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FOREWORD 

This volume contains the proceedings of a workshop on Analog Integrated Neural 
Systems held May 8, 1989, in connection with the International Symposium on Circuits 
and Systems. The presentations were chosen to encompass the entire range of topics 
currently under study in this exciting new discipline. Stringent acceptance 
requirements were placed on contributions: (1) each description was required to 
include detailed characterization of a working chip, and (2) each design was not to 
have been published previously. In several cases, the status of the project was not 
known until a few weeks before the meeting date. As a result, some of the most 
recent innovative work in the field was presented. Because this discipline is 
evolving rapidly, each project is very much a work in progress. Authors were asked 
to devote considerable attention to the shortcomings of their designs, as well as to 
the notable successes they achieved. In this way, other workers can now avoid 
stumbling into the same traps, and evolution can proceed more rapidly (and less 
painfully). 

The chapters in this volume are presented in the same order as the corresponding 
presentations at the workshop. The first two chapters are concerned with fmding 
solutions to complex optimization problems under a predefmed set of constraints. 
The first chapter reports what is, to the best of our knowledge, the first 
neural-chip design. In each case, the physics of the underlying electronic medium is 
used to represent a cost function in a natural way, using only nearest-neighbor 
connectivity. 

Chapters 3 and 4 are concerned with sophisticated nonlinear processing of 
time-domain signals. In both cases, this processing is carried out in real time, 
with only a small expenditure of energy per unit computation. 

Chapters 5 and 6 describe two of the many projects currently under way to create 
electronic "neural networks" of the kind often modeled on digital systems. The 
success of these and other programs focused on the same goal will expand by many 
orders of magnitUde the range of problems accessible to neural network solutions. 

Chapters 7 through 10 contain reports of self-contained system chips that perform 
various kinds of image processing. In each case, the chip contains its own array of 
phototransducers; the input signals are extracted directly from an optical image 
focused directly on the chip's surface. Each project is directed at a particular 
aspect of image analysis. Each is, in its own way, inspired by the organization of 
the visual system of higher animals. 

In aggregate, these chapters give a remarkable portent of things to come. It is 
clear that the continued evolution of this technology will produce systems possessing 
characteristics that emulate many of the remarkable properties observed in living 
systems, but that we have been unable to attain using existing engineering 
techniques. 

Carver Mead 
Mohammed Ismail 

vii 
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A Neural Processor 
for Maze Solving 

Christopher R. Carroll 

Computer Engineering 
University of Minnesota, Duluth, 

Duluth, Minnesota 55812 

This paper describes an nMOS integrated circuit designed in the late 1970's that 
performed the computationally expensive portion of a maze-solving algorithm 
using a fine-grained parallel processor architecture. The algorithm included 
continuously variable weights associated with travel through the maze in 
different directions. The integrated circuit described here directly incorporated 
those weights as analog parameters affecting inter-processor communication of 
digital data. The combination of fine-grained parallelism and inter-processor 
communication controlled by analog weights was unique. and can be viewed as 
an early example of what might now be called a neural system. 

INTRODUCTION 

In the late 1970's, the processing power available from VLSI technology 

was just beginning to be recognized. Researchers were exploring many different 

approaches to the technology in an attempt both to use that processing power 

efficiently and to cope with the complexity that is inherent in circuits at the 

VLSI level. Many buzz words developed, each referring to a different approach 

to the problem of designing useful functions within this complexity. Smart 

memories, systolic arrays, array processors, etc. all had their proponents, and 

some of these approaches have led to continuing topics for research. 
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This paper describes an nMOS integrated circuit design that originated as 

an example of fine-grained parallel processing, and developed into something that 

today might be recognized as an early example of what is now called neural 

processing. The chip's purpose was to perform the computationally expensive 

part of a maze-solving algorithm, using a fine-grained parallel processor 

architecture. The goal of this paper is to explain how decisions faced during the 

design led to the unique circuitry that justifies calling this chip a neural system. 

In the sections that follow, the development and design of this early 

neural system will be traced. First, in order to properly motivate the discussion, 

the basic maze-solving algorithm implemented in the chip is presented. The 

following section then details the design and implementation of a predecessor 

chip that solved mazes without the benefit of neural techniques. Next, an 

extension to the maze-solving algorithm is presented, followed by a discussion 

of the design of the neural processor chip that dealt with that extension. Finally, 

some lessons learned from an evaluation of the design and performance of the 

chip are presented, followed by some conclusions. 

THE MAZE-SOLVING ALGORITHM 

The maze-solving algorithm selected for implementation in hardware was 

proposed by E. Moore [5] and extended by C.Y. Lee [4], and again by S. Akers 

[1]. It is a scheme for finding the shortest route between two points in a plane, 

where the route is composed of some number of orthogonal line segments 

through a rectangular array of cells superimposed on the plane. The cell-to-cell 

spacing, or pitch of the array, equals the width of the path, and movement along 

the path is restricted to be only between cells that are adjacent to the north 
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south, east, or west. Walls in the maze are created by blocking some of the cells 

in the array, preventing passage through those cells. 

The algorithm finds the shortest path between two cells in the array in 

two phases. Starting at one endpoint of the path, the first phase, or propagation 

phase, distributes throughout the array of cells information telling how to get 

back to the original endpoint from each of the other cells. The second phase, or 

retrace phase, then uses that information to find the required path. 

The operation of the propagation phase of the algorithm can be visualized 

by imagining a wavefront of activity expanding out from the original path 

endpoint much like a ripple in a pond caused by a thrown stone. As the 

wavefront passes each cell in the array, information is stored in that cell 

recording from which direction the wavefront approached. This stored 

information in the cells can be thought of as arrows pointing back to the origin 

of the propagating wavefront. In the event of the wavefront reaching a cell 

simultaneously from, say, the south and east directions, both a south-pointing 

and an east-pointing arrow should be stored in the cell to properly record the 

options available for finding the way back to the original cell. The propagating 

wavefront does not penetrate blocked cells, and must distort when such obstacles 

are encountered. Eventually, if a path exists between the specified endpoints, the 

propagation will reach the second endpoint of the path, and arrows will be stored 

indicating the direction to take from that point to find the shortest route to the 

original endpoint. 

The operation of the retrace phase is obvious once the propagation phase 

has filled the array of cells with information represented by arrows. The retrace 

phase merely starts at the second path endpoint, reads the information there, and 

proceeds in the direction indicated by the arrow to a neighbor cell. Once there, 

it follows the arrow stored in that cell to the next neighbor, and then proceeds 
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one cell at a time following arrows back to the original endpoint. No further 

modifications to the information stored in the cells are required. 

Clearly, the computationally expensive part of this algorithm for 

maze-solving lies in the propagation phase. That part of the algorithm stores 

information in a number of cells that is related quadratically to the path length. 

Figure 1 - The propagation phase in progress (left), and finished (right) 

Figure 1 shows the operation of this phase of the algorithm. The retrace phase 

touches only cells along the path, resulting in a linear execution time with path 

length. Thus, the hardware to be discussed in the following sections attacks 

only the propagation phase of this algorithm and leaves the computationally 

easy retrace phase to be executed by a traditional host processor to which this 

hardware would be attached. 

THE MAZER CHIP 

A good way to relate the propagation phase algorithm described above to 

the physical world is to imagine that the array of cells is an array of mousetraps, 
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each cocked and ready to fire [6]. Along with each mousetrap is a mechanism 

that causes it to fire whenever any of its neighbors fires, and a recording device 

to note from which direction(s) the firing signal comes. With all the mousetraps 

cocked, propagation is started at one endpoint of the required path by triggering 

the mousetrap at that location. The mechanisms that link neighboring cells then 

spread information throughout the array by propagating the wavefront in an 

expanding frontier of activity to the edges of the array. When complete, a record 

of the direction taken by the passing wavefront is left in each cell of the array. 

Figure 2 is a conceptual logic design of a simplified electronic mousetrap 

cell. Not shown are all the mechanisms for accessing the information stored in 

the cell from the host processor, for blocking this cell so that it becomes part of 

a wall in the maze, or for causing this cell to be the starting point of wavefront 

propagation, but the mousetrap characteristic is illustrated. After the reset line 

has gone high to make all the latch outputs low, all signals that cross the cell 

boundary are low, and the system is stable in this state, with all mousetraps 

cocked. Now, if one of the incoming signals goes high, the corresponding latch 

will be set. This causes the inputs to the other latches to be disabled via the 

AND gates, and also causes the cell to generate a high going signal to each of its 

neighbors, triggering them in the st'ne way. The latches remember from which 

direction the activation signal entered the cell, and reading them out by an 

accessing mechanism not shown gives the direction the maze solution takes as it 

passes through this cell. 

An nMOS integrated circuit named Mazer was designed in 1977 that 

implemented a four by four array of cells similar to the one described above, but 

included the required circuitry to allow the needed interaction from a generic host 

processor for controlling the start of propagation and for accessing information 

stored in the latches. The chip included bonding pads conveying to the outside 
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world the propagating signals from cells around the periphery of the four by four 

array, so that multiple chips could themselves be assembled into an array, 

expanding the size of the maze that could be solved. The result was essentially a 

very fine-grained parallel processing system, with each cell's circuitry 

Figure 2 - An electronic mousetrap 
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representing a processor embedded in a grid of other identical processors. These 

processing nodes, although consisting of only about twenty gates each, 

nevertheless performed identifiable tasks of data computation and 

communication, and thus could truly be called processors. The chip was 

fabricated and tested in 1978. 

In the course of testing the Mazer chip, an interesting,anomaly showed 

up. In situations such as that depicted in Figure 3, where a path was to join 

cells located in different Mazer chips in a multi-chip array, unexpected results 

occurred, such as that shown in the figure. A thoughtful analysis of the 

situatiem revealed that the Mazer system was not finding paths based on the 

shortest distance between cells, but rather based on the shortest propagation time 

of the propagating wavefront between cells. Because the wavefront propagated 

much more quickly between adjacent processors that were on the same Mazer 

chip than it did between adjacent processors that happened to be on different 

chips, the chip boundaries in the array of cells established artificial barriers 

which, though crossable, imposed a high penalty on a path that traversed them. 

Thus a path between processors on different chips was chosen by this system 

more on the basis of how many chip boundaries needed to be crossed than on the 

total path length, resulting in the type of anomalies displayed in Figure 3. This 

effect played an important role in the design of the chip to be described next. 

TWO-LAYER PATH FINDING 

The fact that the Mazer was restricted to solving mazes embedded in a 

plane limited its usefulness. The most immediate application for path-finding 

hardware was in the area of wire routing on printed circuit boards or on silicon 
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chips. but for such applications at least two levels of wiring were required for 

reasonable wiring efficiency. Thus. there was great incentive to develop a 

two-layer path finder. with the specific goal of producing a machine capable of 
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routing wires in the applications mentioned above. This was the background 

that prompted the design of the second integrated circuit to be discussed, the 

Pathfinder. 

At first glance, it seemed that one could simply construct a circuit that 

formed the topology of two Mazer chips laid on top of one another, with an 

additional arrow bit in each cell to indicate travel from one layer to the other. 

This strategy would have worked, except that it lacked an important property 

that was needed in the envisioned applications of this system, printed circuit 

board wire routing. 

Designers of two-layer circuit boards have long realized that it is best for 

mostly vertical wire runs to end up on one side of the board, and mostly 

horizontal runs to end up on the other side. This helps to avoid unnecessarily 

blocking channels for future wires. The tendency of a wire to choose one side of 

the board or the other depending on its orientation would have been completely 

lacking in a straightforward two-layer Mazer. Incorporating this preference into 

the basic path-finding algorithm was an interesting problem. 

A way to achieve the wire location preference was to use a system of 

costs associated with travel from cell to cell through the array. A mechanism 

was needed to make travel in some directions more expensive than travel in other 

directions. With such a mechanism in place, north-south travel could be 

encouraged on one layer of the maze and east-west travel encouraged on the other 

layer by making travel in the orthogonal directions on each layer more 

expensive. A separate cost could be added for travel from one layer to the other, 

since such travel was often limited in the applications envisioned for this 

system. 

Interestingly, an accidental example of an imposed path cost had already 

been seen in the Mazer system. Crossing chip boundaries with a path 
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connecting cells in different chips of a multi-chip array imposed additional costs 

on such paths, making routes that crossed fewest chip boundaries preferable over 

other routes, as discussed in the previous section. This effect resulted from the 

additional delay imposed on the propagation of the information wavefront 

between adjacent cells separated by chip boundaries over that between adjacent 

cells on the same chip. By appropriately controlling ~e speed with which the 

propagating wavefront of activity traveled through individual cells in different 

directions, any desired set of costs could be imposed on the resulting paths. 

Based on this idea of controlling the speed of wavefront propagation from cell to 

cell, the second chip design, the Pathfinder, was proposed. 

THE PATHFINDER CHIP 

The proposed Pathfinder chip would implement a three-cost system for 

choosing desired paths between specified endpoints in a two-layer maze. The 

lowest cost would be imposed on east-west travel on the top layer of the maze 

and north-south travel on the bottom layer. A second, higher cost would be 

imposed on north-south travel in the top layer and east-west travel on the 

bottom. A third, still higher cost, would be charged for inter-layer travel. Each 

of these costs would be implemented with a variable weight that controlled the 

speed of propagation of the expanding wavefront of activity in the direction 

assigned to that weight. 

Figure 4 shows the effect of controlling wavefront speeds in propagating 

arrow information through just the top layer of a two-layer maze. Here 

propagation in the east-west direction was allowed to proceed at a rate three times 

that of north-south propagation, encouraging east-west paths on this layer of the 
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maze. Only the arrows associated with travel on this top layer are shown, for 

clarity. As the figure shows, the path indicated by the arrows stored between 

cells was not the physically shortest path available, but was the least costly path 

based on the three-to-one ratio of imposed weights. In the two-layer 

environment, if travel was less costly in the east-west direction on the top layer 

Figure 4 - Propagating three times faster east-west than north-south, 

in progress (left), and finished (right) 

and on the north-south direction on the bottom layer, then propagating 

wavefronts from a cell A to a cell B that was mostly east of cell A tended to 

reach cell B more quickly on the top layer, resulting in arrows stored in cell B 

that indicated a path back to cell A using a route on the top layer. Similarly, 

cells that were mostly north or south of each other tended to be connected by 

paths routed on the bottom layer of the maze. This scheme accomplished the 

desired separation of north-south and east-west paths on different layers of the 

maze. Paths that used both layers of the maze were possible but less likely 

because of the higher cost imposed on inter-layer travel. 

Some additional design changes were included in the Pathfinder that 

distinguished it from the Mazer design. An additional bit of storage was included 
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in each cell to allow blocking travel between layers independently from blocking 

intra-layer travel through that cell, because the applications envisioned for this 

system often required such a capability. Also the visualized position of the 

North 

r---------, 

r---------, 
I 
I 
I 

I 
I 
I 
L _ 

South 

I 

Figure 5 - Simplified one-layer Pathfinder processor 
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arrows stored with each cell was moved from within the cell to between cells. 

The arrows thus recorded the direction from which the propagating wavefront 

came as it crossed cell boundaries. This reduced the required storage for the arrow 

latches by a factor of two, and aided in the interpretation of the information 

stored in them. 

The method employed in the Pathfinder for achieving the controllable 

propagation speeds relied heavily on the dynamic charge storage abilities of 

MOS circuitry. Figure 5 shows a circuit representing a simplified, one-layer cell 

with its surrounding arrow latches, but does not show the blocking or accessing 

circuitry. Each cell contained a capacitor of about 5 pF. Before the start of the 

propagation phase, the capacitors were all precharged by means of the precharge 

transistor. With all the capacitors charged, all the arrow latches had both outputs 

held low. To start propagation at a particular cell, that cell's capacitor was 

discharged. That action released one side of the arrow latches surrounding that 

cell, causing those arrows to "point" to that cell with the discharged capacitor. 

The high outputs of the arrow latches then entered the neighbor cells, and began 

discharging the capacitors there at rates determined by the voltages on the gates 

of transistors Qa and Qb. When those capacitors were completely drained, the 

arrows surrounding those cells flipped to point to the newly discharged 

capacitors, and the arrow latch outputs began discharging capacitors in their 

neighbors. As the wavefront of activity propagated out, cells behind the frontier 

had completely discharged capacitors, cells ahead of the frontier had fully charged 

capacitors, and cells on the frontier had capacitors that were in the process of 

being discharged. 

The time required, and thus the cost, for propagating through a cell 

depended on the rate at which the capacitor was discharged, which, in tum, 

depended on the voltages on the gates of transistors Qa and Qb. The direction 
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from which the wavefront approached the cell determined whether the current 

path controlled by Qa or the current path controlled by Qb was used in 

discharging the capacitor. 

A feature included on the Pathfinder chip allowed a small amount of local 

control over the cost function to modulate the overall three costs described 

above. This consisted of an additional 1 pF of capacitance that could be switched 

on in parallel with the main capacitor in each cell. The time for propagating 

through a cell, and hence its propagation costs, could be increased by connecting 

its extra capacitor before precharge and leaving it connected through propagation. 

The cost could be decreased by connecting the extra capacitor after precharge was 

over and disconnecting it again before propagation started. These capacitor 

connections were switched on a cell-by-cell basis, controlled by an additional bit 

in each cell. This made it possible to increase costs locally in the maze so that 

paths would tend to avoid certain congested or otherwise undesirable parts of the 

maze, or to decrease costs to encourage utilization of remote parts of the maze. 

Figure 6 is a schematic of a two-layer Pathfinder processor, containing 

circuitry for both layers of the maze and the arrow between them. The north and 

east arrows for each layer of the cell are arbitrarily shown as a part of this 

processor, while the arrows to the south and west are considered to belong to the 

neighbor processors in those directions. The control storage bits are shown as 

boxes for clarity. Actually the five arrow bits and the four control bits make up 

a nine-bit word of what amounts to a standard static memory system, using the 

usual six-transistor cell. Not shown in the figure are the mechanisms that allow 

the host processor to read and modify these information bits. 

The circuit shown in Figure 6 worked just as described above for Figure 

5, with the addition of the blocking controls and the addition of the second-layer 

circuitry. Having two layers simply meant that three current paths were present 
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for discharging the capacitors, each controlled by a transistor whose gate voltage 

detennined how quickly the capacitor was discharged through that path. The 

blocking control latches simply opened the appropriate discharge paths to 

prevent the discharge of the capacitor under the conditions that were to be 

blocked. The additional signal labeled eLK in Figure 6 was present to allow the 

discharging action to be interrupted in the entire array of processors to allow 

starting propagation at multiple cells simultaneously, or to perform other 

experiments with the circuit. 

Figure 7 shows a plot of the metal layer of the Pathfinder chip. The chip 

contained a four by eight array of two-layer cells. As with the Mazer, the large 

cell arrays needed for useful maze-solving applications were built up by 

assembling Pathfinder chips themselves in an array. Forty-eight of the seventy 

bonding pads were devoted to chip-to-chip communication within the multi-chip 

array. The Pathfinder was fabricated by MOSIS in 1980. 

THE PATHFINDER AS A NEURAL SYSTEM 

Although the Pathfinder chip was designed ten years ago, viewed from 

today's perspective it displays many of the characteristics associated with what 

are now called neural systems. Some investigation of those characteristics as 

displayed in such an early example of this field might reveal insights that could 

be useful in new designs. 

First and foremost, the Pathfinder is an example of a parallel processing 

system with very fine-grained parallelism. This is one characteristic of neural 

systems, which rely on large numbers of very simple processors to perform 

computations in the same way that biological systems rely on large numbers of 
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Figure 7 - Plot of Pathfinder's metal layer 
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simple neurons. In the Pathfinder, the processing nodes consist of a capacitor 

and just a few logic gates, but by networking many of those nodes into a 

system, useful computation results. 

A second characteristic of neural systems is a pattern of connectivity 

among the processing nodes. In systems discussed today, this connectivity can 

be very complex, and in fact the complexity of the connectivity and resulting 

inter-processor communications is one measure of the processing power of the 

system. The Pathfinder processors are connected in a very simple 

nearest-neighbor grid, and thus the connectivity of this system is not 

representative of current neural systems. However, in the application for which 

the chip was designed, nearest neighbor communication is appropriate and 

natural. Given the minuscule capability of each processing node in a neural 

system, the pattern of connectivity imposed on the communications between 

processors becomes the determining factor in matching the system to the 

problem to be solved. Although many problems being addressed today require 

complex inter-processor communication, there will still be examples such as the 

application addressed by the Pathfinder system where a simple pattern of 

connectivity is the best match for solving the problem. 

