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Abstract— We present a framework for building interactive, real-
time, natural language-instructable robots in the real world, and we
open source related assets (dataset, environment, benchmark, and
policies). Trained with behavioral cloning on a dataset of hundreds
of thousands of language-annotated trajectories, a produced policy
can proficiently execute an order of magnitude more commands
than previous works: specifically we estimate a 93.5% success rate
on a set of 87,000 unique natural language strings specifying raw
end-to-end visuo-linguo-motor skills in the real world. We find that
the same policy is capable of being guided by a human via real-time
language to address a wide range of precise long-horizon rearrange-
ment goals, e.g. “make a smiley face out of blocks”. The dataset
we release comprises nearly 600,000 language-labeled trajectories,
an order of magnitude larger than prior available datasets. We
hope the demonstrated results and associated assets enable further
advancement of helpful, capable, natural-language-interactable
robots. See videos at https://interactive-language.github.io.

I. INTRODUCTION

The goal of building a robot that can follow a diverse array of
natural language instructions has been a longstanding goal of AI
research, since at least the SHRDLU [1] experiments starting in the
late 1960s. While recent research on this topic has been abundant
[2]–[9], few efforts have actually produced a robot that (i) exists in
the real world, and (ii) can capably respond to a large number of
rich, diverse language commands. We expect that future research
will continue to produce larger and more diverse sets of behaviors,
either by sequencing raw skills together [10] or growing the num-
ber of raw skills themselves [11]. However, we are also interested
in (iii), the capacity to follow interactive language commands, by
which we mean that the robot reacts capably and in-the-moment
to new natural language instructions provided during ongoing task
execution. Although we might expect such a robot to be possible
given current methods, natural language-interactable robots are
frequently slow in practice, and often use blocking parameterized
skills [7], [10] or simplifying self-resetting behaviors [9], [12] that
prohibit this kind of live, real-time interaction.

In this paper, we demonstrate a framework for producing real-
world, real-time-interactable, natural-language-instructable robots
(Fig. 1, a) that by certain metrics operate at an order of magnitude
larger scale than prior works. To accelerate further research in
this setting, we accordingly provide our associated recipe, dataset,
models, hardware environment description, simulated analogue
environment, and a research benchmark for language conditioned
manipulation (Fig. 1, c). In terms of scale, the produced robot
policies can address 87,000 unique commands at an estimated
93.5% success rate (Fig. 1, b), with continuous 5Hz visuolinguo-
motor control, and are capable of chaining raw skills to reach
hundreds of thousands of long horizon goals in its environment.

`

Fig. 1: Real-time language, diverse robot behaviors. a) Over the
course of 5 minutes, a human guides a robot to precisely rearrange
objects a table into a desired shape, with real-time natural language
as the only mechanism for specifying behaviors. b) We demonstrate
a single robot that can capably address 87,000 behaviors specified
entirely in natural language. c) We release Language-Table, a suite of
human-collected datasets and a multi-task continuous control benchmark
for open vocabulary visuolinguomotor learning.

This robot exists in an environment which we designed to
provide a tractable yet difficult level of challenge (perception from
pixels, feedback-rich control, multiple objects, ambiguous natural
language instructions). We cast real time language guidance as a
large scale imitation learning problem [11], [13], [14] (Figure 2).
The learning algorithm recipe itself is intentionally simple, and
instead the complexity of this effort was primarily in the data
effort itself, for which we detail insights and techniques. We hope
the dataset and benchmark may catalyze further work which may
improve on our demonstrated sample complexity and performance.

Beyond demonstrating diverse short-horizon skills, we also use
these capabilities to study the nonobvious benefits of a real-time
language robot. For one, we show that through occasional human
natural-language feedback, the robot can accomplish complex
long-horizon rearrangements such as “put the blocks into a smiley
face with green eyes” that require multiple minutes of precise
coordinated control (Figure 5, left). We also find that real-time
language competency unlocks new capabilities like simultaneous,
multi-robot instruction – in which a single human can guide mul-
tiple real-time robots through long-horizon tasks (Figure 5, right).

Contributions. Our primary contributions include (i) Interac-
tive Language, a framework for producing real world robots that
can capably receive interactive open vocabulary language condi-
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Fig. 2: Interactive Language: a large scale robot imitation learning framework for real-time language. Stage 1: First, high throughput robot
data collection with multiple operators. Post-collection, relabel robot video and actions into language conditioned demonstrations using event-selectable
hindsight relabeling. Stage 2: do simple language conditioned behavioral cloning. Stage 3: Human guides a single learned policy in real-time using
natural language to accomplish hundreds of thousands of goals.

tioning in real-time1 while performing continuous-control visuo-
motor manipulation. Interactive Language combines existing tech-
niques, together with novel components like event-selectable hind-
sight relabeling, to define a simple and scalable recipe for learning
large repertoires of natural-language-conditionable skills. (ii) We
use this system to present and study the setting of interactive
language guidance, showing that the combination of real-time lan-
guage feedback and a low-level language-conditionable policy can
address long-horizon manipulation goal states in a tabletop rear-
rangement setting. (iii) To facilitate future research in this domain,
we release Language-Table, a dataset and simulated multitask imi-
tation learning benchmark. With nearly 600,000 diverse demonstra-
tions across simulation and the real world, Language-Table is, to
our knowledge, the largest natural language conditioned imitation
learning dataset of its kind by an order of magnitude (Table III).

