1st edn. RTC
Books, USA

[SCHI06] Schiffer V (2006) The Common Industrial Protocol (CIP™) and the Family of CIP Net-
works. Herausgeber: ODVA

[SCHMID] Schmid C ATA26 CAN Application Layer Protocol. SID 2616DD100, Issue 2 (nicht
öffentlich)

[SOCAN] URL: http://developer.berlios.de/projects/socketcan
[TIMM09] TIMMO Timing Model, ITEA 2–06005, Version 1.1, 2.9.2009 URL: www.timmo.org
[TIND94] Tindell K, Hansson H, Wellings AJ (1994) Analyzing Real-Time Communications:

Controller Area Network (CAN). Fachbereich Computersysteme, Universität Uppsala, Schwe-
den (Tindell, Hansson) & Fachbereich Informatik, Universität York, England (Wellings)

[TIND98] Tindell K, Rajnák A, Casparsson L (1998) A CAN Communications Concept with Gua-
ranteed Message Latencies. SAE 98C050, Dearborn, MI, USA, Convergence

[VDA09] Verband der Automobilindustrie e. V. (ed) (2009) Handeln für den Klimaschutz—CO2
Reduktion in der Automobilindustrie, 2nd edn, Frankfurt a. M.

[ZELT01] Zeltwanger H (ed) (2001) CANopen. VDE Verlag, Berlin

References to national and international standards ARINC

ARINC 429P1 … P17 Mark 33 Digital Information Transfer System (DITS), Aeronautical Radio
Inc.—ARINC, 2004 … 2009

ARINC 600 Air Transport Avionics Equipment Interfaces, Aeronautical Radio Inc., Mai 2010
ARINC 664P1 … P8 Aircraft Data Network, gängige Bezeichnung: AFDX, Aeronautical Radio

Inc.—ARINC, 2005 … 2009
ARINC 812 Definition of Standard Data Interfaces For Galley Insert (GAIN) Equipment, CAN

Communication, Aeronautical Radio Inc.—ARINC, Dezember 2006
ARINC 825 General Standardization of CAN (Controller Area Network) Bus Protocol for Airborne

Use, Aeronautical Radio Inc.—ARINC, Mai 2010
ARINC 826 Software Data Loader Using CAN Interface, Aeronautical Radio Inc.—ARINC,

Januar 2009

346

Bibliography

CISPR

CISPR 16 Specification for radio disturbance and immunity measuring apparatus and methods,
siehe auch deutsche Fassung in DIN EN 55016-1-3 Anforderungen an Geräte und Einrichtun-
gen sowie Festlegung der Verfahren zur Messung der hochfrequenten Störaussendung (Funk-
störungen) und Störfestigkeit, DIN, Mai 2007

DIN

DIN 19245 PROcess FIeld BUS—PROFIBUS, DIN, 1989 bis 1995
Teil 1: PROFIBUS-FDL (Fieldbus Data Link), DIN, 1989
Teil 2: PROFIBUS-FMS (Fieldbus Message Specification), DIN, 1990
Teil 3: PROFIBUS-DP (Decentralized Peripherals), DIN, 1994
Teil 4: PROFIBUS-PA (Process Automation), DIN, 1995
DIN 41652 Steckverbinder für die Einschubtechnik, trapezförmig, runde Kontakte Ø 1 mm; Maße

der Bauform A; Lötanschluss für freie Verdrahtung, DIN, 6/1990

EN

EN 3646 Aerospace series—Connectors, electrical, circular, bayonet coupling, operating tem-
perature 175 °C or 200 °C continuous, Deutsche Version DIN EN 3646: Luft- und Raum-
fahrt—Elektrische Rundsteckverbinder mit Bajonettkupplung, Betriebstemperatur 175 °C oder
200 °C konstant, Teile 1 bis 10, 2006–2007 (deutsch: 2007–2008)

EN 50090 Home and Building Electronic Systems (HBES)—Elektrische Systemtechnik für Heim
und Gebäude (ESHG)

EN 50170 General Purpose Field Communication System—Part 2: PROFIBUS, 1996
EN 50295 Niederspannungsschaltgeräte—Steuerungs- und Geräte-Interface-Systeme—Aktuator

Sensor Interface (AS-i), Deutsche Fassung, 1999
EN 50325-4 Industrielles Kommunikationssubsystem basierend auf ISO 11898 (CAN)—Teil 4:

CANopen, Deutsche Fassung der EN 50325-4:2002 Industrial communications subsystem ba-
sed on ISO 11898 (CAN) for controller-device interfaces—Part 4: CANopen, Text in Englisch,
DIN, 3/2007

IEC

IEC 61000 Electromagnetic compatibility, ICS 33.100.20
Part 4-2: Testing and measurement techniques—Electrostatic discharge immunity test, Edition 2.0,

IEC, 9. Dezember 2008 Hinweis: IEC 61000-4-2 bildet die Basis für die Norm ISO 10605, die
fahrzeugspezifische Anforderungen beschreibt