Like most neural systems under study today, the Pathfinder does not 

operate in isolation, but requires a supportive environment for loading 

information into the neural system and retrieving results from it. This typically 

means that the neural system operates as a peripheral unit attached to a more 

traditional host processing engine. The Pathfinder chip operates in exactly this 

way. The chip's host must first load information into the Pathfinder describing 

the walls in the maze and the starting point for propagation, and then, after the 

Pathfinder does its work, the host must perform the retrace phase of the 

path-finding algorithm by reading the arrows stored in the chip to determine the 
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required solution to the maze. The work performed by the Pathfinder system, 

propagating information throughout the processing nodes of the network, 

becomes a single, almost insignificant step as viewed by the host processor that 

provides the environment for the neural system. 

Another characteristic of neural systems displayed by the Pathfinder is the 

notion of a state of activation for each processing node, and an activation rule for 

modifying the state of each node. In a real neuron, this state of activation is 

represented by chemical imbalances across the cell membrane. In the Pathfinder, 

the state of activation is represented by the charge on the capacitor in each node. 

When initialized, each capacitor is fully charged, and remains so until the 

wavefront of activity originating somewhere in the network reaches it. When 

the wavefront reaches a given node, the processor at that node becomes actively 

engaged in the processing activity performed by the network as a whole, and, 

within that node, the processing activity is indicated by the process of 

discharging its capacitor, changing the state of activation of that node. When a 

node's capacitor fully discharges, allowing the wavefront of activity to expand to 

the next ring of cells, the processing performed by that node is complete, and the 

state of activation of that node ceases to change. Processing nodes in the neural 

network that are actively performing useful work can be identified by changes in 

their state of activation. 

By far the most distinguishing quality of neural systems is their 

implementation of the activation rule by which the state of activation of each 

processing node is modified. These rules almost always depend upon one or 

more continuously variable quantities that control how the states of activation of 

processing nodes change. It is this quality of neural systems, more than any 

other, that distinguishes these systems from purely digital systems that don't 

display this dependence on continuously variable, or analog, quantities. One 
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can, for example, design self-sorting memories, and justifiably claim that such a 

structure is a fine-grained parallel processor, with a processing unit for each word 

of storage, and a pattern of connectivity between processors which might be as 

simple as a linear array or something more complex such as a binary tree. 

However, without the dependence on one or more analog quantities that 

determine some characteristic of the processing performed, the system is merely 

a smart memory, or an array processor, and could not be claimed as an example 

of a neural system. 

The Pathfinder modifies the state of activation in its processing nodes by 

discharging the capacitors in those nodes, and the rules for that state modification 

depend upon three analog quantities that determine the rate at which the capacitor 

discharges. These three analog quantities, which appeared in Figure 6 as analog 

voltages on the gates of the transistors at the bottom of the three discharge 

paths, determine the costs, or weights associated with propagating the frontier of 

wavefront activity through the processing node in different directions. If one 

were to write the rule for modifying the state of activation in a given node, it 

would involve both digital values that specify the direction from which 

propagation entered the node and whether or not this node is blocked, and it 

would involve the analog values that control the propagation costs mentioned 

above. Thus the processing action that occurs at that node is a true hybrid of 

digital and analog processing. Within the node, no separation of the "digital 

part" and "analog part" of the circuit is possible. The effects of the two types of 

variables are tightly intertwined. 

Note the correlation between the way in which the Pathfinder modifies its 

state of activation and the way in which a real neuron does so. In a real neuron, 

signals received from its many inputs are weighted by a set of variable analog 

quantities and then allowed to proportionally affect the chemical imbalance in the 
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cell of the neuron. This changes the state of activation of the neuron, and when 

the imbalance reaches some threshold, the neuron "fires" and passes information 

on to other neurons to which its output is connected. This is very reminiscent 

of the mousetrap action of the Mazer circuit, except that rather than firing 

immediately when incoming information is received, the neuron delays firing and 

passing on information for an amount of time that depends on which inputs are 

received and on what weights are assigned to those inputs. This is a precise 

description of the Pathfinder's operation. The Pathfinder delays propagating 

information for an amount of time that depends on from which direction the 

wavefront came, and on what weight is assigned for propagation in that 

particular direction. 

Note an important quality demonstrated by both the Pathfinder processing 

nodes and real neurons in passing information throughout the network of 

interconnected nodes. In both cases, the actual signal transmitted from one node 

to another is a fully restored digital signal. In the Pathfinder, either the capacitor 

has discharged allowing an arrow latch to flip, or it hasn't. In the neuron, either 

the cell has "fired" or it hasn't. In no case does a node generate a "partial" signal, 

or a signal that is only a fraction of its normal value. The transmitted signal is 

either present or not, in the tradition of digital signals in general. Thus there is 

no danger of noise accumulating on the data passed from node to node in the 

network of processors or neurons. At each level of processing, the output 

generated is fully restored to a valid digital level. However, the time between 

digital events is a continuously variable quantity, directly affected by the 

continuous weights associated with modifying the state of activation of the 

processing node. In the Pathfinder, the time delay from the arrival of the wave 

frontier at a node until the transmission of the frontier to the next node records 

the cost for traveling through the maze cell represented by that node. In a 
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neuron, the time between firings, or the frequency of the firings of a neuron, 

records the intensity of the signal being transmitted. In each case, the physical 

signal being transmitted is digital in nature. The time intervals between signals 

record the effects of the analog inputs to the computation. 

The hybrid nature of the processing that occurs in the Pathfinder sets it 

apart from chip designs that were its contemporaries, and identifies it as an early 

example of a neural system. The analog variables representing communication 

weights directly affect the computation that takes place within the processing 

nodes, despite the fact that the overall problem that this system addresses, maze 

solving, is an inherently discrete problem involving digital calculations and 

digital results. By carefully maintaining a fully restored, digital representation 

for the signals that pass from node to node in the network of processors, so that 

no information can get lost in accumulated noise, and by using time delays to 

incorporate analog contributions to the calculations, a successful hybrid system 

resulted. 

LESSONS LEARNED 

The design of the Pathfinder chip was a unique experience that involved 

approaches to processor design that had not been tried before. As in any such 

innovative venture, some lessons were learned from which later designers can 

benefit. In the case of the Pathfinder design, these lessons fall into two 

categories. Both categories deal with the use of analog variables in neural 

systems. 

The first lesson taught by the Pathfinder concerns representation of data. 

In a system where there are both digital and analog data involved in the 
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processing. some decisions must be made regarding which representation to use 

for which variables in the processing. Any variable represented in analog form 

must be tolerant of some inevitable noise on the signal. This noise can be 

generated by the environment. as for example in capacitive coupling between 

adjacent wires in the circuit. or it can result from irregularities in the physical 

medium. An example of the latter is the susceptibility of the Pathfinder's 

cost-setting scheme to variations in threshold voltage of the transistors on whose 

gates the analog voltages are applied. The design of the circuit must take those 

sources of noise into account, and minimize their effects. To reduce the problem 

caused by transistor threshold variation mentioned above. the Pathfinder chip 

used on-chip current mirror circuits so that the actual discharge current levels in 

the three discharge paths of the processing nodes were set by injecting external 

known currents into the current mirror inputs. rather than supplying the 

transistor gate voltages themselves to the chip. The current mirror circuits 

generated the gate voltages internally. as required by that particular chip. to allow 

the desired discharge currents to flow. compensating for variations in threshold 

voltage from chip to chip. 

Special attention must be paid to information that passes through many 

stages of processing. to avoid swamping the data with accumulated noise. Thus. 

in the Pathfinder. the signal that propagates the wavefront of activity from one 

node to the next is a fully restored digital signal. As a consequence. a given 

node never misunderstands when the wavefront has reached it. Either the signal 

has arrived. or it hasn't. Note. however. that the timing of the wavefront's 

passage does involve analog information. Imagine a straight portion of the 

wavefront passing as a plane wave from west to east through the array of 

processors. Certainly. due to irregularities in the processors and the 

interconnections between them. some of the nodes will pass the wavefront on a 
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little more quickly than others, resulting in slight bulges in what should be a 

plane wavefront. Fortunately, this affects the operation of the Pathfinder system 

in unimportant ways, resulting in paths that are slightly more costly than 

minimal being chosen on occasion, but never causing the algorithm to fail due 

to noise accumulation. This demonstrates a quality that is common to any 

system that involves analog inputs or parameters. On occasion, results will be 

generated that are not strictly correct by digital standards, due to noise on the 

analog inputs or in the analog portion of the processing. This property actually 

can be. used to advantage in neural systems in applications dealing with 

incomplete data or information that is known only approximately. Remember, 

people are neural systems, and they sometimes make mistakes too. 

The second lesson taught by Pathfinder is less mechanical and more 

thought-provoking than the lesson described above. Testing and analysis of 

Pathfinder's performance demonstrated that it did not assign the analog weights 

to the proper part of the processing performed by the circuit. The Pathfinder 

assigned weights, or costs, to propagating information through the processing 

node. The cost was charged for actual travel through the maze cell represented by 

the node. It was found that assessing costs on travel between cells would have 

been a more correct choice. Although only subtly different, charging for moving 

from one cell to the next results in a more accurate reflection of overall path cost 

than does charging for traversing a given cell. Extended to the more general case 

of neural systems, this says that the weights should be computed on information 

where it moves from one processing node to another, rather than computing 

weights within a given node. More succinctly, costs should be imposed on the 

communication, and not the computation, that occurs in neural systems. Most 

discussions of neural systems today include this notion, though at the time of 

the Pathfinder, this was a novel idea. 
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In summary, the Pathfinder system for maze solving is an example of a 

system that demonstrates many of the characteristics associated with neural 

systems today. Its fine-grained parallel architecture and its system of analog 

weights imposed on inter-processor communication mark it as an early example 

of this class of circuits. The techniques used in its design, and the lessons 

learned from using the system may benefit current designers of circuits using 

similar approaches to this hybrid combination of digital and analog circuitry. 
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Abstract: The detection of discontinuities in motion, intensity, color, and 
depth is a well studied but difficult problem in computer vision. We discuss our 
"resistive fuse" circuit-the first hardware circuit that explicitly implements 
either analog or binary line processes in a controlled fashion. We have success­
fully designed and tested an analog CMOS VLSI circuit that contains a 1-D 
resistive network of fuses implementing piece-wise smooth surface interpolation. 
The segmentation ability of this network is demonstrated for a noisy step-edge 
input. 

We derive the specific current-voltage relationship of the resistive fuse from 
a number of computational considerations, closely related to the early vision 
algorithms of Koch, Marroquin and Yuille (1986) and Blake and Zisserman 
(1987). We discuss the circuit implementation and the performance of the chip. 
In the last section, we show that a model of our resistive network-in which the 
resistive fuses have no internal dynamics-has an associated Lyapunov function, 
the co-content. The network will thus converge, without oscillations, to a stable 
solution, even in the presence of arbitrary parasitic capacitances throughout the 
network. 

INTRODUCTION 

Most early vision algorithms incorporate the generic constraint that vari­
ables such as surface orientation and reflectance, depth or optical flow vary 
slowly in space (Marr and Poggio, 1976; Grimson, 1981; Ikeuchi and Horn, 
1981; Horn and SchmIck, 1981; Terzopoulos, 1983; Hildreth, 1984; Poggio, 
Voorhees and Yuille, 1985; Nagel, 1987). Within the standard regularization 
approach, this is reflected in the use of stabilizing operators corresponding to 
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various measures of smoothness (Poggio, Torre and Koch, 1985). Thus, in the 
problem of interpolating a 2-D surface through sparse and noisy depth measure­
ment, the final surface should be as close as possible to the initial data as well as 
being as smooth as possible (Grimson, 1981); or, in the problem of computing 
optical flow from the time-varying intensity, the final flow field should be com­
patible with the locally measured velocity data as well as being smooth (Horn 
and Schunck, 1981; Hildreth, 1984; Nagel, 1987). However, surfaces display 
discontinuities where the smoothness constraint is violated. Thus, the to-be­
reconstructed surface may have been generated by a:n underlying piece-wise 
smooth or even piece-wise constant depth distribution. Or, the 2-D velocity 
field induced by a rigid object moving/rotating in an otherwise stationary en­
vironment varies smoothly across the surface of the object but is zero beyond 
the contours of the object (since the background is stationary). 

In the last years, a number of researchers have introduced powerful al­
gorithms to deal with the representation of such discontinuities. Geman and 
Geman (1984) first proposed binary line processes to model discontinuities in 
intensity within the stochastic framework of Markov Random Fields. Disconti­
nuities are subject to various constraints, such that they should form along con­
tinuous contours, should not intersect nor form parallel lines. Their approach 
was extended and modified to account for discontinuities in depth, texture and 
color by Poggio and his collaborators (Marroquin, Mitter and Poggio, 1984; 
Poggio, Gamble and Little, 1988) as well as to discontinuities in the optical 
flow (Hutchinson, Koch, Luo and Mead, 1988). The principal drawback of the 
Geman and Geman-type method is the computational expense involved in mini­
mizing the associated non-convex cost functionals using stochastic optimization 
methods, in particular when numerous constraints (e.g. continuity of disconti­
nuities) are incorporated. A number of authors have used deterministic methods 
to find the (local) minimum of the associated convex or non-convex variational 
functionals, with next-to-optimal results (Terzopoulos, 1986; Koch, Marroquin 
and Yuille, 1986). A rigorous deterministic approach has been championed 
by Blake and Zisserman (1987). Their "graduated non-convexity" (GNC) al­
gorithm bears many similarities to the above methods, and leads to excellent 
results in the case of piece-wise continuous reconstruction of surfaces (Blake, 
1989). 

Poggio and Koch (1985) show how standard regularization algorithms can 
map onto simple resistive networks. Finding the minimum of the standard 
regularized and quadratic cost functional is equivalent to finding the state of 
least power dissipation in an appropriate electrical network, where the data are 
given by injecting current into certain nodes and the solution by the stationary 
voltage distribution. Figure 1 shows the appropriate network for membrane­
type surface interpolation, where the "strength" of smoothing is given by the 
value of the horizontal grid conductance. For an overview of analog circuits for 
implementing early vision algorithms see Koch (1989) and Horn (1989). 
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Figure 1 Resistive network for fitting the smoothest surface I through sparse 
and noisy data d. The circuit minimizes the variational functional of the two­
dimensional extension of eq. (1) in the absence of line discontinuities. In the con­
tinuum limit, minimization of this functional corresponds to the Euler-Lagrange 
equation XV'2 1+ GI = Gd. The battery supplies the measured depth data dj, 
while the vertical conductance G corresponds to 1/(2(72) and the horizontal 
conductance of the grid to A. If no data are present at a particular location i, 
G is set to zero. The stationary voltage distribution then corresponds to the 
interpolated surface Ii. The amplitude of the horizontal grid conductance, A, 
controls the amount of smoothing. A 48 by 48 pixel hexagonal network has 
been built and tested successfully (Luo, Koch and Mead, 1988). 

The recent development of subthreshold, analog CMOS VLSI circuits for 
various sensory tasks by Carver Mead (see in particular his recent textbook, 
Mead, 1989) has enabled us to implement these resistive networks-together 
with the photo-transduction stage-using this real-time, low power and robust 
technology. Two circuits are particularly attractive for our purposes: a photo­
transistor with a logarithmic voltage output over five orders of intensity bright­
ness (Mead, 1985, 1989) and a transistor circuit with a linear current-voltage 



30 

relationship for small voltage gradients (Sivilotti, Mahowald and Mead, 1987; 
Mead, 1989). The value of the slope, i.e. the resistance, can be varied over five 
orders of magnitude. Using this as our basic construction element, we built and 
tested a 48 by 48 pixel resistive network for smoothing and interpolating noisy 
and sparse data (Luo, Koch and Mead, 1988; see Fig. 1). 

We introduce in this paper an analog, purely deterministic approach to 
locating discontinuities in the case of interpolating noisy and sparsely sampled 
depth data. It leads to a very simple and elegant circuit implementation in 
terms of a two-terminal, nonlinear, voltage-controlled resistor termed "resistive 
fuse" (Harris and Koch, 1989). We have implemented this device in analog 
CMOS and demonstrate its performance here. 

THEORY 

Let us begin by justifying "resistive fuses" as specialized circuit elements 
for implementing discontinuities. Since our methodology does not distinguish 
between a 1-D and a 2-D implementation of smoothing in the presence of discon­
tinuities, we will first consider the 1-D case. The simplest possible variational 
functional for interpolating noisy and sparsely sampled data di in the presence 
of binary line discontinuities ii is a membrane type of surface interpolation: 

J(f,i) = >. I;(1i - 1i+1)2(1- i d + 2~2 I;(di - 1i)2 + Q I;ii' (1) 
l l l 

where Ii is the value of the final surface f at location i, (72 the variance of the 
additive Gaussian noise process assumed to corrupt the data di and>' and Q are 
free parameters. The first term in this functional implements the constraint that 
surfaces should, in general, vary smoothly. If all variables, with the exception 
of Ii, 1i+1 and ii, in eq. (1) were held fixed and >'(Ii -1i+1)2 < Q, it would 
be "cheaper" to pay the price >'(Ii - li+l)2 and set ii = 0 than to pay the 
larger price Q. However, if the gradient becomes too steep, the line process is 
switched on, i.e. ii = 1, and the "price" Q is paid. The second term in eq. (1), 
where the sum only includes those locations i where data exist, forces the final 
solution f to be close to the measured data d. How close depends on the 
estimated magnitude of the noise, in this case on (72. Thus, the surface f, with 
its associated set of discontinuities i, minimizing eq. (1) will be the one that 
best satisfies the conflicting demands of piece-wise smoothness and fidelity to 
the measured data. The functional of eq. (1) is non-convex and a large number 
of both stochastic and deterministic methods have been designed to find optimal 
or nearly optimal solutions for this and similar functionals (Geman and Geman, 
1984; Marroquin, Mitter and Poggio, 1987; Koch, Marroquin and Yuille, 1986; 
Blake and Zisserman, 1987; Terzopoulos, 1983, 1986). 
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Figure 2 Theoretical I-V curves for a linear resistor (A) and a measured 
1-V curve for Mead's saturating resistor (B). Integrating numerically over these 
curves gives the co-content of the linear resistor (C) and the saturating resistor 
(D). Co-content is defined by eq. (2) and represents generalized power for non­
linear systems. The co-content for the linear resistor is equivalent to half the 
dissipated power, and thus a quadratic function in ~V, while the co-content 
for the saturating resistor becomes a linear function of ~ V as I~ VI -+ 00. 
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Figure 3 Theoretical I-V curve for an infinite-gain fuse (A) and a measured 
1-V curve for a finite-gain resistive fuse (B). Integrating numerically over these 
curves gives the co-content J for the infinite-gain (C) and the finite-gain fuse 
(D). 
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Figure 3C shows a plot of J(f, l) as a function of the depth at locations Ii 
and fi+l and as a function of the discontinuity li. The values of the surface and 
of the line discontinuities are assumed to be fixed at all other locations. As long 
as >'(Ii - li+l)2 ~ 0:, the function E is quadratic in the gradient. However, 
once Iii - Ii+d exceeds the gradient limit J 0:/ >., E remains flat at E = 0:, 
independent of the magnitude of Ii - Ii+l (Blake and Zisserman, 1987). 

The appropriate circuit implementation is a straightforward modification 
of the network shown in Fig. 1. The surface Ii represents the final reconstructed 
points. The voltage on the battery is di, and the conductance G equals 1/(2(72). 
If no measured surface value d is present at a particular location, G = 0 at that 
location. The value of the grid conductance>. controls the amount of smooth­
ing. Binary switches, breaking the resistive connections among neighboring 
nodes, would implement discontinuities in the surface. As long as the switch 
is closed, the current is linear in the voltage drop across the device. Since the 
electrical power in a linear network is proportional to the square of the voltage 
gradient across all resistances, the power is quadratic in the gradient and can 
thus be identified with the first term in eq. (1). Once the threshold has been ex­
ceeded, the binary switch opens and no more current flows through the device. 
The digital processors controlling the switches need access to the state of the 
neighboring switches as well as to the neighboring depth values. We will now 
demonstrate, however, how this mixed analog-digital circuit can be replaced by 
a single analog non-linear resistor, the "resistive fuse." 

