
 1

Breaking the x86 ISA

Christopher Domas
xoreaxeaxeax@gmail.com

July 27, 2017

Abstract— A processor is not a trusted black box for running

code; on the contrary, modern x86 chips are packed full of secret

instructions and hardware bugs. In this paper, we demonstrate

how page fault analysis and some creative processor fuzzing can

be used to exhaustively search the x86 instruction set and

uncover the secrets buried in a chipset. The approach has

revealed critical x86 hardware glitches, previously unknown

machine instructions, ubiquitous software bugs, and flaws in

enterprise hypervisors.

I. OVERVIEW

hile the x86 architecture has been around for over 40

years, there exist no public tools for auditing and

validating the processor’s instruction set. With a history of

processor errata, security flaws, and secret instructions, such

introspection tools are necessary for establishing trust in a

computing system built on an x86 platform. Here, we

introduce the first effective technique for auditing the x86

instruction set, through guided fuzzing. The approach uses a

depth-first instruction search algorithm in conjunction with

page fault analysis to exhaustively enumerate the distinct x86

instructions, while requiring no pre-existing knowledge of the

instruction format. The generated instructions are executed

directly on an x86 platform, and the results of the execution –

including observed instruction length and exceptions produced

– are compared against the expected results from a

disassembler. The technique reveals a multitude of

undocumented instructions in a variety of x86 chips, shared

software bugs in nearly every major assembler and

disassembler, flaws in enterprise hypervisors, and both benign

and security-critical bugs in x86 hardware. In this paper, we

explore these issues, as well as the larger implications and

risks of running software on closed-source hardware like the

x86. Our work is released as a new open-source tool

(sandsifter), allowing users to audit their processors for bugs,

backdoors, and hidden functionality. The release of this toolset

provides the first major step towards effective introspection of

the black box x86 processor.

II. HISTORY

x86 is one of the longest continuously evolving instruction

set architectures (ISAs) in history. With a design that began in

early 1976 as the 8086, the ISA has undergone continuous

revisions and updates, while still maintaining backwards

compatibility and support for the original specification. In the

40 years since, the architecture has evolved with a multitude

of new operating modes (figure 1), each adding an entirely

new layer to the already complex design. Along with new

modes came instruction set extensions, adding entirely new

classes of instructions from a range of vendors (figure 2). In

maintaining backwards compatibility, the processor has kept

even those instructions and modes that are no longer used

today. The result of these continuous modifications and

evolutions is a processor that is a complex labyrinth of new

and ancient technologies. Within this shifting maze, there are

instructions and features that have been largely forgotten and

lost over time.

Figure 1. Evolution of x86 execution modes.

Figure 2. Evolution of x86 instruction set extensions.

With an immensely complex architecture, the security

implications of lost or hidden features are a significant

concern. Despite this, myriad undocumented instructions have

crept into the architecture over the years (figure 3).

Figure 3. Blanks in the x86 opcode maps indicate a possible hidden

instruction.

Whereas the techniques for finding bugs, secrets, backdoors

in software are well studied and established, similar

techniques for hardware are non-existent. This is troubling, in

that it is the processor that enforces the security of the system,

and is ultimately the system’s most trusted component. It

seems necessary to stop treating a processor as a trusted black

box for running software, and instead develop systematic tools

W

x87, IA-32, x86-64, MMX, 3DNow!,

SSE, SSE2, SSE3, SSSE3, SSE4,

SSE4.2, SSE5, AES-NI, CLMUL,

RdRand, SHA, MPX, SGX, XOP, F16C,

ADX, BMI, FMA, AVX, AVX2, AVX512,

VT-x, AMD-V, TSX, ASF

 2

and approaches for auditing processors, in much the same way

that we can audit software. This is the motivation behind our

research – an approach to discovering the secrets and flaws

built into the processors we blindly trust.

III. PRIOR WORK

Prior work on x86 fuzzing focuses on the correct

functioning of emulators and hypervisors. These techniques

take the approach of random instruction generation, or

generation based on pre-existing knowledge of the x86

instruction format. Random instruction generation produces

poor instruction coverage, and cannot find arbitrarily complex

instructions, such as those with long combinations of prefixes

and opcodes. Generation based on knowledge of the x86

instruction set can produce better instruction coverage, but

fails to find undocumented and mis-documented instructions,

and is still unable to find arbitrarily complex instructions. In

addition to these limitations, no known approach focuses on

the processor hardware itself. Our proposed technique is the

first x86 fuzzing work targeting the actual processor, and uses

an effective search approach requiring no prior knowledge of

the x86 instruction format.