Part 4-4: Testing and measurement techniques—Electrical fast transient/ burst immunity test,
 Edition 2.0, IEC, 8. Juli 2004

347

Bibliography

IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-related
 systems—Deutsche Fassung: DIN EN 61508: Funktionale Sicherheit sicherheitsbezogener
elektrischer/elektronischer/programmierbarer Systeme, IEC, Edition 2.0, 4/2010

IEC 61691 Behavioural Languages, IEC, beinhaltet unter anderem Referenzen zu den Sprachen
VHDL, VITAL ASIC, VHDL-AMS und SystemC

Part 6: VHDL Analog and Mixed-Signal Extensions, IEC, 14. Dezember 2009
IEC 61800-7 Adjustable speed electrical power drive systems—Part 7-303: Generic interface and

use of profiles for power drive systems—Mapping of profile type 3 to network technologies,
IEC, Edition 1.0, 11/2007

IEC 61967 Integrated circuits—Measurement of electromagnetic emissions, 150 kHz to 1 GHz,
ICS 31.200

Part 4: Measurement of conducted emissions—1 Ω/150 Ω direct coupling method, Edition 1.1,
IEC, 27. Juli 2006

IEC 62026-2 Low-voltage switchgear and controlgear—Controller-device interfaces (CDIs)—
Part 2: Actuator sensor interface (AS-i), IEC, 29. Januar 2008

IEC 62132 Integrated circuits—Measurement of electromagnetic immunity, 150 kHz to 1 GHz,
ICS 31.200

Part 4: Direct RF power injection method, Edition 1.0, IEC, 21. Februar 2006
IEC 62228 Integrated circuits—EMC evaluation of CAN transceivers, ICS 31.200, Edition 1.0,

IEC, 16. Februar 2007

IEEE

IEEE 802.3 IEEE Standard for Information technology-specific requirements—Part 3: Carrier
Sense Multiple Access with Collision Detection (CMSA/CD) Access Method and Physical
Layer Specifications, IEEE, 2008

IEEE 1076.1 IEEE Standard VHDL Analog and Mixed-Signal Extensions, IEEE, 8. September
2007, ersetzt durch Teil 6 der IEC 61691 Behavioural languages

IEEE 1394 IEEE Standard for High Performance Serial Bus, IEEE, 1. Januar 2008
IEEE 1588 IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measu-

rement and Control Systems, IEEE, 24. Juli 2008

ISO

ISO 7498-1 Information technology—Open Systems Interconnection—Basic Reference Model:
The Basic Model, ICS 35.100.01, ISO, 1994

ISO 7637 Road vehicles—Electrical disturbances from conduction and coupling, ICS 43.040.10,
ICS 01.040.43

Part 1: Definitions and general considerations, ISO, 2002
Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than

supply lines, ISO, 2007
ISO 9000 Quality management systems—Fundamentals and vocabulary, ICS 01.040.03, ICS

03.120.10, ISO, 2005
ISO 9141 Road vehicles—Diagnostic systems, ICS 43.180
Part 2: CARB requirements for interchange of digital information, ISO, 1994
ISO 9646 Information technology—Open Systems Interconnection—Conformance testing metho-

dology and framework, ICS 35.100.01, ISO, 1994–1998

348

Bibliography

ISO 10605 Road vehicles—Test methods for electrical disturbances from electrostatic discharge,
ICS 43.040.10, ISO, 2008

ISO 10731 Information technology—Open Systems Interconnection—Basic Reference Model—
Conventions for the definition of OSI services, ICS 35.100.01, ISO, 1994

ISO 11519 Road vehicles—Low-speed serial data communication, ICS 43.040.15, heute mit ISO
11898 zusammengefasst, ISO, 1994

ISO 11898 Road vehicles—Controller area network (CAN), ICS 43.040.15
Part 1: Data link layer and physical signalling, ISO, 2003
Part 2: High-speed medium access unit, ISO, 2003
Part 3: Low-speed, fault-tolerant, medium-dependent interface, ISO, 2006
Part 4: Time-triggered communication, ISO, 2004
Part 5: High-speed medium access unit with low-power mode, ISO, 2007
ISO 13213 Information technology—Microprocessor systems—Control and Status Registers

(CSR) Architecture for microcomputer buses, ICS 35.160, ISO, 1994
ISO 13400 Road vehicles—Diagnostic communication between test equipment and vehicle over

internet protocol, ICS 43.180, ICS 43.040.10
Part 2: Network and transport layer requirements and services, Committee Draft, in Entwicklung
ISO 14229 Road vehicles—Unified diagnostic services (UDS), ICS 43.180
Part 1: Specification and requirements, ISO, 2006
Part 2: Session layer services, ISO, in Entwicklung (2010-3-28)
Part 3: UDS on controller area network implementation (UDSonCAN), (früher ISO 15765-3),

ISO, in Entwicklung (2010-04-18)
ISO 14230 Road vehicles—Diagnostic systems—Keyword Protocol 2000, ICS 43.180
Part 4: Requirements for emission-related systems, ISO, 2000
ISO 14543 Information technology—Home Electronic Systems (HES) Architecture, ICS 35.200,