The circuit implementation of binary discontinuities will require nonlinear 
circuit components. As pointed out by Poggio and Koch (1985), the notion 
of minimizing power in linear networks implementing quadratic "regularized" 
algorithms must be replaced by the more general notion of minimizing the total 
resistor co-content (Millar, 1951). For a two-terminal voltage-controlled resistor 
characterized by I = f(V), the co-content is defined as 

J(V) = l V f(V')dV'. (2) 

For a linear resistor, I = GV, the co-content is given by tGV2, which is just 
half the dissipated power P = GV2 (Fig. 2). For a network consisting of a 
collection of resistors, voltage sources and other elements, the total network co­
content is defined as the sum of all the (linear or nonlinear) resistor co-contents, 
that is, 

(3) 
all resistors 

The co-content for various resistors is plotted in Figs. 2 and 3. Differentiating 
eq. (2), we have: 

dJ 
f(V) = dV· (4) 
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The appropriate current-voltage relationship of an infinite-gain resistive 
fuse is illustrated in Fig. 3A. As long as the voltage drop across this device 
is below the threshold, the current through the nonlinear resistor is linearly 
related to the voltage across it. Once past the threshold, the circuit breaks 
(hence the name "fuse"), and the current is zero for all values of the voltage 
gradient. This two-terminal device then implements the high-level constraint 
that surfaces should be smooth unless their neighboring values differ by more 
than ±Ja/>.., at which point the surfaces will break. 

The I-V relationship of the device we have built is shown in Fig. 3B. The 
most salient difference from the infinite-gain fuse are the smooth flanks, where 
the current decreases smoothly to zero for increasing values of the voltage gra­
dient 1. (in. contrast with the discontinuity in the I-V relationship for the 
infinite-gain fuse). In this region the slope conductance dI/ dV will be negative 
(Fig. 13C) Our measured I-V curve can be related directly to the concept of 
analog line discontinuities of Koch et al. (1986). The key idea is that, fol­
lowing Hopfield and Tank (1985) in their neural network implementation of 
the Traveling Salesman Problem, binary discontinuities are mapped onto con­
tinuous "neurons," whose output is constrained to lie between 0 and 1. The 
input-output relationship of these "discontinuity neurons" is governed by the 
sigmoidal function V = g(U), where g(U) is a strictly monotonic function, 
usually taken to be 

1 
g(U) = 1 + e-2TJU' (5) 

with the "gain" rJ > o. The network converges to a stationary solution using a 
steepest descent rule. The solutions obtained were qualitatively very similar to 
the solutions obtained with binary line processes. It is rather straightforward 
to derive an "analog" version of resistive fuses (Harris, Koch, Staats, Luo and 
Wyatt, 1989), with the following I-V relationship 

[ V2 a] 
I = f (V) = 1 - g( f3 ) V, (6) 

where f3 > 0 is a parameter related to the analog line process implementation 
(identical to Cc of eq. (7c) of Koch et al., 1986). Our measured I-V curve 
for the fuse (Fig. 3B) implements this function. For rJ -t 00, the function g 
becomes binary and f(V) of eq. (6) approaches the form of the infinite-gain 
fuse (Fig. 3A). 

So far we have only discussed the implementation of binary or analog dis­
continuities in I-D. For 2-D image problems, horizontal as well as vertical line 

1 The I-V characteristic of our experimental fuse relates somewhat to the 
theoretical work of Perona and Malik (1988) who simulated a network of ele­
ments with similar I-V characteristics to perform image segmentation. 
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processes need to be incorporated into the variational functional. Furthermore, 
it has been standard practice to constrain the geometry of line processes by 
adding appropriate terms to the 2-D extension of eq. (I). Some of the more 
common constraints are that discontinuities should occur along continuous con­
tours, should not intersect nor form along parallel lines (Geman and Geman, 
1984). Furthermore, Poggio et al. (1988) introduced the notion that disconti­
nuities in depth should in general coincide with discontinuities in intensity, that 
is intensity edges. 

We previously demonstrated how a piece-wise smooth optical flow field, 
induced by moving objects, can be successfully recovered in the presence of 
binary motion discontinuities with the above set of constraints (Koch et al., 
1986; Hutchinson et al., 1988). We repeated these simulations using only the 
finite-gain resistive fuses of eq. (6) together with the constraint that motion 
discontinuities should only occur together with intensity discontinuities, in our 
case zero-crossings of the \j2G operator. The performance of both algorithms­
for 128 by 128 video image sequences of several moving and partially occluding 
people-is very similar (for more details see Harris et al., 1989). Since the co­
localization of all or most motion discontinuities with intensity discontinuities 
(but not necessarily the reverse) is relatively simple to implement at the circuit 
level, we feel that we can now design VLSI circuits to compute intensity, mo­
tion and depth discontinuities for real, two-dimensional images. The following 
section discusses the detailed circuit implementation of the resistive fuse. 

CIRCUIT DETAILS 

The circuit schematic for the fuse is shown in Fig. 4. The circuitry above 
the dotted line in the figure is Mead's saturating resistor (Mead, 1989) with 
a p-type pullup transistor that sets the nominal resistance of the fuse. In 
subthreshold operation, the current through a transistor varies exponentially 
with the gate-to-source voltage. Thus, the voltage VB produces a current I B 
equal to: 

IB = Ioel>:(VDD-VB ) (7) 

Following Mead (1989), all voltages are assumed to be normalized by kT / q. 
The variable K, is a process-dependent parameter that reflects the inability of 
the gate to be 100% effective in reducing the barrier potential. 10 is a constant 
that includes the width and length of the transistor as well as process-dependent 
fabrication parameters. Letting IF = IB, the I-V relation of the resistor can 
be derived as: 

IF (~V) 
IFUSE = T tanh 2 (8) 
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Figure 4 Schematic of the fuse circuit. The nonlinear, voltage-controlled 
resistance is seen across the VI and V2 terminals. The circuitry above the 
dotted line is a saturating resistor (Mead, 1989) with VB controlling the nominal 
amount of resistance. The circuit below the dotted line is a saturating absolute­
value circuit that turns off the resistor for large /VI - V21. VA determines the 
magnitude of the current pulled away by the absolute-value circuit. 
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where ~ V = VI - V2. For small ~ V this portion of the circuit operates as a 
linear resistor with a resistance of 

R = 4kT/q 
IF 

(9) 

Because we are working in the subthreshold region, IF and thus the resistance 
can be varied over five orders of magnitude. For large ~ V the resistor saturates 
and provides a constant current of IF/2. A measured I-V 'curve for this circuit 
is shown in Fig. 2B. 

The circuit below the dotted line in the figure performs a saturating 
absolute-value operation. This portion of the circuit is enabled by the volt­
age VA, which creates a current I A equal to: 

(10) 

The positive parts of the outputs of a dual-output wide-range transconductance 
amplifier are combined to create a current of: 

( KI~VI) lABS = IA tanh -2-

By Kirchhoff's current law, the current IF is: 

where the symbols l J are defined as 

lxJ = X if x ~ 0 

=0 if x<O 

Substituting (11) and (12) into eq. (8), gives 

1 l (KI~VI)J (~V) IFUSE = 2" IB - IA tanh -2- tanh -2-

(11) 

(12) 

(13) 

When I~ VI is small, the fuse acts as a linear resistor whose nominal resistance 
is set by lB. When I ~ V I is large, I A increases above the current supplied by 
the p-type pull-up, and VF is pulled to ground, shutting off the resistor. In 
between these extremes, the fuse exhibits a gradual transition. 

Figure 5 shows a family of curves measured by varying VA while keeping 
VB constant. By varying VA in this way, the circuit's I-V characteristic can 
be continuously and smoothly changed from that of a saturating resistor to 
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Figure 5 Measured I-V curves that show the effect of continuously varying 
from the saturating characteristic to that of the fuse curve. VB was set to 4V 
and VA was varied from OV to 2V. When VA = 0, the resulting I-V curve is 
identical to that of Mead's saturating resistor. 

the fuse I-V curve. Setting VA = 0 gives I A = 0 disabling the absolute-value 
circuit, and giving the fuse a saturating I-V relationship (Fig. 2B). 

Integration of the I-V curves in Fig. 5 gives the family of co-content curves 
shown in Fig. 6. For small Ll V the co-content is quadratic and for large Ll V 
the co-content saturates at a constant value. Instead of saturating for large 
voltage differences, the co-content of the saturating resistor increases linearly 
with voltage. As will be seen in the following section, networks of resistors 
with positively sloped I-V curves are guaranteed to converge to a single unique 
minimum value of the co-content. By turning the voltage control, we are chang­
ing the energy landscape in a continuous fashion ("continuation method") from 
containing one unique global minimum to a landscape containing many local 
minima. 

The fuse provides a mechanism for changing the threshold value. If we 
assume that the circuit is operating in the linear region of the two hyperbolic 
tangents, IFUSE becomes twin parabolas of the form: 

(14) 
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Figure 6 Co-content functions: each curve was numerically integrated from 
the family of curves in Fig. 5. Continuously varying the co-content curves in 
this way performs a useful computation that is explored more in Fig. 10 and 
Fig. 11. 

This linear analysis indicates that the measured curve in Fig. 3B consists of a 
parabola in each of the first and third quadrants. This current in eq. (14) is 
cut to zero for: 

(15) 

IpUSE reaches extremum points at: 

(16) 

The extremum points can be set by the ratio of IE to IA. In subthreshold oper­
ation, the width of the saturating tanh curves is about 100m V. The extremum 
points can then only be be varied from 0 to about ±100mV. For gate voltages 
above the threshold of the bias transistors, the width of the linear region of the 
hyperbolic tangent function increases by Vas - VT, where Vas is the gate-to­
source voltage and VT is the threshold voltage of the bias transistors. Thus, 
by going slightly above threshold the extremum point can be varied from 0 to 



40 

400 
I 

(nA) 

o+-----~----~--~ 

INCREASING VDD - VB 

-400+----+----~--~--~----+_--_+----r_--~--~--__4 
-0.5 0.0 0.5 

~V (V) 

Figure 7 Measured I-V curves illustrating different line process penalties. VA 
was kept constant at 2V and VB was varied from 3.9V to 4.1V. 

about ±500mV. Figure 7 shows a family ofI-V curves measured by varying VB 
and holding VA constant. 

We are studying the use of a high-gain fuse, a circuit that does not have a 
large incrementally active region in its I-V curve (Fig. 8). Circuit simulations of 
the high-gain fuse show I-V curves that look like those of the infinite-gain fuse 
in Fig. 3A. Instead of feeding the absolute-value current back to the resistor 
bias circuits, current is fed back to a pass gate that acts as a binary switch 
in the current path. When IB > lABS the voltage on the gate of the binary 
switch (VF) is charged to VDD. On the other hand, when IB < lABS, VF is 
pulled to ground, effectively open-circuiting the resistor. The resistance of the 
resistor is controlled by VR, which sets the bias current IR' Notice that the 
current that controls the line process penalty is decoupled from the current that 
sets the resistance of the fuse. Assuming high-gain elements, the I-V equation 
for the high-gain fuse is given by: 
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Figure 8 Modification of the fuse to obtain a high-gain characteristic. As be­
fore, a saturating resistor and an absolute-value circuit are combined to create 
a fuse. However, different from the circuit of Fig. 4, the absolute-value circuit 
discharges the gate of a pass transistor that has been added in the resistance 
path. This pass gate acts as a binary switch that is opened or closed dependent 
on whether or not the absolute-value current is greater than the threshold cur­
rent provided by VB. VR provides independent control of the resistance of the 
fuse when the binary switch is closed. 
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Figure 9 Layout of the 1-D fuse network. Voltage sources di provide input to 
the network through wide-range transconductance amplifiers. The bias voltages 
on these amplifiers 9i controls their conductance. The smoothed and segmented 
outputs are given as voltages at f;. This network was designed to implement 
eq. (1). 

l.f (KIAVI) IR (AV) IA tanh -2- < IB then IFUSE = ""2 tanh -2-

if IA tanh (KI~VI) > IB then IFUSE = 0 

(17) 

This implementation of the fuse shares an advantage with Mead's saturating 
resistor layout, because only one biasing circuit is needed for each node. This 
saves many transistors, especially in 2-D layouts. The low-gain fuse requires 33 
transistors per connection, while the high-gain fuse requires only 21 transistors 
per connection plus 6 transistors per node. For a hexagonal mesh, each basic cell 
needs to contain one node plus half of the six neighboring connections, requiring 
a total of 69 transistors per cell for the high-gain fuse and 99 transistors per 
cell for the low-gain version. 
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Figure 10 Measured segmentation from an experimental resistive fuse net­
work. The circles denote "noisy" step data that was used as the input to the 
network. The solid-line curve indicates measured voltages from the chip. The 
dotted-line curve shows the measured voltage output given by a network of 
Mead's saturating resistors. 

A network of eight fuses (of the type shown in Fig. 4) was fabricated and 
successfully demonstrated. The schematic is shown in Fig. 9. Eight voltage 
values are input as the dj values. The smoothed and segmented Ii voltages are 
the resulting outputs. Figure 10 shows a segmentation result for a "noisy" 1-D 
step edge. The network effectively smooths out small steps without degrading 
large step edges. The I-V curves of the fuses in this example have been set to 
the form shown in Fig. 3B. In this configuration, the network exhibits a hys­
teresis property in which two stable final states are possible. The two stable 
states correspond to segmenting or smoothing the step edge. The segmented 
stable state is shown as the solid line in Fig. 10. The smoothed stable state 
becomes essentially a flat horizontal line. The final state depends on the tem­
poral history of the network. To ensure that the proper stable state is reached 
in a deterministic fashion, VA is initially set to OV and then gradually moved 
to its final value. 

The hysteresis properties of the network can be better understood through 
a load-line analysis of a much simplified circuit (Fig. 11). The current through 
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Figure 11 Simple load-line analysis shows that there can be up to three 
equilibrium points for the fuse/resistor circuit given above. The I-V curves for 
the measured fuse and the simulated voltage source/resistor are shown as solid 
lines. For plot A, points PI and P3 are stable, and P2 is unstable_ Voltages 
in the neighborhood of P2 will be driven to either PI or P3. By increasing 
the value of the voltage source E, a single stable equilibrium point PI remains 
(plot B). The dotted-line curves show the effect of changing VA-
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the fuse is plotted as a function of the voltage across the fuse. The simulated 
voltage source/resistor is also illustrated as a solid line, with the negative slope 
of this line given by the conductance G and the x-intercept given by the value of 
the voltage source E. A stability analysis reveals that the system possesses up 
to three equilibria. In the case illustrated in Fig. llA, the middle equilibrium 
is unstable and the voltage will tend toward the two stable solutions PI and 
P2. Point PI corresponds to segmentation, and P3 corresponds to smoothing. 
By increasing the value of the voltage source E (Fig. llB), only a single stable 
equilibrium point remains, corresponding to segmentation: Of course, stability 
cannot be guaranteed for negative values of G. The dotted-line curves show 
the effect of changing VA. 

Figure 12 shows the computed total co-content from the I-V curves shown 
in Fig. 11. For Fig. 12A, PI is the global and P3 is only a local minimum, while 
P2 corresponds to an unstable local maximum. In contrast, Fig. 12B contains 
a single equilibrium point, PI, which corresponds to a discontinuity. The dot­
ted lines show the effect of increasing VA, deforming the energy surface from 
one with a single equilibrium point to one with two local minima. By using 
a continuation method in this fashion, discontinuities are deterministically lo­
cated. Reasonable performance may be obtained by using a single setting of the 
fuse control voltages and keeping the voltages constant over time. This static 
approximation of the continuation method will still smooth small step edges 
while preserving large steps. However, medium steps, such as those simulated 
in Fig. 11, can be either smoothed or segmented depending upon the temporal 
history of the network. This load-line analysis is a simplified version of the true 
dynamics of networks of fuse elements, but serves to illustrate the complexity 
of even a single fuse element circuit. 

STABILITY 

Though the chord resistance of the fuse circuit is always positive, its in­
crementally negative resistance regions (see Fig. 13) raise doubts about the 
stability of networks of resistive fuse elements. One question that has already 
been alluded to above is the issue of whether the network will converge at all 
and whether a unique stationary solution exists. The reasoning presented later 
in this section supports the following conclusions. 

1. Monotonic Resistors 

Suppose all the nonlinear resistors are incrementally strictly passive, i.e., 
have I-V curves with positive slope, dI/ dV > 0, everywhere. One instance of 
such a device is Mead's saturating resistor (Fig. 2B). Then the stationary net­
work solution for a given input image will be unique. If we further suppose that 
the nonlinear resistors are ideal memoryless elements (i.e., that we can neglect 
the fast parasitic dynamics internal to each resistor circuit), then the network 
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Figure 12 Computed total co-content from the I-V curves shown in Fig. 11. 
In plot A, PI and P3 correspond to stable minima while P2 is an unstable 
maximum. In contrast, Plot B contains a single equilibrium point PI that 
corresponds to a discontinuity. The dotted lines show the effect of increasing 
VA· 
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Figure 13 The I-V curve of the fuse measured in 10m V increments is shown in 
(A). (B) shows the numerically computed chord conductance, which is defined as 
II ~ V. Incremental conductance is defined to be dI Id~ V, which is the derivative 
of the I-V curve. (C) shows the incremental conductance computed using a two­
point derivative approximation. Note the two regions of negative incremental 
conductance in (C). 
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will be globally asymptotically stable, i.e., for any voltage input and any initial 
condition it will converge to the unique stationary solution mentioned above. 
This conclusion holds even if positive, parasitic capacitances are distributed 
arbitrarily throughout the network, provided there are no inductors. This re­
sult assures us then that implementing the ideal, linear resistances dictated by 
standard regularization theory with Mead-type saturating resistances will not 
cause additional stationary solutions to appear. 

2. Nonmonotonic Resistors 

Now suppose the nonlinear resistors are externally passive (i.e., their I-V 
curves lie in the 1st and 3rd quadrants of the I-V plane) but are incrementally 
active, i.e., have regions of negative slope, as the resistive fuse in Fig. 3. Then 
there will in general exist a number of stationary network solutions for a given 
input image. If we further suppose that we can neglect the internal dynamics 
of the incrementally active resistor circuit, then for any voltage input and any 
initial condition the network will not oscillate indefinitely but must eventually 
settle to some stationary state. This conclusion also holds even if parasitic 
(positive) capacitances are distributed arbitrarily throughout the network, pro­
vided there are no inductors. This is a rather surprising result in view of the 
well-known instability problems with negative incremental resistance circuits. 

3. Resistors with Internal Dynamics 

The nonlinear resistors are of course multiple transistor circuits themselves 
and will inevitably have internal transient dynamics due to charge storage in 
transistors and parasitic wiring capacitance. Although each of the resistor cir­
cuits reported here is known to be stable in isolation, networks of such elements 
may, in principle, be unstable. This is an active research area, and many ques­
tions remain. Recent theoretical work (Wyatt and Standley, 1989; Standley 
and Wyatt, 1989; Standley, 1989) gives sufficient conditions for stability of 
such networks when the complex high-frequency dynamics are confined to the 
linear elements in any circuit consisting only of such linear elements, nonlinear 
memoryless resistors, and positive nonlinear capacitors. These results can be 
applied to yield local stability criteria for networks in which the resistor circuits 
are incrementally passive (such as Mead's saturating resistor) but have com­
plex internal dynamics. But in their present form they are not applicable to 
networks in which the resistors are incrementally active (such as the resistive 
fuse) with internal dynamics. 

The conclusions given in 1 and 2 above follow from well-established non­
linear network principles outlined below. Since the derivations follow with re­
markable ease in these two cases, complete proofs are given. 