II. RELATED WORK

From single-task imitation to multi-task and language con-
ditioning. Imitation learning (see review [14]), the perspective
we adopt in this work, provides a simple and stable way for
robots to acquire behaviors from human expert demonstrations.
While historically imitation learning has been applied to individual
tasks from instrumented state [16]–[19], the desire for more
general purpose robots has motivated study into policies capable
of learning multiple skills at once from more generic on-board
sensory observations like RGB pixels [20]–[22]. To condition
multiple learned behaviors, prior setups have relied on discrete
one-hot task identifiers [23], which can be difficult to scale to
many tasks, or goal images [24]–[26], which can be impractical
to provide in real world scenarios. Alternatively, a long history of

1For the scope of this paper, by real-time we mean new language conditioning
can occur in the “blink of an eye”, i.e. approximately 3 Hz [15] or greater.

prior work in broader AI research [1]–[6], [11] has sought a more
convenient form of specification in the form of natural language
conditioning (survey [27]), with some results on physical robots
[7]–[9], [12]. This focus has yielded many varied and impressive
approaches to tackling the grounding problem [1], [28]—learning
to relate language to one’s embodied observations and actions.
However, in both simulation and the real world, instruction-
following robots rarely leverage the full capabilities of contin-
uous control, instead employing simplified, parameterized action
spaces [6], [7], [29], [30]. Furthermore, once provided, language
conditioning is typically presumed fixed over robot execution [8]–
[10], [12], with little opportunity for subsequent interaction by
the instructor. Our work, in contrast, studies the first combination,
to our knowledge, of real-time natural language guidance of a
physical robot engaged in continuous visuomotor manipulation.

Interactively guiding robot behavior with language. Our
work exists in a larger setting of humans modifying or correcting
the behavior of autonomous agents [31], historically addressed
in forms like teleoperation [32]–[34], kinesthetic teaching [35],
or sparse human preference feedback [36]. Certain works have
studied language as a means of correction, but typically do so
under simplifying assumptions that we relax in the current work.
For example, [37], [38], [39], and [40] study language corrections,
but under the respective simplifying assumptions of hand-defined
optimization for grounding, undivided operator attention, paired
iterative corrections at training time, and presumed access to
motion planners and task cost functions. Additionally, to the
best of our knowledge, none of these works support multiple-Hz
iterative specification over the course of execution. Closest to our
approach is [11] and [30], which study language-interactive agents
learned via imitation, but entirely in simulation and under varying
degrees of actuation realism. In contrast to these prior studies,



our work learns real-time natural language policies end-to-end
from RGB pixels to continuous control outputs with a simple
behavioral cloning objective [13], and applies them to contact-rich
real-world manipulation tasks.

Scaling real world imitation learning. One of the largest
bottlenecks in robot imitation is often simply the amount of diverse
robot data made available to learning [9], [22], [23]. Many multi-
task imitation learning frameworks determine the set of tasks to be
learned upfront [7], [9], [10], [12], [14]. While this may simplify
collection conceptually, it also often requires that reset protocols
and success criteria be designed manually for each behavior. An-
other challenge particular to large scale multi-operator collections
is that typically not all data can be considered optimal [41], [42],
often requiring manual post-hoc success filtering [9], [10]. These
per-task manual efforts have historically been difficult to scale to a
large and diverse task setting, like the one studied in this work. We
sidestep both these scaling concerns by instead having operators
continuously teleoperate long-horizon behaviors, with no require-
ments on low level task segmentation or resets [11], [25], [43] and
then leverage after-the-fact crowdsourced language annotation [8],
[11]. In contrast to the “random window” relabeling explored in
[11], we give annotators precise control over the start and end of be-
haviors they are annotating, which we find in practice better aligns
relabeled training data to the actual commands given at test time.

III. PROBLEM SETUP

Our goal is to train a conditional policy, πθ(a|s, l),
parameterized by θ, which maps from observations s ∈ S
and human-provided language l∈L to actions a∈A on a physical
robot. In particular we are interested in open-vocabulary language-
conditioned visuomotor policies, in which the observation space
contains high-dimensional RGB images, e.g. S = RH×W×C,
and where language conditioning L has no predefined template,
grammar, or vocabulary. We are also particularly interested in
allowing humans to interject new language L at any time, at the
natural rate of the visuo-linguo-motor policy. Each commanded
l encodes a distribution of achievable goals gshort ∈ Gshort in
the environment. Note that humans may generate a new language
instruction l based on their own perception of the environment,
sH ∈SH , which may differ substantially from the robot’s s∈S
(e.g. due to viewpoint, self-occlusion, limited observational
memory, etc.). As in prior works [11], we treat natural-language-
conditioned visuomotor skill learning as a contextual imitation
learning problem [14]. As such, we acquire an offline dataset
D containing pairs of valid demonstrations and the conditions
they resolve {(τ,l)i}Di=0. Each τi is a variable-length trajectory of
robot observations and actions τi=[(s0,a0),(s1,a1),...,(sT )], and
each li describes the full trajectory as a second-person command.

