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Abstract— A processor is not a trusted black box for running 

code; on the contrary, modern x86 chips are packed full of secret 

instructions and hardware bugs. In this paper, we demonstrate 

how page fault analysis and some creative processor fuzzing can 

be used to exhaustively search the x86 instruction set and 

uncover the secrets buried in a chipset. The approach has 

revealed critical x86 hardware glitches, previously unknown 

machine instructions, ubiquitous software bugs, and flaws in 

enterprise hypervisors. 

I. OVERVIEW 

hile the x86 architecture has been around for over 40 

years, there exist no public tools for auditing and 

validating the processor’s instruction set. With a history of 

processor errata, security flaws, and secret instructions, such 

introspection tools are necessary for establishing trust in a 

computing system built on an x86 platform. Here, we 

introduce the first effective technique for auditing the x86 

instruction set, through guided fuzzing. The approach uses a 

depth-first instruction search algorithm in conjunction with 

page fault analysis to exhaustively enumerate the distinct x86 

instructions, while requiring no pre-existing knowledge of the 

instruction format. The generated instructions are executed 

directly on an x86 platform, and the results of the execution – 

including observed instruction length and exceptions produced 

– are compared against the expected results from a 

disassembler. The technique reveals a multitude of 

undocumented instructions in a variety of x86 chips, shared 

software bugs in nearly every major assembler and 

disassembler, flaws in enterprise hypervisors, and both benign 

and security-critical bugs in x86 hardware. In this paper, we 

explore these issues, as well as the larger implications and 

risks of running software on closed-source hardware like the 

x86. Our work is released as a new open-source tool 

(sandsifter), allowing users to audit their processors for bugs, 

backdoors, and hidden functionality. The release of this toolset 

provides the first major step towards effective introspection of 

the black box x86 processor. 

II. HISTORY 

x86 is one of the longest continuously evolving instruction 

set architectures (ISAs) in history. With a design that began in 

early 1976 as the 8086, the ISA has undergone continuous 

revisions and updates, while still maintaining backwards 

compatibility and support for the original specification. In the 

40 years since, the architecture has evolved with a multitude 

of new operating modes (figure 1), each adding an entirely 

new layer to the already complex design. Along with new 

modes came instruction set extensions, adding entirely new 

classes of instructions from a range of vendors (figure 2).  In 

maintaining backwards compatibility, the processor has kept 

even those instructions and modes that are no longer used 

today. The result of these continuous modifications and 

evolutions is a processor that is a complex labyrinth of new 

and ancient technologies. Within this shifting maze, there are 

instructions and features that have been largely forgotten and 

lost over time. 

  
Figure 1. Evolution of x86 execution modes. 

  
Figure 2. Evolution of x86 instruction set extensions. 

With an immensely complex architecture, the security 

implications of lost or hidden features are a significant 

concern. Despite this, myriad undocumented instructions have 

crept into the architecture over the years (figure 3). 

 
Figure 3. Blanks in the x86 opcode maps indicate a possible hidden 

instruction. 

Whereas the techniques for finding bugs, secrets, backdoors 

in software are well studied and established, similar 

techniques for hardware are non-existent. This is troubling, in 

that it is the processor that enforces the security of the system, 

and is ultimately the system’s most trusted component. It 

seems necessary to stop treating a processor as a trusted black 

box for running software, and instead develop systematic tools 
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and approaches for auditing processors, in much the same way 

that we can audit software. This is the motivation behind our 

research – an approach to discovering the secrets and flaws 

built into the processors we blindly trust. 

