
Towards Light-weight and Real-time Line Segment Detection

Geonmo Gu*, Byungsoo Ko*, SeoungHyun Go, Sung-Hyun Lee, Jingeun Lee, Minchul Shin
NAVER/LINE Vision

github.com/navervision/mlsd

Abstract

Previous deep learning-based line segment detection
(LSD) suffer from the immense model size and high com-
putational cost for line prediction. This constrains them
from real-time inference on computationally restricted en-
vironments. In this paper, we propose a real-time and light-
weight line segment detector for resource-constrained en-
vironments named Mobile LSD (M-LSD). We design an ex-
tremely efficient LSD architecture by minimizing the back-
bone network and removing the typical multi-module pro-
cess for line prediction in previous methods. To maintain
competitive performance with such a light-weight network,
we present novel training schemes: Segments of Line seg-
ment (SoL) augmentation and geometric learning scheme.
SoL augmentation splits a line segment into multiple sub-
parts, which are used to provide auxiliary line data dur-
ing the training process. Moreover, the geometric learning
scheme allows a model to capture additional geometric cues
from matching loss, junction and line segmentation, length
and degree regression. Compared with TP-LSD-Lite, pre-
viously the best real-time LSD method, our model (M-LSD-
tiny) achieves competitive performance with 2.5% of model
size and an increase of 130.5% in inference speed on GPU
when evaluated with Wireframe and YorkUrban datasets.
Furthermore, our model runs at 56.8 FPS and 48.6 FPS
on Android and iPhone mobile devices, respectively. To the
best of our knowledge, this is the first real-time deep LSD
method available on mobile devices.

1. Introduction

Line segments and junctions are crucial visual features
in low-level vision, which provide fundamental informa-
tion to the higher level vision tasks, such as pose estima-
tion [20, 29, 19], structure from motion [3, 18], 3D recon-
struction [5, 6], image matching [32], wireframe to image
translation [33] and image rectification [34]. Moreover, the
growing demand for performing such vision tasks on re-
source constraint platforms, like mobile or embedded de-

*Authors contributed equally.

Figure 1: Comparison of M-LSD and existing LSD methods
on Wireframe dataset. Inference speed (FPS) is computed
on Tesla V100 GPU. Size and value of circles indicate the
number of model parameters (Millions). M-LSD achieves
competitive performance with the lightest model size and
the fastest inference speed. Details are in Table 3.

vices, have made real-time line segment detection (LSD)
an essential but challenging task. The difficulty arises from
the limited computational power and model size while find-
ing the best accuracy and resource-efficiency trade-offs to
achieve real-time inference.

With the advent of deep neural networks, deep learning-
based LSD architectures [30, 36, 31, 35, 12] have adopted
models to learn various geometric cues of line segments and
have proved to show improvements in performance. As de-
scribed in Figure 2, we have summarized multiple strategies
that use deep learning models for LSD. The top-down strat-
egy [30] first detects regions of line segment with attrac-
tion field maps and then predicts line segments by squeez-
ing regions into line segments. In contrast, the bottom-
up strategy first detects junctions, then arranges them into
line segments, and lastly verifies the line segments by us-
ing an extra classifier [36, 31, 35] or a merging algo-
rithm [10, 11]. Recently, [12] proposes Tri-Points (TP) rep-
resentation for a simpler process of line prediction without
the time-consuming steps of line proposal and verification.

Although previous efforts of using deep learning mod-
els have made remarkable achievements, real-time infer-
ence for LSD on resource-constraint platforms still remains

ar
X

iv
:2

10
6.

00
18

6v
1

 [
cs

.C
V

]
 1

 J
un

 2
02

1

https://github.com/navervision/mlsd

Figure 2: Different strategies for LSD. Previous LSD methods exploit the
multi-module processing for line segment prediction. In contrast, our method
directly predicts line segments from feature maps with a single module.

Stra-
tegy Method Input Inference speed (FPS)

Backbone Prediction Total

TD AFM 320 77.1 17.3 14.1

BU
L-CNN 512 55.2 23.8 16.6
L-CNN-P 512 55.2 0.4 0.4
HAWP 512 55.0 82.2 32.9

TP

TP-LSD-Lite 320 138.4 234.6 87.1
TP-LSD-Res34 320 129.0 71.0 45.8
TP-LSD-Res34 512 128.8 23.7 20.0
TP-LSD-HG 512 64.7 200.5 48.9

Ours

M-LSD-tiny 320 241.1 1202.8 200.8
M-LSD-tiny 512 201.6 881.9 164.1
M-LSD 320 156.3 1194.7 138.2
M-LSD 512 132.8 883.4 115.4

Table 1: Inference speed of backbone,
prediction modules, and total on GPU.
Strategies are from Figure 2. Our method
shows superior speed on backbone and
line prediction by employing a light-
weight network with a single module of
line prediction.

limited. There have been attempts to present real-time
LSD [12, 17, 31], but they have been limited to server-class
GPUs. This is mainly because the models that are used ex-
ploit heavy backbone networks, such as dilated ResNet50-
based FPN [35], stacked hourglass network [11, 17, 12],
and atrous residual U-net [30], which require large mem-
ory and high computational power. In addition, as shown
in Figure 2, the line prediction process consists of multi-
ple modules, which include line proposal [30, 35, 36, 31],
line verification networks [35, 36, 31] and mixture of con-
volution module [12, 11]. As the size of the model and the
number of modules for line prediction increase, the over-
all inference speed of LSD can become slower, as shown
in Table 1, while demanding higher computation. Thus,
increases in computational cost make it difficult to deploy
LSD on resource-constraint platforms.

In this paper, we propose a real-time and light-weight
line segment detector for resource-constrained environ-
ments, named Mobile LSD (M-LSD). For the network, we
design a significantly efficient architecture with a single
module to predict line segments. By minimizing the net-
work size and removing the multi-module process from
previous methods, M-LSD is extremely light and fast. To
maintain competitive performance even with a light-weight
network, we present novel training schemes: SoL augmen-
tation and geometric learning scheme. SoL augmentation
divides a line segment into subparts, which are further used
to provide augmented line data during the training phase.
Geometric learning schemes train a model with additional
geometric information, including matching loss, junction
and line segmentation, length and degree regression. As a
result, our model is able to capture extra geometric informa-
tion during training to make more accurate line predictions.

As shown in Figure 1, our methods achieve competitive
performance and faster inference speed with an extremely

smaller model size. M-LSD outperforms the previous best
real-time method, TP-LSD-Lite [12], with only 6.3% of the
model size but gaining an increase of 32.5% in inference
speed. Moreover, M-LSD-tiny runs in real-time at 56.8 FPS
and 48.6 FPS on Android and iPhone mobile devices, re-
spectively. To the best of our knowledge, this is the first
real-time LSD method available on mobile devices.