IV. APPROACH

Our goal is to find a way to programmatically exhaustively

search the x86 instruction set, in order to find hidden or

undocumented instructions, as well as instruction-level flaws

like the Pentium f00f bug. To do this, we would generate a

potential x86 instruction, execute it, and observe its results.

The challenge with this is in the complexity of the x86

instruction set: x86 instructions can be between 1 and 15 bytes

long (figure 3).

Figure 3. A 1 byte vs. a 15 byte x86 instruction.

With instructions up to 15 bytes long, the worst-case search

space for the x86 ISA is 1.3x1036 instructions – a simple

iterative search is infeasible, and randomly selecting possible

instructions will only cover a tiny fraction of the potential

search space. The search space can be reduced by only

generating instructions that follow the formats described in

x86 reference manuals, but this approach will fail to find

undocumented instructions, and will miss hardware errors that

are the result of invalid instructions. To effectively reduce the

instruction search space, we propose a search algorithm based

on observing changes in instruction lengths.

Searching the Instruction Set

The instruction search process, which we call tunneling,

runs as follows. A 15 byte buffer is generated as a potential

starting instruction; for example, for searching the complete

instruction space, we use a buffer of 15 0 bytes as the starting

candidate. The instruction is executed, and its length (in bytes)

is observed. The byte at the end of the instruction is then

incremented. For example, in the case of the 15 byte zero

buffer, the instruction will be observed to be two bytes long;

thus, the second byte is incremented, so that the buffer is now

{0x00, 0x01, 0x00, 0x00, 0x00, …}. The process is then

repeated with the new instruction. If this incrementation

results in a change in the observed instruction length or

exception generated, the resulting instruction is incremented

from its new end. When the end of an instruction has been

incremented 256 times (exhausting all possibilities for the last

byte of that instruction), the increment process moves to the

previous byte in the instruction (figure 4).

Figure 4. The instruction search starting at 0.

This technique allows effectively exploring the meaningful

search space of the x86 ISA. The less significant portions of

an instruction (such as immediate values and displacements)

are quickly skipped in the search, since they do not change the

instruction length or exceptions. This allows the fuzzer

process to focus on only meaningful parts of the instruction,

such as prefixes, opcodes, and operand selection bytes. This

approach reduces the instruction search space from a worst-

case 1.3x1036 instructions, down to a very manageable

100,000,000 instructions (as observed in lab scans, described

in section IV). We implement the instruction generation and

execution logic in a process called the injector.

Resolving Instruction Lengths

However, the instruction tunneling approach only works if

there is a reliable way to determine the length of an arbitrary

(potentially undocumented) x86 instruction. Since the

instruction may be undocumented, disassembling the

instruction is not an option. An alternate naïve approach to

determining instruction length is to set the x86 trap flag,

execute the instruction, and observe the difference between the

original and new instruction pointers. However, this approach

fails on instructions that throw faults – since a faulting

instruction does not execute, there is no change in the

instruction pointer when the instruction is stepped with the

trap flag. We wish to find all potentially undocumented or

flawed instructions – including those normally restricted to

kernel, hypervisor, or system management code – so exploring

even faulting instructions is critical to the approach. For

example, an instruction such as “inc eax” can execute in ring 3

and below; an instruction such as “mov eax, cr0” can execute

in ring 0 and below; and an instruction such as “rsm” can

execute only in ring -2 (System Management Mode). For

inc eax

40

lock add qword cs:[eax+4*eax+07e06df23h], 0efcdab89h

2e 67 f0 48 818480 23df067e 89abcdef

000000000000000000000000000000
000100000000000000000000000000
000200000000000000000000000000

000300000000000000000000000000
000400000000000000000000000000
000401000000000000000000000000

000402000000000000000000000000
000403000000000000000000000000
000404000000000000000000000000

000405000000000000000000000000
000405000000010000000000000000
000405000000020000000000000000

000405000000030000000000000000
000405000000040000000000000000

 3

effective results, the injector should be able to identify

instructions in more privileged rings, even if it cannot actually

execute those instructions.