We have sometimes found that experienced circuit designers can be deeply 
skeptical about the dynamic stability (non-oscillation) claim made above, and 
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tunnel diode oscillator circuits are sometimes mentioned as counterexamples. It 
may be helpful to clarify what the precise result, Theorem II below, actually as­
sumes. In the first place, it assumes an inductorless circuit, i.e., the only circuit 
elements allowed are positive (but possibly nonlinear) capacitors, ideal constant 
voltage sources, and nonlinear (possibly incrementally active) resistors. Thus 
oscillators that rely on inductors, even the distributed inductance in connecting 
wires, are not ruled out by the theorem. Note also that nonreciprocal building 
blocks, such as amplifiers, are not allowed under the assumptions, and that 
the individual resistors are assumed to have no internal dynamics of their own. 
Finally, the theorem does not assert that every stationary network solution is 
stable. Some will be unstable and some will be stable, but the network will 
eventually always settle to one of the latter. 

The "no-inductors" assumption and the "no resistor dynamics" assumption 
are modelling approximations. Their appropriateness in a particular context is 
always open to question, and the issue can be settled for any given circuit 
only by experimentation. We note here that neglecting on-chip inductance 
has proven to be an excellent approximation in the analysis of many practical 
circuits, and that the nonlinear resistor circuits reported here are intended by 
the designer to operate as essentially memoryless resistors. 

All the conclusions in 1 and 2 above follow easily from Tellegen's theorem, 
restated below for convenience (Tellegen, 1952; Penfield, Spence and Duinker, 
1970; Chua, Desoer and Kuh, 1987). 

4. Tellegen's Theorem 

Assume we are given a network with sign conventions for branch voltages 
Vk and branch currents Ik such that the product Vk . h represents the power 
flowing into branch k. Then 

(18) 
all network branches 

Furthermore, suppose xk represents either Vk or any quantity derived from Vk 
such that at each instant the set of all xk satisfies Kirchhoff's Voltage Law 
(KVL), i.e., the xk sum to zero around any loop in the network. And suppose 
Yk represents either h or any quantity derived from I k such that at each 
instant the set of all Yk's satisfies Kirchhoff's Current Law (KCL) i.e., the sum 
of the Yk's entering any node is zero (examples include xk = dVk/dt, xk(t) = 
Vk(t + 3), Yk = J Ib etc.). Then 

(19) 
all network branches 
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Tellegen's theorem makes it very easy to show why the stationary solution to 
any network with incrementally passive resistors must be unique, as claimed in 
section 1. 

5. Theorem I (Uniqueness) 

There exists at most one solution for the resistor voltages and currents in 
any network of arbitrary topology consisting of strictly incrementally passive 
resistors and ideal voltage and current sources. 

Proof: Suppose on the contrary there exist two such solutions, solution a and 
solution b (if more exist, pick any two). Let Vka and vt denote the voltage 

across branch k in the two solutions, ~Vk denote vt - Vka , and let ~Ik be 
defined similarly. Then the set of ~ Vk 's satisfies KVL and the ~I k 's satisfy 
KCL, so from eq. (19) 

(20) 
all resistors and sources 

Since Vka = vt for all voltage sources and Ik = IZ for all current sources, the 
product ~ Vk . ~h vanishes for all source branches and eq. (20) reduces to 

L ~ Vk . ~Ik = O. (21) 
all resistors 

But each resistor curve has positive slope by assumption, so ~ Vk . ~Ik ~ O. 
Thus eq. (21) guarantees that ~ Vk = 0 or ~h = 0 for each resistor. Therefore 
~ Vk and ~Ik both vanish since each resistor curve is assumed to be single­
valued and invertible. 
Q.E.D. 

This theorem first appeared in Duffin (1947); see also Birkhoff and Diaz 
(1956). A more recent treatment can be found in Hasler (1986). 

The non-oscillation claims in sections 1 and 2 follow with similar ease 
from Tellegen's theorem. The key quantity of interest is the resistor co-content 
of eq. (2) (see also Poggio and Koch, 1985). Thus, the reason nonlinear RC 
networks cannot exhibit unforced sustained oscillations, even if the resistors 
are incrementally active, is because Jtotal(t) is always "running down," i.e. 
Jtotal acts (roughly speaking) as a Lyapunov function. 
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6. Theorem II (Stability) 

Consider a network of arbitrary topology consisting of nonlinear voltage­
controlled resistors, ideal time-invariant voltage sources, and nonlinear but pos­
itive capacitors described by Ik = Ck(Vk)~' with Ck(Vk) > 0 everywhere. 
Then Jtotal is strictly decreasing at each instant during any transient, i.e., 

dJtotal(t) < 0 
dt -, (22) 

and the inequality is strict except at equilibrium. 

Proof: From Tellegen's theorem, eq. (19), we have 

" Ik(t) dVk(t) = o. 
~ dt 

all network branches 

(23) 

For the voltage sources d~?) = 0, so these drop out of the sum in eq. (23), 
which now reads 

" I ( ) dVk(t) "I ( ) dVk(t) ~ k t -- + ~ k t -- = o. 
II . dt II' dt a resistors a capacitors 

(24) 

For each resistor, 

I (t) dVk(t) = dh(t) 
k dt dt' 

(25) 

which follows from eq. (2), using the chain rule for derivatives. Thus the first 
sum in eq. (24) is just dJtotal(t)/dt. And for each capacitor, 

h(t) d;t{t) = Ck{Vk{t)) (d;t{i)) 2 ~ o. 

The inequality (22) follows upon substituting eqs. (25) and (26) into (24). 
Q.E.D. 

(26) 

This theorem is a special case of results in (Brayton and Moser, 1964), but 
the proof given here is much more elementary. 

If Jtotal is bounded from below and slopes upward for large values of the 
voltages, then Theorem II implies that the network will settle into a steady­
state. A sufficient condition for this is that the I-V curve of all resistors in the 
network should lie somewhere in the interior of the 1st and 3rd quadrants for 
large values of AV. 
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Note that Theorem II rules out sustained oscillation because Jtotal(t) 
would have to be periodic if the network state were periodic, and this is im­
possible since dJtotaz/ dt :S: 0, with equality only at equilibrium. However, 
Jtotal does not necessarily meet all the standard criteria for a Lyapunov func­
tion since its shape is essentially arbitrary. It is easy to show that J is convex 
if and only if the resistors are all incrementally passive. With incrementally 
active resistors such as resistive fuses, J can have many local minima, which 
are then the (locally) stable equilibria of the network. In the case of positive 
linear resistors, Theorem 2 has the special interpretation that the total dissi­
pated power decreases monotonically during transients in any RC circuit with 
voltage sources, even if the capacitors are nonlinear. In this linear case the 
co-content (and the total power) are convex functions of those voltages that 
are not constrained by the sources, so the local minimum to which the network 
converges is in fact the global minimum of the dissipated power, subject to the 
source constraint. Stripped of all dynamics, the static version of this statement 
is known as Maxwell's Minimum Heat Theorem (Maxwell, 1891). 

CONCLUSION 

We have successfully demonstrated in this manuscript for the first time a 
simple and elegant analog circuit implementation of the line discontinuities of 
Geman and Geman (1984) and of the graduated non-convexity algorithm of 
Blake and Zisserman (1987). We only report on the experimental data for an 8 
pixel 1-D circuit. We have sent out a 20 by 20 pixel 2-D version of this network 
to MOSIS for fabrication. We previously demonstrated a 48 by 48 pixel circuit 
implementing smooth surface interpolation (Luo, Koch and Mead, 1988). This 
work can be extended to include 2nd order or thin-plate surface interpolation 
(Harris, 1989), where the energy functional embodies the discretized square of 
the '\72 operator. Computer simulations have shown that detection of discon­
tinuities in surface orientation, such as occurring along creases, is feasible in 
problems such as edge detection and surface interpolation (Blake and Zisser­
man, 1987; Liu and Harris, 1989) and can be incorporated into our thin-plate 
interpolation circuits (Harris, 1989). 

We thus have all the elementary circuit elements in hand-phototransistors 
for on-chip image acquisition (Mead, 1989), resistive networks for smoothing, 
and resistive fuses for detecting discontinuities-to design analog, resistive net­
work chips to compute the 2-D optical flow field in the presence of motion 
discontinuities, the depth and depth discontinuities in 2-D images as well as 
intensity discontinuities. 
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CMOS INTEGRATION OF 
HERAULT -JUTTEN CELLS 

FOR SEPARATION OF SOURCES 

Eric A. Vittoz 
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Let us consider an array of n unknown independent sources Xi(t) which, at any time, 
are only observable indirectly through the n signals Ei(t) obtained by an unknown 
linear combination of the Xi (Fig. I). In vectorial notation: 

where [AJ is a square n-matrix 

r-

I sources 

1 
1 

I .. I 
[AJ 

E(t) = [AJ X(t) 

V unknown 

I : : H - J 1 
1 network 
I 

I E1 

observables 

Fig.1 Separation of sources 

(1) 

... .. 
1 
1 
I --

output 

The problem is to restore the primary signals X without a priori knowledge of the 
mixing matrix [A]. This problem was first addressed by J.Herault and C.Jutten [1] 
after they found some evidence that the informations about speed and position of 
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body joints are mixed up before being sent to the brain by two different types of 
nerves. The brain is however perfectly capable of separating speed and position. 

A comparable engineering situation is the case of n sensors, each with an unknown 
(and possibly slowly variable) sensitivity to n independent variables. The problem is 
then to extract these variables from the signals provided by the sensors. 

Herault and Jutten have proposed a network [1],[2] which carries out this task, by 
transforming the measured vector Ii into a new vector .s. with independent 
components Sj. Each Sj is therefore proportional to only one of the sources Xj. 

Input 
vector 

El Sl 

r 
I :.... g 

U u 
E· Sj > 

1 ~ 

::I 
c... 

cell i "5 
0 

E· S· 
J J 

En 0----- >----4-0S n 

Fig.2 Herault-Jutten network 

The block diagram of this network is shown in Fig.2. It is a (almost) fully 
interconnected network of n cells (or neurons) providing n output values Sj. Each 
cell i is driven by the sum of one input Ej and output Sj of all the other cells, each 
weighted by a negative factor -Cij (synaptic weight). 
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The value of Cij is adaptable by means of a local law (which only depends on the 
values of Si and S} implemented by the nonlinear adaptation block B. The whole 
network is otherwISe linear, with 

S1· = E· - " c·· S· 1 L.J 1J J 

J~i (2) 

This structure and its behaviour are analyzed in details in the Ph.D.Thesis of 
CJutten [3], which has provided most of the theoretical matenal used here. This 
paper will describe an experimental CMOS analog implementation of one cell. 

Fig.3 Detailed structure of a 2-cell H-J network 

SUMMARY OF THE BASIC THEORY 

To simplify the explanations, let us consider the 2-ceU network represented in 
Fig.3. In this case: 

S 1 = E1 - c12 S2 (3) 

S2 = E2 - c21 Sl (4) 

The solution of which is: 

Sl=E1- C12E2 (5) and S2 = E2 - c21 E1 (6) 
1 - c12 c21 1 - c21 c12 
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Let us now express the fact that El and E2 are linear combinations of the original 
sources Xl and X2: 

(7) 

(8) 

where the aij are the coefficients of the mixing matrix [A]. The output signals are 
then given by: 

Sl = (all - c12 a2l) Xl + (a12 - c12 an) X2 

1 - c12 c2l 

S2 = (a2l - c2l all) Xl + (an - c2l a12) X2 

1 - c12 c2l 

(9) 

(10) 

Each output may be made to depend on only one source by cancelling the 
contribution of the other. Two solutions are in principle possible: 

_ a12 and _ a2l which provides: c12--- c21---
an all 

Sl = all Xl and S2 = a22 X2 (11) 

C12=~ and c2 = an which provides: 
a2l 1 a12 

Sl = a12 X2 and S2 = a2l Xl (12) 

However, the system is a closed loop and a stable solution is only possible if 
c12.c2l <1. As a result, the extraction of source Xi must be done by the channel 
which has the larger relative content of this source. 

The problem is now to find a way to adapt the coefficients Cij to the value required 
for separation without knowing the coefficients aij of the mixing matrix [A]. The 
only clue available is that the unknown sources Xi are independent. Therefore, after 
separation, the output signals Si must be independent as well. 

For the sake of simplicity, let us assume that the average values of all sources Xi 
are zero: 
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(14) 

where E(x) is the mathematical expectation of x. The condition for the output 
signals to be decorrelated (zero covariance) is expressed as 

(15) 

l'-~ __ -r----------------------~ 

t 

o ell --.. 1 

FigA Solution P and loci of zero covariance 

Introducing expressions (9) and (10) of the output signals and using the fact that the 
original sources are not correlated provides a relation between c12 and c21 [3]. As 
shown in FigA, this locus of zero covariance depends on the ratio r of the variances 
of the sources 

(16) 

except at point P which corresponds to the solution of the problem (relation (11) or 
(12». Furthermore, the covariance is positive below the curve and negative above. 
Therefore, the synaptic weights will converge to values ensuring decorrelation if 

dC12 = dC21 = a E(SI S2) 
dt dt (17) 
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By choosing the gain a sufficiently small, the weights only change very slowly and 
the expectation may be replaced by the intantaneous value. 

Such an adaptation law is however not sufficient to reach the required solution P 
because it only achieves decorrelation of the output signals. What is needed to reach 
P is independence, which is a much stronger requirement. 

It can be shown that the independence of S land S2 implies 

E( S 1 k S21) = 0 for any odd value of k and I 

On this basis, Herault and Jutten have proposed an adaptation law of the form 

dC12 = a f(Sl} g(Sz) 
dt 

(18) 

(19) 

(20) 

where f and g are odd functions which contain the necessary odd power terms to force 
condition (18). They must be different to permit the asymmetrical variation of c12 
and c2l necessary to reach P from any initial condition. For a practical analog 
implementation the choice of these functions will be dictated by their realizability 
(opportunistic approach defined by C.Mead (4)). However, interesting clues may be 
obtained by a priori simulations with simple functions. 

NUMERICAL SIMULATIONS 

These are easily carried out by calculating Sl and S2 from equation (5) and (6) for 
the present value of input signals El and E2. These values are then introduced in 
(19) and (20) to calculate the increment of c12 and c2l' which can be plotted before 
going to the next cycle with the next values of El and E2. In the following 
simulations, the sources Xl and X2 are sequences of independent random values 
with probability constant between Xmax and -Xmax and zero outside. The mixing 
matrix is kept constant with: 

From (11) the solution P is then c12=0.3, c21=0.7 

Figures 5 to 7 show the trajectories in the (c12,c2l) plane for 3 different pairs of 
simple functions f and g. The convergence is facilitated by choosing f and g both 
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nonlinear with opposite curvature signs. Starting at the origin, the trajectory 
approaches quickly the locus of zero covariance before turning more slowly towards 
point P. When it is started somewhere on this locus, the trajectory follows it until 
solution P is reached. 

1 

weights 
Input 

o 1 

Fig.5 Convergence with f(x)=x and g(x)=tanh(x) 

1 

weights 
Input 

o 1 

Fig.6 Convergence with f(x)=x3 and g(x)=x 

Fig.8 and 9 show the results for nonlinear functions with the same curvature sign. 
The trajectory reaches the locus of zero covariance but then moves away from P. 
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1 

e 21 

o 

1 

o 

weights 
Input 

1 

Fig.7 Convergence with f(x)=x3 and g(x)=tanh(x) 

weights 

.... ..-----....lo.. .. 

Input 

1 

Fig.S Divergence with f(x)=x3 and g(x)=x 7 

E2 
f 

g 

El 

I 
g 

Figure 10 shows the results obtained when X 1 and X2 are binary distributions with 
2equiprobable states Xmax and -~ax' The simulation has been started on the locus 
of zero covariance but far from solution P. The evolution at the output is also 
shown in the (S l' S2) plane. 

A particular problem arises when the statistical distribution of amplitudes of the 
sources is gaussian. Indeed. decorrelation is then equivalent to independence and the 
system does not have any clue to find solution P on the locus of zero covariance. 
This is clearly visible in the simulation of Fig. I I. However. in practice. the sources 
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are never exactly gaussian in a given period of time. The system can still converge 
as will be shown in the practical implementation. 

1 

o 

1 

o 

weights f 

Output g 

.' 
.I" 

1 

Fig 9 Divergence with f(x)=tanh(3x) and g(x)=tanh(x). 

weights f 

Output g 

1 

Fig.l0 f(x)=x3 and g(x)=tanh(x); convergence with binary sources 
with 2 equiprobable states. The locus in output plane SrS2 is 
also shown. 

The principle involved may be explained qualitatively by saying that the system 
forces a symmetrical distribution of amplitudes in the output plane (S l' S2). Indeed, 
because f and g are both odd functions and the variables have zero mean values, c12 
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and c21 (given by (19) and (20» stop varying when biaxial symmetry is achieved in 
the (S 1, S~ plane. 

1 

o 

1 

o 

1/ 
/ 

I 

weights 

1 

f 

Input g 

Fig.ll Simulation with f(x)=x3 and g(x)=tanh(x). Apparent lack of 
convergence with gaussian sources.The system still converges 
in practical implementations. 

f 
weights 

Output 
g 

1 

Fig.12 The system still converges perfectly with an offset of 40% of 
the RMS value of the sources in one of the functions. 

In Fig.l2, the simulation shows that the system is not affected by a large 
asymmetry in one of the functions. This is because a single axial symmetry in 
plane (S l' S2) is sufficient to achieve equilibrium. As a matter of fact, if one of the 
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functions is perfectly symmetrical, the other may contain any even component 
without affecting the system. 

1 

e 2 l 

o 

o 

S2 
/ f weights 

Output 

Sl 

1 

Fig. 13 The convergence is no more acceptable when the two functions 
are offset by 40% of the RMS value of the sources. 

1 

Fig.14 Acceptable solution when both functions are offset by 20% of 
the RMS value of the sources. 

Fig.13 shows the result with large asymmetries in both functions (each 
corresponding to 40% of the RMS values of Sl and S2)' The system does not 
converge to P anymore and separation is not carried out properly. Separation 
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becomes perfectly acceptable as soon as these asymmetries are reduced to no more 
than 20%, as demonstrated in Fig.14. The system is thus not very sensitive to 
asymmetries. This is a very important feature for analog implementations in which 
mismatches of components must be considered. The algorithm is very robust. It 
works properly with a wide range of nonlinear functions, provided they are of 
opposite curvature sign. 

ANALOG CMOS IMPLEMENT A TION 

The block diagram of the realized cell is shown in Fig. IS. Unity gain amplification 
is obtained by an operational amplifier OA and 2 identical transistors TiQ, TiR with 
same gate voltage YR' This voltage must be much larger than the peak value of 
input Ei to ensure linear operation. 

Fig.IS Block diagram of one cell. 

The output signals Sj of all the other cells are added and weighted by transistors Tij 
with gate voltage Vij . The corresponding synaptic weights for all transistors 
identical are given by 

c .. = Vij - VT 
1J VR - VT (21) 

where VT is the gate threshold voltage of the transistors. 

The operational amplifier (Fig. 16) is just an elementary transconductance amplifier 
followed by a common drain stage. Bias currents Ipl and Ip2 are separately 
adjustable to provide more flexibility in this experimental circuit. 
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Each voltage Y ij is generated by a block B in such a way as to make the local 
output signal Si statistically independent of signals Sj from other cells, according to 
the principle described above. The circuit realization of B must be as simple as 
possible while carrying out the task. It should exploit the intrinsic nonlinear 
characteristics of the transistors to create the required functions f and g. 

~------~------~--ov+ 

out 

IP2 

--------~------------~_o 
v-

Fig.16 Operational amplifier. 

Model of the transistor. 

The drain current ID of a transistor in saturation can be analytically modelled by the 
following equations [5]: 

weak inversion (small currents): 

I YO D= Is exp--
nUT 

strong inversion (large currents): 

where: 

ID = Is [YO - YT]2 
2nUT 

I - 2n J..lCox UT2 W s- L 

kT 
UT=-q 

for ID «Is 

for ID » Is 

(22) 

(23) 

(24) 

(25) 
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VT is the threshold value of gate voltage V G and n is the body effect which also 
affects the slope in weak inversion. Cox is the gate oxide capacitance per unit area 
and Il is the charge carrier mobility. W!L is the width to length ratio of the 
transistor channel. 