IV. INTERACTIVE LANGUAGE: METHODS AND ANALYSIS

First we introduce Interactive Language, summarized in Fig-
ure 2, a simple and generically applicable imitation learning frame-
work for training real-time natural-language-interactable robots. In-
teractive Language combines a scalable method for collecting var-
ied, real world language-conditioned demonstration datasets, with
straightforward language conditioned behavioral cloning (LCBC).

Has contact
Object/location
-directed
instructions

Compound
instructions

Random window [8], [11] 86% 47% 16%
Event-selectable (ours) 91% 83% < 1%
Real test instructions 89% 84% < 1%

TABLE I: Which relabeling strategy aligns best with test-time
language?

Real-World Data Collection
Total robots 4
Total teleoperators 10
Total episodes 16.4k
Average episode length (minutes) 9.9
Total hours of collect time 2.7k
Hindsight Relabeling
Total crowdsourced annotators 64
Total relabeled demonstrations obtained 299k
Total unique relabeled instructions 87k
Average relabeled demonstration length (seconds) 5.8
Total number of hours of relabeled demonstrations obtained 488
Total instruction hours / Collect hours 18.06%

TABLE II: Statistics: real-world collection and relabeling. This data
snapshot went into training and is a subset of the full Language-Table data.

A. Data Collection

High throughput raw data collection. Interactive Language
adopts purposefully minimal collection assumptions to maximize
the flow of human demonstrated behavior to learning. Operators
teleoperate a variety of long-horizon behaviors constantly,
without low-level task definition, segmentation, or episodic resets.
This strategy shares assumptions with “play” collection [25],
but additionally guides collect towards temporally extended
low-entropy states like lines, shapes, and complex arrangements.
Each collect episode lasts ∼10 minutes before a break, and is
guided by multiple randomly chosen long-horizon prompts p∈P
(e.g. “make a square shape out of the blocks”), drawn from the
set of target long-horizon goals, which teleoperators are free to
follow or ignore. We do not assume all of the data collected for
each prompt p is optimal (each p is discarded after collecting).
In practice, our collection includes many inevitable edge cases
that might otherwise require data cleaning, e.g. solving for the
wrong p or knocking blocks off table. We log all of these cases
and incorporate them later on as training data. Concretely, this
collect procedure yields a semi-structured, optimality-agnostic
collection Dcollect = {τi}Dcollect

i=0 . The purpose of Dcollect is to
provide a sufficiently diverse basis for crowdsourced hindsight
language relabeling [8], [11], described next.

Event-selectable hindsight relabeling. We convert Dcollect

into natural language conditioned demonstrations Dtraining =

{(τ,l)i}
Dtraining

i=0 , using a new variant of hindsight language relabel-
ing [11] we call “Event-Selectable Hindsight Relabeling” (Fig.2,
left). Previous “random window” relabeling systems [8], [11] have
at least two drawbacks: each random window is not guaranteed
to contain “usefully describable” actions, and random window
lengths must be determined upfront as a sensitive hyperparameter.
We instead ask annotators to watch the full collect video, then
findK coherent behaviors (K=24 in our case). Annotators have
the ability to mark the start and end frame of each behavior, and
are asked to phrase their text descriptions as natural language
commands. In Table I, we compare event-selectable relabeling to



prior “random window” relabeling on a subset of our training data.
We find that while both strategies tend to describe contact-rich
behaviors, our analysis suggests event-selectable relabeling yields
more well-matched data: fewer complex compound instructions,
and more compositionally directed instructions.

Throughput and bottleneck analysis. Here, we share some
insights gained from scaling our robot collect and hindsight
relabeling operation. See statistics on our collected data in
Table II. We find, perhaps surprisingly, that the main bottleneck
in our data operation is not robot teleoperation but rather the
crowdsourced language annotation that follows, with 18.06%
of the raw data having undergone annotation prior to model
training (5.5x as much unlabeled collected data as annotated
data). This is true even though there are 16x as many hindsight
annotators as robots. Bottlenecks like this may be addressed by
exploiting language-free co-training [11], or by simply continuing
to horizontally scale crowdsourced annotators.

xN

xN

"push the red circle 
to the blue 
triangle"

mlp

mlp

cross-attention

self-attention
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Fig. 3: LAVA: our transformer-based architecture for language
conditioned visuomotor control.

B. Policy Learning

Transformer-based agent architecture. In Figure 3, we de-
scribe our transformer-based [44] neural network policy architec-
ture, mapping from video and text to continuous actions, which
we refer to as LAVA (“Language Attends to Vision to Act”).
Each training example consists of (s,a,l)i ∼ Dtraining, where
s∈Rseqlen×640×320×3 is RGB observation history. We ConvNet-
process each frame in the video s to obtain multi-scale visual
features (features at multiple resolutions). The first two layers
are Imagenet-pretrained ResNet [45], [46]. l is embedded using
a pretrained CLIP text encoder [47], which is finetuned on our in-
domain data, but remains fixed during policy training. We fuse vi-
sual and lingual information using a “Language-Attends-to-Vision”