To effectively determine the length of even faulting

instructions, we introduce a 'page fault analysis' technique,

wherein instructions are incrementally moved across page

boundaries to induce page faults. A candidate instruction is

generated (a 15 byte value, generated by the incrementation

process described earlier), and placed in memory so that the

first byte of the instruction is on the last byte of an executable

page, and the rest of the instruction lies in a non-executable

page. The instruction is then executed. If a page fault occurs

during the instruction fetch, the processor triggers the #PF

exception, and the address of the page boundary is reported in

the CR2 register. This indicates to the injector process that

part of the instruction lies in the non-executable page; any

other result indicates that the entire instruction was fetched

from memory. If the injector determines that the instruction

does not yet reside entirely in executable memory, the

instruction is moved back a byte, so that the first two bytes are

on an executable page, and the rest are on the non-executable

page. The process is repeated until no #PF exception occurs,

or until a #PF exception is received with an address other than

the page boundary. At this point, the number of bytes lying in

the executable page indicate the length of the instruction

(figure 5).

Figure 5. A candidate instruction is moved across a page boundary to

determine its length. The first page is executable, while the second page is

non-executable. When the instruction does not throw a #PF exception with

CR2 set to the page boundary address, the entire instruction must lie within

the executable page. In the example, the check is complete when the

executable page contains 0f 6a 60 6a (punpckhdq mm4,[rax+0x6a]).

Once the non-#PF/CR2 combination is observed, the

instruction fetch is known to be complete. However, it is still

not clear whether the fetched instruction exists or not. For this,

the injector observes any exceptions thrown by the instruction.

Non-existing instructions will generate a #UD (undefined

opcode) exception, existing instructions will either

successfully execute or throw a different exception.

Interestingly, the approach allows resolving the length even

of non-existing instructions. For example, 9a13065b8000d7 is

an illegal instruction, but its length is known to be 7 bytes,

because this is when the processor stops decoding the

instruction. This provides some small insight into the

pipelining architecture and the format of potential future

instructions.

This approach allows the injector to detect even privileged

instructions: whereas a non-existing instruction will throw a

#UD exception, a privileged instruction will throw a #GP

exception if the executing process does not have the necessary

permissions for the instruction. By observing the type of

exception thrown, the injector can differentiate between

instructions that don’t exist, versus those that exist but are

restricted to more privileged rings. Thus, even from ring 3,

the injector can effectively explore the instruction space of

ring 0, the hypervisor, and system management mode.

Persistence

The tunneling algorithm combined with fault analysis to

resolve instruction lengths brings us close to an effective x86

instruction fuzzing approach, but other problems arise.

Foremost, the injector process is fuzzing the very processor it

is running on. As such, it is important to avoid accidentally

corrupting the system or process state. As a basic protection

against this, we restrict the injector to ring 3 – this avoids the

possibility of catastrophic system failures, except in the case

of serious hardware bugs. Although the injector is limited to

ring 3, it is still able to resolve the existence of instructions in

more privileged rings through the page fault analysis.

While the operating system should not crash from the

injector’s ring 3 fuzzing, it is still possible for the injector to

corrupt itself with one of the generated instructions.

The first situation to guard against is faulting instructions.

For this, we hook every exception that a generated instruction

might trigger (in Linux, sigsegv, sigill, sigfpe, sigbus, sigtrap).

The injector’s exception handler receives these signals,

restores the system registers to a ‘known good’ state, and

resumes the fuzzing process where it left off.

We should also guard against state corruption; specifically,

the process state is corrupted if a generated instruction writes

into the injector’s address space. This is overcome by

initializing all registers to 0 and mapping the NULL pointer

into the injector process’s memory. This ensures that

computed memory addresses such as [eax + 4 * ecx] resolve to

0, rather than an address within the process’s normal memory

space. Mapping the page at address 0 into memory allows

more detailed fault analysis for some types of instructions.

For example, without address 0 mapped, “mov eax, [ecx + 8 *

edx]” will generate a #GP exception, as will “mov cr0, eax”.

Since both instructions generate the same exceptions, the

injector cannot determine that one is privileged and one is not.

By mapping 0 into the process’s address space, the

unprivileged instruction can successfully execute, allowing the

injector to differentiate it from the privileged instruction.

However, this mapping is not strictly necessary for the search.

With the registers initialized to zero prior to instruction

execution, memory accesses with a displacement may still

cause a process state corruption; for example, “inc

[0x0804a10c]” may hit the .data segment of a 32 bit process,

regardless of the register initialization values. However, as the

tunneling approach for instruction searching only manipulates

a single byte of the instruction at a time, it will explore “inc

[0x0000000c]”, “inc [0x0000a100]”, “inc [0x00040000]”, and

“inc [0x08000000]”, but will never search “inc

[0x0804a10c]”. In practice, this prevents the tunneling

process from ever corrupting its own state.

