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Abstract

We present an unsupervised approach that enables us
to convert the speech input of any one individual to an
output set of potentially-infinitely many speakers, i.e., one
can stand in front of a mic and be able to make their fa-
vorite celebrity say the same words. Our approach builds
on simple autoencoders that project out-of-sample data to
the distribution of the training set (motivated by PCA/linear
autoencoders). We use an exemplar autoencoder to learn
the voice and specific style (emotions and ambiance) of a
target speaker. In contrast to existing methods, the proposed
approach can be easily extended to an arbitrarily large num-
ber of speakers in a very little time using only two-three
minutes of audio data from a speaker. We also exhibit the
usefulness of our approach for generating video from au-
dio signals and vice-versa. We suggest the reader to check
out our project webpage for various synthesized examples:
https://dunbar12138.github.io/projectpage/Audiovisual.

1. Introduction

We tackle any-to-many audiovisual translation that en-
ables anyone to generate the voice and image stream of a
known speaker. We focus primarily on audio synthesis, but
also present results for joint audio-video generation. Impor-
tantly, our approach allows the synthesized data to capture
subtle properties of the target speaker including: (1) the
scene-context, such as the ambient appearance and acous-
tics of the environment (e.g., conference room, seminar hall,
or large public conventions); and (2) stylistic prosody of
the particular speech (e.g., a “happy” vs “angry” delivery).
Surprisingly, we show that one can obtain state-of-the-art
results with purely data-driven unsupervised methods based
on exemplar auto-encoders.

This technology enables a wide range of applications in
the entertainment industry. We can now create movies and
documentaries about historical figures in their voice. We can
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Figure 1. Our approach translates the input audio from any speaker
to that of a list of many known speakers. We show an example of
audio translation in the top half. With little modification, our ap-
proach can also generate video alongside audio from an input audio
signal. The second half shows a variety of facial examples created
using our method for audio-video generation. The spoken word is
also presented to show the consistency between the generated lip
motion and the speech content.

generate the sound of old actors who are no longer able to
perform in contemporary film. This work can also be useful
to help those who have lost their voice [19, 27], or provide
sound to the ones who never had [16]. It also enables us to
create interactive lessons, and personalized voice mails to
deliver a voice message. Figure 1 shows example results of
audio-video synthesis using our approach.

Audio translation: Earlier works [7, 28, 42, 45] re-
quire parallel audio data to learn translation between two
people. This setup can convert only one known voice
to another known voice. Recent work like CycleGAN-
VC [22] and StarGan-VC [23] have started to explore learn-
ing from non-parallel audio data. These approaches (includ-
ing [8, 10, 20, 21, 22, 23, 39]) restrict themselves to known
inputs at test time. More recently, Qian et al. [36] proposed
Auto-VC as a zero-shot audio translation system capable of
translating any source speaker to any target speaker. Unlike
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Figure 2. Overview: Our approach builds on simple auto-encoders.
We train person-specific models using in-the-wild web audio. At
test time, a user can input speech from anyone (represented us-
ing mic), and be able to generate the audio output from a list of
many-known speakers (shown in top-row). With the same design
principles, our approach can also generate video alongside audio
from a speech signal.

our approach, AutoVC learns a supervised audio embed-
ding from training data of K individuals labeled with their
identity. We experimentally find that such supervised repre-
sentations struggle to operate on in-the-wild examples that
differ from the training set, and struggle to capture subtle
stylistic and ambient speaker information.

Audio-to-video translation: We also examine audio to
video translation. Prior work [13, 41, 44] has primarily relied
on intermediate human keypoints [6]. In this work, we gen-
erate both audio and videos directly from audio input with a
generic, unsupervised learning-based framework (that does
not make use of supervised intermediates like keypoints).

Approach: Our core approach is remarkably simple:
given a target speaker with style and ambient environment
represented as an audiovisual stream, we learn an autoen-
coder specific to that target stream. Given any input stream,
we translate it into the target simply by passing it through
the target audioencoder. Because we learn autoencoders
specific to each individual target stream, we deem our algo-
rithmic approach as “exemplar autoencoders”. We find best
results by first learning an autoencoder over the target audio
stream, and then learning a video decoder on the learned
audio embeddings. Figure 2 provides an overview of our
approach.