35.240.99
Part 3-1: Communication layers—Application layer for network based control of HES Class 1,

ISO, 2006
Part 3-2: Communication layers—Transport, network and general parts of data link layer for net-

work based control of HES Class 1, ISO, 2006
Part 3-3: User process for network based control of HES Class 1, ISO, 2007
Part 3-4: System management—Management procedures for network based control of HES Class

1, ISO, 2007
Part 3-5: Media and media dependent layers—Power line for network based control of HES Class

1, ISO, 2007
Part 3-6: Media and media dependent layers—Network based on HES Class 1, twisted pair, ISO,

2007
Part 3-7: Media and media dependent layers—Radio frequency for network based control of HES

Class 1, ISO, 2007
ISO 15031 Road vehicles—Communication between vehicle and external equipment for emissi-

ons-related diagnostics, ICS 43.040.10, ICS 13.040.50
Part 2: Terms, definitions, abbreviations and acronyms, ISO, 2004
Part 5: Emissions-related diagnostic services, ISO, 2006
Part 6: Diagnostic trouble code definitions, ISO, 2005
ISO 15765 Road vehicles—Diagnostics on Controller Area Networks (CAN), ICS 43.040.15
Part 2: Network layer services, ISO, 2004
Part 3: Implementation of unified diagnostic services (UDS on CAN), ISO, 2004
Part 4: Requirements for emissions-related systems, ISO, 2005
ISO 16845 Road vehicles—Controller area network (CAN)—Conformance test plan, ICS

43.040.15, ISO, 2004
ISO 17025 General requirements for the competence of testing and calibration laboratories, ICS

03.120.20, ISO, 2005
ISO 22901 Road vehicles—Open diagnostic data exchange (ODX), ICS 43.180, ISO, 2008

349

Bibliography

ISO 26262 Road vehicles—Functional safety, ICS 43.040.10
ISO 27145 Road vehicles—Implementation of emissions-related WWH-OBD communication

requirements, wird langfristig ISO 15031-5/SAE J1979 ersetzen, ICS 43.180, ICS 43.040.10
Part 2: Common emissions-related data dictionary, ISO, 2006
Part 3: Common message dictionary, ISO, 2006
Part 4: Connection between vehicle and test equipment, ISO, 2006

RTCA

RTCA/DO-178B Software Considerations in Airborne Systems and Equipment Certification, Ra-
dio Technical Commission for Aeronautics (RTCA), Washington D. C., 1. Dezember 1992

SAE

SAE J1587 Electronic Data Interchange Between Microcomputer Systems in Heavy-Duty Vehicle
Applications, SAE, Juli 2008

SAE J1699 OBD II Related SAE Specification Verification Test Procedures, SAE, Januar 1998
J1699/3: Vehicle OBD II Compliance Test Cases, SAE, Dezember 2009
SAE J1708 Serial Data Communications Between Microcomputer Systems in Heavy-Duty Vehic-

le Applications, SAE, Oktober 2008
SAE J1850 Class B Data Communications Network Interface, SAE, Juni 2006
SAE J1930 J1930DA: Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviati-

ons, and Acronyms, SAE, Mai 2010
SAE J1939 Recommended Practice for a Serial Control and Communications Vehicle Network,

SAE, Februar 2010
J1939/11: Physical Layer, 250K bits/s, Twisted Shielded Pair, SAE, August 2009
J1939/15: Reduced Physical Layer, 250K bits/sec, UN-Shielded Twisted Pair (UTP), SAE, August

2008
J1939/21: Data Link Layer, SAE, Dezember 2006
J1939/31: Network Layer, SAE, Mai 2010
J1939/71: Vehicle Application Layer, SAE, Februar 2010
J1939/73: Application Layer—Diagnostics, SAE (Projektstart: Mai 2010)
J1939/84: OBD Communications Compliance Test Cases for Heavy Duty Components and Vehic-

les, SAE, März 2009
SAE J1962 Diagnostic Connector Equivalent to ISO/DIS 15031-3:December 14, 2001, SAE, April

2002
SAE J1979 E/E Diagnostic Test Modes, technisch gleichwertig zu ISO 15031-5, SAE, in Entwick-

lung (Projektstart: Juli 2008)
SAE J2012 Diagnostic Trouble Code Definitions, SAE, Dezember 2007
SAE J2284 High Speed CAN (HSC) For Passenger Vehicle Applications, SAE, zurückgezogen

Mai 2001, siehe Teile 1 bis 3
J2284/1: High Speed CAN (HSC) for Vehicle Applications at 125 Kbps, SAE, 7. März 2002
J2284/2: High Speed CAN (HSC) for Vehicle Applications at 250 Kbps, SAE, 7. März 2002
J2284/3: High-Speed CAN (HSC) for Vehicle Applications at 500 Kbps, SAE, 2. März 2010
SAE J2411 Single Wire Can Network for Vehicle Applications, SAE, 14. Februar 2000, in