We also provide an alternative fuzzing strategy via random

instruction generation. In this approach, it is possible for the

0f 6a 60 6a 79 6d c6 02 …

0f 6a 60 6a 79 6d c6 02 …

0f 6a 60 6a 79 6d c6 02 …

0f 6a 60 6a 79 6d c6 02 …

 4

injector process to become corrupted, but we have observed

that in practice, this is still extremely rare – a 32 bit process

with 1 KB of writable critical program data has only a one in

four million chance of being corrupted by an arbitrary memory

access, and even then only for instructions that allow a 4 byte

displacement in the memory calculation.

Despite these protections, the process state may still be

corrupted by some specific instructions and be unable to

recover its original state. To solve this, we are forced to

blacklist a small subset of the instruction space. Specifically,

we disallow execution of segment register loads (lds, les, lfs,

lgs, lss, mov seg) and system call instructions (int 0x80, int

0xe, sysenter, syscall), which could corrupt the process state to

the point that the exception handlers cannot recover it.

The last challenge in maintaining coherent execution state is

resuming execution after an instruction is tested, and dealing

with generated branch instructions. Both issues are solved by

setting the x86 trap flag immediately prior to instruction

execution,. The trap flag allows one instruction to execute, and

then throws a single step exception. By catching the single

step exception, the injector can catch execution after the

instruction runs, and detect that an instruction successfully

executed. This allows regaining control after both errant jump

instructions and non-branching instructions.

Finding Anomalies

With the tunneling algorithm and page fault analysis, we are

now able to effectively explore the x86 instruction set,

reducing 1036 conceivable 15 byte combinations down to

approximately 100,000,000 candidate instructions (as

observed during the tests described in RESULTS). However, a

means of identifying the unusual or interesting instructions is

still necessary. For this, we wrap the injector with a sifter

process. The sifter is responsible for recording anomalous

results from one or more injectors. To do this, the sifter uses

an existing disassembler to predict the length of an injected

instruction. It then compares the observed length of the

instruction with the expected length of the instruction. A

difference in length generally indicates a software bug (the

disassembler and processor disagree on the instruction). On

the other hand, if the sifter sees that an instruction exists, but

the disassembler does not recognize the instruction, it

generally indicates an undocumented instruction on the

processor (since, presumably, the disassembler is written

based off of processor documentation). The tool has also

produced the hypervisor and hardware bugs described in

RESULTS; with the exception of a critical hardware bug, these

have been due to incorrect exception generation by the

hardware or hypervisor. This tends to cause incorrect

instruction length resolution in the injector, which the sifter

then flags as a software bug. At this point, manual analysis is

necessary to correctly classify the bugs as software, hardware,

or hypervisor.

For our research, we used the Capstone disassembler due to

its ease of Python integration. However, code exists for

swapping Capstone with objdump or ndisasm.

The Sandsifter Framework

These techniques form our "sandsifter" x86 fuzzing tool,

which we release as open source. The tool calculates and

executes each candidate instruction, and compares its

observed length and fault behavior to the expected values

provided by a disassembler and architecture documentation.

Any deviations from the expected behavior are logged for

analysis.

V. RESULTS

We ran the processor fuzzer against following x86

processors: Intel Core i7-4650U, Intel Quark SoC X1000,

Intel Pentium, AMD Geode NX1500, AMD C-50, VIA Nano

U3500, VIA C7-M, Transmeta TM5700, and another,

currently unspecified x86 processor. The tool discovered

undocumented instructions in all major processors, shared

bugs in nearly every major assembler and disassembler, flaws

in enterprise hypervisors, and critical x86 hardware errata.

Hidden Instructions

In this section, we use the notation xx to denote an arbitrary

byte, {aa-bb} to indicate any byte between aa and bb, and,

following Intel notation, /n to denote n as the reg field of the

instruction’s modr/m byte.

On an Intel Core i7-4650U processor running in 64 bit

mode, the following undocumented instructions were found.

0f0dxx /non-1: this is currently documented as prefetchw for

/1; other reg fields are not documented, but still execute.