Why does it work? At first glance, the philosophy be-
hind our approach may seem quite strange. Why should a
model trained exclusively on one specific person (and even
one specific style) produce reasonable output when applied
to a very different input? Indeed, the ability of a model
to generalize to different kinds of input remains one of the

out-of-sample data

Figure 3. Linear (exemplar) autoencoders: We provide visual
intuition of why linear autoencoders with sufficiently small bot-
tlenecks should produce reasonable reconstructions (the red dot)
when applied to out-of-sample data (the red star). Our analysis
stems from the well-known result that linear autoencoders can be
learned with principle component analysis (PCA) [1]. The above
PCA visualization demonstrates that weights of the linear autoen-
coder – visualized as eigenvectors drawn in green – capture the
dataset-specific style (properties common to all samples from a par-
ticular speech dataset). On the other hand, bottleneck activations
– visualize as the projected coordinates of each sample – capture
the sample-specific content (properties that capture individual dif-
ferences between samples). It is straightforward to prove that a
linear autocoder is guaranteed to produce the minimium error re-
construction of an out-of-sample datapoint given the style subspace
spanned by the input dataset.

fundamental and elusive goals in all of machine learning.
We provide two intuitions that rely on rather remarkable but
under-appreciated properties of autoencoders and their abil-
ity to generalize. First, in the linear case, it is well known
that linear autoencoders are equivalent to PCA [1]. In this
setting, it is straightforward to prove that linear autoencoders
will produce the best reconstruction of any input datapoint,
in terms of squared error from the subspace spanned by the
training dataset [4] (Figure 3). This makes them particularly
helpful for translation tasks where one wishes to mimic the
style common to a particular target dataset. Secondly, in
the specific case of audio autoencoders, we exploit the fact
that linguistic phonemes tend to cluster quite well (Figure 4).
This suggests that code books learned by autoencoders tend
to capture linguistic content (or words) that generalize across
different speakers and styles. In the supplemental, we pro-
vide a formal proof.

Contributions: (1) We demonstrate exemplar autoen-
coders for any-to-many audio synthesis. Our approach can
be used as an off-the-shelf plug and play tool for target-
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Figure 4. Our insights for a person-specific auto-encoder: We
observe acoustic features (MEL spectrogram) of the words in the
two selected sentences spoken by 100 different speakers in VCTK
dataset [47]. We find that this representation enables us to easily
cluster the words/content irrespective of who said it. Given a
spoken word w by anyone, the closest point in the target speech
space should be the same word but in the target-specific style.

specific voice conversion. A live public demo is available
on our project webpage. (2) We move beyond well-curated
datasets and work with in-the-wild web audios in this pa-
per. (3) Finally, we demonstrate that person-specific audio
embeddings are also useful in audiovisual synthesis.

2. Background

A tremendous interest in audio-video generation for
health-care, quality-of-life improvement, educational, and
entertainment purposes has influenced a wide variety of
work in audio, natural language processing, computer vision,
and graphics literature. In this work, we seek to explore a
standard representation for a user-controllable any-to-many
audio translation that can be easily extended to visual tasks.
Speech Synthesis & Voice Conversion: Earlier works [15,
50] in speech synthesis use text inputs to create Text-to-
Speech (TTS) systems. Sequence-to-sequence (Seq2seq)
structures [43] have led to significant advancements in TTS
systems [30, 40, 48]. Recent works [18] have extended these
models to incorporate multiple speakers. These approaches
enable audio conversion by generating text from the input
via a speech-to-text (STT), and use a TTS for target audio.
Despite enormous progress in building the TTS systems, it
is not trivial to embody perfect emotion and prosody due to
the limited expressiveness of bare text [34]. In this work, we
seek the problem of voice conversion from an input speech
directly to enable a user to capture various nuances.
Audio-to-Audio Conversion: The problem on audio-to-
audio conversion has largely been confined to a one-to-

one translation, be it using a paired [7, 28, 42, 45] or un-
paired [21, 22, 23, 39] data setup. Recent works [35, 36]
have begun to explore any-to-any translation with a goal
to input any arbitrary voice and any target speaker. These
approaches use an autoencoder along with a speaker embed-
ding to generate voice of a target speaker. Our work builds
on their observation. In this work, we observe that represen-
tation of a target speaker via a low-dimensional embedding
is not able to capture stylistic attributes of speech, such as
joyful, or sad, in a press conference, or a telephone. We can,
however, capture these subtle but important aspects via an
exemplar autoencoder that is trained for a specific target. Im-
portantly, a general autoencoder cannot be easily extended to
videos due to a highly unstructured space. Exemplar autoen-
coders, on the other hand, can be easily extended to videos
and other modalities.