III. PRIOR WORK 

Prior work on x86 fuzzing focuses on the correct 

functioning of emulators and hypervisors. These techniques 

take the approach of random instruction generation, or 

generation based on pre-existing knowledge of the x86 

instruction format. Random instruction generation produces 

poor instruction coverage, and cannot find arbitrarily complex 

instructions, such as those with long combinations of prefixes 

and opcodes. Generation based on knowledge of the x86 

instruction set can produce better instruction coverage, but 

fails to find undocumented and mis-documented instructions, 

and is still unable to find arbitrarily complex instructions. In 

addition to these limitations, no known approach focuses on 

the processor hardware itself. Our proposed technique is the 

first x86 fuzzing work targeting the actual processor, and uses 

an effective search approach requiring no prior knowledge of 

the x86 instruction format. 

IV. APPROACH 

Our goal is to find a way to programmatically exhaustively 

search the x86 instruction set, in order to find hidden or 

undocumented instructions, as well as instruction-level flaws 

like the Pentium f00f bug.  To do this, we would generate a 

potential x86 instruction, execute it, and observe its results.  

The challenge with this is in the complexity of the x86 

instruction set: x86 instructions can be between 1 and 15 bytes 

long (figure 3). 

 
Figure 3. A 1 byte vs. a 15 byte x86 instruction. 

With instructions up to 15 bytes long, the worst-case search 

space for the x86 ISA is 1.3x1036 instructions – a simple 

iterative search is infeasible, and randomly selecting possible 

instructions will only cover a tiny fraction of the potential 

search space. The search space can be reduced by only 

generating instructions that follow the formats described in 

x86 reference manuals, but this approach will fail to find 

undocumented instructions, and will miss hardware errors that 

are the result of invalid instructions. To effectively reduce the 

instruction search space, we propose a search algorithm based 

on observing changes in instruction lengths. 

Searching the Instruction Set 

The instruction search process, which we call tunneling, 

runs as follows. A 15 byte buffer is generated as a potential 

starting instruction; for example, for searching the complete 

instruction space, we use a buffer of 15 0 bytes as the starting 

candidate. The instruction is executed, and its length (in bytes) 

is observed. The byte at the end of the instruction is then 

incremented. For example, in the case of the 15 byte zero 

buffer, the instruction will be observed to be two bytes long; 

thus, the second byte is incremented, so that the buffer is now 

{0x00, 0x01, 0x00, 0x00, 0x00, …}. The process is then 

repeated with the new instruction. If this incrementation 

results in a change in the observed instruction length or 

exception generated, the resulting instruction is incremented 

from its new end. When the end of an instruction has been 

incremented 256 times (exhausting all possibilities for the last 

byte of that instruction), the increment process moves to the 

previous byte in the instruction (figure 4). 

 
Figure 4. The instruction search starting at 0. 

This technique allows effectively exploring the meaningful 

search space of the x86 ISA.  The less significant portions of 

an instruction (such as immediate values and displacements) 

are quickly skipped in the search, since they do not change the 

instruction length or exceptions. This allows the fuzzer 

process to focus on only meaningful parts of the instruction, 

such as prefixes, opcodes, and operand selection bytes. This 

approach reduces the instruction search space from a worst-

case 1.3x1036 instructions, down to a very manageable 

100,000,000 instructions (as observed in lab scans, described 

in section IV). We implement the instruction generation and 

execution logic in a process called the injector. 

Resolving Instruction Lengths 

However, the instruction tunneling approach only works if 

there is a reliable way to determine the length of an arbitrary 

(potentially undocumented) x86 instruction. Since the 

instruction may be undocumented, disassembling the 

instruction is not an option. An alternate naïve approach to 

determining instruction length is to set the x86 trap flag, 

execute the instruction, and observe the difference between the 

original and new instruction pointers. However, this approach 

fails on instructions that throw faults – since a faulting 

instruction does not execute, there is no change in the 

instruction pointer when the instruction is stepped with the 

trap flag. We wish to find all potentially undocumented or 

flawed instructions – including those normally restricted to 

kernel, hypervisor, or system management code – so exploring 

even faulting instructions is critical to the approach. For 

example, an instruction such as “inc eax” can execute in ring 3 

and below; an instruction such as “mov eax, cr0” can execute 

in ring 0 and below; and an instruction such as “rsm” can 

execute only in ring -2 (System Management Mode).  For 

inc eax 
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effective results, the injector should be able to identify 

instructions in more privileged rings, even if it cannot actually 

execute those instructions. 