0f18xx: until the -061 (December 2016) version of the

reference manuals, about half of these instructions were

undocumented, but would still run (the tested processor was

released in 2012); they're now documented as reserved nops

(presumably in place of a future instruction). 0f{1a-1f}xx:

similar to 0f18xx, this doesn't appear until the -061 references,

but executed at least back to Ivy Bridge. 0fae{e9-ef, f1-f7, f9-

ff}: these seem to have existed for a long time, but were

undocumented until the -051 references (June 2014) (only the

r/m field = 0 were documented prior to this). dbe0, dbe1:

these execute but do not appear in the opcode maps. df{c0-

c7}: these execute but do not appear in the opcode maps. f1:

this executes but does not appear in the opcode maps; there is

a note in SDM vol. 3 that it and d6 will not produce a #UD

(interestingly, d6 does produce a #UD, at least in Ivy Bridge).

{c0-c1, d0-d1, d2-d3}{30-37, 70-77, b0-b7, f0-f7}: these

execute, but are not in the opcode maps; we believe they are

SAL aliases. f6 /1, f7 /1: these execute, but aren't in the

opcode maps; we suspect they are aliases for the /0 version.

On an AMD Geode NX1500, the following undocumented

instructions were found. 0f0f{40-7f}{80-ff}{xx}: these are in

the AMD 3DNow! Instruction range, but are not documented

for a range of xx that still execute. dbe0, dbe1: these execute

but do not appear in the AMD opcode maps. df{c0-c7}: these

execute but do not appear in the AMD opcode maps.

VIA does not release programming manuals detailing the

processor specifications the way that Intel and AMD do.

Classifying an instruction as undocumented or not on VIA is

done by comparing the instruction against Intel and AMD

documentation, and any available VIA documentation on

 5

specific instruction set extensions. On a VIA Nano U3500 and

VIA C7-M, the following undocumented instructions were

found. 0f0dxx: undocumented by Intel for non-/1 reg fields.

0f18xx, 0f{1a-1f}xx: undocumented by Intel until December

2016. 0fa7{c1-c7}: these fall into the VIA padlock instruction

extensions range, but are not documented in the padlock

reference. 0fae{e9-ef, f1-f7, f9-ff}: these are undocumented

by Intel for non-0 r/m fields until June 2014. dbe0, dbe1: these

do not appear in any Intel, AMD, or VIA documentation.

df{c0-c7}: dbe0, dbe1: these do not appear in any Intel, AMD,

or VIA documentation.

Software Bugs

The tool discovered innumerable bugs in disassemblers, the

most interesting of which is a bug shared by nearly all

disassemblers. Most disassemblers will parse certain jmp (e9)

and call (e8) instructions incorrectly if they are prefixed with

an operand size override prefix (66) in a 64 bit executable. In

particular, IDA, QEMU, gdb, objdump, valgrind, Visual

Studio, and Capstone were all observed to parse this

instruction differently than it actually executes. On Intel

processors executing in 64 bit mode, the 66 override prefix

appears to be ignored, and the instruction consumes a 4 byte

operand, as it does without the prefix. Most disassemblers

misinterpret the instruction to consume only a 2 byte operand

instead (those that assume a 4 byte operand still miscalculate

the jump target, assuming it is truncated to 16 bits). This

difference in instruction lengths between the disassembled

version and the version actually executed opens opportunities

for malicious software. By embedding an opcode for a long

instruction in the last two bytes of the physical instruction, the

physical instruction stream can hide malicious code in the

following instruction. Disassemblers and emulators, thrown

off by the misparsing of the initial instruction, miss this

malicious code in the subsequent instructions (figure 6).

Figure 6. Masking malicious code from objdump and GDB. The opening jmp

is misparsed as a 4 byte instruction, throwing off the parsing of the

subsequent instructions. A malicious “jmp payload” instruction (for the

example, payload is 0x11223344) is embedded in the “movabs” instructions.

While the disassembler sees “movabs”, the processor will execute the

embedded “jmp payload” instead.

As a demonstration of the impact on emulators, we created

a program that runs as a benign process in QEMU, but

executes a malicious function when run on baremetal (figure

7). The same program, analyzed in IDA, objdump, Capstone,

or Visual Studio, will also appear to not execute the malicious

code.

Figure 7. A malicious program that prints “benign” when run under QEMU,

but “malicious” when run on baremetal. The assembly trampoline at the top

is copied into low memory, as a target for the mis-emulated jmp instruction,

while the jump on baremetal simply falls through to the next instruction.

These types of emulation failures (of which we found

many) have important security consequences in terms of

antivirus and sandboxing techniques. If an analysis engine

cannot faithfully emulate the underlying architecture, it is easy

for malicious softer to mask its true behavior.

The confusion in these instructions is likely caused by

differences in AMD and Intel processors; AMD processors

obey the override prefix, only fetching a two byte operand.