Audio-Video Synthesis: There is a growing interest [9, 26,
29] in computer vision community to jointly study audio and
video for better recognition [24], localizing sound [12, 38],
or learning better visual representation [32, 33]. Closely
related to ours is the work [13, 41, 44, 49] on synthesizing
videos (talking-heads) from an audio signal. These works
use human keypoints [6] as an intermediate to generate re-
alistic video outputs. In this work, our goal is to synthesize
both audio and video from an input audio signal without an
intermediate. Our analysis on audio also finds application in
generating audio from videos. We are also extending audio
support to the problems in video retargeting [2], thereby
making it unsupervised audio-video retargeting. These dif-
ferent applications could only be possible due to exemplar
autoencoders.

User-Controllable Content Creation: Our design deci-
sions have chiefly been influenced by user-perspective. The
use of many exemplar auto-encoders provide flexibility to
a user to select the target speaker and a scenario. Not only
this, our system can be easily extended in few minutes to
new examples using only two-three minutes of audio and a
few seconds of video sequence for a new person or scenario.
Our work can also be useful in video editing systems directly
from audio [3, 11]. We release a live public web-demo with
this work that enables anyone to input audio using a mic and
generate audio-video of their favorite person.

3. Exemplar Autoencoders

There is an enormous space of stylistic information rang-
ing from prosody, pitch, emotions, and environment. It
is challenging for a single large model to learn different
things. However, many small models can easily capture
the various nuances. In this work, we seek the problem of
any-to-many voice-conversion via exemplar auto-encoders
(explicitly trained for a speaker and scenario).
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Figure 5. Network Architecture: (a) The voice-conversion network consists of a content encoder, and an audio decoder (denoted as green).
This network serves as a person & attributes-specific auto-encoder at training time, but is able to convert speech from anyone to personalized
audio for the target speaker at inference time. (b) The audio-video synthesis network incorporates a video decoder (denoted as yellow) into
the voice-conversion system. The video decoder also regards the content encoder as its front-end, but takes the unsampled content code as
input due to time alignment. The video architecture is mainly borrowed from StackGAN [37, 51], which synthesizes the video through 2
resolution-based stages.

3.1. Voice Conversion

To motivate our exemplar autoencoder approach, we re-
visit linear autoencoders. It is widely known that linear
autoencoders can be learned with principle component anal-
ysis (PCA) [1]. Specifically, given a dataset Xn×d, one can
learn a k-dimensional linear projection Bd×k that mininizes
reconstruction error as follows:

min
B
||X −XBBT ||2

where XBBT is the best rank-k approximation of original
dataset.

Let S = {xBBT |x ∈ Rd} denotes the subspace given
by the PCA of a dataset. It is also straightforward to show
that given an out-of-sample datapoint, a linear autoencoder
run on data point will produce an output that minimizes the
reconstruction error of the input to subspace S:

x̂BBT = argmin
s∈S
||s− x̂||2

where x̂ is an out-of-sample datapoint. Hence we can view
the autoencoder as a projection of the datapoint x̂ into the
training dataset X .

We can extend PCA to a nonlinear autoencoder by re-
placing matrix B with an encoder function E, and BT with
a decoder function D. In this work, we train an exemplar
autoencoder for a speaker and scenario by minimizing the
reconstruction error:

min
E,D

Error(X,D(E(X)))

The encoder E compresses the content in bottleneck fea-
tures, which can then be reconstructed using decoder D.
Let us define the set S = {D(E(x))|x ∈ Rd} of possible
reconstructions for a given autoencoder. Qian et al. [36]
pointed out that a tight enough bottleneck can extract con-
tent information from speech, which is speaker-independent.
Our content encoder, therefore, should be able to remove
speaker-dependent details and retrieve the content. On the
other hand, our audio decoder should be able to add back
the speaker-dependent style to the content and thus recover
the speech from the content information. In this way, we
can constrain the subspace S to exactly the exemplar speech
space. We conjecture (with empirical verification in Table 3)
the same reprojection property holds for out-of-sample data:

D(E(x̂)) ≈ argmin
s∈S

Error(s, x̂) (1)

where x̂ is an out-of-sample datapoint and “Error” is the re-
construction error used to train the autoencoder. Concretely,
if we set x̂ to be a particular word w spoken by anyone, the
output will (1) be a datapoint from S, and (2) have roughly
the minimum distance from x̂. As depicted in Fig 4, the
spoken words cluster regardless of who said it. Therefore,
the output should be the word w but spoken by the exemplar
speaker. We give a more formal proof in Section 6.
Network Architecture: An auto-encoder consists of two
modules, a content encoder, E, that extracts the content
information from speech Mel-spectrograms, and an audio
decoder, D, that recovers the Mel-spectrograms from the
content information. We transform the speech signal, x, into
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Figure 6. Any-to-Many Audio Conversion: Our approach enables a user to select from a list of speakers. Given an input audio on left, we
show the generated outputs for various public figures and celebrities. The top row shows the waveform of input and the various outputs. We
observe similar pattern for utterances and pauses across different waveforms. Varying amplitude of waveforms arises from the exemplar
model trained for a particular scenario and ambience. We show MEL spectrograms in second row. Similar positions of the main formants
(i.e. maximum values in MEL spectrograms) show the content consistency of voice conversion while variance of other minor formants
shows the characteristics of each speaker.

80-channel speech Mel-spectrograms m using short-time
Fourier Transform [31]. We use a WaveNet vocoder [30] to
convert the generated Mel-spectrograms m̃ back to speech
signal x̃.
Content Encoder: The input to the content encoder is
the 80 × T Mel-spectrogram, which is a 1D 80-channel
signal (shown in Figure 5). This input is feed-forward to
three layers of 1D convolutional layers with a kernel size
of 5, each followed by batch normalization [17] and ReLU
activation [25]. The channel of these convolutions is 512.
The stride is one. There is no time down-sampling up till
this step. The output is then fed into two layers of bidirec-
tional LSTM [14] layers with both the forward and backward
cell dimensions of 32. We then perform a different down-
sampling for the forward and backward paths with a factor of
32 following [36]. The result content embedding is a matrix
with a size of 64× (T/32).
Audio Decoder: The content embedding is up-sampled to
the original time resolution of T . The up-sampled embed-
ding is sequentially input to a 512-channel LSTM layer and
three layers of 512-channel 1D convolutional layers with a
kernel size of 5. Each step accompanies batch normalization
and ReLU activation. Finally, the output is fed into two
1024-channel LSTM layers and a fully connected layer to
project into 80 channels. The projection output is regarded
as the generated Mel-spectrogram m̃.
Optimization & Inference: We do not assume the avail-
ability of any other data. We use only self-reconstruction of
the target speaker’s speech during training. Our loss function
considers the reconstruction of both the Mel-spectrograms
and the audio signal to jointly train the content encoder,
the audio decoder, and the vocoder. The formulation is as
follows:

Erroraudio = E‖x− x̃‖1 + E‖m− m̃‖1 (2)

During inference time, a target speaker is one of our pre-
trained auto-encoders. Importantly, the source speaker can

be anyone. Figure 6 and Figure 7 shows the audio translation
outputs from the proposed approach.
Training Details: Our model is trained at a learning rate of
0.001 and a batch size of 8. To train a model from scratch, it
needs about 30 minutes of the target speaker’s speech data
and around 10k iterations to converge. Although our main
structure is straightforward, the vocoder is usually a large
and complicated network, which needs another 50k itera-
tions to train. However, transfer learning can be beneficial
in reducing the number of iterations and necessary data for
training purposes. When fine-tuning a new speaker’s au-
toencoder from a pre-trained model, we only need about 3
minutes of speech from a new speaker. The entire model,
including the vocoder, converges around 10k iterations.
Mel-spectrogram: The speech data is sampled at 16 kHz.
We clip the training speech into clips of 1.6s in length in
order to stabilize the training process. The Mel-spectrograms
during the training time are 80× 128 in size. However, that
doesn’t restrict the flexibility of our framework since we can
input arbitrarily long speech during the inference time.