2. Related Works

Deep Line Segment Detection. There have been ac-
tive studies on deep learning-based LSD. In junction-based
methods, DWP [11] includes two parallel branches to pre-
dict line and junction heatmaps, followed by a merging
process. PPGNet [35] and L-CNN [36] utilize junction-
based line segment representations with an extra classi-
fier to verify whether a pair of points belongs to the same
line segment. Another approach exploits dense prediction.
AFM [30] predicts attraction field maps that contain 2-D
projection vectors representing associated line segments,
followed by a squeeze module to recover line segments.
HAWP [31] is presented as a hybrid model of AFM and
L-CNN. Recently, [12] devises the TP line representation
to remove the use of extra classifiers or heuristic post-
processing from previous methods and proposes TP-LSD
network with two branches: TP extraction and line segmen-
tation branches. However, previous multi-module process-
ing for line prediction, such as line verification network,
squeeze module, and multi-branch network can limit for
real-time inference on resource-constrained environments.

Real-time Object Detectors. Real-time object detec-
tion has been an important task for deep learning-based ob-
ject detection. Object detectors proposed in the early days,
such as RCNN-series [8, 7, 24] consist of two-stage archi-
tecture: generating proposals in the first stage, then classi-

Figure 3: The overall architecture of M-LSD-tiny. In the feature extractor, block 1 ∼ 11 are parts of MobileNetV2, and
block 12 ∼ 16 are designed as a top-down architecture. The final feature maps are simply generated by upscale. The
predicted line segments are generated by merging center points and displacement vectors from the TP maps.

fying the proposals in the second stage. These two-stage de-
tectors typically suffer from slow inference speed and hard
optimization difficulty. To handle this problem, one-stage
detectors, such as YOLO-series [21, 22, 23] and SSD [15]
are proposed to achieve GPU real-time inference by reduc-
ing backbone size and simplifying the two-stage process
into a one-stage process. This one-stage architecture has
been further studied and improved to run in real-time on
mobile devices [9, 25, 28, 14]. Motivated by the transi-
tion from two-stage to one-stage architecture in object de-
tection, we argue that the complicated multi-module pro-
cessing in previous LSD can be disregarded. We simplify
the line prediction process with a single module for faster
inference speed and enhance the performance by the effi-
cient training strategies; SoL augmentation and geometric
learning scheme.

3. M-LSD for Line Segment Detection

In this section, we present the details of M-LSD. Our de-
sign mainly focuses on efficiency while retaining compet-
itive performance. Firstly, we design a light-weight back-
bone and reduce the modules involved in processing line
predictions for better efficiency. Next, we apply additional
training schemes, including SoL augmentation and geomet-
ric learning schemes, to capture extra geometric cues. As a
result, M-LSD is able to balance the trade-off between ac-
curacy and efficiency to be well suited for mobile devices.

3.1. Light-weight Backbone

We design light (M-LSD) and lighter (M-LSD-tiny)
models as popular encoder-decoder architectures. In efforts

to build a light-weight LSD model, our encoder networks
are based on MobileNetV2 [25] which is well-known to run
in real-time on mobile environments. The encoder network
uses parts of MobileNetV2 (block 1 ∼ 11 of the feature ex-
tractor in Figure 3) to make it even lighter, which includes
an input to 64-channel of bottleneck blocks. The number of
parameters in the encoder network is 0.25M (7.4% of Mo-
bileNetV2) while the total parameters of MobileNetV2 are
3.4M. For M-LSD, a slightly bigger yet more performant
model, the encoder network also uses parts of MobileNetV2
including an input to 96-channel of bottleneck blocks which
results to a number of 0.56M parameters (16.5% of Mo-
bileNetV2). The decoder network is designed using a com-
bination of block types A, B, and C. Block type A con-
catenates feature maps from skip connection and upscale.
Block type B performs two 3× 3 convolutions with a resid-
ual connection in-between. Similarly, block type C per-
forms two 3 × 3 convolutions followed by a 1 × 1 con-
volution, where the first is a dilated convolution. The fi-
nal feature maps in M-LSD-tiny are generated by upscal-
ing with H/2×W/2× 16 tensors when the input image is
H ×W × 3. On the other hand, M-LSD uses the feature
map from block type C as a final feature map with the same
size of H/2×W/2× 16.

Each feature map channel serves its own purpose: 1) TP
maps have seven feature maps, including one length map,
one degree map, one center map, and four displacement
maps. 2) SoL maps have seven feature maps with the same
configuration as TP maps. 3) Segmentation maps have two
feature maps, including junction and line maps. Please re-
fer to the supplementary material for further details on the
architectures of M-LSD-tiny and M-LSD.

(a) TP representation (b) SoL augmentation

Figure 4: Tri-Points (TP) representation and Segments of
Line segment (SoL) augmentation. ls, lc, and le denote
start, center, and end points, respectively. ds and de are dis-
placement vectors to start and end points. l0 ∼ l2 indicates
internally dividing points of the line segment lsle.

3.2. Line Segment Representation

Line segment representation determines how line seg-
ment predictions are generated and ultimately affects the
efficiency of LSD. Hence, we employ the TP representa-
tion [12] which has been introduced to have a simple line
generation process and shown to perform real-time LSD us-
ing GPUs. TP representation uses three key-points to depict
a line segment: start, center, and end points. As illustrated
in Figure 4a, the start ls and end le points are represented
by using two displacement vectors (ds, de) with respect to
the center lc point. The line generation process, which is to
convert center point and displacement vectors to a vector-
ized line segment, is performed as:

(xls , yls) = (xlc , ylc) + ds(xlc , ylc),

(xle , yle) = (xlc , ylc) + de(xlc , ylc), (1)

where (xα, yα) denotes the α point. ds(xlc , ylc) and
de(xlc , ylc) indicate 2D displacements from the center point
lc to the corresponding start ls and end le points. The center
point and displacement vectors are trained with one cen-
ter map and four displacement maps (one for each x and
y value of the displacement vectors ds and de). For the
ground truth (GT) of the center map, positions of the center
point are marked on a zero map, which is then scaled using
a Gaussian kernel truncated by a 3 × 3 window. In the line
generation process, we extract the exact center point posi-
tion by non-maximum suppression on the center map. Next,
we generate line segments with the extracted center points
and the corresponding displacement vectors using a sim-
ple arithmetic operation as expressed in Equation 1; thus,
making inference efficient and fast. For a direct comparison
with [12], we perform the line generation immediately from
the final feature maps in a single module process, while [12]
performs multi-module processing as illustrated in Figure 2.