 Überarbeitung seit Mai 2007

350

351

Index

11-bit-Identifier 4
29-bit-Identifier 4

A
ACK 6
Acknowledgement-error 11
Advanced CAN 135
Analyzer-modus 156
Application tests 337
Arbitration 8
AUTOSAR 131, 193, 258

B
Babbling idiot 25
BACnet 280
Basic CAN 7, 25
Basic cyclesafety critical systems 32
Baud Rate Prescaler (BRP) 18
Behavior 2, 252
Bit coding 4
Bit error 10
Bit stuffing 4
Bit timing 18, 60, 115
Bit-timing-logic (BTL) 18
Bulk current injection (BCI) 100, 101, 268
Burst error 6
Bus off 12

C
Cable length, maximum 71, 73
CAN-Cores 135
CAN-IP 138
CAN-IP cores 138
CANoe 341
CAN-Software-Stack 319
Carbon dioxide (CO2) 112
Carrier Sense Multiple Access with Collision

Detection and Arbitration on

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0,
© Springer-Verlag London 2013

Message Priority (CSMA/
CD + AMP) 8

Class A…D 256
Clocking 114
Component specification 284
Conformance 285
Conformance test 283, 285
Conformance test transceiver 296
Control field 5–7
Controller area network (CAN) 112, 113, 147,

155, 160, 319
Costs per node, CAN 280
CRC 6
CRC error 10
Cycle time 28, 204

D
Data Length Code (DLC) 6, 7
Direct Power Injection (DPI) 93
Disturbance 12
Dominant 8

E
Eco innovations 112
ECU test 334
EIB 280
Electromagnetic compatibility (EMC) 62, 63,

65, 66, 86, 87, 89
Electromagnetic interference 14
Electromagnetic noise 86
Electrostatic discharge (ESD) 42, 94
ELMOS Semiconductor AG 115
EMI 95
Emission 2, 45
Emission measurement 93
Encryption 334
End of frame 6
Error active 11, 12

352 Index

Error correction 9
Error counter 12
Error detection 10, 34
Error flag 11
Error frame 10
Error handling 9, 10, 34
Error passive 11, 12
Event synchronization 33
Extended CAN frame 5

F
FACTS 333
Failure 27, 46, 206, 269, 286
Fault isolation 11
Filtering 137
First-in-first-out (FIFO) 149
FlexRay 257
Form error 10
FPGA 135
Full CAN 7, 25

G
Gateway 26, 158, 159
Generalized Interoperable Fault-tolerant

(GIFT) 299
Geniax 279
GND shift 67
Go-to-sleep mode 45

H
Hard sync 19
High-Speed-CAN 257
Human body model (HBM) 94

I
Identifier extension 6
Identifier Extension Flag (IDE) 5
Idle 6
Immission 87
Immunity measurement 93
Implementation under test (IUT) 290
INHIBIT pin 114
Initialization phase 13
Inter Frame Space (IFS) 6
Interference 14
Interference suppression 102
Interframe space 6
International transceiver conformance test

(ICT) 299
Interoperability 115, 288
Invariant tests 338
ISO 11519 4
ISO 11898 4

ISO norm 113
ISO 9646 289
ISO/OSI 4

J
J1939 132

L
Latency time 16
Lateral tester 325
Line losses 73
Line statement 66
Local disturbance 10, 11
LogiCORE™ 160
LON 280
Lower tester 305
Low-Speed-CAN 257

M
Masking 137
Model 1
Model based testing 330
Model check 329
Model testing 329
Modelling 81
MOST 257

N
Network propagation delay 54
Network simulation 340
Network topologies–design constraints 55, 56
Noise 14
Noise immunity 90
Normal mode 44

O
Observing tests 338
On-chip clocking 114
On-chip oscillator 115
Oscillator tolerance, calculation 22
OSEK/VDX 321
Overload 15, 16

P
Partial network mode 113
Partial networking 104, 112
Partial networking transceiver 115
Phase buffer segment 1/2 18
Phase error 20
Physical layer, high-speed 48
Power-modi 117
Propagation time segment 18
Protocol tests 335, 337

353Index

R
Receive error counter (REC) 12
Recessive 8
Redundant time transmitter 32
Remaining bus simulation 340
Remote transmission request (RTR) 5, 7
Residual system 325
Ringing 69

S
Selective Wake-up Interoperable Transceiver

in CAN High-speed (SWITCH)
group 113

Serial Linked IO (SLIO) 25
Signal quality 68
Simulation 56
Sleep mode 45
Soft sync 20
Software-test 319
SPICE 330
Spike, filtering 20
Standard CAN Frame 5
Standard-core 194
Stand-by Mode 44
Stand-by RAM 118
Stuff error 10
Stuff-bit 6
Substitute remote request 6
Supervisor 305
Synchronization 18–20
Synchronization Jump Width (SJW) 18

T
Target platform 322
Termination 51
Terminationstandard 51
Test 288, 289, 291–293
Time stamp 138
Time transmitter 32
Time triggered 4
Time-quantum 18
Time-Triggered CAN (TTCAN) 27, 28, 30,