3.2. Audio-Video Synthesis

We extend our framework to audio-video synthesis, which
still takes the speech as input, but generates the target
speaker’s talking head video alongside the audio. As ob-
served, there is a high correlation between lip movements
and spoken words. It is, therefore, reasonable to train a
sub-network to infer a “talking-head” video from an audio
input
Network Architecture: We keep the voice-conversion
framework unchanged and enhance it with an additional
audio-to-video decoder. In the voice-conversion network,
we have a content encoder that extracts content embedding
from speech, and an audio decoder that generates audio
output from that embedding. To include video synthesis, we
add a video decoder which also takes the content embedding
as input, but generates video output instead. As shown in
the second part of Figure 5, we then have an audio-to-audio-
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Figure 7. Personalized Audio Outputs in MEL Spectrogram: Human beings are multi-modal. A speech, therefore, is not just about
voice, but also about emotional aspects intervened with ambiance of a place. Exemplar autoencoders can be easily trained to learn such
emotional and ambient aspects from an audio. We show examples of generation with different characteristics such as sad Obama and joyful
Obama, Kennedy in a rally vs. on phone-call. We observe same patterns of MEL spectrograms of both Obama and Kennedy. This similarity
suggests that content is consistent. However, variance of minor formants depict different characterized details in each generation.

video pipeline.
Video Decoder: We borrow architecture of the video de-
coder from [37, 51]. We adapt this image synthesis network
by generating the video frame by frame, as well as replac-
ing the 2D-convolutions with 3D-convolutions to enhance
temporal coherence. The video decoder takes the unsam-
pled content codes as input. This step is used to align the
time resolution with 20-fps videos in our experiments. We
down-sample it with a 1D convolutional layer. This step
helps smooth the adjacent video frames. The output is then
fed into the synthesis network to get the video result ṽ.
Optimization & Inference: We only use the target
speaker’s speech video during training. The loss function
formulation is as follows:

Erroraudiovisual = E‖x− x̃‖1 +E‖m− m̃‖1 +E‖v− ṽ‖1
(3)

We reconstruct the speech as well as infer the talking-
head video from the audio input at test time. Importantly,
we can input any speech and get the audio and video for the
target speaker. Figure 8 shows the audio-video synthesis
results using this formulation.

3.3. Other Applications

Predicting Audio from Video: Exemplar autoencoder pro-
vides an audio code space that can also be used to predict
audio from video as shown Figure 9. We fix the pre-trained
audio autoencoder, and train a video encoder that transforms
the talking-head video to the bottleneck features of corre-
sponding audio. At test time, we use the video encoder
to predict bottleneck features, and predict audio using the
pre-trained audio decoder.
Unsupervised audio-video retargeting: We extend audio
support to video retargeting [2] by training an exemplar
autoencoder for the target identity. During inference, we
translate the input speech to the target.

4. Experiments
We now quantitatively evaluate the proposed method for

any-to-many audio conversion and audio-video synthesis.

VCTK [47] Zero- Extra- SCA (%) MCD
Shot Data (Voice Similarity) (Content Consistency)

StarGAN-VC [23] 7 3 69.5 582.1
VQ-VAE [46] 7 3 69.9 663.4
Chou et al. [8] 7 3 98.9 406.2
Blow [39] 7 3 87.4 444.3

Auto-VC [36] 3 3 98.5 408.8

Ours 3 7 99.6 420.3

Table 1. Objective Evaluation for Audio Translation: We do
objective evaluation using VCTK dataset that provides paired data.
The speaker-classification accuracy (SCA) criterion enables us to
study the naturalness of generated audio samples and similarity to
the target speaker, where higher is better. On the other hand, Mel-
Cepstral distortion (MCD) assesses content preservation, where
lower is better. Our approach achieves competitive performance
to prior state-of-the-art without requiring any extra-data and yet be
zero-shot. We do a more comprehensive human studies in Table 2
using CelebAudio-20 dataset to study the influence of data.