For a loss function to train the center map, the weighted
binary cross-entropy (WBCE) loss is used in [12]. How-

ever, we observe that the number of positive (foreground)
pixels is much less than that of negative (background) pix-
els, and such foreground-background class imbalance de-
grades the performance of the WBCE loss. This is because
the majority of pixels are easy negatives that contribute no
useful learning signals. Thus, we separate positive and neg-
ative terms of the binary cross-entropy loss to have the same
scale, and reformulate a separated binary classification loss
as follows:

`pos(F) =
−1∑
p I(p)

∑
pW (p) · logσ(F (p)), (2)

`neg(F) =
−1∑

p 1−I(p)
∑
p(1− I(p)) · log(1− σ(F (p))), (3)

`cls(F) = λpos · `pos(F) + λneg · `neg(F), (4)

where I(p) outputs 1 if the pixel p of the GT map is non-
zero, otherwise 0, σ denotes a sigmoid function, and W (p)
and F (p) are pixel values in the GT and feature map, re-
spectively. We use the center loss as Lcenter = `cls(C),
where C denotes center map and set the weights (λpos,
λneg) as (1,30). For the displacement loss Ldisp, we use
smooth L1 loss for regression learning as [12].

3.3. SoL Augmentation

We propose Segments of Line segment (SoL) augmenta-
tion that increases the number of line segments with wider
varieties of length for training. Learning line segments with
center points and displacement vectors can be insufficient in
certain circumstances where a line segment may be too long
to manage within the receptive field size or the center points
of two distinct line segments are too close to each other. To
address these issues and provide auxiliary information to
the TP representation, SoL explicitly splits line segments
into multiple subparts with overlapping portions with each
other. An overlap between each split is enforced to preserve
connectivity among the subparts. As described in Figure 4b,
we compute k internally dividing points (l0, l1, l2) and sepa-
rate the line segment lsle into three subparts (lsl1, l0l2, l1le).
Expressed in TP representation, each subpart is trained as if
it is a typical line segment. The number of internally divid-
ing points k is determined by the length of the line segment
as k = br(l)/(µ/2)e − 1, where r(l) denotes the length of
line segment l, and µ is the base length of subparts. Note
that when k ≤ 1, we do not split the line segment. The re-
sulting length of each subpart can be shorter or longer than
µ, and we use µ = input size × 0.125. Loss functions
Lcenter and Ldisp for SoL maps are the same as Equation 4
and smooth L1 loss, respectively, when the ground truth is
from subparts. Note that the line generation process is only
done in TP maps, not in SoL maps.

3.4. Learning with Geometric Information

To boost the quality of predictions, we incorporate vari-
ous geometric information about line segments which helps

(a) Matching loss (b) Geometric losses

Figure 5: Matching and geometric losses. (a) Given a
matched pair of a predicted line l̂ and a GT line l, matching
loss (Lmatch) optimizes the predicted start, end, and cen-
ter points. (b) Given a line segment, M-LSD learns various
geometric cues: junction (Ljunc) and line (Lline) segmen-
tation, length (Llength) and degree (Ldegree) regression.

the overall learning process. In this section, we present
learning LSD with matching loss, junction and line segmen-
tation, and length and degree regression for additional geo-
metric information.

3.4.1 Matching Loss

Line segments under the TP representation are decoupled
into center points and displacement vectors, which are op-
timized with center and displacement loss separately. They
become line segments by the line generation process as for-
mulated in Equation 1. However, this coupled informa-
tion of the generated line segment is under-utilized in loss
functions. Thus, we present a matching loss, which also
leverages information of the coupled information w.r.t the
ground truth. Note that matching loss is used for both TP
and SoL maps.

As illustrated in Figure 5a, matching loss guides the gen-
erated line segments to be similar to the matched GT. We
first take the endpoints of each prediction, which can be
calculated via the line generation process, and measure the
Euclidean distance d(·) to the endpoints of the GT. Next,
these distances are used to match predicted line segments l̂
with GT line segments l that are under a threshold γ:

d(ls, l̂s) < γ and d(le, l̂e) < γ, (5)

where ls and le are the start and end points of the line l, and
γ is set to 5 pixels. Then, we obtain a set M of matched line
segments (l, l̂) that satisfies this condition. Finally, the L1
loss is used for the matching loss, which aims to minimize
the geometric distance of the matched line segments w.r.t
the start, end, and center points as follows:

Lmatch =
1

|M |
∑

(l,l̂)∈M

‖ ls − l̂s ‖1 + ‖ le − l̂e ‖1

+ ‖ C̃(l̂)− (ls + le)/2 ‖1, (6)

where C̃(l̂) is center point of a line l̂ from the center map.

3.4.2 Junction and Line Segmentation

Center point and displacement vectors are highly related to
pixel-wise junctions and line segments in the segmentation
maps of Figure 3. For example, end points, derived from
the center point and displacement vectors, should be the
junction points. Also, center points must be localized on
the pixel-wise line segment. Thus, learning the segmenta-
tion maps of junctions and line segments works as a spatial
attention cue for LSD. As illustrated in Figure 3, M-LSD
contains segmentation maps, including a junction map and
a line map. We construct the junction GT map by scaling
with Gaussian kernel as the center map, while using a bi-
nary map for line GT map. The separated binary classifica-
tion loss is used for the junction loss Ljunc = `cls(J) and
line loss Lline = `cls(E), where J and E denote junction
and line maps, respectively. The total segmentation loss is
defined as Lseg = Ljunc+Lline, where we set the weights
(λpos, λneg) as (1, 30) for Ljunc and (1, 1) for Lline.

3.4.3 Length and Degree Regression

As displacement vectors can be derived from the length and
degree of line segments, they can be additional geometric
cues to support the displacement maps. We compute the
length and degree from the ground truth and mark the values
on the center of line segments in each GT map. Then, these
values are extrapolated to a 3× 3 window so that all neigh-
boring pixels of a given pixel contain the same value. As
shown in Figure 3, we maintain predicted length and degree
maps for both TP and SoL maps, where TP uses the origi-
nal line segment and SoL uses augmented subparts. As the
ranges of length and degree are wide, we divide each length
by the diagonal length of the input image for normalization.
For degree, we divide each degree by 2π and add 0.5. Fi-
nally, the length and degree maps are used for smooth L1
loss (Llength and Ldegree) based regression learning.

3.5. Final Loss Functions

The loss function for TP maps LTP is defined as the sum
of center and displacement loss, length and degree regres-
sion loss, and a matching loss:

LTP = Lcenter + Ldisp + Llength + Ldegree + Lmatch. (7)

The loss function for SoL maps LSoL follows the same for-
mulation as Equation 7 but with SoL augmented GT. Fi-
nally, we obtain the final loss function Ltotal as follows:

Ltotal = LTP + LSoL + Lseg. (8)

As illustrated in Figure 3, LTP and LSoL each optimizes
the line representation maps and Lseg optimizes the seg-
mentation maps.

(a) w/o matching loss (M2) (b) w/ matching loss (M3)

(c) w/o SoL augmentation (M7) (d) w/ SoL augmentation (M8)

Figure 6: Saliency maps generated from TP center map.
Model numbers (M2∼8) are from Table 2.