Moderate inversion: 

when ID is the same order of magnitude as Is, operation is in moderate inversion [6]. 
If necessary, the drain current may then be obtained by interpolation between weak 
and strong inversion [7]. 

Calculations can be simplified by normalizing 

all voltages to nUT: 
all currents to Is : 

v = V /nUT 
= 1/ Is 

1 

30 

veak inversion 

-1 

Fig.17 Differential pair and its transfer characteristics. 

Differential pair. 

v 

40 

(26) 
(27) 

The basic circuit brick of our implementation is the differential pair illustrated in 
Fig.17. Using the model above, the transfer characteristics of this circuit may be 
expressed as: 

in weak inversion 
iO i 1 (2) = ----":....,---

1 + exp (-(+) v} (28) 

(29) 



in strong inversion 

1 = i1 = +io 
i = -i2 = -io 
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(30) 

for v2 ~ 4 io 

(31) 

for v ~ 2{iQ (32) 

for v ~ -2{iQ (33) 

Relations (29) and (31) to (33) are represented in Fig. 17. As shown by equation 
(29), weak inversion can be used to implement a saturating function g which is 
multiplied by the tail current io. This current will have to be produced by the second 
function f of opposite curvature sign to implement the Herault-Jutten algorithm. 
The situation is a little more complicated in strong inversion since io does not have 
a purely multiplying effect. 

Function f. 

A good way to realize a function which has an increasing slope instead of saturating 
is to use a circuit with positive feedback. Such a circuit is shown in Fig.18 [8]. It is 
based on a differential pair T f. The tail current 10 of this pair is increased by A times 
its output current 11: 

(34) 

where IB is a small fixed bias current. 

The transfer function of the circuit can be calculated by introducing this relation into 
those of the differential pair, with all voltages and currents normalized according to 
(26) and (27). The results are: 

in weak inversion 

iB 11 = ---=---
1 - A + exp(-v) (35) 

Hence, the current obtained from a push-pull configuration will be: 
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. () . ( ) _ (ex~v) - ex~-v» iB = 11 v - 11 -v _ -;--_...O..-..:....!....:..-:-:-''-'-~=-_~ 

(1 - A + ex~v»)(l - A + ex~-v») 

or, for feedback factor A=l: 

1 = 2 iB sinh(v) 

in strong inversion (assuming i1 » iB) 

push-pull: i = sgn(v) K v2 

where 

for v> 0 
for v < 0 

(36) 

(37) 

(38) 

(39) 

(40) 

Thus, both modes of operation realize functions with the required overall shape 
(curvature positive for v positive and negative for v negative). 

r----~---~-__ov+ 

.11 
-o--j Tf f--o + 

I-----<f------I .. 
v 

18 

Fig.18 Principle used for generating function f. 

Adaptation block B. 

Each complete block B can now be built by combining 2 circuits of this type to 
realize the function f handling the two polarities of Si' each followed by a 
differential pair to implement the multiplication by function g. As shown in the 
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circuit diagram of Fig.19. these 2 contributions of current are then added and 
integrated in a capacitor C to create the gate control voltage V ij of synaptic weight 
Cij' Equilibrium is reached when no current is flowing in or out of C. 

The adaptation law implemented by this circuit may be calculated by combining the 
results previously carried out for the various subcircuits. It depends on the mode of 
operation of differential pair T f (specific current Isf) in the f-function generator and 
on that of pair T g (specific current Isg) in the g-function generator. 

Fig.19 Circuit diagram of adaptation block B. 

f and g in weak inversion 

The maximum level of all the currents in block B is controlled by the f-function 
generator. It depends therefore on the maximum value of the local output Si' 
According to relations (22) and (37), the differential pair Tf in this generator will 
stay in weak inversion as long as 

(41) 

The differential pair T g in the g-function generator will stay in weak inversion as 
well if 

(42) 
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is smaller than unity, where M is the overall current mirror ratio from transistors T f 
to the tail current of pair T g' Using relations (21), (29) and (37), the adaptation law 
can then be expressed as 

d c·· 
::..:!l. = a sinh(si) tanh(sj /2) (43) 
d t 

where a = 
2 M IB 

(44) 
C(VR-VT) 

Condition (41) for this mode of operation could be enforced by choosing a very 
small fixed bias current lB' The minimum value of IB is however limited by the 
presence of leakage currents. Furthermore, values of Si much larger than nUT may 
be required to keep all offset voltages negligible. Since sinh(x) is a very steep 
function, large values of Si will necessarily push transistors T f into strong 
inversion. The mode of operation of T g will then depend on the ratio R defined in 
(42). 

f and g in strong inversion 

Assuming that IB becomes negligible, relations (21), (31) to (33) and (39) yield: 

d c·· ,----:---:--
=-:ll - ~--..j2bs·2 - s·2 sJ· sgn(sl·) dt - b 1 J (45) 

(46) 

where a = 
K M Isf 

C(VR - VT) 
(47) 

b 
4 K M Isf 

= 
Isg 

and (48) 

This adaptation law is represented in Fig.20. It cannot be decomposed into the 
product of two functions of si and Sj except for extreme values of factor b. 

If b> > 1 then (45) is valid for most of the values of si and Sj (pair T g almos,t never 
saturated) and can be approximated by 

(49) 



75 

Functions f and g are both linear, which is not sufficient to reach the solution, as 
shown previously. 

If b < <1, (46) is valid for most values of si and Sj. Differential pair T g is almost 
always saturated and therfore behaves as a sign function. The two functions are then: 

(50) 

It must be pointed out that b «1 implies R «1. Therefore, the current density in 
transistors T g is very low and they will tend to operate in weak inversion. 

III 1.0 
0.8 

3 dCij 

a.dt 
0.6 

2 
b • 0.25 0.4 

1 0.2 

-0.2 
-1 

-0.4 

-2 

-0.6 

-3 

Sj = -CD 
-0.8 

-1.0 

Fig.20 Adaptation law for f and g in strong inversion. 
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fin strong inversion and g in weak inversion 

The adaptation law in this most important case is obtained by using relations (21), 
(29) and (39): 

(51) 

with gain a given by (47). This adaptation law is very closelo that corresponding to 
(50), since the tanh(x) function for large values of x is equivalent to the sign 
function. It provides an excellent convergence behaviour, as shown by the 
simulation results in Fig.21. This figure also shows the time derivative of weight 
C12 as a function of output signal SI, after equilibrium is reached. Its average value 
is indeed zero. 

1 

weights 

\ 
o eu 1 

Fig.21 Convergence with Tf in strong inversion and T g in weak 
inversion. The time derivative of c12 at equilibrium is also 
represented. 

Fig. 22 to 24 show how this time derivative at equilibrium is affected by offset. It 
can be seen again that only one symmetrical function is needed to reach the correct 
solution. 

In practical circuits, the maximum current, thus the maximum value of relation 
(46), will finally be limited by some transistors leaving saturation because of the 
limited power supply Voltage. 

As shown in the circuit diagram of Fig. 19 , provision has been made to modify the 
function f in the experimental circuit by adding a symmetrical offset voltage ± !:. V f. 
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weights 

o 1 

Fig.22 Convergence and time derivative of '12 at equilibrium with an 
offset in f equal to the RMS value of the sources. 

1 

weights 

o 1 

Fig.23 Convergence and time derivative of C12 at equilibrium with an 
offset in g equal to the RMS value of the sources. 
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Fig 24 Convergence and time derivative of '12 at equilibrium when both 
functions are offset by 40% of the RMS value of the sources. 

77 



78 

The complete block diagram of the experimental cell is shown in Fig.25. The f­
function generator split into the negative and positve parts r- and t+ is shared by all 
blocks B, which have separate g-function generators. Signals Sj from 5 other cells 
can be connected, which allows a 6-cell, 30-synaptic weights network. Separate pins 
are provided to connect signals Sj to weighting transistor Tij and to the g-function 
generator. This makes it possible to filter out the DC components before driving the 
latter. The network will then be insensitive to the offset of the amplifier OA or to 
any DC component in the input signals. To allow more flexibility, capacitors C 
that store the synaptic weights are not integrated. They are connected to separate 
pins, which also allow to measure the synaptic voltages V ij-

input -E j 

Sj 

Fig.25 Complete diagram of the cell. 

Fig.26 Microphotograph of the chip. 

The whole circuit contains only 91 transistors. Thus a network of 6 cells will need a 
little more than 500 transistors and 30 capacitors. The cell has been integrated in a 3 
~ silicon gate process [9]. Figure 26 is a microphotograph of the chip which has 
an area of about 0.36 mm2 excluding the pads. 
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EXPERIMENTAL RESULTS 

In this early design, a value of about 70 was errouneously selected for coefficient b 
(relation (48)). As shown by equation (49), this high value of b is equivalent to 
having linear f and g functions, which is not sufficient to force the output signals to 
be independent (solution P). For this reason a symmetrical offset voltage ± ~ V f of 
50 m V has been applied to the f-function generator. 
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Fig.27 Measured output current of block B in short circuit. 

Figure 27 shows the output current of one adaptation block B, measured as a 
function of Sj for various values of Sj. Except for the fact that they saturate (limited 
supply voltage), these curves are still somewhat comparable to those of Fig.20. 

Figures 28 to 30 show experimental results obtained with a 2-cell network for 
various kinds of sources X I and X2. The synaptic weights C12 and c21 are first set 
to zero by short-circuiting the capacitors. As a result, output signals S I and S2 are a 
mixture of the sources, identical to those imposed as input Eland E2. The short 
circuit is then suppressed (shown by an arrow) and the synaptic weights are let reach 
equilibrium. At equilibrium, the network clearly separates the sources, with a 
crosstalk of just a few percents. This is also the case when the sources are both 
approximately gaussian noises delivered by different generators. This is shown by 
the fact that the instantaneous differences Sl-XI and S2-X2 are drastically reduced at 
equilibrium. The explanation for such an unexpected and interesting result is not all 
clear [3]. 
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Fig.28 Experimental separation with a triangular and a sinusoidal 
source. all = a22 = 1, a12 = 0.3, a21 = 0.7 
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Fig.29 Experimental separation of a sinusoidal signal and a gaussian 
noise. all = a22 = 1, a12 = 0.3, a21 = 0.7 

1 ms / div 

Fig 30 Experimental separation of two gaussian sources. 
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Fig.3l Experimental separation with a sinusoidal, a square and a triangular 
source. al1=a22=a33=1, a12=a23=a31=O.3, a13=a21=a32=O.7. 

1 ms/div 

Fig.32 Experimental separation with 3 combinations of a sinusoidal and a 
triangular source. all=a32=1, a22=a31=O.3, a12=a21=O.7. 
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Results for a 3-cell configuration are demonstrated in Figures 31 and 32. In Fig.32, 
only 2 independent sources are mixed to create 3 components of the input vector. 
The network finds the only solution for the output signals to be independent which 
is to extract the sources by 2 channels and put the third one to zero. The system is 
thus able to identify the number of independent sources which are combined in the 
input vector. 

CONCLUSION 

The algorithm proposed by Herault and Jutten for separation of independent sources 
can be very efficiently implemented in a standard CMOS VLSI technology. The 
results obtained from a first experimental chip are very promising. 

Besides an optimization of the present design, possible improvements include the 
introduction of some type of automatic gain control to allow a wider range of 
amplitudes. The weights might also be implemented in a more sophisticated way, to 
improve the maximum voltage acceptable without distortion. Bipolar operation [10] 
might be preferable to weak inversion for the pair of transistors T g implementing 
the g-function generator, to reduce offset voltages. Integration of many cells in a 
single circuit will require to put the capacitors on chip. The current supplied by the 
adaptation block B will then have to be scaled down, as needed with low values of 
capacitors C. For very low frequency sources, solutions will have to be found to 
implement very low values of gain a, while keeping negligible the effect of leakage 
currents. 

Many applications of this circuit can be expected [3]. Examples are identification of 
independent sources, separation of signal delivered by sensors, solution of the 
"cocktail party" problem in sonars, hearing aids or mother-foetus ECG 
measurements. Useful applications might possibly be found in image processing, 
including texture extraction. 
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CIRCUIT MODELS OF SENSORY TRANSDUCTION 
IN THE COCHLEA 

John Lazzaro and Carver Mead 
Department of Computer Science 
California Institute of Technology 

Pasadena, California, 91125 

Nonlinear signal processing is an integral part of sensory transduction in 
the nervous system. Sensory inputs are analog, continuous-time signals with a 
large dynamic range, whereas central neurons encode information with limited 
dynamic range and temporal specificity, using fixed-width, fixed-height pulses. 
Sensory transduction uses nonlinear signal processing to reduce real-world input 
to a neural representation, with a minimal loss of information. 

An excellent example of nonlinear processing in sensory transduction oc­
curs in the cochlea, the organ that converts the sound energy present at the 
eardrum into the first neural representation of the auditory system, the audi­
tory nerve. Humans can process sound input over a 120-dB dynamic range, 
yet the firing rate of an auditory-nerve fiber can encode only about 25 dB of 
sound intensity. Humans can sense binaural time differences of the order of 
ten microseconds, yet an auditory-nerve fiber can fire at most once per mil­
lisecond. Using limited neural resources, the cochlea creates a representation 
that preserves the information essential for sound localization and understand­
ing. Moreover, this neural code expresses auditory information in a way that 
facilitates feature extraction by higher neural structures. 

We are building silicon integrated circuits that model sensory transduction 
in the cochlea, both to explore the general computational principles of the 
cochlea, and to create potentially useful devices for sound understanding, for 
sound localization, and for cochlear prostheses. In this paper, we describe the 
architecture and operation of an integrated circuit that models, to a limited 
degree, the evoked responses of the auditory nerve. The chip receives as input 
a time-varying voltage corresponding to sound input, and computes outputs 
that correspond to the responses of individual auditory-nerve fibers. The chip 
models the structure as well as the function of the cochlea; all sub circuits in the 
chip have anatomical correlates. The chip computes all outputs in real time, 
using analog continuous-time processing. 
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NEURAL ARCHITECTURE OF THE COCHLEA 

Both mechanical and electrical processing occur in biological cochleas. The 
sound energy present at the eardrum is coupled into a mechanical traveling­
wave structure, the basilar membrane, which converts time-domain information 
into spatially encoded information by spreading out signals in space according 
to their time scale (or frequency). Over much of its length, the velocity of 
propagation along the basilar membrane decreases exponentially with distance. 
The structure also contains active electromechanical elements; outer hair cells 
have motile properties, acting to reduce the damping of the passive basilar 
membrane and thus allowing weaker signals to be heard. Axons from higher 
brain centers innervate the outer hair cells; these centers may dynamically vary 
the local damping of the cochlea, providing frequency-specific automatic gain 
control (Kim, 1984). 

Inner hair cells occur at regular intervals along the basilar membrane. 
Each inner hair cell acts as an electromechanical transducer, converting basilar­
membrane vibration into a graded electrical signal. Several signal-processing 
operations occur during transduction. Inner hair cells half-wave rectify the me­
chanical signal, responding to motion in only one direction. Inner hair cells 
primarily respond to the velocity of basilar-membrane motion, implicitly com­
puting the time derivative of basilar-membrane displacement (Dallos, 1985). 
Inner hair cells also compress the mechanical signal nonlinearly, reducing a 
large range of input sound intensities to a manageable excursion of signal level. 

Spiral-ganglion neurons connect to each inner hair cell, and produce fixed­
width, fixed-height pulses in response to inner-hair-cell electrical activity. The 
synaptic connection between the inner hair cell and the spiral-ganglion neuron 
may implement a stage of automatic gain control, exploiting the dynamics of 
synaptic-transmitter release (Geisler and Greenberg, 1986). Auditory-nerve 
fibers are axons from spiral-ganglion neurons; these fibers present a neural 
representation of audition to the brain. 

When pure tones are presented as stimuli, an auditory-nerve fiber is most 
sensitive to tones of a specific frequency. This characteristic frequency corre­
sponds to maximum basilar-membrane velocity at the location of the inner hair 
cell associated with the nerve fiber. The spiral trunk of the auditory nerve 
preserves this ordering; the nerve fibers are mapped cochleotopically and tono­
topically. The mean firing rate of an auditory fiber encodes sound intensity, 
over about 25 dB of dynamic range. The temporal pattern of nerve firings re­
flects the shape of the filtered and rectified sound waveform; this phase locking 
does not diminish at high intensity levels (Evans, 1982). 
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SILICON MODELS OF THE COCHLEA 

Both mechanical and electrical processing occur in biological cochleas. In 
the chip, however, we model both types of computation using electronic pro­
cessing. A silicon model of the mechanical processing of the cochlea has been 
previously described (Lyon and Mead, 1988aj Mead, 1989). The circuit is a 
one-dimensional physical model of the traveling-wave structure formed by the 
basilar membrane. In this viewpoint of cochlear function, the exponentially ta­
pered stiffness of the basilar membrane and the motility of the outer hair cells 
combine to produce a pseudoresonant structure. . 

The basilar-membrane circuit model implements this view of cochlear hy­
drodynamics using a cascade of second-order sections with exponentially scaled 
time constants. The cascade structure enforces unidirectionality, so a discretiza­
tion in space does not introduce reflections that could cause instability in an 
active model. An analog, continuous-time circuit implementation of the model 
computes the pressure at selected discrete points along the basilar membrane 
in real time. 

Q 

>-+--oVo 

T T 

Figure 1. Circuit implementation of a second-order section. Input Vi and out­
put Vo are time-varying voltages. The T and Q control inputs set bias currents 
on transconductance amplifiers AI, A2, and A3, to control both the character­
istic frequency and the peak height of the lowpass-filter response. 
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Figure 2. Block diagram of the chip. A time-varying input voltage, represent­
ing sound input to the cochlea, travels down the basilar-membrane model, a 
cascade of second-order sections (SO) with exponentially increasing time con­
stants. Basilar-membrane (BM) circuit outputs show pressure along the mem­
brane, whereas inputs modeling innervation of outer hair cells (OR) control 
local damping of the membrane circuit. Taps along the basilar membrane con­
nect to a circuit model of inner hair cells (IR); outputs from inner hair cells 
connect to circuits that model spiral-ganglion neurons (SG). These neurons 
form the primary output of the chip, thus modeling auditory-fiber response. 

Figure I shows the CMOS circuit implementation of a second-order section. 
Input and output signals for the circuit are time-varying voltages. The gain 
blocks are transconductance amplifiers, operated in the subthreshold regime. 
Capacitors are formed using the gate capacitance of n-channel and p-channel 
MOS transistors in parallel. Because of subthreshold amplifier operation, the 
time constant of the second-order section is an exponential function of the volt­
age applied to the transconductance control inputs of Al and A2, labeled r in 
Figure 1. Thus a cascade of second-order circuits, with a linear gradient applied 
to the r control inputs, has exponentially scaled time constants. To implement 
this gradient, we used a polysilicon wire that travels along the length of circuit, 
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and connects to the r control input of each second-order section. A voltage 
difference across this wire, applied from off chip, produces exponentially scaled 
time constants. The amplifier A3 provides active positive feedback to the mem­
brane, modeling the active mechanical feedback provided by the outer hair cells 
in biological cochleas. A second polysilicon wire is connected to the transcon­
ductance inputs of the A3 amplifiers in each second-order section (labeled Q in 
Figure 1); a voltage gradient across this wire similar to that on the r control 
inputs sets all the second-order sections to the same response shape. 

Vy 

Hysteretic Diiferentiator Half-Wave Current Rectifier 

Figure 3. The inner-hair-cell circuit model. Input Vi, from the basilar­
membrane circuit, is a time-varying voltage. The hysteretic-differentiator cir­
cuit, biased by voltage Vy , performs time differentiation and logarithmic com­
pression. The output of the hysteretic differentiator, a time-varying voltage, 
connects to the half-wave current-rectifier circuit, which is shown in more de­
tail in Figure 4. 