4.1. Audio Translation

Dataset: We use the publicly available VCTK dataset [47]
and introduce a new CelebAudio dataset for in-the-wild au-
dio translation setup to inspire future work in this direction.
VCTK Dataset: VCTK corpus [47] contains 44 hours of
utterances from 109 speakers. Each speaker reads a different
set of sentences, except for two paragraphs. While the con-
version setting is non-parallel, there exists a small amount
of parallel data enables us to conduct objective evaluation.
CelebAudio Dataset: We introduce a new in-the-wild
dataset for audio translation to validate the effectiveness
as well as the robustness of various approaches. This dataset
consists of speeches (average 30 minutes) of various pub-
lic figures collected from YouTube. The content of these
speeches is entirely different from one another, thereby forc-
ing the future methods to be non-parallel and unsupervised.
There are 100 different speeches. We use 20 celebrities for
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Figure 9. Predicting Audio from Video: Our approach used
to predict audio from video. We use a pre-trained Obama auto-
encoder, and regress the video input to the bottleneck features of the
auto-encoder. At test time, we predict the audio bottleneck features
from the input video and use the decoder of audio autoencoder to
generate the corresponding audio.

human-studies, and call that subset CelebAudio-20.
Quantitative Evaluation: We conducted user studies for
evaluation on CelebAudio-20 dataset, and do objective eval-
uation using VCTK dataset.
Speaker Classification Accuracy: We use the speaker-
classification accuracy (SCA) criterion to study voice con-
version for different approaches. We train a speaker classifier
following Serra et al. [39]. We compute the percentage of
times a translation is able to classify correctly. Higher it is,
better it is.
Mel-Cepstral Distance: Following prior works [22, 23],
we use Mel-Cepstral distortion (MCD) to another objective
evaluation criterion to assess content consistency. This met-

ric assesses the distance between the synthesized audio and
ground-truth. Lower it is, better it is.

Human Studies: We extensively conducted human studies
on Amazon Mechanical Turk (AMT) using the generated
audio samples from CelebAudio-20 dataset. The goal of
this study is to (1). assess the quality of generated samples;
(2). the ability of an approach to produce voice similar to
target speaker; and (3). to ensure the consistency of content
during the translation process. We, therefore, conducted
our studies in three different phases. In the first phase, we
presented an audio sample to a user on AMT and asked: How
natural is this recording?. The results of this phase enables
us to study naturalness of generated content. In the next
phase, we presented two audio samples (one real, and another
generated) to a user and asked: Are these two audios from the
same speaker?. We instructed users to pay attention to the
voice only and ignore the speech content. This phase allows
us to study the notion of voice-similarity. Finally, we once
again presented two audio samples (one real, and another
generated) to a user and asked: Are these two people saying
the same thing?. Here, we instructed users to pay attention
to the content and not voice. The results of this phase allows
us to study how much content is preserved during audio
translation, i.e., content-consistency. The users were asked
to rate on a scale of 1-5, i.e., bad to excellent. For all these



CelebAudio-20 Extra Data Naturalness ↑ Voice Similarity ↑ Content Consistency ↑ Normalized Area ↑
(VS) (CC) under VS-CC curve

Auto-VC [36]

off-the-shelf - 1.21± 0.45 1.31± 0.67 1.60± 0.78 0.084

fine-tuned 3 2.35± 0.95 1.97± 1.14 4.28± 0.84 0.337

scratch 7 2.28± 0.94 1.90± 1.01 4.05± 0.96 0.307

Ours 7 2.78± 1.12 3.32± 1.34 4.00± 1.22 0.531

Table 2. Human Studies for Audio: We extensively conducted human studies on Amazon Mechanical Turk. We report Mean Opinion
Score (MOS) to assess (1). naturalness; (2). voice similarity; and (3). content preservation. We also report area under voice-similarity
and content-consistency curve to study audio translation. Higher the better. Auto-VC is an any-to-any audio conversion approach.
We, therefore, use an off-the-shelf model for evaluation. We observe poor performance. We then fine-tuned the existing model using
CelebAudio-20 dataset. We observe significant performance improvement in Auto-VC when restricting it to the same set of examples as
ours. To make it more similar to ours (scratch), we even trained the models from scratch. The performance slightly dropped. Finally, area
under voice similarity vs content consistency curve shows that our approach can generate significantly better audio outputs that sounds more
like a target speaker while still preserving the original content without using extra data. The performance improvement is specifically due to
the exemplar autoencoder approach that enables the use of larger parametric models to capture a set of speaker styles.

criteria: Higher it is, better it is.
We also compute the normalized area under the voice-

similarity and content-consistency curve. This criterion is
useful to study the joint notion of content and style for audio
translation. Given a (source, target) pair, we always have
two simple ways to generate the output : (1) output the
source audio - 0 in voice similarity (VS) but 5 in content
consistency (CC); (2) output a random audio from target
speaker - 5 in VS but 0 in CC. However, good results should
be in between with the source’s content but the target’s voice.
E.g., a (2.5, 2.5) result should be better than either (5, 0) or
(0, 5). The normalized area under VS-CC enables us to study
it effectively. Higher it is, better it is.