32–34
Timing considerations 16
TLE 6250 G 125
TLE 6251-2G 128
Topology 53
Transceiver 43, 49, 51, 125, 128
Transmission line theory 56
Transmit error counter (TEC) 12
Trial and error 296
Trx_standby mode_swk 110
TSEG1, configuration 19

TSEG2, configuration 19
TwinCAN 148

U
Upper tester 305

V
Validation 80
Verification 115
VHDL-AMS 330

W
Wake-up 113, 115

	Preface
	Contents
	Contributors
	Abbreviations
	Chapter-1
	CAN Basic Architectures
	1.1 CAN History
	1.1.1 Standardizations of CAN
	1.1.1.1 The ISO 11898 family

	1.2 CAN Specifications
	1.2.1 Bit Coding
	1.2.2 CAN Frames
	1.2.3 Arbitration
	1.2.4 Error Management
	1.2.4.1 Error Detection
	1.2.4.2 Error Handling
	1.2.4.3 Fault Isolation
	1.2.4.4 Overload Handling

	1.2.5 Timing Considerations
	1.2.6 Bit-Timing and Synchronization
	1.2.6.1 “Hard” and “Soft” Synchronization
	1.2.6.2 Propagation Delays
	1.2.6.3 Oscillator Tolerance
	1.2.6.4 Setting the Bit Timing Registers

	1.2.7 Characteristics of CAN Controllers

	1.3 Time-Triggered CAN
	1.3.1 Motivation to Advance CAN Protocol Towards TTCAN
	1.3.2 Constraints
	1.3.3 Time Triggered Basics
	1.3.4 Communication Architecture
	1.3.5 Communication Sequence
	1.3.6 Synchronization, Local and Global Time
	1.3.7 Redundancy of Time Transmitters
	1.3.8 Event-Synchronized Cycle
	1.3.9 Drift Correction
	1.3.10 Extended Error Detection and Error Handling
	1.3.11 Summary

	1.4 CAN FD—CAN with Flexible Data Rate
	1.4.1 Further Development of the CAN Protocol
	1.4.2 CAN FD Concept
	1.4.3 CAN FD Frame Format

	Chapter-2
	Physical Layer
	2.1 Basic Elements
	2.1.1 Transceiver
	2.1.1.1 Transceiver Mode

	2.1.2 CAN Coil
	2.1.3 Network Concepts
	2.1.4 Fault-Tolerant Low-Speed CAN Physical Layer
	2.1.4.1 High-Speed Physical Layer

	2.1.5 Termination Concepts
	2.1.5.1 Standard-Termination Concept
	2.1.5.2 Termination with Centre Tab

	2.1.6 Network Topologies
	2.1.6.1 Single Star
	2.1.6.2 Twin Star
	2.1.6.3 Linear Bus Topology
	2.1.6.4 Hybrid Topology
	2.1.6.5 Network Propagation Delay

	2.2 Network Topologies—Design Constraints
	2.2.1 CAN Network Architecture
	2.2.1.1 Transmission Line Theory

	2.2.2 Architecture of CAN Nodes
	2.2.2.1 CAN-Bit-Timing and Oscillator Tolerances
	2.2.2.2 Transceiver
	2.2.2.3 EMC Circuits
	2.2.2.4 Cable Termination, Supporting Resistances
	2.2.2.5 ESD Protection
	2.2.2.6 Isolation and GND Shift

	2.2.3 Interactions of Components and Analytic Signal Integrity Inspections
	2.2.3.1 Ringing at the Transition from Dominant to Recessive
	2.2.3.2 GND Shift, CMC and Arbitration
	2.2.3.3 Limitations of the Cable Length in Consideration of the Bit Timing
	2.2.3.4 Limitations of the Cable Length in Consideration of the Line Losses

	2.3 Network Topologies—Design by Simulation
	2.3.1 Development of Automotive Networking Topologies
	2.3.2 System Simulation as a Tool for Network Developers
	2.3.3 Saber—A Development Tool for Simulation and Analysis of the Electrical Physical Layer of Networking Topologies

	2.4 Electromagnetic Compatibility
	2.4.1 EMC Requirements, Specifications and Guidelines
	2.4.2 Factors Effecting EMC of CAN Buses
	2.4.2.1 Bus Topologies and Termination Concepts
	2.4.2.2 Bus Lines
	2.4.2.3 Bus Filter
	2.4.2.4 Transceiver

	2.4.3 EMC Evaluation of CAN Transceivers
	2.4.3.1 Ways for EMC Evaluation for Cars Applications
	2.4.3.2 EMC Evaluation on Semiconductor Level
	2.4.3.3 Basic Test Procedure for EMC Evaluation of CAN
	2.4.3.4 Comparison of EMC Evaluation Results for Measurements of IC, Components and Cars

	2.5 Partial Networking
	2.5.1 Motivation
	2.5.2 Realization Methods
	2.5.2.1 Variant 1: Disconnecting the Supply Voltage
	2.5.2.2 Variant 2: Separate Wake Line
	2.5.2.3 Variant 3: Bus Levels
	2.5.2.4 Variant 4: Bus Messages