To effectively determine the length of even faulting 

instructions, we introduce a 'page fault analysis' technique, 

wherein instructions are incrementally moved across page 

boundaries to induce page faults.  A candidate instruction is 

generated (a 15 byte value, generated by the incrementation 

process described earlier), and placed in memory so that the 

first byte of the instruction is on the last byte of an executable 

page, and the rest of the instruction lies in a non-executable 

page.  The instruction is then executed.  If a page fault occurs 

during the instruction fetch, the processor triggers the #PF 

exception, and the address of the page boundary is reported in 

the CR2 register. This indicates to the injector process that 

part of the instruction lies in the non-executable page; any 

other result indicates that the entire instruction was fetched 

from memory.  If the injector determines that the instruction 

does not yet reside entirely in executable memory, the 

instruction is moved back a byte, so that the first two bytes are 

on an executable page, and the rest are on the non-executable 

page.  The process is repeated until no #PF exception occurs, 

or until a #PF exception is received with an address other than 

the page boundary.  At this point, the number of bytes lying in 

the executable page indicate the length of the instruction 

(figure 5). 
 

Figure 5. A candidate instruction is moved across a page boundary to 

determine its length. The first page is executable, while the second page is 

non-executable. When the instruction does not throw a #PF exception with 

CR2 set to the page boundary address, the entire instruction must lie within 

the executable page. In the example, the check is complete when the 

executable page contains 0f 6a 60 6a (punpckhdq mm4,[rax+0x6a]). 

Once the non-#PF/CR2 combination is observed, the 

instruction fetch is known to be complete. However, it is still 

not clear whether the fetched instruction exists or not. For this, 

the injector observes any exceptions thrown by the instruction. 

Non-existing instructions will generate a #UD (undefined 

opcode) exception, existing instructions will either 

successfully execute or throw a different exception. 

Interestingly, the approach allows resolving the length even 

of non-existing instructions.  For example, 9a13065b8000d7 is 

an illegal instruction, but its length is known to be 7 bytes, 

because this is when the processor stops decoding the 

instruction. This provides some small insight into the 

pipelining architecture and the format of potential future 

instructions. 

This approach allows the injector to detect even privileged 

instructions: whereas a non-existing instruction will throw a 

#UD exception, a privileged instruction will throw a #GP 

exception if the executing process does not have the necessary 

permissions for the instruction. By observing the type of 

exception thrown, the injector can differentiate between 

instructions that don’t exist, versus those that exist but are 

restricted to more privileged rings.  Thus, even from ring 3, 

the injector can effectively explore the instruction space of 

ring 0, the hypervisor, and system management mode. 

Persistence 

The tunneling algorithm combined with fault analysis to 

resolve instruction lengths brings us close to an effective x86 

instruction fuzzing approach, but other problems arise.  

Foremost, the injector process is fuzzing the very processor it 

is running on. As such, it is important to avoid accidentally 

corrupting the system or process state. As a basic protection 

against this, we restrict the injector to ring 3 – this avoids the 

possibility of catastrophic system failures, except in the case 

of serious hardware bugs. Although the injector is limited to 

ring 3, it is still able to resolve the existence of instructions in 

more privileged rings through the page fault analysis. 

While the operating system should not crash from the 

injector’s ring 3 fuzzing, it is still possible for the injector to 

corrupt itself with one of the generated instructions. 

The first situation to guard against is faulting instructions. 

For this, we hook every exception that a generated instruction 

might trigger (in Linux, sigsegv, sigill, sigfpe, sigbus, sigtrap). 

The injector’s exception handler receives these signals, 

restores the system registers to a ‘known good’ state, and 

resumes the fuzzing process where it left off. 