We select 10 speakers as target speakers from
CelebAudio-20 and randomly choose 5 utterances from the
other speakers for test. We then produce 5×10 = 50 conver-
sions by converting one test utterance to each of the selected
10 speakers’ voice. There are a total of 150 HITs for testing
naturalness, voice similarity, and content consistency. Each
HIT is assigned to 10 users. All the users of AMT were cho-
sen to have Master Qualification (HIT approval rate more
than 98% for more than 1, 000 HITs). We also restricted the
users to be from United States to ensure English-speaking
audience. Our setup and dataset are available on project page
for public-use.
Baselines: We study the various aspects of our methods
in contrast with several existing voice conversion systems,
such as StarGAN-VC [23], VQ-VAE [46], Blow [39], and
Auto-VC [36]. While possible, StarGAN-VC [23], VQ-
VAE [46], Chou et al. [8], and Blow [39] does not claim
zero-shot voice conversion. Therefore, we train these models
on 20 speakers from VCTK dataset and perform traditional
voice conversion between speakers within the training set.

Shown in Table 1 , we observe that our approach outperforms
these approaches for voice similarity and yet competitive for
content consistency.
Auto-VC [36]: Auto-VC claims zero-shot conversion.
Shown in Table 1, both the approaches achieve competi-
tive performance for both S.C.A and M.C.D. We, therefore,
extensively study two methods via human studies on AMT
in Table 2. Since Auto-VC claims any-to-any audio con-
version, we first use an off-the-shelf model1 for evaluation.
We observe poor performance, both quantitatively and qual-
itatively. We then fine-tuned the existing model using the
audio data from 20 speakers, thereby making it any-to-many
audio translation approach (similar to ours). We observe
significant performance improvement in Auto-VC when re-
stricting it to the same set of examples as ours. To make
it more similar to ours, we even trained the models from
scratch using exactly same data and settings as ours. The
performance on all three criterion dropped with lesser data.
On the other hand, our approach can generate significantly
better audio outputs that sounds more like a target speaker
while still preserving the original content. Importantly, our
models are trained from scratch and does not require hun-
dreds of hours of speech data for training.

4.2. Audio-Video Synthesis

Baseline: We adopt Nearest Neighbour as our baseline for
audio-to-video synthesis. Given a corpus of training videos
with audio, we find the closest audio frame in the training
data for an input audio signal. We use the corresponding
video frame as nearest-neighbor result.

We select talking-head videos from our CelebAudio-20

1Auto-VC inputs a reference audio (roughly 20 seconds long) to obtain
a speaker embedding.
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Figure 10. We visualize bottleneck features learned by exemplar
audio autoencoders for different speakers with nonlinear multi-
dimensional scaling (MDS) [5]. We represent a particular word by
the cosine similarity of its bottleneck code (from two different en-
coders) to other words uttered by the same speaker. We then apply
T-SNE on this similarity representation, which demonstrates that
similar words cluster together, regardless of the speaker. This sug-
gests that person-specific exemplar autoencoders learn codebooks
that can generalize across individuals.

and VoxCeleb[9] dataset for training, and design 2 tasks for
evaluation: (1) same-speaker: input audio and output video
are from the same speaker; (2) cross-speaker: input audio
and output video are from different speakers. A human sub-
ject is shown the output of baseline and our method, and is
asked to choose one with better visual quality. 97% of times
human subjects picked the outputs from our approach. We
observe the temporal consistency in the outputs as primary
reason for better approval rate of our method.