# # Physical
Dataset Traj. (k) Unique (k) Actions Real Available

Episodic Demonstrations
BC-Z [9] 25 0.1 3 3 3
SayCan [10] 68 0.5 3 3 7
Playhouse [30] 1,097 779 7 7 7

Hindsight Language Labeling
BLOCKS [50], [51] 30 n/r 7 7 3
LangLFP [11] 10 n/r 3 7 7
LOREL [8], [52] 6 1.7 3 3 3
CALVIN [53] 20 0.4 3 7 3
Language-Table 594 198 3 3 3

(real+sim) (413+181) (119+79)

TABLE III: Comparison of human-guided, language-labeled
trajectory datasets. Highlighted are the number of language-labeled
trajectories and number of unique language labels (k=thousands) in real
and sim, along with whether the data uses physical actions, real-world
data, and if it is publicly available. n/r means not reported.

transformer block, which performs cross-attention with language
acting as query, and flattened multi-scale visual tokens acting as
keys and values. This operation is applied to each image, and the
sequence output is fed to a temporal prenorm [48] transformer,
which is average pooled and fed to a deep residual multi-layer
perceptron (MLP), outputting the predicted next action a.

Training. We train our policies with a standard supervised
language conditioned behavioral cloning (LCBC) objective. While
we expect that more complex loss functions or policy classes may
acquire even better results, all the policies we present were trained
as deterministic policies with a simple mean squared error loss:
min
θ

∑
(s,a,l)∼Dtraining

||a−πθ(s, l)||22, e.g. as in [9], [49].

V. LANGUAGE-TABLE: DATASETS AND ENVIRONMENT

To facilitate further research in language-conditioned
visuomotor learning, we release Language-Table, which consists
of (i) a suite of datasets and (ii) a simulated multi-task language
conditioned control environment and benchmark.

Dataset. Language-Table provides our human-relabeled
Dtraining and the underlying human-teleoperatedDcollect, both in
simulation and the real world. TheDtraining real and sim datasets
are highlighted in Table III – an order of magnitude larger than
comparable, previously-available datasets.

Environment and Benchmark. Language-Table’s simulated
environment resembles our real-world tabletop manipulation
scenario, which consists of an xArm6 robot, constrained to move
in a 2D plane with a cylindrical end-effector as in [54], in front
of a smooth wooden board with a fixed set of 8 plastic blocks,
comprising 4 colors and 6 shapes (Fig. 5). In both simulation and
real collection, we use high-rate human teleoperation with a 3rd
person view (line-of-sight in real). Actions are 2D delta Cartesian
setpoints, from the previous setpoint to the new one. We batch col-
lected training and inference data to 5hz observations and actions.

The Language-Table benchmark computes automated metrics
for 5 task families, with 696 unique task variations. In addition
to thresholded task success, a metric we find that better correlates
with human-preferred performance is Success weighted by Path
Length (SPL) [55], which trades off success rate against the
efficiency of the path it took to succeed. We note that policy
hyperparameters ordered by SPL in Language-Table have thus far



Short-Horizon Instruction Success
(87k more...) ...
push the blue triangle to the top left corner 80.0%
separate the red star and the red circle 100.0%
nudge the yellow heart a bit right 80.0%
place the red star above the blue cube 90.0%
point your arm at the blue triangle 100%
push the group of blocks left a bit 100%
Average over 87k, CI 95% 93.50% +- 3.42%

TABLE IV: Real world: Evaluating a wide variety of short-horizon
language conditionable skills. 95% Confidence interval on the average
success of our single policy over 87k (Table II) unique natural language
instructions.

been ordered similarly in real-world performance. This provides
a degree of validation for the simulated benchmark’s relevancy
to real world robotics.

VI. POLICY RESULTS AND DISCUSSION

We present experiments aimed at answering the following
questions: (1) How capably can the system follow a wide variety
of short-horizon natural language conditioned commands? (2)
How capably can these skills be composed through interactive
language guiding to accomplish a wide variety of multi-step
long-horizon compositional rearrangements? (3) What is the
benefit of being able to provide interactive language feedback,
compared to open-loop language plans? (4) Can one operator
simultaneously guide several robots equipped with our policy? (5)
Ablations: How does our transformer-based policy architecture
compare to an existing visuo-linguo-motor baseline? How does
our presented approach scale with varying amounts of data?

A. Real world: diverse short-horizon language conditionable skills

Ideally, we would be able to evaluate an Interactive Language
policy on any short-horizon command a real human might give it,
which is intractable in general. As a surrogate, we estimate a 95%
confidence interval on average success over the 87,588 unique
language instructions collected via crowdsourcing (20 randomly
selected instructions, 10 trials each) available at time of analysis
(Table II). To succeed, policies must ground object properties and
compositional spatial concepts (e.g. “...top right side of the yellow
hexagon” vs “top right side of the board”), and resolve difficult
ambiguities (e.g. “nudge the cube left a bit”). We report results
in Table IV, with examples in Figure 4. We see that Interactive
Language obtains a 93.5% expected average success rate over all
87,588 instructions, 95% CI [90.08%,96.92%]. To our knowledge,
this is the largest set of language conditioned behaviors a real-
world policy has been shown to capably address, demonstrating a
solid base capacity for language conditioned visuomotor control.