This circuit model of cochlear mechanics is the foundation of our inte­
grated circuit; Figure 2 shows the complete architecture of the chip. A way to 
model the adjustment of basilar-membrane damping by higher brain centers is 
to use an automatic-gain-control system that varies the damping of the second­
order sections locally. We have not implemented this automatic-gain-control 
system; however, we have brought off chip several taps from the polysilicon 
wire that connects to the Q control of the second-order sections, allowing off­
chip experiments with automatic gain control. To complete our circuit model 
of the auditory periphery, we have added circuits that model inner-hair-cell and 
spiral-ganglion-neuron functions 
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Figure 4. The half-wave current-rectifier circuit. Input Vh , from the hysteretic­
differentiator circuit, is a time-varying voltage. A floating capacitor couples Vh 

into the node associated with Va, as the bidirectional time-varying current Ih • 

The bottom graph shows the change in Va required to sink or source h, for 
several values of bias voltage VB; the voltage Vq is the value of Va when h = o. 
When Va = Vq and Ih = 0, the circuit output, the unidirectional current Ip , is 
at a quiescent value, I q , set by VB. Nonzero values of h modulate the output 
current Ip about Iq; for large Ihl relative to Iq, the circuit output Ip is a half­
wave-rectified version of I h , as shown in the top graph. Graphs show theoretical 
responses. 

Figure 3 shows our inner-hair-cell circuit model. A hysteretic-differentiator 
circuit (Mead, 1989) processes the input-voltage waveform from the basilar­
membrane circuit, performing time differentiation and logarithmic compression. 
The circuit enhances the zero-crossings of the input waveform, accentuating 
phase information in the signal. The output voltage of the hysteretic differen­
tiator connects to a novel implementation of a half-wave current rectifier. 
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Figure 5. The spiral-ganglion-neuron circuit. Circuit input, from the half­
wave-rectification circuit, is the unidirectional current Ii' The circuit converts 
this current into fixed-width, fixed-height voltage pulses, at output Vo. The 
bias voltage Vp sets pulse width; the output voltage Vo pulses between V dd and 
ground. 

Figure 4 shows our half-wave current-rectifier circuit. To understand its 
operation, consider the state of this circuit when the input voltage Vh is con­
stant. If Vh is constant, Ih = 0, and Va adapts such that Ip = In. For Ih = 0, 
we define the quiescent conditions Iq == Ip = In and Vq == Va. The value of Iq 
depends on the circuit bias voltage, V •. A current mirror reflects this quiescent 
current to the circuit output. Thus, the output of the half-wave current-rectifier 
circuit in response to a constant voltage input is an adjustable bias current. 

Now consider the circuit state when the input voltage Vh is a time-varying 
waveform. During the positive-going phase of the waveform, the current h is 
positive, and In = h + Ip. As In increases, Va must also increase; the amount 
of increase depeItds on the circuit bias voltage, V" as shown in the bottom 
graph in Figure 4. However, if Va increases, Ip must decrease. So, during the 
positive-going phase of the waveform, the output current Ip decreases from the 
quiescent current I q • 

During the negative-going phase of the waveform, the current Ih is negative, 
Ip = Ih I + In, and the output current of the circuit increases from the quiescent 
current I q • Thus, the circuit converts the input time-varying voltage waveform 
Vh into a unidirectional current waveform Ip. For large IIhl relative to Iq, the 
current waveform Ip is not symmetrical about Iq, and the average value of Ip 
is greater than that of Iq; thus, the circuit performs the rectification function, 
as shown in the top graph in Figure 4. 
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The current Ip is the output of the inner-hair-cell circuit. The spiral­
ganglion neuron circuit model, shown in Figure 5, converts this current into 
fixed-width, fixed-height pulses. The circuit - a slightly modified version of 
the neuron circuit in (Mead, 1989) - creates a pulse rate that is linear in input 
current, for sufficiently low pulse rates. Thus, the average pulse rate of the 
circuit reflects the average value of I p , whereas the temporal placement of each 
pulse reflects the shape of the current waveform Ip. 

SILICON BASILAR-MEMBRANE RESPONSE' 

To test the tuning properties of the silicon auditory-nerve fibers, we dupli­
cated a variety of classical auditory-nerve measurements. In these experiments, 
we tuned the basilar-membrane circuit to span about seven octaves, from 50 Hz 
to 10,000 Hz. We set the maximum firing rates of the auditory-fiber outputs at 
150 to 300 spikes per second, with spike widths of 5 to 20 f.Ls. 

70 30 

~ 65 ~ 20 

"t:1 ~ 
'-' +> 10 Cl) t=: 

'" 60 Cl) 

t=: S 0 Cl) 

0 P- u 
'" ~ 
~ 55 P-

oa 
P- is -10 
:a 
0 50 ~ 

Iil -20 

45 -30 
101 102 103 104 1 2 4 810 

Frequency (Hz) Frequency (kHz) 

(a) (b) 

Figure 6. a: The response of the basilar-membrane circuit at a single point, 
to pure tones at a fixed input amplitude (0 dB = 3 mV peak). b: Transfer 
function of a single position on the basilar membrane of the squirrel monkey 
(Rhode, 1971). The curves show amplitude of vibration for constant malleus 
displacement. 

In this configuration, without an input signal, the auditory-fiber outputs 
fire at less than 0.1 spike per second. At the characteristic frequency of a 
fiber, pure tones of a few millivolts peak amplitude produce responses signifi­
cantly above this spontaneous rate. The chip can process tones up to about 1 
V of peak amplitude, yielding approximately 60 dB of usable dynamic range. 
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Adding a preprocessor to basilar-membrane circuit, to limit intense input sig­
nals, would extend the upper limit of the dynamic range. A biological cochlea 
has a mechanical limiter as a preprocessor - the stapedial reHex. Designing 
more sensitive inner-hair-cell circuits would extend the lower limit of dynamic 
range. Both dynamic-range enhancements are currently under development. 

Figure 6(a) shows a frequency-response plot for the basilar-membrane cir­
cuit, at a position with a best frequency of about 1900 Hz. The plot shows a Hat 
response for frequencies significantly below the best frequency, a 12-dB response 
peak at the best frequency, and a sharp dropoff to the noise Hoor for frequencies 
significantly above the best frequency. This response is qualitatively similar to 
the frequency-response curve taken from the basilar membrane of the squir­
rel monkey using the Mossbauer effect, shown in Figure 6(b) (Rhode, 1971). 
Near the best frequency, basilar-membrane pressure, computed by the chip, is 
approximately equal to basilar-membrane displacement, measured by Rhode. 
Quantitatively, the bandwidth of the resonance peak of the chip response is 
wider than that of the physiological data; a cascade of second-order sections 
does not yield an optimal model of cochlear hydrodynamics (Lyon and Mead, 
1988b). 

The resonance peak of the chip response decreases for large-amplitude si­
nusoids, because the feedback amplifier A3 in the second-order sections satu­
rates. The resonance peak in a physiological cochlea also decreases for large­
amplitude inputs (Rhode, 1971). The silicon and physiological cochleas may 
show decreased resonance for similar reasons; for high sound intensities, outer 
hair cells in the physiological cochlea may not be capable of a linear response 
to basilar-membrane motion. Alternatively, an automatic-gain-control system 
may increase basilar-membrane damping locally for high-intensity sounds, by 
modulating the mechanical effect of the outer hair cells (Kim, 1984). 

TUNING PROPERTIES OF THE SILICON AUDITORY NERVE 

We characterized the tuning properties of the auditory-nerve-fiber circuit 
model, using pure tones as input. In response to a pure tone of sufficient 
intensity and appropriate frequency, the silicon auditory fiber produces spikes 
at a constant mean rate, as shown in Figure 7. The mean spike rate of a silicon 
fiber, in response to a constant tone, does not decrease over time, unlike that 
of a physiological auditory fiber; this lack of adaptation indicates the absence 
of dynamic automatic gain control in our model. 

Figure 8( a) shows the mean spike rate of a silicon auditory fiber as a 
function of pure tone frequency. For low-amplitude tones, the fiber responds 
to a narrow range of frequencies; for higher-intensity tones, the fiber responds 
to a wider range of frequencies. The saturating nonlinearities of the basilar­
membrane circuit and of the inner-hair-cell circuit cause the bandwidth of the 
fiber to increase with sound intensity. Qualitatively, this behavior matches the 
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iso-intensity plots from an auditory-nerve fiber in the squirrel monkey (Rose et 
al., 1971), shown in Figure 8(b). Quantitatively, the saturation of the amplifiers 
in the forward path (AI and A2) produce a detuning that is not a proper model 
of basilar-membrane mechanics. 
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Figure 'T. Output of a silicon auditory fiber (bottom trace) in response to a 
sinusoidal input (top trace). The frequency of the input is the characteristic 
frequency of the fiber. 
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Figure 8. a: Plots showing the mean spike rate of a silicon auditory fiber as 
a function of pure tone frequency. Legend numbers indicate tone amplitude, 
in dB. b: Plots showing the number of discharges of an auditory fiber in the 
squirrel monkey, in response to a 10-s pure tone (Rose et al., 1971). Legend 
numbers indicate tone amplitude, in dB. 
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Figure 9( a) shows the mean spike rate of a silicon auditory fiber as a 
function of pure tone amplitude, at frequencies below, at, and above the best 
frequency of the fiber. In response to its characteristic frequency, 2100 Hz, the 
fiber encodes about 25 dB of tone amplitude before saturation. Figure 9(b) 
shows rate-intensity curves from an auditory fiber in the cat (Sachs and Abbas, 
1974). At its characteristic frequency, the physiological fiber also encodes about 
25 dB of tone amplitude before saturation. The shape of the biological and 
silicon curves at the characteristic frequency is remarkably similar, giving us 
some confidence in the validity of this modeling paradigm. In response to 
frequencies below and above the characteristic frequency, the functional forms 
of the silicon fiber responses are different from those of the physiological data. 
Most notably, the saturation rate of a silicon fiber for frequencies below the 
fiber's characteristic frequency exceeds the saturation rate of the silicon fiber 
at the fiber's characteristic frequency. This behavior is also a direct result 
of the undesired saturation at high input intensities of second-order-section 
amplifiers Al and A2, shown in Figure 1, which model the stiffness of the basilar 
membrane. Above its best frequency, the response of the model decreases in a 
manner that is reminiscent of its biological counterpart. 
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Figure 9. a: Plots showing the mean spike rate of a silicon auditory fiber a.e 
a function of pure tone amplitude. Legend numbers indicate tone frequency, in 
Hz. b: Plots showing the mean spike rate of an auditory fiber in the cat, a~ 
a function of pure tone amplitude (Sachs and Abbas, 1974). Legend numb en: 
indicate tone frequency, in Hz. 

Figure 10(a) shows iso-response curves for four silicon auditory-nerve fibers 
These plots represent an iso-rate section through the iso-intensity curves of Fig· 
ure 8( a), at a spike rate for each fiber that was comfortably above the sponta­
neous rate. The chip response accurately models the steep high-frequency taL 
of tuning curves from cat auditory fibers (Kiang, 1980)' shown in Figure lO(b)' 
the shapes of physiological and chip tuning curves are qualitatively similar. 



96 

The bandwidth of the chip fibers for low sound intensities, however, is signifi­
cantly wider than that of the physiological response. This problem stems from 
the wider bandwidth of the basilar-membrane circuit model, relative to that of 
the physiological data, as well as from the lack of a dynamic automatic-gain­
control system for modulating the damping of the basilar-membrane circuit. 
The high-frequency cutoff of the iso-response curves, shown in Figure 10(a), is 
much steeper than is the cutoff of the iso-input curves shown in Figure 8(a). 
In a linear system, these two measurements would give identical results. The 
difference reflects the presence of a saturating nonlinear~ty in the system; the 
inner-hair-cell circuit and the basilar-membrane circuit provide this saturation 
function. 
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Figure 10. a: Plots showing iso-response curves for four silicon auditory 
fibers. The plots represent an iso-rate section through the iso-intensity curves 
of each fiber. Constant rates for each curve are, from the highest-frequency 
curve downward, 21.5, 16, 61, 59 spikes/so b: Plots showing tuning curves from 
auditory fibers in the cat (Kiang, 1980). Fifty-ms tone bursts were presented at 
lO/s. Each tuning curve shows the sound pressure level (SPL) at the tympanic 
membrane (eardrum) that generates 10 spikes/s more activity during the tone 
bursts than during the silent interval. 

TIMING PROPERTIES OF THE SILICON AUDITORY NERVE 

The temporal firing patterns of the silicon auditory-nerve fibers encode 
information. Figure l1(a) shows period histograms of a chip fiber, in response 
to -5- to 50-dB pure tones at the fiber's characteristic frequency (0 dB = 3 
m V peak); these histograms show the probability of a spike output occurring 
within a particular time interval during a single cycle of the input sinusoid. 
The fiber preserves the shape of the input sinusoid throughout this intensity 
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range; this behavior matches data from an auditory fiber in the cat (Rose et al., 
1971), shown in Figure l1(b). Unlike the cat fiber, however, the silicon fiber 
does not preserve absolute phase at higher intensities; this deficiency results 
from the saturation of the amplifiers A1 and A2 that model basilar-membrane 
stiffness. The temporal firing patterns of the silicon auditory-nerve fiber are, 
however, a good representation of signal periodicity; the synchronization ratios 
(normalized magnitude of the first Fourier coefficient) of the period histograms 
in Figure l1(a) are 0.5 to 0.6, comparable to those of physiological data at the 
same frequency (Rhode et al., 1978). 
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Figure 11. a: Period histograms of the silicon auditory-fiber response to a 
pure tone of 1840 Hz, near the fiber's best frequency. Amplitude of tone is 
shown above each plot. Histogram width is 54 p,s. Each histogram begins at a 
constant position, relative to the input sinusoid; each is fitted to a sinusoid of 
best amplitude and phase. b: Period histograms of the response of an auditory 
fiber in the cat, to a low-frequency tone (Rose et aI., 1971). Amplitude of pure 
tone is shown above each plot. Each histogram is fitted to a sinusoid of best 
amplitude but fixed phase. 
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Figure 12. a: PST histogram of the rarefaction click response of a silicon 
auditory-nerve fiber. Click amplitude is 60 m V (26 dB peak); click width is 100 
JLS. Histogram is for 2000 click presentations; the width of each bin is 58 JLS. 
b: Compound PST histogram of the click response of a silicon auditory-nerve 
fiber. Rarefaction click response is plotted as positive values; condensation 
click response is plotted as negative values. Conditions are identical to those of 
Figure 3(a). c: Compound PST histogram of the click response of an auditory 
fiber in the cat (Kiang et al., 1965). Click level is 30 dB relative to threshold 
response level; clicks width is 100 JLS. Rarefaction click response is plotted 
as positive values; condensation click response is plotted as negative values. 
d: Compound PST histogram of the click response of a silicon auditory-nerve 
fiber, for a 200-m V click (36-dB click). All other conditions are identical to 
those of Figure 3(a). 

The timing properties of silicon auditory-nerve fibers encode the click re­
sponse of the basilar-membrane circuit. In response to a click of medium inten­
sity, a silicon auditory-nerve fiber produces one or several spikes. To extract 
the click response from these spikes, we present the click stimulus to the chip 
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many times, and record the responses of a silicon auditory-nerve fiber. These 
data are reduced to a poststimulus-time (PST) histogram, in which the height 
of each bin of the histogram indicates the number of spikes occurring within a 
particular time interval after the presentation of the click. 

A PST histogram of the response of a silicon auditory-nerve fiber to a 
repetitive rarefaction click stimulus shows a half-wave-rectified version of a 
damped sinusoidal oscillation (Figure 12a). The frequency of this oscillation, 
1724 Hz, is approximately the best frequency of the basilar-membrane position 
associated with this silicon nerve fiber. The half-wave rectification of the inner­
hair-cell circuit removes the negative polarity of oscillatory waveform from the 
PST histogram of the click response. Repeating this experiment using a con­
densation click recovers the negative polarity of oscillation; a compound PST 
histogram, shown in Figure 12(b), combines data from both experiments to 
recreate the ringing waveform produced by the basilar-membrane circuit. Fig­
ure 12 (c) shows a compound PST histogram of the click response of an auditory 
fiber in the cat (Kiang et al., 1965). Qualitatively, the circuit response matches 
the physiological response. 

Figures 12(a) and 12(b) are chip responses to a 60-mV click stimulus (26 
dB, 0 dB = 3 mV peak). Higher-intensity clicks produce oscillatory responses 
with increased damping; a compound PST histogram of chip auditory-nerve 
response to a 36-dB click shows reduced ringing (Figure 12d). This effect is a 
direct result of the nonlinear response of the basilar-membrane model; phys­
iological basilar-membrane click responses also show reduced ringing at high 
click-intensity levels (Robles et al., 1976). 

DISCUSSION 

Our integrated circuit model captures many essential features of data rep­
resentation in the auditory nerve; moreover, it computes the representation in 
real time. There are many traditional engineering representations of audition, 
however, that are also amenable to analog implementation. What advantages 
does a silicon auditory-nerve representation offer to a designer of artificial sen­
sory systems? 

As shown in Figures 11 and 12, an auditory-nerve fiber encodes a filtered, 
half-wave-rectified version of the input waveform, over a wide dynamic range, 
using the temporal patterning of fixed-width, fixed-height pulses. This repre­
sentation supports the efficient, massively parallel computation of signal prop­
erties, using autocorrelations in time and cross-correlations between auditory 
fibers. In this representation, a correlation is simply a logical AND operation, 
performed by a few synapses in neural systems, or by a few transistors in silicon 
systems. Axonal delays in neural systems provide the time parameter for com­
puting autocorrelations; in silicon systems, we model this delay with compact 
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monostable circuits (Mead, 1989). We have used these techniques in a 220,000-
transistor chip that models the auditory-localization system of the barn owl 
(Lazzaro and Mead, 1989). 

The nonlinear filtering properties of the auditory-nerve fibers, shown in 
Figures 8 and 10, enhance these correlations. In a quiet environment, audi­
tory fibers have narrow bandwidths; each fiber carries independent informa­
tion, yielding rich correlations. In noisier environments, the tuning of auditory 
fibers widens, increasing the number of fibers that carry information about the 
signal. This detuning ensures that some fibers still encode signal properties 
reliably (Greenberg, 1988). 

As shown in Figure 9, auditory fibers encode about 25 dB of signal intensity. 
Dynamic automatic gain control, present in a physiological cochlea, enhances 
this range; in addition, different populations of auditory fibers have different 
thresholds, further enhancing the encoding of signal intensity. Although not 
sufficient as a primary representation of sound, rate encoding of signal intensity 
is a valuable secondary cue, particularly for the detection of rapid spectral 
changes and the encoding of aperiodic sounds. Future versions of our chip will 
include these enhancements for rate encoding of signal intensity. 

In conclusion, we have designed and tested an integrated circuit that com­
putes, in real time, the evoked responses of auditory nerve, using analog, 
continuous-time processing. The chip offers a robust representation of audi­
tion, which can serve as a solid foundation for analog silicon systems that model 
higher auditory function. 
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Abstract 

Issues in analog VLSI, such as the use of simple parameterized cells 
that are highly reconfigurable and input/output compatability, are be­
ing molded by the activities in developing hardware implementations of 
microelectronic neural networks. Analog MOS circuit modules, such as 
integrators, summers, and multipliers can be configured in a neural net­
work architecture to build feedback/feedforward neural networks and/or 
the equivalent of adaptive, state-space signal processors. The methods of 
adaptation can be compared by evaluating a criterion or energy function 
which drives the adaptation process. 

Introduction 

Analog Very Large Scale Integration (VLSI) has recently been receiving con­
siderable attention [1-4]. The motivation behind this is two-fold: 1) VLSI is 
now maturing with emphasis towards submicron structures and sophisticated 
applications combining digital as well as analog circuits on a single chip. Exam­
ples are found on today's advanced systems for telecommunications, robotics, 
automotive electronics, image processing, intelligent sensors, etc.; 2) Massive 
application of analog VLSI provides means for the hardware implementation 
of adaptive systems based on neural paradigms. As a result, analog VLSI has 
been recognized as a major technology for future information processing. To 
match such fast technological trends toward single chip mixed analogi digital 
VLSI systems, a wealthy activity on analog integrated circuits is underway and 
succesful attempts to review the state-of-the art in the analog field have recently 
been reported [5-8]. 
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This chapter consists of three parts. First, we will discuss important issues in 
analog VLSI that are relevant to the hardware implementation of microelec­
tronic neural networks in MOS technology. In the second part we will unveil 
interesting connections between neural paradigms, continuous-time a.daptive 
systems, and analog signal processing. Novel and simple continuous-time ana­
log MOS circuit techniques for the VLSI implementation of neural systems 
are described in the third part. The new circuit techniques are based on ex­
tremely simple and programmable analog parameterized cells with such attrac­
tive features as reconfigurability, input/output compatibility, and unrestricted 
fan-in/fan-out capability. The implementations presented take advantage of 
new continuous-time MOS circuit design concepts as well as advanced CMOS 
technologies. 