5. Discussion
In this paper, we propose a plug-and-play system of any-

to-many voice conversion based on exemplar autoencoders.
Our approach takes advantage of the structured audio space,
and is the first to employ projections of out-of-sample data
in style transfer problems. Our approach also moves beyond
well-curated datasets, and proves effectiveness on in-the-
wild web audios. Finally, we take the lead to consider the
problem of audio-to-video generation (without any interme-
diates) that has not got much attention so far, and find our
exemplar autoencoders also useful in audio-video synthesis.

6. Formal Proof
Speech contains two types of information: (i) speaker

information that describes the speaker-specific voice; (ii)
content information that refers to the content being said,

which is speaker-independent. It is natural to assume that
speech is generated by the following process. First, a speaker
identity s is drawn from the speaker space S. Then a content
code w is drawn from the content space W . Finally, given
the speaker identity s and the content code w, x = f(s, w)
denotes the speech of the content w spoken by speaker s,
where f is the generating function of speech. Then the
task of target-specific voice conversion can be described
as: Given a specific target speaker starget, find a function
hconversion such that ∀w ∈W, ∀s ∈ S:

hconversion(f(s, w)) = f(starget, w). (4)

Qian et al. [36] pointed that given several assumptions, a
tight enough bottleneck can extract content information from
speech, which is speaker-independent. In our framework,
we only have one specific speaker during the training time.
As a result, redundant information about the specific speaker
is shared among all the training data. Similar to [36], a tight
enough bottleneck is found to extract the information that
is the least to distinguish one word from another in one’s
speech. In other words, when given input from the specific
speaker, our content encoder is able to remove any speaker-
dependent information and extract the content. On the other
hand, our audio decoder adds back the speaker-dependent
style to the content and thus recovers the speech from the
content information. We can formulate these properties as
follow:

∀x ∈ {f(s1, w) : w ∈W}, E(f(s1, w)) = w (5)

∀w ∈W,D(w) = f(s1, w) (6)

where s1 denotes the specific speaker our autoencoder
is trained on. Without loss of generality, here we redefine
the content space W as the bottleneck feature space of s1
autoencoder. Although the bottleneck feature space varies
from one exemplar to another, we assume the training data
contains roughly the whole complexity of different words
and thus each trained space has roughly the same amount of
information as the real content space.

Now that we have a content embedding space spanned by
the bottleneck features, and a content encoder that maps the
specific speaker’s speech to this content embedding space,
we present an important characteristic of the speech space
and explain why it enables the exemplar autoencoder to
conduct voice conversion.
Structured Speech Space: In human acoustics, one uses
different shapes of his vocal tract2 to pronounce different
words with his same voice. Interestingly, different people
use similar, or ideally the same, shapes of vocal tract to

2The vocal tract is the cavity in human beings where the sound produced
at the sound source is filtered. The shape of the vocal tract is mainly
determined by the positions and shapes of the tongue, throat and mouth.



pronounce the same words. For this reason, in the speech
space we can find a built-in structure that the acoustic fea-
tures of the same words by different speakers are very close
(also shown in Figure 4). This property is crucial to the
generalization of the content encoder.

diam({f(s, w) : s ∈ S}) ≤ ε (7)

where diam(A) means the least upper bound of the distance
between every 2 points in set A.

Since the same words by different speakers are well clus-
tered, a function that encodes one speaker’s speech into
content can also extract correct content information from
other speakers. Formally, if the content encoder, trained on
one specific speaker s1, is K-lipschitz continuous, then the
error of the result by inputting other’s speech can be bounded
as:

‖E(f(s, w))−E(f(s1, w))‖ ≤ Kε,∀s ∈ S, ∀w ∈W (8)

In Eq.8, given any word w, E(f(s1, w)) = w is the
content information extracted from w spoken by the target
speaker s1. E(f(s, w)) is the result if we input the same
word spoken by others into the content encoder. Eq.8 guar-
antees that the content information extracted from other
speakers should be very close to the ground-truth if Kε is
very small (function E is smooth enough). That means our
content encoder, though trained only on speaker s1, can be
applied to any other speaker and get almost correct results
(observation from Figure 4 and Figure 10):

E(f(s, w)) ≈ w,∀s ∈ S, ∀w ∈W (9)

In this case, the content codes from other speakers can be
further fed into the s1-specific decoder and converted to s1’s
voice:

D(E(f(s, w))) ≈ f(s1, w),∀s ∈ S, ∀w ∈W (10)
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