4. Experiments
4.1. Experimental Setting

Dataset and Evaluation Metrics. We evaluate our
model with two famous LSD datasets: Wireframe [11] and
YorkUrban [5]. The Wireframe dataset consists of 5,000
training and 462 test images of indoor and outdoor scenes,
while the YorkUrban dataset has 102 test images. Follow-
ing the typical training and test protocol [12, 35, 17, 30, 36],
we train our model with the training set from the Wire-
frame dataset and test with both Wireframe and YorkUr-
ban datasets. We evaluate our models using prevalent met-
rics for LSD [12, 35, 17, 30, 36] that include: heatmap-
based metric FH , structural average precision (sAP), and
line matching average precision (LAP).

Optimization. We train our model on Tesla V100 GPU.
We use the TensorFlow [2] framework for model training
and TFLite [1] for porting models to mobile devices. In-
put images are resized to 320 × 320 or 512 × 512 in both
training and testing, which are specified in each experiment.
The input augmentation consists of horizontal and vertical
flips, shearing, rotation, and scaling. We use ImageNet [4]
pre-trained weights on the parts of MobileNetV2 [25] in M-
LSD and M-LSD-tiny. Our model is trained using the Adam
optimizer [13] with a learning rate of 0.01. We use linear
learning rate warm-up for 5 epochs and cosine learning rate
decay [16] from 70 epoch to 150 epoch. We train the model
for a total of 150 epochs with a batch size of 64.

4.2. Ablation Study and Interpretability

We conduct a series of ablation experiments to analyze
our proposed method. M-LSD-tiny is trained and tested on
the Wireframe dataset with an input size of 512 × 512. As
shown in Table 2, all the proposed schemes contribute to a
significant performance improvement. In addition, we in-
clude saliency map visualizations by using GradCam [26],

(a) Junction segmentation map (b) Line segmentation map

(c) TP length regression map (d) TP degree regression map

Figure 7: Saliency maps generated from each feature map.
M-LSD-tiny (M8 in Table 2) model is used for generation.

M Schemes FH sAP 10 LAP

1 Baseline 73.2 47.6 46.8
2 + Input augmentation 74.3 48.9 48.1
3 + Matching loss 75.4 52.2 52.5
4 + Line segmentation 75.4 52.9 53.7
5 + Junction segmentation 76.2 53.7 54.6
6 + Length regression 76.1 54.5 54.8
7 + Degree regression 76.2 55.1 55.3
8 + SoL augmentation 77.2 58.0 57.9

Table 2: Ablation study of M-LSD-tiny on Wireframe. The
baseline is trained with M-LSD-tiny backbone including
only TP representation. M denotes model number.

which is generated from each feature map to analyze the
network learned from each training scheme. The saliency
map interprets important regions and importance levels on
the input image by computing the gradients from each fea-
ture map. We include a comparison of models in Figure 6
and feature maps in Figure 7.

Baseline and Augmentation. The baseline model is
trained with M-LSD-tiny backbone, including only the TP
representation and no other proposed schemes. We observe
that adding horizontal and vertical flips, shearing, rota-
tion, and scaling input augmentation on the baseline model
shows further performance improvement.

Matching Loss. Integrating matching loss shows slight
improvements on pixel localization accuracy by 1.1 in FH

while significant enhancements on line prediction quality
by 3.3 in sAP 10 and 4.4 inLAP . We observe from saliency
maps that learning w/o matching loss shows weak attention
on center points, as shown in Figure 6a, while w/ matching
loss amplifies the attention on center points in Figure 6b.
This demonstrates that training with coupled information of
center points and displacement vectors allows the model to
learn with more line-awareness features.

Line and Junction Segmentation. Adding line and
junction segmentation gives performance boosts in the fol-

Methods Input Wireframe YorkUrban Params(M) FPSFH sAP5 sAP10 LAP FH sAP5 sAP10 LAP

LSD [27] 320 64.1 6.7 8.8 18.7 60.6 7.5 9.2 16.1 - 100.0†

DWP [11] 512 72.7 - 5.1 6.6 65.2 - 2.6 3.1 33.0 2.2
AFM [30] 320 77.3 18.3 23.9 36.7 66.3 7.0 9.1 17.5 43.0 14.1
L-CNN [36] 512 77.5 58.9 62.8 59.8 64.6 25.9 28.2 32.0 9.8 16.6
L-CNN-P [36] 512 81.7 52.4 57.3 57.9 67.5 20.9 23.1 26.8 9.8 0.4
LGNN [17] 512 - - 62.3 - - - - - - 15.8‡

LGNN-lite [17] 512 - - 57.6 - - - - - - 34.0‡

HAWP [31] 512 80.3 62.5 66.5 62.9 64.8 26.1 28.5 30.4 10.4 32.9
TP-LSD-Lite [12] 320 80.4 56.4 59.7 59.7 68.1 24.8 26.8 31.2 23.9 87.1
TP-LSD-Res34 [12] 320 81.6 57.5 60.6 60.6 67.4 25.3 27.4 31.1 23.9 45.8
TP-LSD-Res34 [12] 512 80.6 57.6 57.2 61.3 67.2 27.6 27.7 34.3 23.9 20.0
TP-LSD-HG [12] 512 82.0 50.9 57.0 55.1 67.3 18.9 22.0 24.6 7.4 48.9

M-LSD-tiny 320 76.8 43.0 51.3 50.1 61.9 17.4 21.3 23.7 0.6 200.8
M-LSD-tiny 512 77.2 52.3 58.0 57.9 62.4 22.1 25.0 28.3 0.6 164.1
M-LSD 320 78.7 48.2 55.5 55.7 63.4 20.2 23.9 27.7 1.5 138.2
M-LSD 512 80.0 56.4 62.1 61.5 64.2 24.6 27.3 30.7 1.5 115.4

Table 3: Quantitative comparisons with existing LSD methods. FPS is evaluated in Tesla V100 GPU, where † denotes CPU
FPS and ‡ denotes the value from the corresponding paper because of no published implementation. The best score from
previous methods and our models are colored in blue and red, respectively.

lowing metrics: 0.8 in FH , 1.5 in sAP 10 and 2.1 in LAP .
Moreover, the junction and line attention on saliency maps
of Figure 7a and 7b are precise, which shows that junction
and line segmentations work as spatial attention cues for
LSD.

Length and Degree Regression. The line prediction
quality improves 1.4 in sAP 10 and 0.7 in LAP by adding
length and degree regression, while the pixel localization
accuracy FH remains the same. The length saliency map in
Figure 7c contains highlights on the entire line, and the de-
gree saliency map in Figure 7d has highlights on the center
points. We speculate that computing length needs the entire
line information whereas computing the degree only needs
part of the line. Overall, learning with additional geomet-
ric information of line segments, such as length and degree,
further increases the performance.