B. Real world: long-horizon real-time language guidance

Long horizon goal reaching. Next we aim to see whether
humans can guide Interactive Language policies through a wide
range of multi-step compositional rearrangements. We define
over 100,000 language-distinct compositional goal states on our
tabletop from 11 high level families (e.g. make high-level shapes,
sort by color, place all blocks in specific locations, arrange into
lines, etc.), then sample 20 uniformly from all 11. See Figure 5 for
examples of different goal states. We evaluate each long horizon

Fig. 4: Learning a wide variety of short-horizon open vocabulary
behaviors. Interactive Language rollouts on a sample of the >87,000
crowdsourced natural language instructions we evaluate.

goal 3 times from randomly reset board states, yielding 60 total
evaluations of a single policy. We report success rates in Table V.
We see that our policy obtains an 85.0% expected average success
rate on this diverse set of goals, 95% CI [69.35%,100.00%].
These results are best appreciated by watching the supplementary
videos. We note that reaching precise long horizon goals in the real
world for even a single goal is a notoriously difficult problem for
learning robots [43]. Even though our policies do not do so fully
autonomously, we believe the fact that a real robot can address
such a large and varied set of goals with real-time language
feedback suggests a synergistic mode of future operation (at
least until large improvements are made in the fully autonomous
setting): robots learn a set of general-purpose low-level skills, and
humans put them together in a familiar way using natural language,
interrupting at any time to offer situation-specific corrections.

Open-loop vs real-time language feedback. Next, we attempt
to quantify the benefit of being able to provide real-time language
feedback, over the more common “open-loop” evaluation setting
where the sequence of subgoals is decided up front [10]–[12], [43].
We hypothesize that many of the tasks in our environment might
require several rounds of iterative and interactive specification,
due to the stochastic nature of single-point-of-contact pushing.
We perform the same evaluation as in the previous section, but
the human operator commits up front to the set and order of
commands they will provide. We present results for this ablation
in Table V, finding that performance deteriorates from 85% to
25% when real-time language is removed. This indicates that
for contact-rich tasks like the ones studied in this work, success
depends heavily on sufficient real-time feedback—not only for the
low-level policy, but also for the agent providing it instructions.

Multi-robot control via spoken language. Finally, we
investigate a new competency afforded by Interactive Language:
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Fig. 5: Capabilities explored with Interactive Language. Left: Long-horizon language guidance allows a human to guide a single policy to achieve
a wide variety of long-horizon precise rearrangement goals. Language is used to interject new subgoals on-the-fly, to offer real-time corrections of unsafe
or undesirable behavior (e.g. “move the block away from the edge”), or to constrain the motions of the agent (e.g. “slide the triangle slowly left”). We
evaluate policies on 11 goal families spanning hundreds of thousands of tasks. Right: Simultaneous multi-robot control. Real time language allows
a single human operator to guide multiple robots at once through the same long-horizon task, without requiring undivided attention to any one robot.

Language interaction
style

Average number of
instructions provided

Long-horizon
success %

Open-loop 6.5 25.0% +- 18.98%
Real-time (ours) 15 85.0% +- 15.65%

TABLE V: Real world: long-horizon goal reaching via real-time
human language guidance. 95% Confidence interval on the average
success of our single real-time policy over 11 families and 100k possible
goals, as compared to an open-loop baseline.
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Fig. 6: Ablations in simulation. We compare our LAVA transformer
architecture to a baseline ResNet-18 FiLM model from [9], as well
as ablate the amount of data provided to training. We find the average
success-weighted path length (SPL) to be a better indicator of qualitative
performance than (unweighted) average success.

simultaneous multi-robot control. In Figure 5, see video as well,
we see that four robots equipped with Interactive Language
policies can be guided at the same time by one operator. This
language guided multi-robot control is, as far as we know, a
capability not yet demonstrated in the literature. Importantly, due to
short-horizon skill competency, this shows that language can relax
the assumption of undivided operator attention, which is common
for prior ways of correcting online robot behavior [32], [34], [56].

C. Simulation: Architecture and data ablation

In Figure 6, we present results in simulation ablating (i)
our transformer-based policy architecture LAVA against the
FiLM-conditioned ResNet architecture in [9] and (ii) the amount

of data provided to policy training. We report average success and
SPL [55] over the multi-task benchmark in Language-Table (see
“Environment and Benchmark” in Section V), and all numbers
are reported with confidence intervals over three seeded training
runs. We see the presented architecture is indeed responsible for
significant gains over prior work in SPL, a path-length-aware
success metric we find correlates best with real world quality in
our setup. When sweeping the amount of training data, we find
that policy performance is seeing diminishing returns, but not yet
plateauing across each doubling of data. While perhaps surprising
given the scale of our collect, we believe that this result highlights
the environment’s complexity as well as the difficulty of open
vocabulary visuomotor learning.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have presented and analyzed the Interactive Language
framework and we provide a number of associated assets, notably
the Language-Table dataset and environment. We believe the scale
of the dataset assets, the recipe used to produce them, the scale of
the demonstrated policy diversity, and the exploration of new capa-
bilities, each offer benefit to the research community in further ad-
vancing capable, realtime-conditionable visuo-linguo-motor robots.
While simple and scalable, our approach does have a number of
limitations. The open problems in broader human-robot collabora-
tion are numerous [57], including intention detection, non-verbal
communication, physically collaborative task completion, etc. Our
approach addresses only the setting of real-time language-guided
manipulation. Future work may investigate applying Interactive
Language to important domains like real-time assistive robots,
which may benefit from more capable natural language interfaces
[37]. We hope that our work can be useful as a basis for future re-
search in capable, helpful robots with visuo-linguo-motor control.
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APPENDIX