We should also guard against state corruption; specifically, 

the process state is corrupted if a generated instruction writes 

into the injector’s address space. This is overcome by 

initializing all registers to 0 and mapping the NULL pointer 

into the injector process’s memory.  This ensures that 

computed memory addresses such as [eax + 4 * ecx] resolve to 

0, rather than an address within the process’s normal memory 

space. Mapping the page at address 0 into memory allows 

more detailed fault analysis for some types of instructions.  

For example, without address 0 mapped, “mov eax, [ecx + 8 * 

edx]” will generate a #GP exception, as will “mov cr0, eax”.  

Since both instructions generate the same exceptions, the 

injector cannot determine that one is privileged and one is not.  

By mapping 0 into the process’s address space, the 

unprivileged instruction can successfully execute, allowing the 

injector to differentiate it from the privileged instruction. 

However, this mapping is not strictly necessary for the search.  

With the registers initialized to zero prior to instruction 

execution, memory accesses with a displacement may still 

cause a process state corruption; for example, “inc 

[0x0804a10c]” may hit the .data segment of a 32 bit process, 

regardless of the register initialization values.  However, as the 

tunneling approach for instruction searching only manipulates 

a single byte of the instruction at a time, it will explore “inc 

[0x0000000c]”, “inc [0x0000a100]”, “inc [0x00040000]”, and 

“inc [0x08000000]”, but will never search “inc 

[0x0804a10c]”.  In practice, this prevents the tunneling 

process from ever corrupting its own state. 

We also provide an alternative fuzzing strategy via random 

instruction generation.  In this approach, it is possible for the 

0f 6a 60 6a 79 6d c6 02 … 

0f 6a 60 6a 79 6d c6 02 … 

0f 6a 60 6a 79 6d c6 02 … 

0f 6a 60 6a 79 6d c6 02 … 
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injector process to become corrupted, but we have observed 

that in practice, this is still extremely rare – a 32 bit process 

with 1 KB of writable critical program data has only a one in 

four million chance of being corrupted by an arbitrary memory 

access, and even then only for instructions that allow a 4 byte 

displacement in the memory calculation. 

Despite these protections, the process state may still be 

corrupted by some specific instructions and be unable to 

recover its original state. To solve this, we are forced to 

blacklist a small subset of the instruction space. Specifically, 

we disallow execution of segment register loads (lds, les, lfs, 

lgs, lss, mov seg) and system call instructions (int 0x80, int 

0xe, sysenter, syscall), which could corrupt the process state to 

the point that the exception handlers cannot recover it. 

The last challenge in maintaining coherent execution state is 

resuming execution after an instruction is tested, and dealing 

with generated branch instructions. Both issues are solved by 

setting the x86 trap flag immediately prior to instruction 

execution,. The trap flag allows one instruction to execute, and 

then throws a single step exception. By catching the single 

step exception, the injector can catch execution after the 

instruction runs, and detect that an instruction successfully 

executed. This allows regaining control after both errant jump 

instructions and non-branching instructions. 

Finding Anomalies 

With the tunneling algorithm and page fault analysis, we are 

now able to effectively explore the x86 instruction set, 

reducing 1036 conceivable 15 byte combinations down to 

approximately 100,000,000 candidate instructions (as 

observed during the tests described in RESULTS). However, a 

means of identifying the unusual or interesting instructions is 

still necessary. For this, we wrap the injector with a sifter 

process. The sifter is responsible for recording anomalous 

results from one or more injectors. To do this, the sifter uses 

an existing disassembler to predict the length of an injected 

instruction. It then compares the observed length of the 

instruction with the expected length of the instruction. A 

difference in length generally indicates a software bug (the 

disassembler and processor disagree on the instruction). On 

the other hand, if the sifter sees that an instruction exists, but 

the disassembler does not recognize the instruction, it 

generally indicates an undocumented instruction on the 

processor (since, presumably, the disassembler is written 

based off of processor documentation). The tool has also 

produced the hypervisor and hardware bugs described in 

RESULTS; with the exception of a critical hardware bug, these 

have been due to incorrect exception generation by the 

hardware or hypervisor. This tends to cause incorrect 

instruction length resolution in the injector, which the sifter 

then flags as a software bug. At this point, manual analysis is 

necessary to correctly classify the bugs as software, hardware, 

or hypervisor. 