SoL Augmentation. Integrating SoL augmentation
shows significant performance boost by 1.0 in FH , 2.9 in
sAP 10 and 2.6 in LAP . In the saliency maps of Figure 6c
and 6d, w/o SoL augmentation shows strong but vague at-
tention on center points with disconnected line attention for
the long line segments, when the entire line information is
essential to compute the center point. However, w/ SoL
augmentation shows more precise center point attention as
well as clearly connected line attention. It demonstrates that
augmenting line segments based on the number and length
guides the model to be more robust in pixel-based and line
matching-based qualities.

4.3. Comparison with Other Methods

We compare our method with previous LSD methods, in-
cluding LSD [27], DWP [11], AFM [30], L-CNN [36] with
post-processing (L-CNN-P), LGNN [17], HAWP [31], and

TP-LSD [12]. Table 3 shows that our method achieves com-
petitive performance and the fastest inference speed even
with a limited model size. In comparison with the previous
fastest model, TP-LSD-Lite, M-LSD with input size of 512
shows higher performance and an increase of 32.5% in in-
ference speed with only 6.3% of the model size. Our fastest
model, M-LSD-tiny with 320 input size, has a slightly lower
performance than that of TP-LSD-Lite, but achieves an in-
crease of 130.5% in inference speed with only 2.5% of
the model size. Compared to the previous lightest model
TP-LSD-HG, M-LSD with 512 input size outperforms on
sAP 5, sAP 10 and LAP with an increase of 136.0% in in-
ference speed with 20.3% of the model size. Our lightest
model, M-LSD-tiny with 320 input size, shows an increase
of 310.6% in the inference speed with 8.1% of the model
size compared to TP-LSD-HG. Previous methods can be
deployed as real-time line segment detectors on server-class
GPUs, but not on resource-constrained environments either
because the model size is too large or the inference speed
is too slow. Although M-LSD does not achieve state-of-
the-art performance, it shows competitive performance and
the fastest inference speed with the smallest model size, of-
fering the potential to be used in real-time applications on
resource-constrained environments, such as mobile devices.

4.4. Visualization

We visualize outputs of M-LSD and M-LSD-tiny in Fig-
ure 8. Junctions and line segments are colored with cyan
blue and orange, respectively. Compared to the GT, both
models are capable of identifying junctions and line seg-
ments with high precision even in complicated low con-
trast environments such as (a) and (c). Although M-LSD-
tiny contains a few missing small line segments and incor-

Figure 8: Qualitative evaluation of M-LSD-tiny and M-LSD
on WireFrame dataset.

rectly connected junctions, the fundamental line segments
to aware of the environmental structure are accurate. In ad-
dition, there are straight patterns on the floor in (b) and the
wall in (d), that are missing in GT taken from the Wire-
Frame [11] dataset which was annotated by humans. How-
ever, our proposed methods are capable of detecting even
the minute details in patterns and confirms the robustness
of our models against complicated scenes.

4.5. Deployment on Mobile Devices

We deploy M-LSD on mobile devices and evaluate the
memory usage and inference speed. We use iPhone 12 Pro
with A14 bionic chipset and Galaxy S20 Ultra with Snap-
dragon 865 ARM chipset. As shown in Table 4, M-LSD-
tiny and M-LSD are small enough to be deployed on mobile
devices where memory requirements range between 78MB
and 508MB. The inference speed of M-LSD-tiny is fast
enough to be real-time on mobile devices where it ranges
from a minimum of 17.9 FPS to a maximum of 56.8 FPS.
M-LSD still can be real-time with 320 input size, however,
with 512 input size, FP16 may be required for a faster FPS
over 10. Overall, as all our models have small memory re-
quirements and fast inference speed on mobile devices, the
exceptional efficiency allows M-LSD variants to be used in
real-world applications. To the best of our knowledge, this
is the first and the fastest real-time line segment detector on
mobile devices ever reported.

4.6. Applications

As line segments are fundamental low-level visual fea-
tures, there are various real-world applications that use
LSD. We show an example with real-time box detection on
a mobile device as described in Figure 9. We implement
a box detector on a mobile device by using the M-LSD-

Model Input Device FP Latency (ms) FPS Memory (MB)

M-LSD-tiny

320
iPhone 32 30.6 32.7 169

16 20.6 48.6 111

Android 32 31.0 32.3 103
16 17.6 56.8 78

512
iPhone 32 51.6 19.4 203

16 36.8 27.1 176

Android 32 55.8 17.9 195
16 25.4 39.4 129

M-LSD

320
iPhone 32 74.5 13.4 241

16 46.4 21.6 188

Android 32 82.4 12.1 236
16 38.4 26.0 152

512
iPhone 32 121.6 8.2 327

16 90.7 11.0 261

Android 32 177.3 5.6 508
16 79.0 12.7 289

Table 4: Inference speed and memory usage on iPhone
(A14 Bionic chipset) and Android phone (Snapdragon 865
chipset). FP denotes floating point.

Figure 9: Real-time box detection using M-LSD-tiny on a
mobile device. Given an image as input to the mobile device
as (a), line segments are detected using M-LSD-tiny as (b).
Then, box candidates are computed from post-processing as
(c), and finally we obtain box detection by a ranking process
as (d).

tiny model. Since the application consists of line detection
and post-processing, a model for the line detection has to
be light and fast enough for real-time usage, when M-LSD-
tiny is playing a sufficient role. The potential of real-time
LSD on a mobile device can further be extended to other
real-world applications like a book scanner, wireframe to
image translation, and SLAM.

5. Conclusion

We introduce M-LSD, a light-weight and real-time line
segment detector for resource-constrained environments.
Our model is designed with a significantly efficient network
architecture and a single module process to predict line seg-
ments. To maintain competitive performance even with a
light-weight network, we present novel training schemes:
SoL augmentation and geometric learning. As a result, our
proposed method achieves competitive performance and the
fastest inference speed with the lightest model size. More-
over, we show that M-LSD is deployable on mobile devices
in real-time, which demonstrates the potential to be used in
real-time mobile applications.

References
[1] Tensorflow lite. https://www.tensorflow.org/lite. 6
[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016. 6

[3] Adrien Bartoli and Peter Sturm. Structure-from-motion
using lines: Representation, triangulation, and bundle ad-
justment. Computer vision and image understanding,
100(3):416–441, 2005. 1

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[5] Patrick Denis, James H Elder, and Francisco J Estrada. Ef-
ficient edge-based methods for estimating manhattan frames
in urban imagery. In European conference on computer vi-
sion, pages 197–210. Springer, 2008. 1, 6

[6] Olivier D Faugeras, Rachid Deriche, Hervé Mathieu,
Nicholas Ayache, and Gregory Randall. The depth and mo-
tion analysis machine. In Parallel Image Processing, pages
143–175. World Scientific, 1992. 1

[7] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 2

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

[10] Kun Huang and Shenghua Gao. Wireframe parsing with
guidance of distance map. IEEE Access, 7:141036–141044,
2019. 1

[11] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding,
Shenghua Gao, and Yi Ma. Learning to parse wireframes
in images of man-made environments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 626–635, 2018. 1, 2, 6, 7, 8