	2.5.3 Partial Networking (Infineon)
	2.5.3.1 Normal Communication Mode
	2.5.3.2 Start-Up Phase
	2.5.3.3 Parking Cars
	2.5.3.4 Partial Networking
	2.5.3.5 Trx_Standby Mode with Activated Selective Wake-Up Function
	2.5.3.6 Trx_Sleep Mode with Activated Selective Wake-Up Function
	2.5.3.7 CAN Communication Timer (Tsilence Timer)
	2.5.3.8 Wake-Up-Frame Detection Unit

	2.5.4 Transceivers for CAN Partial Networking (ELMOS)
	2.5.4.1 Requirements for High-Speed CAN Partial Networking
	2.5.4.2 Implementation of High-Speed CAN Partial Networking
	2.5.4.3 Clocking
	2.5.4.4 Analysis of the CAN Message
	2.5.4.5 SPI-Compatible Interface
	2.5.4.6 Implementation in the Device E520.13 by ELMOS Semiconductor AG

	2.5.5 Pretended Networking—the Microcontroller Approach (Infineon)
	2.5.5.1 Is Power Saving Possible with a Microcontroller?
	2.5.5.2 ECUs Sleep During Driving?
	2.5.5.3 Outlook

	2.5.6 Comparison Between Partial and Pretended Networking (Infineon)
	2.5.7 NXP’s Concept and Implementation

	2.6 Transceiver Implementations
	2.6.1 Implementation Example TLE 6254 3G (ISO 11898-3)
	2.6.1.1 Pin Description
	2.6.1.2 Transmitter
	2.6.1.3 Receiver Block
	2.6.1.4 Differential Receiver
	2.6.1.5 CAN_L, CAN_H Single-Ended Comparator
	2.6.1.6 CAN_H, CAN_L Vbat Comparator
	2.6.1.7 Bus Failure Detection
	2.6.1.8 Application Circuit

	2.6.2 Implementation Example TLE 6250 G (ISO 11898-2)
	2.6.2.1 Pin Description
	2.6.2.2 Transmitter
	2.6.2.3 Receiver Block
	2.6.2.4 Mode Pins: INH and RM
	2.6.2.5 V33V-I/O Supply Voltage
	2.6.2.6 TLE 7250G and TLE 7250GVIO

	2.6.3 TLE 6251-2G (ISO 11898-5)
	2.6.3.1 Pin Description
	2.6.3.2 Transmitter
	2.6.3.3 Receiver
	2.6.3.4 Bus Failure Detection
	2.6.3.5 VµC-I/O Supply
	2.6.3.6 Split Pin

	Chapter-3
	Data Link Layer Implementation
	3.1 M_CAN—Modular CAN Controller
	3.2 IFI Advanced CAN
	3.2.1 Transmit Buffer
	3.2.2 Masks and Filters
	3.2.3 Receive Buffer
	3.2.4 Time Stamp
	3.2.5 Conclusion

	3.3 Renesas RS-CAN
	3.3.1 Properties of RS-CAN
	3.3.2 Initialization of RS-CAN
	3.3.2.1 Operation Modes
	3.3.2.2 Test Modes

	3.3.3 Transmission of Messages
	3.3.3.1 Sending from Message Buffers
	3.3.3.2 Sending from Transmit Queues
	3.3.3.3 Sending from Multi-Purpose FIFO
	3.3.3.4 Sending from GW FIFO
	3.3.3.5 Transmit History List
	3.3.3.6 Transmission Intervals

	3.3.4 Reception of Messages
	3.3.4.1 Reception into a Receive Message Buffer
	3.3.4.2 Reception into a FIFO Unit

	3.3.5 Summary

	3.4 Infineon’s CAN Modules of the XC16x- and XC2000/XE16x family
	3.4.1 TwinCAN and MultiCAN from Infineon
	3.4.2 TwinCAN
	3.4.2.1 Message Objects
	3.4.2.2 FIFO
	3.4.2.3 Automatic GW
	3.4.2.4 FIFO/GW Combination
	3.4.2.5 Shared-GW-Modus
	3.4.2.6 Analyser Mode
	3.4.2.7 The Interrupt System

	3.4.3 MultiCAN
	3.4.3.1 Advantages of the MultiCAN
	3.4.3.2 MultiCAN Supports CAN-Debugging
	3.4.3.3 MultiCAN in Analyser Mode
	3.4.3.4 MultiCAN: Flexible Interrupts

	3.4.4 The XC2000 Family in GW Applications—An Application Example Using MultiCAN
	3.4.4.1 GW Between Two CAN Bus Systems
	3.4.4.2 Gateway Between CAN- and LIN-Bus
	3.4.4.3 Gateway from CAN to FlexRay
	3.4.4.4 Outlook

	3.5 Xilinx CAN-Controller LogiCORE™ IP
	3.5.1 User Interface
	3.5.1.1 Interface Description
	3.5.1.2 Single Read Transaction
	3.5.1.3 Single Write Transaction