However, due to AMD’s small market share, tools would be

better to follow Intel’s implementation. QEMU misinterprets

the instruction, even when emulating an Intel processor.

Hypervisor Flaws

 To facilitate faster instruction enumeration, we rented a 20

core Azure instance to run some of our initial instruction

scans. In this process, we accidentally discovered a bug in the

Azure hypervisor – if the trap flag is set during a cpuid

instruction, the hypervisor fails to emulate the trap correctly.

Since cpuid will cause a vmexit, the hypervisor must emulate

cpuid, and remember to check the trap flag state, to see if a

single step exception should be triggered in the guest. Azure

neglects this second step, so that a single step over a cpuid is

missed (figure 8).

Figure 8. A test program to reveal incorrect hypervisor emulation of a trap

cpuid combination.

 This bug does not present a security concern, but does

highlight the troubling complexity of faithful x86 emulation.

Hardware Errata

In terms of processor errata, the tool found issues on Intel,

AMD, Transmeta, and an as-yet unspecified processor.

On Intel, the tool successfully found the f00f bug on a

66e90000 jmpw 4f5

0500000000 add $0x0,%eax

0500000000 add $0x0,%eax

48b8b811223344ffe090 movabs $0x90e0ff44332211b8,%rax

48b8b811223344ffe090 movabs $0x90e0ff44332211b8,%rax

48b8b811223344ffe090 movabs $0x90e0ff44332211b8,%rax

48b8b811223344ffe090 movabs $0x90e0ff44332211b8,%rax

// trampoline

__asm__ ("\

 .globl trampoline_return \n\

 mov $trampoline_return, %rax \n\

 jmp *%rax \n\

 ");

// attack

__asm__ (".byte 0x66,0xe9,0x00,0x00,0x00,0x00");

if (1) {

 printf("malicious\n");

}

else {

 __asm__ __volatile__ ("trampoline_return:");

 printf("benign\n");

}

pushfq

orq %0, (%%rsp)

popfq

cpuid

/* trap should trigger here */

correct:

nop

/* a trap here is a hypervisor bug */

nop

 6

Pentium processor, wherein a “lock cmpxchg8b eax”

instruction would cause a complete processor lock.

On AMD, the tool discovered that some processors generate

a #UD (undefined opcode) exception prior to completing the

instruction fetch. Per AMD specifications, a #PF (page fault)

exception occurring during an instruction fetch should

supersede a #UD exception, but in the instruction search,

which places the last bytes of the instruction on a non-

executable page, some processors generate the #UD before the

final bytes are moved off of the read/write page. It appears

that AMD discovered this at around the same time as this

research; the newest AMD Architecture Programmer’s

Manual (March 2017) was updated to allow this situation.

On the Transmeta TM5700, errata were found on four byte

versions of instructions beginning with 0f71, 0f72, and 0f73.

When a floating point exception is pending, these instructions

receive an #MF (floating point) exception after the first three

bytes of the instruction are fetched, even if the last byte of the

instruction is on an unmapped page. A #PF exception is the

correct behavior in this situation, since the instruction cannot

be completely fetched without a page fault.

Lastly, a so-called ‘halt and catch fire’ instruction was

discovered on an as-yet unnamed x86 processor. This

instruction, executed in ring 3 from an unprivileged process,

appears to lock the processor entirely. To rule out kernel bugs,

the instruction was tested against three Linux kernels and two

Windows kernels, yielding the same results. Kernel debugging

with serial I/O and interrupt hooks appeared to corroborate the

results. At the time of this paper’s publishing, the vendor has

not been provided sufficient time to respond to the issue. The

details of the instruction and the processors affected will be

enumerated when responsible disclosure is complete, and an

updated version of this whitepaper will be released. Such

instructions pose a critical security risk, as they allow

unprivileged users to mount denial of service attacks against

shared systems.

VI. CONCLUSION

Although we treat our processors as trusted black boxes,

they are riddled with the same flaws and secrets we find in

software. Through guided instruction fuzzing based on a

depth-first search and page fault analysis, the sandsifter toolset

is able to exhaustively enumerate and test all reasonably

distinct instructions in the x86 ISA. The process has revealed

hidden instructions, software bugs, hypervisor flaws, and

critical processor failures. With the release of the sandsifter

tool [1], the reader is encouraged to audit their own processors

for defects and hidden instructions. This work provides an

important first step towards introspecting x86 chips, and

validating the processors we all blindly trust.

REFERENCES

 [1] https://github.com/xoreaxeaxeax/sandsifter