For our research, we used the Capstone disassembler due to 

its ease of Python integration. However, code exists for 

swapping Capstone with objdump or ndisasm. 

The Sandsifter Framework 

These techniques form our "sandsifter" x86 fuzzing tool, 

which we release as open source.  The tool calculates and 

executes each candidate instruction, and compares its 

observed length and fault behavior to the expected values 

provided by a disassembler and architecture documentation.  

Any deviations from the expected behavior are logged for 

analysis. 

V. RESULTS 

We ran the processor fuzzer against following x86 

processors: Intel Core i7-4650U, Intel Quark SoC X1000, 

Intel Pentium, AMD Geode NX1500, AMD C-50, VIA Nano 

U3500, VIA C7-M, Transmeta TM5700, and another, 

currently unspecified x86 processor. The tool discovered 

undocumented instructions in all major processors, shared 

bugs in nearly every major assembler and disassembler, flaws 

in enterprise hypervisors, and critical x86 hardware errata. 

Hidden Instructions 

In this section, we use the notation xx to denote an arbitrary 

byte, {aa-bb} to indicate any byte between aa and bb, and, 

following Intel notation, /n to denote n as the reg field of the 

instruction’s modr/m byte. 

On an Intel Core i7-4650U processor running in 64 bit 

mode, the following undocumented instructions were found. 

0f0dxx /non-1: this is currently documented as prefetchw for 

/1; other reg fields are not documented, but still execute.  

0f18xx: until the -061 (December 2016) version of the 

reference manuals, about half of these instructions were 

undocumented, but would still run (the tested processor was 

released in 2012); they're now documented as reserved nops 

(presumably in place of a future instruction). 0f{1a-1f}xx: 

similar to 0f18xx, this doesn't appear until the -061 references, 

but executed at least back to Ivy Bridge. 0fae{e9-ef, f1-f7, f9-

ff}: these seem to have existed for a long time, but were 

undocumented until the -051 references (June 2014) (only the 

r/m field = 0 were documented prior to this).  dbe0, dbe1: 

these execute but do not appear in the opcode maps.  df{c0-

c7}: these execute but do not appear in the opcode maps.  f1: 

this executes but does not appear in the opcode maps; there is 

a note in SDM vol. 3 that it and d6 will not produce a #UD 

(interestingly, d6 does produce a #UD, at least in Ivy Bridge). 

{c0-c1, d0-d1, d2-d3}{30-37, 70-77, b0-b7, f0-f7}: these 

execute, but are not in the opcode maps; we believe they are 

SAL aliases. f6 /1, f7 /1: these execute, but aren't in the 

opcode maps; we suspect they are aliases for the /0 version. 

On an AMD Geode NX1500, the following undocumented 

instructions were found. 0f0f{40-7f}{80-ff}{xx}: these are in 

the AMD 3DNow! Instruction range, but are not documented 

for a range of xx that still execute.  dbe0, dbe1: these execute 

but do not appear in the AMD opcode maps. df{c0-c7}: these 

execute but do not appear in the AMD opcode maps. 

VIA does not release programming manuals detailing the 

processor specifications the way that Intel and AMD do. 

Classifying an instruction as undocumented or not on VIA is 

done by comparing the instruction against Intel and AMD 

documentation, and any available VIA documentation on 
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specific instruction set extensions. On a VIA Nano U3500 and 

VIA C7-M, the following undocumented instructions were 

found. 0f0dxx: undocumented by Intel for non-/1 reg fields. 