	3.5.2 Object Layer
	3.5.2.1 Transmit and Receive Messages
	3.5.2.2 TX High-Priority Buffer
	3.5.2.3 Acceptance Filters
	3.5.2.4 Configuration Registers

	3.5.3 Transfer Layer
	3.5.3.1 Bit Timing Module

	3.5.4 Bit Stream Processor
	3.5.5 Configuring the CAN Controller
	3.5.5.1 Programming the Configuration Registers
	3.5.5.2 Transmitting a Message
	3.5.5.3 Receiving a Message
	3.5.5.4 CAN Graphical User Interface
	3.5.5.5 Component Name
	3.5.5.6 Xilinx CAN Controller Design Parameters

	3.5.6 Ordering the CAN Controller

	Chapter-4
	Higher Level Protocols
	4.1 CANopen
	4.1.1 Profiles for the Lower Layers
	4.1.2 Device Model
	4.1.3 Network Management
	4.1.4 Transport Protocols
	4.1.5 Application Protocols
	4.1.6 Device Profiles
	4.1.7 Application Profiles

	4.2 AUTOSAR
	4.2.1 Introduction
	4.2.1.1 AUTOSAR Foundation
	4.2.1.2 AUTOSAR Concept
	4.2.1.3 New Methodology

	4.2.2 The AUTOSAR Platform
	4.2.2.1 Overview
	4.2.2.2 Microcontroller Abstraction Layer
	4.2.2.3 ECU Abstraction Layer
	4.2.2.4 Service Layer
	4.2.2.5 Application Abstraction Layer
	4.2.2.6 AUTOSAR Applications

	4.2.3 AUTOSAR Communication—An Example
	4.2.3.1 Overview
	4.2.3.2 Communication Path Through the Basic Software
	4.2.3.3 AUTOSAR Application
	4.2.3.4 AUTOSAR RTE
	4.2.3.5 AUTOSAR COM
	4.2.3.6 PDU Router
	4.2.3.7 CAN Interface
	4.2.3.8 CAN Driver
	4.2.3.9 Conclusion

	4.3 Automotive Diagnostic Implementations on CAN
	4.3.1 OBDonCAN—ISO 15031 emissions-related OBD on ISO 15765-4 DoCAN
	4.3.2 UDSonCAN—ISO 14229-3
	4.3.2.1 UDSonCAN Services Overview

	4.3.3 Development Trends
	4.3.3.1 History
	4.3.3.2 Requirements of the Legislators
	4.3.3.3 ISO 27145 WWH-OBD
	4.3.3.4 The WWH-OBD Task Force also Established Requirements Related to Diagnostics and Flash Programming of ECUs.
	4.3.3.5 Decisions on How to Proceed with the Development Work:

	4.4 SAE J1939
	4.4.1 Structure of SAE J1939
	4.4.2 SAE J1939-21 Data Link Layer
	4.4.2.1 Transport Protocol (TP)

	4.4.3 SAE J1939-31—Network Layer
	4.4.4 SAE J1939-71 71—Vehicle Application Layer
	4.4.4.1 SPN and Fault Information

	4.4.5 SAE J1939-73—Diagnostics
	4.4.5.1 Fault Codes
	4.4.5.2 Scan Tool Initialization

	4.4.6 SAE J1939-81 81—NMT
	4.4.7 SAE J1939-84

	4.5 CanKingdom
	4.5.1 Background
	4.5.2 The Concept Behind CK
	4.5.3 Overview
	4.5.4 CK Vocabulary
	4.5.5 King’s Document
	4.5.5.1 Action Mode
	4.5.5.2 Communication Modes
	4.5.5.3 City Mode

	4.5.6 Mayor’s Document
	4.5.7 City Organization
	4.5.8 The Folder
	4.5.9 Folder Label
	4.5.10 Composability and Membership

	Chapter-5
	Applications
	5.1 Electronic system architectures of Automobiles Application of CAN Bus
	5.1.1 Bus Systems in Automobiles
	5.1.1.1 Class A
	5.1.1.2 Class B
	5.1.1.3 Class C
	5.1.1.4 Class D

	5.1.2 The Application of CAN in Today’s Vehicle Networks
	5.1.3 CAN and AUTOSAR

	5.2 Time-Triggered Controller Area Network (TTCAN)—Applications
	5.2.1 Software Implementation of TTCAN X-by-Wire
	5.2.2 TTCAN Network Implementation
	5.2.3 Steering Implementation
	5.2.4 Brake Implementation
	5.2.5 Feedback Message
	5.2.6 Final System