[12] Siyu Huang, Fangbo Qin, Pengfei Xiong, Ning Ding, Yijia
He, and Xiao Liu. Tp-lsd: Tri-points based line segment
detector. arXiv preprint arXiv:2009.05505, 2020. 1, 2, 4, 6,
7

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[14] Yuxi Li, Jiuwei Li, Weiyao Lin, and Jianguo Li. Tiny-dsod:
Lightweight object detection for resource-restricted usages.
arXiv preprint arXiv:1807.11013, 2018. 3

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 3

[16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[17] Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, and
Jingyi Yu. Lgnn: A context-aware line segment detector. In
Proceedings of the 28th ACM International Conference on
Multimedia, pages 4364–4372, 2020. 2, 6, 7

[18] Branislav Micusik and Horst Wildenauer. Structure
from motion with line segments under relaxed endpoint
constraints. International Journal of Computer Vision,
124(1):65–79, 2017. 1

[19] Bronislav Přibyl, Pavel Zemčı́k, and Martin Čadı́k. Cam-
era pose estimation from lines using pl\” ucker coordinates.
arXiv preprint arXiv:1608.02824, 2016. 1

[20] Bronislav Přibyl, Pavel Zemčı́k, and Martin Čadı́k. Abso-
lute pose estimation from line correspondences using direct
linear transformation. Computer Vision and Image Under-
standing, 161:130–144, 2017. 1

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 3

[22] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 3

[23] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 3

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. arXiv preprint arXiv:1506.01497, 2015.
2

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 3, 6

[26] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 6

[27] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast line
segment detector with a false detection control. IEEE
transactions on pattern analysis and machine intelligence,
32(4):722–732, 2008. 7

[28] Robert J Wang, Xiang Li, and Charles X Ling. Pelee: A
real-time object detection system on mobile devices. arXiv
preprint arXiv:1804.06882, 2018. 3

[29] Chi Xu, Lilian Zhang, Li Cheng, and Reinhard Koch. Pose
estimation from line correspondences: A complete analysis
and a series of solutions. IEEE transactions on pattern anal-
ysis and machine intelligence, 39(6):1209–1222, 2016. 1

[30] Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu
Wu, and Liangpei Zhang. Learning attraction field represen-
tation for robust line segment detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1595–1603, 2019. 1, 2, 6, 7

[31] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song
Xia, Liangpei Zhang, and Philip HS Torr. Holistically-
attracted wireframe parsing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2788–2797, 2020. 1, 2, 7

[32] Nan Xue, Gui-Song Xia, Xiang Bai, Liangpei Zhang, and
Weiming Shen. Anisotropic-scale junction detection and
matching for indoor images. IEEE Transactions on Image
Processing, 27(1):78–91, 2017. 1

[33] Yuan Xue, Zihan Zhou, and Xiaolei Huang. Neural wire-
frame renderer: Learning wireframe to image translations.
arXiv preprint arXiv:1912.03840, 2019. 1

[34] Zhucun Xue, Nan Xue, Gui-Song Xia, and Weiming Shen.
Learning to calibrate straight lines for fisheye image rec-
tification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1643–
1651, 2019. 1

[35] Ziheng Zhang, Zhengxin Li, Ning Bi, Jia Zheng, Jinlei
Wang, Kun Huang, Weixin Luo, Yanyu Xu, and Shenghua
Gao. Ppgnet: Learning point-pair graph for line segment
detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7105–
7114, 2019. 1, 2, 6

[36] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe
parsing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 962–971, 2019. 1, 2, 6,
7

Towards Light-weight and Real-time Line Segment Detection

Supplementary Material

A. Details of M-LSD
Architecture. The detailed architecture of M-LSD-tiny
and M-LSD is described in Table A. M-LSD-tiny includes
an encoder structure from MobileNetV2 [4] in block 1∼11
and a custom decoder structure in block 12∼final. M-
LSD also includes an encoder structure from MobileNetV2
in block 1∼14 and a designed decoder structure in block
15∼final, which is illustrated in Figure A. For the upscale
operation, we use bilinear interpolation.

Feature Maps and Losses. For the displacement maps,
we compute displacement vectors from the ground truth
(GT) and mark those values on the center of line segment
in the GT map. Next, these values are extrapolated to a
3×3 window (center blob) so that all neighboring pixels of
a given pixel contain the same value. For the displacement,
length, and degree maps, we use the smooth L1 loss for re-
gression learning. The regression loss can be formulated as
follows:

`reg(F) =
1∑

pH(p)

∑

p

H(p) · Lsmooth
1 (F (p), F̂ (p)), (i)

where F (p) and F̂ (p) denote values of pixel p in the feature
map F and the GT map F̂ , and H(p) outputs 1 if the pixel
p of the GT map is on the center blob (extrapolated 3×3
window). We use the displacement loss Ldisp = `reg(D),
where D denotes the displacement map. The length and
degree losses are Llength = `reg(σ(L)) and Ldegree =
`reg(σ(G)), where σ(L) and σ(G) are sigmoid function σ
applied to length and degree maps. In the line generation
process, the center map is applied with a sigmoid function
to output a probability value, while the displacement map
uses the original values. Then, we extract the exact center
point position by non-maximum suppression [1, 6, 2] on the
center map to remove duplicates around correct predictions.

Final Feature Maps. In the training phase, M-LSD-tiny
and M-LSD output final feature maps of 16 channels, which
include 7 channels for TP maps, 7 channels for SoL maps,
and 2 channels for segmentation maps as illustrated in Fig-
ure Ba. However, as the line generation process only re-
quires the center and displacement maps of TP maps, op-
erations for the other auxiliary maps are unnecessary in the

Block Input SC input Operator c n

1 H×W×3 - conv2d 32 1
2 H/2×W/2×32 - bottleneck 16 1

3∼4 H/2×W/2×16 - bottleneck 24 2
5∼7 H/4×W/4×24 - bottleneck 32 3
8∼11 H/8×W/8×32 - bottleneck 64 4

12 H/16×W/16×64 H/8×W/8×32 block type A 128 1
13 H/8×W/8×128 - block type B 64 1
14 H/8×W/8×64 H/4×W/4×24 block type A 64 1
15 H/4×W/4×64 - block type B 64 1
16 H/4×W/4×64 - block type C 16 1
- H/4×W/4×16 - upscale 16 1

Final H/2×W/2×16 - - - -

(a) M-LSD-tiny
Block Input SC input Operator c n

1 H×W×3 - conv2d 32 1
2 H/2×W/2×32 - bottleneck 16 1

3∼4 H/2×W/2×16 - bottleneck 24 2
5∼7 H/4×W/4×24 - bottleneck 32 3

8∼11 H/8×W/8×32 - bottleneck 64 4
12∼14 H/16×W/16×64 - bottleneck 96 3

15 H/16×W/16×96 H/16×W/16×64 block type A 128 1
16 H/16×W/16×128 - block type B 64 1
17 H/16×W/16×64 H/8×W/8×32 block type A 128 1
18 H/8×W/8×128 - block type B 64 1
19 H/8×W/8×64 H/4×W/4×24 block type A 128 1
20 H/4×W/4×128 - block type B 64 1
21 H/4×W/4×64 H/2×W/2×16 block type A 128 1
22 H/2×W/2×128 - block type B 64 1
23 H/2×W/2×64 - block type C 16 1