0f18xx, 0f{1a-1f}xx: undocumented  by Intel until December 

2016. 0fa7{c1-c7}: these fall into the VIA padlock instruction 

extensions range, but are not documented in the padlock 

reference. 0fae{e9-ef, f1-f7, f9-ff}: these are undocumented 

by Intel for non-0 r/m fields until June 2014. dbe0, dbe1: these 

do not appear in any Intel, AMD, or VIA documentation.  

df{c0-c7}: dbe0, dbe1: these do not appear in any Intel, AMD, 

or VIA documentation. 

Software Bugs 

The tool discovered innumerable bugs in disassemblers, the 

most interesting of which is a bug shared by nearly all 

disassemblers.  Most disassemblers will parse certain jmp (e9) 

and call (e8) instructions incorrectly if they are prefixed with 

an operand size override prefix (66) in a 64 bit executable.  In 

particular, IDA, QEMU, gdb, objdump, valgrind, Visual 

Studio, and Capstone were all observed to parse this 

instruction differently than it actually executes.  On Intel 

processors executing in 64 bit mode, the 66 override prefix 

appears to be ignored, and the instruction consumes a 4 byte 

operand, as it does without the prefix.  Most disassemblers 

misinterpret the instruction to consume only a 2 byte operand 

instead (those that assume a 4 byte operand still miscalculate 

the jump target, assuming it is truncated to 16 bits). This 

difference in instruction lengths between the disassembled 

version and the version actually executed opens opportunities 

for malicious software. By embedding an opcode for a long 

instruction in the last two bytes of the physical instruction, the 

physical instruction stream can hide malicious code in the 

following instruction.  Disassemblers and emulators, thrown 

off by the misparsing of the initial instruction, miss this 

malicious code in the subsequent instructions (figure 6). 

 
Figure 6. Masking malicious code from objdump and GDB.  The opening jmp 

is misparsed as a 4 byte instruction, throwing off the parsing of the 

subsequent instructions.  A malicious “jmp payload” instruction (for the 

example, payload is 0x11223344) is embedded in the “movabs” instructions.  

While the disassembler sees “movabs”, the processor will execute the 

embedded “jmp payload” instead. 

As a demonstration of the impact on emulators, we created 

a program that runs as a benign process in QEMU, but 

executes a malicious function when run on baremetal (figure 

7).  The same program, analyzed in IDA, objdump, Capstone, 

or Visual Studio, will also appear to not execute the malicious 

code. 

 
Figure 7. A malicious program that prints “benign” when run under QEMU, 

but “malicious” when run on baremetal. The assembly trampoline at the top 

is copied into low memory, as a target for the mis-emulated jmp instruction, 

while the jump on baremetal simply falls through to the next instruction.  

These types of emulation failures (of which we found 

many) have important security consequences in terms of 

antivirus and sandboxing techniques.  If an analysis engine 

cannot faithfully emulate the underlying architecture, it is easy 

for malicious softer to mask its true behavior. 

The confusion in these instructions is likely caused by 

differences in AMD and Intel processors; AMD processors 

obey the override prefix, only fetching a two byte operand.  

However, due to AMD’s small market share, tools would be 

better to follow Intel’s implementation. QEMU misinterprets 

the instruction, even when emulating an Intel processor. 

Hypervisor Flaws 

 To facilitate faster instruction enumeration, we rented a 20 

core Azure instance to run some of our initial instruction 

scans. In this process, we accidentally discovered a bug in the 

Azure hypervisor – if the trap flag is set during a cpuid 

instruction, the hypervisor fails to emulate the trap correctly. 

Since cpuid will cause a vmexit, the hypervisor must emulate 

cpuid, and remember to check the trap flag state, to see if a 

single step exception should be triggered in the guest. Azure 

neglects this second step, so that a single step over a cpuid is 

missed (figure 8). 

 
Figure 8. A test program to reveal incorrect hypervisor emulation of a trap 

cpuid combination. 