Current Issues in Analog VLSI 

Analog circuits in general, and integrated circuits in particular, are still designed 
largely by hand, by experts intimately familiar with nuances of the target ap­
plication and integrated circuit fabrication process. Analog design is commonly 
perceived to be one of the most knowledge-intensive of design tasks. The tech­
niques needed to build good analog circuits seem to exist solely as expertise 
invested in individual designers. In addition, the state of analog design tools 
is quite primitive in comparison to digital synthesis tools. Table 1 provides 
a general comparison [9] between analog and digital designs. Analog design 
"bottlenecks" have resulted in a lack of effective design tools, which has been 
the primary cause of major cycle time differences observed between analog and 
digital product development. 

In recent years, however, the state of analog design tools has shown signs of 
dramatic changes. Design strategies and philosophies to bridge the gap between 
classical analog design and VLSI have been established. Inspired by the reaches 
of methodologies and techniques of digital VLSI, a large volume of activities 
on analog VLSI is currently underway. The goal of these efforts is to develop 
efficient tools for synthesis at both circuit and layout levels, simulation, and 
testing of large scale analog integrated circuits. The rate of progress of analog 
VLSI neural networks strongly depends upon the maturing of these efforts. 
Fortunately, some of the traditional analog design requirements such as accurate 
absolute component values, device matching, precise time constants, etc., are 
not major concerns in neural networks. This is primarily because computation 
precision of individual neurons does not seem to be of paramount importance. If 
analog tools are exclusively developed for neural network implementation, then 
these issues should be taken into account. It is also worth noting that some 
design factors such as dynamic range, signal handling, and frequency range are 
not well defined for neural networks and that the problems of interconnections 
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and power consumption represent design hurdles. 

Table 1: Analog vs. Digital Design 

II Analog Design Digital Design 

Signals have a continuum of values for Signals have only two states 
amplitude and time 

Irregular blocks Regular blocks 

Customized 
Components have a continuum of values 

Requires precise modeling 

Difficult to use with CAD 
Designed at the circuit level 

Longer design times 
Two-three tries necessary for success 

Diffiicult to test 

Standardized 
Components with fixed values 

Modeling can be simplified 

Amenable to CAD methodology 
Designed at the system level 

Short design times 
Successful circuits the first time 

Amenable to design-for-test 

Following a brief review of analog VLSI design methodologies, we will discuss 
important issues in analog tools from a neural hardware perspective. 

Analog Design Methodologies 

Several design methodologies [9J for analog integrated circuits (IC's) have been 
identified to represent the current and near future trends in the development of 
an analog VLSI system. These are: 

Analog Arrays 

Pre-processed IC's containing unconnected components and groups of connected 
components which are programmed by defining interconnections on one or more 
mask layers. 

Analog Standard Cell/Block 

Pre-designed circuits which reside in a software database and can be used to 
implement the design of an analog IC. 

Analog Parameterized Cell/Block 

Partially pre-designed circuits which reside in a sofware database and can be 
programmed or parameterized at the time of design of the IC. 

Analog Programmable Chips 

II 
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Completely fabricated chips which are capable of programming by electrical or 
some other means. 

Analog Silicon Compilers 

Automatic design (and layout) of analog circuits from a high level specification. 

Since analog VLSI neural networks comprise a very large number of intercon­
nected identical neurons they enjoy a very high degree of modularity. Therefore, 
the analog standard and parameterized cell design methodologies seem very ap­
propriate. Electronic neural networks should make use of very simple building 
blocks with such features as reconfigurability, versatility and most importantly, 
simplicity. This results in a neural architecture that requires less design time 
and makes effective use of VLSI computer-aided design (CAD) tools [10]. The 
more reconfigurable/versatile the analog circuit is, the more it becomes like a 
digital cell. We advocate the design of primitives or well-defined analog cells 
that are input-output compatible and can be interconnected to achieve different 
linear and/or nonlinear functions. The design of the analog cells needs to be 
done in parallel with the design of neural processing modules, and the modes of 
neural processing should be matched to the characteristics of the analog cells. 
Such analog cells [10] will ultimately bring analog VLSI design in general, and 
neural networks in particular, a step closer towards automation. This brings us 
to some of the important tools for analog VLSI neural networks which will be 
discussed next. 

Analog VLSI Design Tools 

Here we discuss some of the important design tools which will significantly im­
pact the rate of progress of analog VLSI neural networks and their applications 
both as synthetic elements for computational neuroscience and in the area of 
information processing. 

Today's analog CAD design system, in general, is very much a "home brew" 
system composed of a collection of at best, loosely integrated proprietary, com­
mercial, and university tools [11]. These are not highly automated but rather 
provide an environment which assists the analog designer. Fortunately, CAD­
based analog synthesis is evolving and includes steps to map portions of the 
analog design into the digital realm to take advantage of existing digital VLSI 
CAD tools. This mapping is particularly useful for simulation above the cir­
cuit level and for chip-level physical design. Circuit simulation, e.g. SPICE or 
its derivatives, is the most mature tool. Analog schematic captures are also 
well-developed. However, poor integration of schematic capture and simulation 
and lack of support for partitioning and design space explorations remain to be 
solved. 
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Analog physical design makes use of symbolic layout techniques and of manual 
placement and automatic routing. Automatic module generation and tech­
niques to bury critical nodes are used in order to apply digital tools to com­
plete full-chip layouts. Some of the problems include inadequate handling of 
parasitics and inadequate post-layout verification. In general, design-for-test 
and design-for-manufacturability are not supported. Analog knowledge-based 
systems for the design of basic fixed cells such as the operational amplifier 
(op-amp) are now available [2,12,13]. The system represents circuit topologies 
as a hierarchy of functional blocks. A planning mechanism translates perfor­
mance specifications between levels in this hierarchy. The system then provides 
schematic and layout of sized transistors for simple CMOS op-amps from per­
formanc~ specifications and process parameters. Circuit topologies as well as 
design equations are represented as statistically stored templates for use during 
the translation step. 

Testing of Analog Neural Networks 

Unlike testing of traditional analog IC's, the testing of electronic neural net­
works is a complex task involving the simultaneous control and acquisition of 
many analog signals. The number of possible test points grows rapidly with 
the number of neurons in a neural network integrated circuit. It is therefore 
impractical to test all possible nodes for large networks. Two types of testing 
emerge, each with distinct goals and requirements. These are: 1) Component 
test which involves characterization of individual components of a network, e.g. 
neural cells or synapses, with all test points taken to pins or probe-pads. This 
requires the input and output of multiple analog signals; 2) System test which 
involves functional characterization of the network using only system inputs 
and outputs. All nodes cannot be tested. Fortunately, the network should be 
tolerant of a certain number of non-functioning components. Also, since many 
of the signals will be adapted, component testing for meeting of design specifi­
cations is not as critical. Both types of testing involve simultaneous generation 
and observation of a large number of analog signals. The use of a computer 
controlled test is a necessity to manage testing complexity. 

Neural Network Signal Processing 

Shown in figure 1a is an analog circuit which utilizes adaptation in performing 
signal processing. The adaptation is represented as signals which will be called 
weights. The weight signals are integrator outputs, which can be thought of as 
determining pole and zero positions in a linear system. In general, when the 
system is nonlinear, the weight signals represent the key system time constants; 
the poles of the system are determined by adapting signal values. Only the time 
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constants associated with the adaptation rate are determined by component 
values. Since these time constants do not have to be precise, they can be 
determined by the RC time constants of the weight integrator components. In 
many cases, the weight integrators can be treated as two input, single vutput 
circuits, where the output is the mutliplication of the weight signal and one of 
the inputs, as shown in figure lb. 

1A 
• 

1B 

Figure l: la. Block diagram of neuron and weight synapses. lb. Synapses 
shown as integrators. 

Many of the learning or adaptation rules of neural networks involve updating 
circuit signals called weights. In discrete time simulations of neural networks, 
the weight update is given by: 
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Wij(k + 1) = wij(k) + rule(k) 

where rule(k) specifies the type of adaptation algorithm. The corresponding 
continuous time equation is: 

OWij(t) at = rule(t) 

Thus the weight signal can be taken at the output of an integrator whose input 
is the signal rule(t). This signal takes on various forms depending on the type 
of learning rule. 

W 
i j 

V. V. 
J I 

Self-Organizing 

----------------------4 
Hebian 

--------------------t.. 
Delta or LMS Ref 

Weight update schemes 

Figure 2: Circuit schematic showing weight adaptation for delta, hebbian, and 
self organizing learning. 

Several types of learning rules are schematically shown for a single weight in 
figure 2. The circuit indicates the type of wiring and components that would be 
used for delta, Hebbian, and self organizing type learning. The weight is rep­
resented as a multiplier-integrator-multiplier circuit, whose inputs are a axon 
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signal from another neuron plus an adaptation signal. The weights are com­
bined with the axon signals V; and amplified to prod1Jl<ce the axon signal V;. 
In some delta adaptation processes, a reference signal is compared to V; to 
form an error signal. Different types of learning use alternate types of feedback 
connections into the weight integrators. By changing the wiring back into the 
integrators, we are changing the manner of adaptation. In general, in adaptive 
signal processing, a criterion is specified to drive the adaptation process. Some 
common criteria are minimizing a mean square error (MSE) or the establish­
ment of a local reference signal. The criterion is usually specified as achieving 
the minumum or maximum of some function ~ of the weight signals and the 
input signals. At this extremum, the weights have their desired values, so it is 
useful to specify the time rate of change of the weights as given by the gradient 
in weight space of the criterion function, as described by: 

where the vector X(t) is the input signal and the Q(t) are the weights. 

When the extremum is reached, the weights no longer change. Note that the 
criterion function for the weights serves the same role as the energy function 
given by Hopfield for describing the dynamics of the neural outputs when the 
weights are fixed [14]. In many cases, the criterion function is a bounded func­
tion in weight space, and the weights will change to either go up or down the 
gradient, depending on the system objective. 

The circuitry which drives the weight integrators should naturally calculate the 
gradient of the criterion function. Different learning rules would use different 
circuit architectures. Unfortunately, the desired criterion is often too compli­
cated to be calculated exactly. One typical example is the mean square error 
signal, which requires storing the square of the error signal for all time. This 
proves to be exceedingly difficult. However, given a desired criterion function, 
we are free to choose simpler functions which have extremums in weight space 
at the same locations as the original criterion. Since we are using gradients, 
the function is somewhat arbitrary, only the derivatives must be similar. A 
famous example is the use of the square of the instantaneous error, as well as 
its gradient, which is much simpler to compute [15] This is the Lr..IS (Least 
Mean Square) rule or the generalized delta rule. The circuitry to compute the 
LMS gradient is quite simple, requiring a comparator and a multiplier, and no 
explicit memory. In many cases, the weights converge to the same value as they 
would have for the MSE criterion, although maybe not as quickly. This indi­
cates a basic tradeoff between complexity of the adaptation rule vs. practicality 
of hardware construction. In this case, the gradient of the instantaneous error 
asymptotically goes to zero when the gradient of the MSE goes to zero, but the 
former is much easier to compute and construct in hardware. 
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Many of the learning rules which are being considered for hardware construction 
are simple by necessity, trying to take advantage of local wiring and minimal 
computational elements. In many cases, obtaining values from memory is an 
inefficient method of computation. One can expect that the learning rules are 
gradient estimates of a criterion function, and given the rule, it should be useful 
to consider what criterion is being driven to an extremum. Two rules which 
appear to be attractive for hardware implementation with analog circuitry are 
Hebbian learning and the self organizing networks. Both take advantage of 
local wiring to simplify the construction, yet can be quite ·powerful in signal 
processing capabilities. However, in some cases the learning rule is only an 
estimate, so that there is some arbitrariness in determining the desired criterion 
or energy function. 

Figure 3: Novelty filter which uses Hebbian learning to adapt synapses. 

A signal processing circuit which incorporates Hebbian adaptation is Kohonen's 
novelty filter [16], schematically indicated in figure 3. The V s are the neural 
axon signals and the XS are the input signals. Kohonen has analyzed this cir­
cuit for the linear case, and notes that for a given vector of input signals the 
neural outputs tend to go to zero. The hardware can be developed with sat­
urating amplifiers (dual supply) and integrators, where the zero neural output 
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voltage would correspond to a linear region of operation. However, the weight 
integrators will operate in their nonlinear region with saturating outputs. This 
has an advantage however, in that the poles of the system have a limited range, 
which can be used to insure stability. 

The circuit illustrates the large amount of feedback which drives the neural 
outputs toward zero, independent of the input signals. In order to achieve this, 
the weight signals become a representation of the input signals over time. By 
increasing the number of neurons while keeping the number of inputs the same, 
we increase the precision of the weight representation, since the weight values 
collectively drive the neural outputs toward zero so that the input characteristics 
are spread out over more weights [17]. Since each weight is an integrator, this 
is a highly recursive system with a rich set of dynamics. The neural outputs 
are also state variables, whose dynamics are described by the Hopfield energy 
function when the weights are fixed. When both the neural outputs and the 
weights are state variables, the total energy function for the entire system is 
more complex. Nevertheless, there is an aesthetic appeal to the fact that since 
there is no reference signal, the neural outputs will drive toward zero, which 
represents a resting state. 

Since the average neural output is zero, we can treat the actual neural output as 
representing the variance of a signal. Thus, a reasonable criterion for adaptation 
is that the weights are changing to minimize the sum of the squares of the 
neural outputs over time, which is a variance. Thus, the weights are the best 
representation of the input signals which minimize the variance of the neural 
outputs. The filter is very similar to the Kalman filter approach, except that we 
have a nonlinear estimate instead of a linear estimate. The type of non lineari ties 
are determined from the architecture of the neural circuit. 

In order to develop the adaptation rule, the criterion can be simplified by using 
the instantaneous value of the neural outputs as opposed to the time averaged 
value. To take the gradient of the approximate criterion, suppose the criterion 
function ~ is given by: 

~ = ~ J V/(t)dt 
• 

Vi = f(£ WijVi + Xd 
j 

Use the instantaneous gradient estimate 

'\7w L vht) 
i 

Expanding the gradient shows the recursive nature of the filter, as seen by 
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we use the approximation that aVk / aWij ~ Vj, when k = i and equals zero 
otherwise. Derivatives of the sigmoidal function fO were neglected. The above 
analysis is similar to the HARF (Hyperstable Adaptive Recursive Filter) ap­
proximation used in recursive LMS systems [15]. By changing weights using 
the negative of the gradient, we have 

which is a Hebbian learning rule. Thus, Hebbian learning corresponds to a 
gradient estimate which can minimize the average sum of squares of the neural 
outputs. Note that a plus sign (transversing up the gradient) for a discrete time 
system corresponds to 

which is the discrete form used by Hopfield to develop an associative memory. 

In the Kohonen novelty filter, it is important that the input signals be multiplied 
by fixed weights, otherwise, these weights will adapt to zero and disconnect the 
effect of the inputs. The filter is equivalent to a recursive LMS filter where the 
reference signals are zero, and the input weights are not allowed to adapt. The 
recursive LMS filter is discussed in the following section. 

Continuous-Time, Adaptive, Recursive Filtering 

Shown in figure 4 is a filter which incorporates a type of adaptation that is 
equivalent to a recursive LMS, or a generalized delta which is also referred 
to as back propagation [18]. In this figure, there are two types of weights, 
those that have a local error signal (the Wij), and those that do not (the Sij). 
In nearly all cases, an internal reference signal is not available, and must be 
calculated from the error signals in the outermost layer. In figure 4, to calculate 
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Figure 4: Neural circuit to be used for analog back propagation. 

the internal error eint for the weights S3j, the outer layer errors ej are multiplied 
by the transpose weights Wj3, to form the sum Ej wj3ejwhich yields eint. The 
circuit block which performs this function is called the gradient filter in figure 
4. In neural simulations, a related method is known as the back propagation 
technique, although we have neglected the derivatives of the sigmoidal functions 
for clarity. To build the gradient filter requires use of a transpose filter of the 
weight integrators. A similar technique is used for recursive, adaptive, state 
space filters, an example of which is shown in figure 5, using state space notation. 
The c's correspond to weights which have a local error signal available, whereas 
the As correspond to weights which are internal and do not have a local error 
signal. 

An interesting approach using sensitivity analysis for analog, state space recur­
sive fiters is described by Johns et al. [19]. These filters calculate gradients to 
drive the adaptation process, and use gradient filters which are the transpose 
of the original filter. However, there are some slight differences in the use of 
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Figure 5: Analog, state space filter. 

back propagation and analog gradient filters; for example, the equivalent analog 
circuit using back propagation uses a simpler computation of the gradient than 
the sensitivity approach to analog recursive filters. 

In gradient adaptive filters both the neural outputs and the weights are state 
variables. However, the weights change much more slowly in time than the 
neural outputs, and these types of systems have been described in the control 
literature as two time scale or singular systems [20]. Since the time scales are 
dramatically different, the adaptation rules can take advantage of the weaker 
coupling between the weights and the neural outputs than the coupling among 
the neural outputs themselves. If the system were linear, we would say that the 
poles corresponding to the adaptation process are many orders of magnitude 
smaller than the poles that are in the frequency range of the neural inputs and 
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output signals. The high frequency pole positions are adapted to achieve the 
desired signal processing, and these pole positions are varied by changing the 
weight integrator outputs. A similar circumstance is found in automatic tun­
ing schemes for continuous time filters [21]. The neural circuits, however, are 
nonlinear systems, so instead of pole positions (time consbnts of complex ex­
ponentials), it is more intuitive to think in terms of generalized time constants, 
which are time constants of functions that are the solutions to the nonlinear 
differential equations of the neural system. 

Neural Network Circuits 

Simple continuous-time all MOS analog cells suitable for the implementation 
of adaptive neural circuits will be presented. An all MOS implementation of 
a Hopfield-like neural architecture will also be discussed. The new neural im­
plementations take advantage of recent developments in both continuous-time 
MOS circuit design and advances in MOS technology. 

A Continuous-Time MOS Transconductor 

Here we present the simple continuous-time MOS transconductor of figure 6 
as a basic parameterized analog cell [22]. It comprises four identical MOS 
transistors, that could be enhancement- or depletion-type, n- or p-channel, 
operating in the triode region. The triode region drain current of n-channel 
MOS device is given by 

W 
ID TfJCox {(Vc - VB - VFB - <PB)(V1 - V2) 

- ~[(Vl - ~rB)2 - (V2 - VB)2] 
2 

- ~, [(Vl - VB + <PB)3/2 - (V2 - VB + <PB)3/2]} 

where Wand L are the channel width and length, respectively, fJ is the carrier 
effective mobility, VFB is the flat-band voltage, Cox is the gate oxide capacitance 
per unit area, I is the body effect, and <PB is the approximate surface potential 
in strong inversion for zero backgate bias. The voltages V1 , V2, Vc, and VB 
are the drain, source, gate, and substrate voltages, respectively, all defined with 
respect to ground. 

The 3/2 power terms in the above expression can be expanded in Taylor se­
ries resulting in the following compact expression for the drain current which 
consists of a linear term and a nonlinear term 

1 
ID = R [Vl - V2] - [g(V1 ) - g(V2)] 
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Figure 6: A versatile continuous-time MOS transconductor. 

where g(Vt} and g(V2) are nonlinear functions in V1 and V2, respectively, and are 
independent of the gate voltage Vc, and R is the small siganl linear resistance 
of the MOS transistor and is given by [23] 

1 
R= w 

j.lCoxy(Vc - VTB) 

Now consider the MOS circuit of figure 6, driven by the voltages Y1 , Y2 , Xl, X 2 , X 3 , X4 

and a common mode (virtual short) voltage V. A simple analysis shows that 
the nonlinear components of the currents 11 and 12 are identical. This means 
complete cancellation of nonlinearities in the current difference h - 12 given by 
[22]. 