A. Additional real-world experiment details

Our real-world experiments use UFACTORY xArm6 robot
arms with all state logged at 100 Hz. Observations are recorded
from an Intel RealSense D415 camera, using RGB-only images at
640x360 resolution, logged at 30 Hz, which we resize to 320x180
before handing to robot policies. Policies use 320x180 single-
camera RGB-only images, with no other observations besides
language. The asynchronous observations and actions are batched
to psuedo-synchronous 5 Hz pairs for training the policy, with
camera latency (characterized at roughly 80 ms) accounted for
when forming psuedo-synchronous training pairs. The cylindrical
end-effector is made from a 6 inch long plastic PVC pipe sourced
from McMaster-Carr (9173K515). The work surface is 24 x 18
inch smooth wood cutting board. The manipulated objects are
from the Play22 Baby Blocks Shape Sorter toy kit (Play22). The
6DOF robot is constrained to move in a 2D plane above the table.

B. Language-Table: Datasets

Here we outline the various datasets available in Language-
Table, across simulation and real.

1) Simulation-Raw-Collect: This dataset consists of 6
teleoperators teleoperating a robot in simulation, following long
horizon prompts. See representative prompts in Table VIII. 8318
episodes were collected with an average length of 36.8 ±15
seconds, yielding a total of 85.5 hours of raw data.

2) Simulation-Relabeled: The Simulation-Raw-Collect data
was sent to 64 crowdsourced annotators, who used the interface
described in Appendix E to generate 181,020 hindsight relabeled
trajectories, with 78,623 unique instructions. See representative
instructions in Table VII.

3) Real-World-Raw-Collect: This dataset consists of 11
teleoperators alternating over four robots, following long horizon
prompts. See representative prompts in Table VIII. 23498 total
episodes were collected with an average length of 9.9 minutes
±5.6 seconds, yielding a total of 3865 hours of raw data. Note
that 16417 episodes totaling 2701 hours went into the actual
training of policies, and the remaining was collected after training
the demonstrated policy, but before releasing the dataset.

4) Real-World-Relabeled: The Real-World-Raw-Collect data
was sent to 64 crowdsourced annotators, who used the interface
described in Appendix E to generate 414,798 total hindsight
relabeled trajectories, with 119,959 unique instructions. See rep-
resentative instructions in Table VII. Note that 298,782 relabeled
trajectories went into training, with 87,140 unique instructions,
and the remaining was collected post-training, but pre-release.

C. Language-Table: Environment

Our simulated environment is intended to roughly match our
real world setup, and consists of a simulated 6DoF robot xArm6
implemented in PyBullet [58] equipped with a small cylindrical
end effector. Third person perspective 320x180 RGB-only images
from a simulated camera are used as visual input. On a board in
front of the robot are 8 blocks: red crescent, red pentagon, blue
crescent, blue cube, green cube, green star, yellow star, and yellow

pentagon. Like in the real world, the arm is constrained to the 2D
plane and the action space is the delta 2D cartesian setpoint of the
end effector. We run all experiments from RGB and language input
only, but the environment additionally exposes 26-dimensional
state observations (2D position and 1D rotation angle for each
block, 2D position of end effector). While our real world policies
perform asynchronous inference and control at 5hz, the policies
in Language-Table perform blocking control at 10hz. Despite this
difference, and others like differences between real and simulated
images, we found policy performance in Language-Table was
highly correlated with policy performance in the real world.

D. Language-Table: Evaluation

We define five simulated evaluation task families (spanning
696 unique task conditions) in Language-Table, each with a
hand-defined success criterion:
• block2block: Push a block to another block. Success is thresh-

olded distance between source and target block. There are 56
unique task conditions (8 source blocks x 7 target blocks).

• block2abs: Push a block to an absolute location on the
board: top left, top center, top right, center left, center, center
right, bottom left, bottom center, bottom right. Success
is thresholded distance between block and target location.
There are 72 unique task conditions (8 blocks x 9 locations).

• block2rel: Push a block to a relative offset location: left,
right, up, down, up and left, up and right, down and left,
down and right. Success is the thresholded distance between
the block and the invisible target offset location. There are
64 unique task conditions (8 blocks x 8 offset directions).

• block2blockrel: Push a block to a relative offset location of
another block: left side, right side, top side, bottom side, top
left side, top right side, bottom left side, bottom right side.
Success is the thresholded distance between the source block
and the invisible target offset location of the target block.
There are 448 unique task conditions (8 source blocks x 7
target blocks x 8 offset directions).

• separate: Separate two blocks. Success is the thresholded
distance between the two blocks. There are 56 unique task
conditions (8 source blocks x 7 target blocks).