Final H/2×W/2×16 - - - -

(b) M-LSD

Table A. Architecture details of M-LSD-tiny and M-LSD.
Each line describes a sequence of 1 or repeating n identical
layers where each layer in the same sequence has the same
c output channels. Block numbers (‘Block’) and block type
A∼C in ‘Operator’ are from Figure 3 and Figure A. ‘SC
input’ denotes a skip connection input and the bottleneck
operation is from MobileNetV2 [4].

inference phase. Thus, we disregard these operations and
output only 5 channels of TP maps in the inference phase,
including 1 center map and 4 displacement maps, as shown
in Figure Bb. As a result, we can minimize computational
cost and maximize the inference speed.

Figure A. The overall architecture of M-LSD. In the feature extractor, block 1 ∼ 14 are parts of MobileNetV2, and block 15
∼ 23 are designed as a top-down architecture. The final feature maps are simply generated with upscale. The predicted line
segments are generated by merging center points and displacement vectors from the TP maps.

(a) Final feature maps in the training phase

(b) Final feature maps in the inference phase

Figure B. Final feature maps in the training and inference
phase. (a) In the training phase, the final feature maps in-
clude TP, SoL, and segmentation maps with a total of 16
channels. (b) For better efficiency in the inference phase,
we disregard unnecessary convolutions and maintain only
the center and displacement maps in the TP maps with a
total of 5 channels.

B. Extended Experiments
B.1. Ablation Study of Architecture

We run a series of ablation experiments to investigate
various encoder and decoder architectures. As shown in

Table Ba, we vary the parts used from the MobileNetV2
on the encoder architecture. As the encoder size increases,
we add block types A and B to the decoder structure by
following the structural format in Table Ab. Model 1 ∼ 3
exploit bigger and deeper encoder architectures, which re-
sult in larger model parameters and slower inference speed.
The performance turns out to be slightly higher than that of
M-LSD. However, we choose ‘Input ∼ 96-channel’ of Mo-
bileNetV2 as the encoder for M-LSD because increasing the
encoder size causes larger amounts of model parameters to
be used and decreases the inference speed with a negligi-
ble performance boost. Moreover, we observe that ‘Input∼
96-channel’ is the largest model that can work on a mobile
device in real-time. In contrast, when performing real-time
LSD on GPUs, model 1 ∼ 3 are good candidates as they
outperform TP-LSD-Lite [2], previously the best real-time
LSD, with faster inference speed and lighter model size.

In Table Bb, we vary the block types used in the de-
coder architecture. Model 4 changes every 1 × 1 convo-
lution to a 3×3 convolution in block type A, while model 5
changes the residual connection from being in between the
convolutions (‘pre-residual’) to the end of the convolutions
(‘post-residual’) for block type B. These changes result in
an increase in model size and a decrease in inference speed
because ‘post-residual’ requires twice the number of output
channels than that of ‘pre-residual’. However, the perfor-
mance remains similar to that of M-LSD-tiny. For models
6 and 7, the dilated rate of the first convolution in block
type C is changed to 1 and 3, respectively. Here we observe
that by decreasing the dilated rate can improve the inference

Model Parts of MNV2 in encoder Params (M) Inference speed (FPS) Performance
Encoder (% of MNV2) Decoder Total Backbone Prediction Total FH sAP 10 LAP

M-LSD-tiny Input ∼ 64-channel 0.3 (7.4) 0.3 0.6 201.6 881.9 164.1 77.2 58.0 57.9
M-LSD Input ∼ 96-channel 0.6 (16.5) 0.9 1.5 132.8 883.4 115.4 80.0 62.1 61.5
1 Input ∼ 160-channel 1.0 (30.6) 1.3 2.3 124.7 885.1 109.3 79.9 62.8 62.4
2 Input ∼ 320-channel 1.8 (54.1) 1.5 3.3 117.9 885.7 104.0 79.7 62.5 62.6
3 Input ∼ 1280-channel 2.3 (66.5) 1.7 4.0 107.6 883.4 95.9 80.2 62.8 62.1

(a) Ablation study by varying the parts used from the MobileNetV2 (MNV2) for the encoder architecture. Performance is reported on
Wireframe dataset. ‘% of MNV2’ indicates the percentage of parameters used in each type of encoder compared to the total parameters
used in MobileNetV2.

Model Setup Params (M) Inference speed (FPS) Performance
Backbone Prediction Total FH sAP 10 LAP

M-LSD-tiny Block type A: 1× 1 conv / B: pre-residual / C: dilated rate 5 0.6 201.6 881.9 164.1 77.2 58.0 57.9
4 Block type A: 1× 1 conv→ 3× 3 conv 0.7 199.2 881.9 162.5 76.7 58.1 57.9
5 Block type B: pre-residual→ post-residual 0.7 200.5 881.9 163.4 76.9 58.1 58.0
6 Block type C: dilated rate 5→ 1 0.6 215.2 881.9 173.0 75.9 56.1 56.0
7 Block type C: dilated rate 5→ 3 0.6 203.5 881.9 165.3 76.7 57.6 57.4

(b) Ablation study by varying block types for the decoder architecture. Performance is reported on Wireframe dataset with M-LSD-tiny as
the baseline. Block type A ∼ B are from Figure 3 and Figure A.

Table B. Ablation study on encoder and decoder architectures.

speed but conversely decrease the performance. This is be-
cause the dilated convolution can effectively manage long
line segments, which require large receptive fields. Thus,
we choose to use 1 × 1 convolution in block type A, ‘pre-
residual’ in block type B, and the dilated rate of 5 in block
type C.

B.2. Needs of Offset Maps

In some of the previous LSD methods [3, 6, 5], offset
maps are used to estimate offsets between the predicted map
and input image because the predicted map has a smaller
resolution than the input image. We perform experiments
and evaluate the effectiveness of offset maps with M-LSD-
tiny. When we apply offset maps to M-LSD-tiny, we need
two offset maps for the center point (one for each coordi-
nate). As shown in Table C, w/ offset maps increase in
model parameters and decrease in inference speed, while
the performance does not change. This demonstrates that
offset maps are unnecessary for M-LSD-tiny because the
resolution of the input image is two times the size of the
resolution of predicted maps, which is minor. Thus, we dis-
regard offset maps in M-LSD architectures.