 This bug does not present a security concern, but does 

highlight the troubling complexity of faithful x86 emulation. 

Hardware Errata 

In terms of processor errata, the tool found issues on Intel, 

AMD, Transmeta, and an as-yet unspecified processor. 

On Intel, the tool successfully found the f00f bug on a 

66e90000              jmpw   4f5  

0500000000            add    $0x0,%eax 

0500000000            add    $0x0,%eax 

48b8b811223344ffe090  movabs $0x90e0ff44332211b8,%rax 

48b8b811223344ffe090  movabs $0x90e0ff44332211b8,%rax 

48b8b811223344ffe090  movabs $0x90e0ff44332211b8,%rax 

48b8b811223344ffe090  movabs $0x90e0ff44332211b8,%rax 

 

// trampoline 

__asm__ ("\ 

    .globl trampoline_return      \n\  

    mov $trampoline_return, %rax  \n\  

    jmp *%rax                     \n\  

    ");  

 

// attack 

__asm__ (".byte 0x66,0xe9,0x00,0x00,0x00,0x00"); 

 

if (1) { 

    printf("malicious\n"); 

} 

else { 

    __asm__ __volatile__ ("trampoline_return:"); 

    printf("benign\n"); 

} 

pushfq 

orq %0, (%%rsp) 

popfq 

cpuid 

/* trap should trigger here */ 

correct: 

nop 

/* a trap here is a hypervisor bug */ 

nop 
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Pentium processor, wherein a “lock cmpxchg8b eax” 

instruction would cause a complete processor lock. 

On AMD, the tool discovered that some processors generate 

a #UD (undefined opcode) exception prior to completing the 

instruction fetch. Per AMD specifications, a #PF (page fault) 

exception occurring during an instruction fetch should 

supersede a #UD exception, but in the instruction search, 

which places the last bytes of the instruction on a non-

executable page, some processors generate the #UD before the 

final bytes are moved off of the read/write page. It appears 

that AMD discovered this at around the same time as this 

research; the newest AMD Architecture Programmer’s 

Manual (March 2017) was updated to allow this situation. 

On the Transmeta TM5700, errata were found on four byte 

versions of instructions beginning with 0f71, 0f72, and 0f73. 

When a floating point exception is pending, these instructions 

receive an #MF (floating point) exception after the first three 

bytes of the instruction are fetched, even if the last byte of the 

instruction is on an unmapped page. A #PF exception is the 

correct behavior in this situation, since the instruction cannot 

be completely fetched without a page fault. 

Lastly, a so-called ‘halt and catch fire’ instruction was 

discovered on an as-yet unnamed x86 processor. This 

instruction, executed in ring 3 from an unprivileged process, 

appears to lock the processor entirely. To rule out kernel bugs, 

the instruction was tested against three Linux kernels and two 

Windows kernels, yielding the same results. Kernel debugging 

with serial I/O and interrupt hooks appeared to corroborate the 

results. At the time of this paper’s publishing, the vendor has 

not been provided sufficient time to respond to the issue. The 

details of the instruction and the processors affected will be 

enumerated when responsible disclosure is complete, and an 

updated version of this whitepaper will be released. Such 

instructions pose a critical security risk, as they allow 

unprivileged users to mount denial of service attacks against 

shared systems.  

VI. CONCLUSION 

Although we treat our processors as trusted black boxes, 

they are riddled with the same flaws and secrets we find in 

software. Through guided instruction fuzzing based on a 

depth-first search and page fault analysis, the sandsifter toolset 

is able to exhaustively enumerate and test all reasonably 

distinct instructions in the x86 ISA.  The process has revealed 

hidden instructions, software bugs, hypervisor flaws, and 

critical processor failures. With the release of the sandsifter 

tool [1], the reader is encouraged to audit their own processors 

for defects and hidden instructions. This work provides an 

important first step towards introspecting x86 chips, and 

validating the processors we all blindly trust. 
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