These task families were used to benchmark models in simulation,
allowing us to find hyperparameters that transferred well to
fully-real-world training (we note that there was no sim-to-real
component in the training employed by this work). The language
conditioning for the automated evaluation tasks are generated syn-
thetically from predefined synonym sets for each task condition.

E. Event selectable hindsight relabeling details

Figure 7 depicts a mockup of the interface our crowdsourced
workers used to do event selectable hindsight relabeling. We asked
data labelers to first watch an entire long horizon video, then
produce 12 medium horizon and 12 short horizon actions, where
the definition is left to rater discretion. Labelers have control of
temporal segmentation tools, allowing them to mark the beginning
and end of each action, and they describe each action as an open
vocabulary natural language instruction.

https://www.mcmaster.com/9173K515/
https://play22usa.com/shop/ols/products/16olfxvr5t


Method Success Rate
Full LAVA + training recipe (ours) 0.772 ± 0.044
No CLIP Finetuning 0.735 ± 0.023
No Temporal Fusion Module 0.732 ± 0.036
Half Batch Size (2048) 0.720 ± 0.038

TABLE VI: Results of experiments to ablate model architecture details
in the Language-Table simulator. All results are reported over 3 seeds
after 350k steps.

Add a new instruction

Instructions left to find: 22

enter

Fig. 7: Mockup of our event selectable hindsight relabeling interface.

F. Model architecture details
Here we describe LAVA (“Language Attends to Vision for

Actions”), the transformer-based visuo-linguo-motor neural
network architecture we use in this work. Internally, our
architecture consists of a perception module, language module,
vision-language fusion module, temporal fusion module, and
policy output. We describe each below.

Perception module. Each training example consists of
(s, a, l)i ∼ Dtraining, where s ∈ Rseqlen×320×180×3 is RGB
observation history, and for the shown policies we used seqlen=4.
We pass each frame in the video s through a convnet to obtain
multi-scale visual feature descriptors (features at multiple layers).
Our convnet consists of two Imagenet-pretrained ResNet [45], [46]
layers and two additional learned convolutional layers with channel
sizes 128 and 256 respectively and 2D max pooling between each
layer. This yields a multi-scale feature pyramid for each image
with [H,W ] of sizes [[112, 112], [56, 56], [28, 28], [14, 14], [7, 7]].

Language module. We use a pretrained CLIP text encoder [47],
which is finetuned on our in-domain data, but remains fixed during
policy training. We use a simple contrastive method for finetuning
models pretrained on (image, language) pairs to domains where the
observations are (video, language) pairs: generate (start frame s0,
goal frame sg, language l) from all videos, and then during finetun-
ing, pass concatenated image encodings concat([z0,zg]) through
an MLP to get a single encoding zim with the same dimensionality
as encoded language zlang. We preprocess text by stripping punc-
tuation and extra spaces, but apply no additional preprocessing or
augmentation. Cleaned text is passed through the CLIP embedder
to get a sentence embedding with dimensionality 512.

Vision-Language Fusion Module. We fuse visual and lingual
information using a “Language-Attends-to-Vision” transformer

block. For a single image position, this block takes as input (i)
multi-scale pixel features (in our case the CNN features at zero-
indexed layers 2, 3, 4 withH,W sizes [28, 28], [14, 14], [7, 7]) and
(ii) a sentence embedding (in our case the 512-dimensional CLIP-
encoded l). First, we map each layer n to [Hn,Wn,dmodel] using
a layer-specific MLP, then 2D position encode each feature map
with 2D sinusoidal positional embeddings. We then flatten all the
multi-scale features into one long visual token list (in our case with
shape [1029, dmodel]). We project language to dmodel using an
MLP, and apply dropout to both projected image and language
features. We then iteratively fuse vision and language features,
handing the sentence token as query and visual tokens as keys
and values to a standard pre-norm decoder-only transformer [48]
performing cross-attention, with only language on the residual path.
Our vision-language transformer had 4 layers, with dmodel=128,
2 heads, feed forward width of 128, and dropout of 0.1.

Temporal Fusion Module. The output from applying our
vision-language fusion module to each image in the seqlen=4
context history is a [seqlen,dmodel] sequence of vision-language
embeddings. We apply 1D sinusoidal positional encoding to each
element of the sequence, then feed the sequence to a standard
pre-norm transformer performing self-attention, also outputting
[seqlen,dmodel], which we average pool over the time dimension.
Our temporal transformer had 2 layers, with dmodel=128, 2
heads, feed forward width of 128, and dropout of 0.1.

Policy Output. We hand the average-pooled dmodel
embedding to a deep residual MLP with 2 blocks of residual
width 1024. Each block has 3 MLP layers, the first two with
width 256 and the final with width 1024. All MLPs have ReLU
activation with normal initialization on kernel and bias. Finally
we use a linear projection to the 2D action space.

G. Training details

We train our policies on a TPUv3 8x8 pod (64 TPUv3 chips)
for approximately 500,000 steps or until training loss plateaus.
At roughly 7.6 steps/second, policies finish training in 18 hours.
All models are trained with Adam [59] with default TensorFlow
momentum parameters, learning rate 1e-3, and a batch size of
4096. Action labels are normalized using statistics collected from
training toN (0,1).