	5.3 CAN in Aircraft World
	5.3.1 Why CAN?
	5.3.1.1 From ARINC 429 to CAN
	5.3.1.2 History and Future…

	5.3.2 Aircraft-Specific Physical Layer Constraints
	5.3.2.1 EMC and Lightning Stress
	5.3.2.2 Installation

	5.3.3 DAL, Safety, Certification
	5.3.3.1 Certification

	5.3.4 Example: Smoke Detectors Interfaced by a Safety-Critical Aircraft-Based CAN-Bus Network
	5.3.4.1 Abstract
	5.3.4.2 Introduction
	5.3.4.3 Protocol
	5.3.4.4 Network Management
	5.3.4.5 Power-Up Configuration Control
	5.3.4.6 Normal Polling Operation
	5.3.4.7 Failure Detection/Reconfiguration
	5.3.4.8 Smoke Detector Monitoring
	5.3.4.9 Network Topology
	5.3.4.10 Development Process
	5.3.4.11 Conclusion

	5.4 The Geniax System Decentralised Heating Pumps

	Chapter-6
	Testing
	6.1 Conformance Test Methodology
	6.1.1 Important Terms
	6.1.2 Purpose, Benefits and Intention of Conformance Tests
	6.1.2.1 Relation Between Conformance and Interoperability

	6.1.3 Test Methods, Test Standards and Test Rules
	6.1.3.1 Testing Technologies and Their Implementation

	6.1.4 Functional Tests, Timing Behaviour and Performance
	6.1.5 Verification and Validation of Test Systems

	6.2 CAN Transceiver Conformance Tests
	6.2.1 Standardization of the Physical Layer of CAN
	6.2.2 The Need for CAN Transceiver Testing
	6.2.2.1 Use of CAN in Complex Bus Systems
	6.2.2.2 Risks of Complex Bus Systems
	6.2.2.3 Error-Poor Systems by Testing

	6.2.3 The Concept of Testing the CAN Transceiver
	6.2.3.1 GIFT-Project and ICT-Project
	6.2.3.2 Conformance Test
	6.2.3.3 Black-Box Test
	6.2.3.4 Network Test
	6.2.3.5 Test Case Determination

	6.2.4 The Test System for CAN Transceiver
	6.2.4.1 Standard Network (IUT)
	6.2.4.2 Upper Tester
	6.2.4.3 Lower Tester
	6.2.4.4 Supervisor

	6.2.5 The Test Cases of CAN Transceiver Tests
	6.2.5.1 The Test Flow
	6.2.5.2 Test Cases of CAN Low-Speed Transceiver Tests
	6.2.5.3 Behaviour at Short Circuits
	6.2.5.4 Behaviour of the Transceiver States and Their Mode Changes
	6.2.5.5 Ground Shift
	6.2.5.6 Recovery from Double Failures
	6.2.5.7 Loss of Power/Ground
	6.2.5.8 Signal Propagation Delays
	6.2.5.9 Verification of the Functionality of Further Essential Mechanisms
	6.2.5.10 Test Cases of CAN High-Speed Transceiver Tests
	6.2.5.11 CAN-ISO-Tests for CAN Transceiver

	6.2.6 Conclusion

	6.3 CAN Data Link Layer Conformance Testing
	6.3.1 Architecture and Implementation of the Test Environment
	6.3.2 Main Test Types
	6.3.3 Test Types, Classes and Test Cases
	6.3.3.1 The ISO Test Types
	6.3.3.2 The Processor Interface Test Types
	6.3.3.3 The Robustness Test Types
	6.3.3.4 Characteristics of the Robustness Test

	6.3.4 Conformance Test Results

	6.4 CAN Software Testing
	6.4.1 Test Objects in Software Tests
	6.4.2 Trend Towards Standardization
	6.4.3 Requirements on Tests and Test Systems
	6.4.3.1 Hardware-Dependency, Test Support on Target Platform
	6.4.3.2 Test of Hardware Independent Software Module in Absence of a Target Platform
	6.4.3.3 Support of a Script Language for Test Implementation
	6.4.3.4 Support of TTCN-3 Test Descriptions
	6.4.3.5 Adaptation of Test Candidates, Connection Between Test Object and Test System
	6.4.3.6 Influences on the Test Result, Independence of the Adaptation and Execution
	6.4.3.7 Extensibility, Adaptation Ability, Flexibility
	6.4.3.8 Test of Time Behaviour, Performance, Throughput

	6.4.4 Test-System Architecture for Embedded Software Tests
	6.4.4.1 The Residual System, Tests in Conjunction with the Application
	6.4.4.2 Implementation and Synchronization of Upper and Lower Tester
	6.4.4.3 Control of Electrical Signals, Reliable Measurement and Self-Control
	6.4.4.4 Time Resolution, Sampling Rate and Buffers
	6.4.4.5 Test Control, Important Services and Test Installation in General
	6.4.4.6 General Test-System Architectures for Embedded Software Tests

	6.5 Model-Based Testing
	6.5.1 VHDL-AMS
	6.5.2 Test Methodology
	6.5.2.1 Integration into Models
	6.5.2.2 Integration Outside the Simulator

	6.6 CAN ECUs Emulation
	6.6.1 Overview and Requirements
	6.6.2 Testing Methods
	6.6.2.1 Protocol Tests
	6.6.2.2 Application Tests
	6.6.2.3 Invariant Tests

	6.6.3 Simulating the CAN Network
	6.6.4 Testing with Vector CANoe

	Bibliography
	Index