B.3. Impact of SoL Augmentation

In SoL augmentation, the number of internally dividing
points k is based on the length of the line segment and com-
puted as k = br(l)/(µ/2)e − 1, where r(l) denotes the
length of line segment l, and µ is the base length of the
subparts. Note that when k ≤ 1, we do not split the line
segment. When dividing the line segment, the base length

Setup Params Inference speed (FPS) Performance
Backbone Prediction Total FH sAP 10 LAP

w/o offset 629253 201.6 881.9 164.1 77.2 58.0 57.9
w/ offset 629383 201.6 811.4 161.5 77.2 57.9 57.9

Table C. Experiments of w/o and w/ offset maps in M-LSD-
tiny on Wireframe dataset.

of subparts µ is determined by µ = input size× ε. We con-
duct an experiment to investigate the impact of ratio ε in
Table D. Small ratio ε will split line segments with a shorter
length while producing a greater number of subparts, and
vice versa when using a large ratio ε. As shown in Ta-
ble D, although a small ratio ε produces a large number
of augmented line segments, performance improvement is
small. This is because the center and end points of small
subparts are too close to each other to be distinguished, and
thus become distractions for the model. Using a large ratio
ε also shows small performance improvement because not
only does the amount of augmented line segments decrease,
but also these line segments result to resemble the original
line segment. We observe the proper ratio ε is 0.125, which
produces enough number of augmented line segments with
different lengths and location from the originals.

When applying SoL augmentation, we split line seg-
ments into multiple subparts with overlapping portions with
each other. To see the impact of retaining such overlap in
SoL augmentation, we conduct an experiment as shown in
Table E. W/o overlap shows a smaller performance boost
than that of w/ overlap. Hence we conclude that using a

ε µ # origin # aug # total FH sAP 10 LAP

0.000 - 374884 0 374884 76.2 55.1 55.3
0.050 25.6 374884 851555 1226439 76.2 56.2 56.3
0.100 51.2 374884 251952 626836 76.4 57.2 57.3
0.125 64.0 374884 151804 526688 77.2 58.0 57.9
0.150 76.8 374884 102719 477603 77.0 57.5 57.9
0.200 102.4 374884 47500 422384 76.6 56.8 56.5
0.300 153.6 374884 12123 387007 76.6 56.1 56.7
0.400 204.8 374884 3250 378134 76.4 55.5 56.1
0.500 256.0 374884 170 375054 76.2 55.0 55.7

Table D. Impact of ratio ε in SoL augmentation with M-
LSD-tiny on Wireframe dataset. ε = 0.0 is the baseline with
no SoL augmentation applied. The base length of subpart
µ is computed by µ = input size × ε. ‘# origin’, ‘# aug’,
and ‘# total’ denote the number of original, augmented, and
total line segments.

origin # aug # total FH sAP 10 LAP

baseline 374884 - 374884 76.2 55.1 55.3
w/ overlap 374884 151804 526688 77.2 58.0 57.9
w/o overlap 374884 41101 415985 76.4 56.7 56.7

Table E. Impact of overlapping in SoL augmentation with
M-LSD-tiny on Wireframe dataset. The baseline is not
trained with SoL augmentation. ‘# origin’, ‘# aug’, and ‘#
total’ denote the number of original, augmented, and total
line segments.

γ
Input size 320 Input size 512

FH sAP 10 LAP FH sAP 10 LAP

0.0 75.9 47.1 44.9 76.1 55.1 54.8
2.5 76.2 50.4 48.9 76.5 57.2 57.2
5.0 76.8 51.3 50.1 77.2 58.0 57.9
7.5 76.0 49.0 48.5 76.8 58.5 57.2
10.0 75.0 45.1 45.0 76.8 57.8 56.7
12.5 74.1 43.1 43.2 76.2 56.7 55.8
15.0 74.2 42.7 42.8 75.7 54.0 53.2
20.0 73.6 41.4 42.1 75.1 51.0 50.6

Table F. Impact of matching loss threshold γ with M-LSD-
tiny on Wireframe dataset. γ = 0.0 is the baseline with no
matching loss applied.

larger number of augmented lines and preserving connec-
tivity among subparts with overlaps can yield higher per-
formance than without overlaps.

B.4. Threshold of Matching Loss

In the matching loss, the threshold γ decides whether to
match the predicted and GT line segments. When γ is small,
the matching condition becomes strict, where the predicted
line would be matched only with a highly similar GT line.
When γ is large, the matching condition becomes lenient,

where the predicted line would be easily matched with the
GT line even if it is not similar. We conduct an experiment
to see the impact of the threshold γ in matching loss. As
shown in Table F, when the threshold is high (γ ≥ 10.0), the
matching condition is too broad, and poses a higher chance
of predicted lines matching with non-similar GT lines. This
becomes a distraction and shows performance degradation.
On the other hand, when the threshold is too low (γ = 2.5),
the matching condition is strict and consequently restrains
the effect of the matching loss to be minor due to the small
number of matched lines. We observe that a value around
5.0 is the proper threshold γ, which provides optimal bal-
ance.

B.5. Precision and Recall Curve

We include Precision-Recall (PR) curves of sAP 10 for
L-CNN [6], HAWP [5], TP-LSD [2], and M-LSD (ours).
Figure C shows comparisons of PR curves on Wireframe
and YorkUrban datasets.

References
[1] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding,

Shenghua Gao, and Yi Ma. Learning to parse wireframes
in images of man-made environments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 626–635, 2018. i

[2] Siyu Huang, Fangbo Qin, Pengfei Xiong, Ning Ding, Yijia
He, and Xiao Liu. Tp-lsd: Tri-points based line segment de-
tector. arXiv preprint arXiv:2009.05505, 2020. i, ii, iv

[3] Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, and Jingyi
Yu. Lgnn: A context-aware line segment detector. In Pro-
ceedings of the 28th ACM International Conference on Multi-
media, pages 4364–4372, 2020. iii

[4] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
4510–4520, 2018. i

[5] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia,
Liangpei Zhang, and Philip HS Torr. Holistically-attracted
wireframe parsing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2788–2797, 2020. iii, iv

[6] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe
parsing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 962–971, 2019. i, iii, iv

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

f=0.2
f=0.3
f=0.4
f=0.5

f=0.5

f=0.6

f=0.7

f=0.8

L-CNN(512)
HAWP(512)
TP-Lite(320)
TP-Res34(320)
TP-Res34(512)
M-LSD-tiny(320)
M-LSD-tiny(512)
M-LSD(320)
M-LSD(512)

(a) Wireframe dataset

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ec
isi

on

f=0.2
f=0.3
f=0.4
f=0.5

f=0.5

f=0.6

f=0.7

f=0.8

L-CNN(512)
HAWP(512)
TP-Lite(320)
TP-Res34(320)
TP-Res34(512)
M-LSD-tiny(320)
M-LSD-tiny(512)
M-LSD(320)
M-LSD(512)

(b) YorkUrban dataset

Figure C. Precision-Recall (PR) curves of sAP 10 on Wireframe and YorkUrban datasets. (320) and (512) denote input image
size.