H. Ablations

We ablate the following training details. The results are reported
in Table VI.
• CLIP Finetuning. We evaluate the importance of finetuning

the CLIP language module on in-domain data. We use the
pretrained weights for the ViT-B/32 model from [47] to
encode language instructions without finetuning the text
encoder on any Language-Table data. The text encoder still
remains fixed during training. Although this results in only
a few percent drop in the Language-Table sim, we observe
a much stronger qualitative difference in model behavior on
the real robot. This difference between sim and real could be
explained by the Language-Table sim evaluation using a fixed
set of templated instructions, while the real world evaluation
uses more diverse language from human operators.



put all the blocks in a vertical line on the right of the board
group the blocks by color
make one horizontal line out of the red and blue blocks,
then make a horizontal line out of the green and yellow blocks
make one horizontal line out of the blue and green blocks,
then make a horizontal line out of the red and yellow blocks
put the:
0) green circle to top left,
1) red circle to top center,
2) green star to top right,
3) red star to center left,
4) blue triangle to center right,
5) yellow heart to bottom left,
6) yellow hexagon to bottom center,
7) blue cube to bottom right,
put 3 blocks in the bottom left corner, then the rest in the center left
make one horizontal line out of the red and green blocks,
then make a vertical line out of the blue and yellow blocks
put the blocks in a diagonal line from the top left to bottom right
put the yellow and red blocks together in a group,
then put the green and blue blocks together in a group
put the blue and green blocks together in the bottom center,
then put the red and yellow blocks together in the center right
put the:
0) blue triangle to top left,
1) yellow hexagon to top center,
2) green star to top right,
3) blue cube to center left,
4) red circle to center right,
5) red star to bottom left,
6) yellow heart to bottom center,
7) green circle to bottom right
surround the yellow heart with the others
put all the blocks in the bottom right corner
make a ”V”” shape out of all the blocks
put the red blocks in the center right, the yellow blocks in the bottom center,
the green blocks in the bottom right corner, and the blue blocks in the top center
put the:
0) blue cube to top left,
1) yellow heart to top center,
2) blue triangle to top right,
3) red star to center left,
4) yellow hexagon to center right,
5) green star to bottom left,
6) green circle to bottom center,
7) red circle to bottom right
put the:
0) green circle to top left,
1) yellow heart to top center,
2) blue cube to top right,
3) red circle to center left,
4) blue triangle to center right,
5) green star to bottom left,
6) red star to bottom center,
7) yellow hexagon to bottom right
put all the blocks in the top center
put the red blocks in the top right corner, the green blocks in the center right,
the blue blocks in the bottom center, and the yellow blocks in the center
put all the blocks in a vertical line on the center of the board

TABLE VIII: Representative examples of the prompts used to drive
collection. These are discarded after collection.

slide the green circle into the top side of the yellow hexagon
slide the green star along with the yellow hexagon towards the center
move your arm near the bottom center
push the yellow heart closer to the yellow hexagon and blue triangle
move the blue triangle into group of blocks
push the red star upwards
place the yellow heart to the left side of the green star
place the green staryellow hexagon at the center of the board
nudge red star along with red circle a bit up
move the group of blocks to the centre of the board
move the arm left beside the red star
slide the blue triangle along with yellow hexagon slightly up
move the blue cube towards the center
push the red star along with the red circle towards the top center
push red star below the yellow heart
separate yellow hexagonn from the blue cube
move the red circle right and down a bit
slide the blue cube towards left
move the blue triangle along with the red circle slightly right
push the blue triangle to the bottom right of the blue cube

TABLE VII: Representative examples of crowdsourced instructions
obtained via hindsight relabeling.

• Temporal Fusion Module. We evaluate the importance of
using our transformer-based temporal fusion module. We
encode each image in the seqlen = 4 context history by
stacking the images channel-wise and encoding the images
using a randomly initialized ConvNet. The multi-scale visual
feature descriptors from this ConvNet are still fed into the
”Language-Attends-to-Vision” transformer block, with no
additional self-attention temporal fusion transformer.

• Batch Size. We evaluate the effect of batch size on our
model by reducing our batch size in half to 2048. We see
that this results in a performance drop after 350k steps.

I. Extended Related Work

Recent work has leveraged large language models (LLMs)
to generate sequences of subgoals for language conditioned
policies. These can be “open-loop” [10], [60], which lack an
mechanism for replanning, or “closed-loop” [61], which generate
up-to-date plans by prepending textual descriptions of the current
scene to the prompting of the LLM planner. A limitation of
both formulations is that when tasks that call for fine-grained
spatial detail (like those examined in this work), it is difficult for
LLMs to generate accurate subgoals from purely textual scene
descriptions. Although visual language models (VLMs) like
[62] suggest a promising direction, matching human levels of
perception and cognition to effectively guide policies towards
arbitrary goals remains a difficult open challenge. Our work is
complementary in that our focus is instead on obtaining a large
diverse set of short-horizon behaviors, and ones that can be
interactively conditioned in real time. Combining autonomous
long-horizon planning together with our demonstrated recipe for
short-horizon behaviors is a strong candidate for future work.
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