The nodes V are usually connected to the input terminals of a presumably 
ideal op-amp. The voltage V is a nonlinear function of the signals Y1 and Y2 . 

Therefore, for a truly linear current difference h - 12 , the V term must be 
forced to zero, resulting in the following nonlinearity cancellation condition 
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where the general conditions for the MOS devices to operate in the triode region 
is given by 

1'; :s min(Xj - VTB) 

where for i=1, i=1,2andfori=2, i=3,4. 

Now if we think of Yl and Y2 as being AC input signals, and if we use Xl and 
X 2 as DC voltages with Xl = X 4 and X 2 = X 3 , a linear transconductance Geq 
is obtained as follows: 

where 
Yl, Y2 :s min[Xl - VTB, X 2 - VTB] 

to ensure linear operation for all MOS devices. Note that a dual transcon­
ductance element can be obtained by reversing the roles of X and Y. In this 
case, Geq = /-LCor WI L(Yl - Y2 ). It is also interesting to note that Geq is in­
dependent of the threshold voltage VT B and can be varied over a wide range 
without affecting the input signal handling capability. It also minimizes the 
effects of threshold voltage mismatch and substrate noise. Furthermore, it has 
been shown [23] that the four-transistor structure is insenstive to high-frequency 
parasitic capacitances. 

A Simple Four-Quadrant AII-MOS Vector Multiplier 

An all-MOS vector multiplier is an important building block for the imple­
mentation of adaptive neural networks in analog MOS VLSI. It can easily be 
implemented using the transconductance element of figure 6 as a basic cell. The 
application of the transconductance element in the hardware implementation 
of a simple two-input four quadrant multiplier is illustrated in figure 7. In ad­
dition to the basic transconductance cell, the circuit contains a CMOS op-amp 
and two identical resistances, R [24]. The output voltage, Vo is given by 

Vo = [/-LCor ~ R] AX ·AY 

where 
AX=Xl -X2 and AY=Yl -Y2 . 

So, the circuit achieves four-quadrant multiplication of differential inputs as 
long as all transistors are operating in the triode region. An all-MOS imple­
mentation in which the resistors R are replaced by MOS transistors can be 
obtained by using the Double-MOSFET method [23] for nonlinearity cancella­
tion, as illustrated in figure 8. The equivalent MOS resistance is given by 

1 
R= W 

/-LCoxy(VCl - VC2) 
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Figure 7: A simple all-MOS four-quadrant multiplier 

which is designed by the proper sizing of the W / L ratio of the identical four 
transistors and can be controlled by the DC gate voltages VCl and/or VC2. The 
method is based on the fact that the four-transistor transconductance element 
can be used to simulate the current difference, h - 12 , in a pair of resistors R as 
shown in figure 8. This is an interesting observation since it can be generalized 
to establish necessary topological requirements of a classical continuous-time 
circuit for its conversion to an all-MOS implementation. These requirements 
[23] can be stated as: (1) Resistors must occur in matched pairs, (2) voltages 
at one end of the pair must be the same (virtual short), and (3) voltages at 
the other end must be different. The Double-MOSFET method is directly 
applied to the simple two-input multiplier of figure 7 to obtain an all-MOS 
implementation [24]. The scalar product of 2 n-tuple vector inputs can easily 
be achieved in MOS technology by a straightforward extension of the simple 
two-input multiplier circuit as shown in figure 9. The output Vo of the new 
vector multiplier circuit is given by: 

1 n 

v;, = (W/L) (\I, _ \I, ) L(W/L)i AXi ·AY; 
o Cl C2 i=l 

where AXi and AY; are floating differential inputs given respectively by XiI -
X i2 and Y;1-Y;2 and Xij and Y;j, j = 1,2, are input voltages referred to ground. 
Each AX . AY product is achieved using four identical input transistors with 
an aspect ratio (W/Lk The four MOS transistors Mo having an aspect ratio 
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Figure 8: The Double-MOSFET method. 

(W / L)o are used to replace the pair of resistors R in figure 7 according to the 
Double-MOSFET method. It is interesting to note that Vo can be programmed 
by varying the control voltages, VCl and/or VC2. As we mentioned earlier the 
MOS implementation may use enhancement or depletion transistors, n- or 
p-channel. The advantage of depletion MOS transistors, however, is the fact 
that they can accept positive, zero, or negative voltages at their gates as well 
as their drain or source terminals as evidenced by their terminal characteristics 
shown in figure 10. As a result, multiplication of input voltages that are referred 
to ground is easier with depletion transistors. If enhancement MOS devices are 
used the DC level of these input voltages should be shifted for proper operation 
[22]. The disadvantage of depletion devices is the need for an additional masking 
step for the implanted channel layers. The application of the MOS vector 
multiplier in the implementation of Hopfield-Like feedback/feedforward neural 
networks is discussed next. 

MOS Implementation of Hopfield-Like Neural Networks 

In this section we introduce a new all-MOS continuous-time implementation 
of the synaptic weights for Hopfield-Like feedback neural networks. The im­
plementation is achieved via an adaptation of the MOS multipliers presented 
earlier where the weights are assigned as positive or negtive voltage levels. The 
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Figure 9: A programmable Analog MOS Vector Multiplier. 
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neurons are realized by simple CMOS double inverters which are interconnected 
through the MOS vector multipliers. Each multiplier implements the scalar vec­
tor product of the vector of neuron outputs and the vector of the corresponding 
weights. For a network of n neurons, there are n such scalar products. Each 
scalar product is achieved using only one operational amplifier and 4(n +1) 
MOS transistors for 2 n-tuple vector inputs resulting in an economic and at­
tractive analog MOS VLSI implementation. A neuron and its associated vector 
multiplier are illustrated in figure 11. Using depletion transistors, gates of MOS 
transistors can be connected to ground resulting in a special case of the vector 
multiplier presented earlier which allows the multiplication of voltages that are 
referred to ground. Positive or negative grounded voltage levels can be assigned 
to the sy.naptic weights, Y;. The outputs of n neurons Xi are fedback as inputs 
to the ith multiplier (1 :::; i :::; n). The output of the ith multiplier in turn is fed 
into the input of the ith double inverter (neuron i). The output of the two-input 
multiplier shown in the dotted subsection in figure 11 is proportional to Xl Yi 
where Xl, the output of neuron 1, and Yl , its associated weight, are voltages 
referred to ground. The overall output of the vector multiplier, Vo is given by 

n 

Vo = (W/L)o(~Cl _ VC2) ~(W/L)iXiY; 

All MOS transistors must be operating in the triode region. Hence at the 
multiplier's input 

IY; I :::; /VT B I for positive Xi 

and 
for negative Xi 

It is interesting to note that Xi, when it is positive, is restricted only by the 
maximum allowable gate voltage specified in the process electrical design rules. 
At the multiplier's output, Vo should satisfy 

The input-output compatibility of the overall MOS implementation is of par­
ticular interest since the relatively high output impedance node of the double 
inverter is connected to the almost infinite input impedance of the MOSFET 
gates with almost no restrictions on the fan-in/fan-out capability. Another func­
tion of the double inverter is to limit the dynamic range of the inputs on the 
neural output using the inverters sigmoidal nonlinearity. However, the double 
inverter can be removed and the saturating nonlinearity of the multiplier itself 
can be utilized. The onset of saturation can be set using the multiplier resistor 
pair. The maximum value of n is limited when we use the four-transistors to 
replace the multiplier resistor pair. It is determined by the maximum currents 
these transistors can carry. This is a situation that can be created when the 
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Figure 11: A MOS circuit for the VLSI Implementation of Hopfield-like nerual 
networks. 
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polarities of Xi and Yi are such that all input transistor currents are coming 
in (or out of) the op-amp summing input nodes. The sizing of the feedback 
transistors in multiplier can be analyzed using the previous equations to set the 
dynamic range of the linear region. For an overall implementation that uses 
only enhancement transistors [26], the output signals of the neurons must be 
level shifted properly before they are fed back to the multiplier inputs. This 
can be easily achieved using a simple MOS DC level shifter [26]. 

It is also interesting to note that in the well-known Hopfield circuit [14], com­
plement outputs of the neurons are used in the feedback since negative passive 
resistors are impossible to implement. The MOS implementation described 
here has a single output for each neuron. This can reduce the problems of 
VLSI routing and interconnects. Computer simulations [25,26] of the MOS im­
plementations verified the theoretical development and exhibited the robustness 
properties of neural networks. The ideas and concepts presented can be applied 
equally well to implement feedforward neural architectures. 

Programmable Threshold Voltage Device Circuits 

In order to maximize the size of the neural system which can be put on silicon 
chips, it is desirable to combine as much of the neural functions as possible into 
a given circuit module. One method of combining the integration, or storage, 
of a signal with a multiplying function is to use a single transistor with an 
alterable threshold voltage. The multiplicative computation involves the gate 
and drain voltages to produce a transistor current. 

A alternate approach to developing a minimum size weight integrator is to 
use a transistor amplifier with a Miller capacitor. However, in some adaptive 
systems, adaptation rates on the order of seconds or minutes are needed; and in 
the case of associative memories, we would like to extend the weight integrator 
to become an analog memory unit. An analog memory element (AME) is useful 
if the neural circuit is to be used for pattern storage or to compensate signals 
from deleterious component offsets resulting from the IC fabrication technology. 

Therefore, in order to develop long term analog storage, the threshold voltage 
of a MOS transistor can be varied by use of charge tunnelling and trapping 
effects in either floating gate [27], or MNOS devices [28]. Threshold shifts can 
be obtained on standard MOSIS technology parts, either by using UV light [29], 
or by using liquid nitrogen temperatures [30]. In a double poly process, both 
drain avalanche and control gate induced tunnelling can be utilized. 

Shown in figure 12 is a four neuron, 16 weight synapse circuit in which threshold 
voltages are to be altered [31]. The double poly process offered by MOSIS is 
fabricating the die. In order to use only electrical programming, both gate 
induced and drain avalanche induced charge tunnelling are used. Each weight 
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is put in its own well which can be independently biased to promote avalanching 
of its drain but not other drains on the same word line. Gate induced tunnelling 
allows for lowering of drain voltages to circumvent drain-substrate breakdown 
effects. 

Feedback 
EnablelDisable Input 

Row Selects Output 

g;g : Programmable Synaptic Element 

D : 2 - 1 Multiplexer 

[> : Summing & Thresholding Amplifier 

Figure 12: Floating gate neural network. 

In order to increment and decrement the weight values, a pair of programmable 
transistors are used to develop a current difference, as shown in figure 13. The 
current difference from several sets of synapses is sensed by a set of current 
mirror loads, as shown in figure 14, where 2 neurons and four synapses are 
shown. The synapses can be operated in the subthreshold current region by 
adjusting the current mirror bias, yet the neural output is taken through a 
strong inversion transistor amplifier with a stronger current drive. A layout 
of the chip is shown in figure 15. The weight update circuitry is missing from 
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Figure 13: Pair of programmable transistors to increase or decrease weight. 

the left side of this version of the chip, since the first objective is to test the 
electrical programming range of the floating gate transistor synapses on the 
right. 

By sizing transistors appropriately, the neural output can be made to be a very 
sensitive function of the current differences, as shown in figure 16. Therefore, 
even small threshold voltage shifts can be utilized. The threshold voltage shift 
range and the sizing of the load and output circuits are the two major factors 
in determining the dynamic range of the weight circuits. 

Conclusions 

We have discussed important issues in analog VLSI that are relevant to the 
hardware implementation of microelectronic neural networks in MOS technol­
ogy. Similarities between the neural paradigm of computation and the design of 
analog, adaptive, state-space filters have been outlined. The circuit techniques 
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Figure 14: Two neuron circuit with four weight synapses. 
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Figure 15: Layout of 4 neuron chip. 

are based on simple and programmable analog parameterized cells with features 
of reconfigurability and input/output compatability. Analog circuit modules, 
such as integrators, summers, multipliers, etc., have been configured in a neural 
network architecture to build the equivalent of state-space signal processors. We 
presented a methodology for comparing various forms of adaptation based on 
driving weight integrators with circuitry which computes estimates of a gradient 
of a criterion or energy function. The methods for estimating the gradients are 
similar to the techniques which have been developed for traditional signal pro­
cessing. The circuit implementations take advantage of continuous-time MOS 
circuit design concepts as well as advanced CMOS technologies. 



130 

:; 
o 

> 

........ 

4 

3 

2 

Current COlnparator 
. - . 

... ... ... -.... -0 

1_=0.5 J.lA 

!.~.:.! . .P..~. 
1_ = 2 ~.A 
---------
1_=.51·A - . - . -
'_=IOJ.lA 
... e. _ eo _ 

- .. 

- . -
- . - :~~:.~~::'~"\. ~ 

.. , .. , 
e. \ " ...... \ 

";'. \ :.... , 
I.·· \ 
: " i -, \ 
i '\ 
: t. 
: t 
: I \ 

i \ '0 

: " : t 
: t 
: t 
: t 
i \ ...!... 
: t 

i \ ... , .... 
........ ...._---------

~1~OO~--~~-L--~5~0-L~--~~~0~~~~~~5~~-···~··-···~···~··~··~··=-~IJ(X) 

IDlr-r- (nA) 

Figure 16: Neural output as a function of differential and common mode cur­
rents. 

Acknowledgements 

We would like to thank our many colleagues, with special thanks to Profs. P. 
Allen and F. Salam. The following students have done much of the work: Ken 
Adkins, Zaka Bhatti, Tom Borgstrom, Scott Dupuie, Rich Kaul, and Nabil 
Khachab. The encouragement and support of this research by NSF, the Semi­
conductor Research Corp., AT&T, the NASA Lewis Research Center, and the 
Electrical Engineering Dept. at Ohio State is much appreciated. 



131 

References 

[1] C. Mead, Analog VLSI and Neural Systems, Reading, Mass., Addison­
Wesley, 1989. 

[2] M. Ismail and J. Franka, Introduction to Analog VLSI Design Automation, 
Kluwer Academic Publishers, Boston, 1989. 

[3] M.R. Haskard and I.C. May, Analog VLSI Design: .NMOS and CMOS, 
Prentice-Hall, New York, 1988. 

[4] N. El-Leithy and R.W. Newcomb, Special Issue on Neural Networks. IEEE 
Transactions on Circuit and Systems, May 1989. Also, S. Bibyk and M. 
Ismail, Analog Signal Processing for Neural Microelectronics, Special Ses­
sion, Proc. IEEE ISCAS, May. 1989. 

[5] E. Habekotte et al. "State-of-the-Art in the Analog CMOS Circuit Design" 
Proc. IEEE, Vol. 75, pp. 816-828, June 1987. 

[6] Y. Tsividis, "Analog MOS Integrated Circuits: Certain New Ideas, Trends, 
and Obstacles", IEEE J. Solid-State Circuits, Vol. SC-22, pp. 317-321, 
June 1987. 

[7] M. Ismail, "Continuous-time Analog Design for MOS VLSI" State-of-the­
Art Review invited paper, Proc. of the 30th Midwest Symp. on Circuits 
and Systems, pp. 707-711, Elsevier Science Publishing Co., 1987. 

[8] P.R. Gray, B. Wooley, and R.W. Broderson, Analog MOS Integrated Cir­
cuits IEEE Press book, New York, 1989. 

[9] P.E. Allen, "CAD for Analog VLSI", IEEE CAS Distinguished Lecturer 
Program, April 24, 1989. 

[10] M. Ismail, "Reconfigurability, Versatility and Modularity in analog IC De­
sign," presented at the Semiconductor Research Corporation (SRC) Work­
shop on Analog Design Automation, December 2nd, 1988. 

[11] J.L. Hilbert, SRC Private Communication, December, 1988. 

[12] L.R. Carley and R.A. Rutenbar. "How to Automate Analog IC Designs," 
IEEE Spectrum, pp. 26-30, August 1988. 

[13] H.Y. Koh, C.H. Sequin, and P.R. Gray, "Auto Synthesis of Operational 
Amplifiers Based on Analytic Circuit Modes", Proc. IEEE ICCAD, pp. 
502-505, November 1987. 

[14] J.J. Hopfield, "Neurons with graded response have collective computational 
properties like those of two state neurons," Proc. Nat!. Acad. Sci., USA, vol. 
81, pp. 3088-3092, May 1984. 



132 

[15] B. Widrow and S. Stearns, Adaptive Signal Processing, Englewood Cliffs, 
NJ, Prentice Hall, 1985. 

[16] T. Kohonen, Self-Organization and Associative Memory, Second Edition, 
1987. 

[17] S. Bibyk and K. Adkins, "Neural Nets and Emergent Adaptive Signal 
Processing," Proc. of IEEE Int. Symp. Circuits and Systems, May 1989, 
pp. 1203-1206. 

[18] D.E. Rummelhart, J .L. McClelland, and the PDP Research Group, Parallel 
Distributed Processing, The MIT Press, vol. 1, chp. 8, 1986. 

[19] D. Johns, W. Snelgrove, and A. Sedra, "Continuous-Time Analog Adaptive 
Recursive Filters," Proc. of IEEE Int. Symp. Circuits and Systems, May 
1989, pp. 667-670. 

[20] V. Saksena, J. O'Reilly, and P. Kokotovic, "Singular Perturbations and 
Time-scale Methods in Control Theory: Survey 1976-1983," Automatica, 
vol. 20, pp. 273-293, May 1984. 

[21] T.L. Brooks and P.M. VanPeteghem, "Simultaneous Tuning and Signal 
Processing in Integrated Continuous Time Filters: The Correlated Tuning 
Loop," Proc. of IEEE Int. Symp. Circuits and Systems, May 1989, pp. 
651-654. 

[22] M. Ismail, "Four Transistor Continuous-Time MOS Transconductor," Elec­
tronics Letters, Vol. 23, No. 20, pp. 1099-1100, September 1987. 

[23] M. Ismail, S. Smith and R. Beale, "A New MOSFET-C Universal Filter 
Structure for VLSI," IEEE J. Solid-State Circuits, Vol. 23, pp. 183-194, 
February 1988. 

[24] N. Khachab and M. Ismail, "Novel Continuous-Time All-MOS Four­
Quadrant Multipliers", Proc IEEE ISCAS, pp. 762-765, May 1987. 

[25] F. Salam, N. Khachab, M. Ismail, and Y. Wang, "An Analog MOS Imple­
mentation of the Synaptic Weights for Feedback Neural Nets," Proc. IEEE 
ISCAS, pp. 1223-1225, May 1989. 

[26] N. Khachab and M. Ismail, "An Analog MOS VLSI Implementation of 
Hopfield-like Neural Networks," to appear. 

[27] R. Shimabukuro, I. Lagnado, and P. Shoemaker, "A Dual Polarity 
Nonvolatile Analog Memory for Use in Adaptive Neural Networks," 
Silicon Nitride and Silicon Dioxide Thin Insulating Films, ed. S. Bibyk et 
aI., Proc. of the Electrochemical Soc., vol 89-7, pp 157-165. 



133 

[28] J. Sage, and R. Withers, "Analog Nonvolatile Memory for Neural Net­
work Implementations," Silicon Nitride and Silicon Dioxide Thin Insulat­
ing Films, ed. S. Bibyk et aI., Proc. of the Electrochemical Soc., vol 89-7, 
pp 157-165. 

[29J L. Glasser, "A UV Write-Enabled PROM," 1985 Chapel Hill Conference 
on VLSI, pp. 61-66. 

[30J S. Bibyk, H. Wang, P. Borton, "Analyzing Hot-Carrier Effects on Cold 
CMOS Devices," IEEE Trans. Elec. Dev., vol. ED-34; pp. 83-88, Jan. 1987. 

[31] T. Borgstrom and S. Bibyk, "A Neural Network Circuit Utilizing Pro­
grammable Threshold Voltage Devices," Proc. of IEEE Int. Symp. Circuits 
and Systems, May 1989, pp. 1227-1230. 



6 

DESIGN AND FABRICATION OF VLSI 
COMPONENTS FOR A GENERAL PURPOSE 

ANALOG NEURAL COMPUTER 

PAUL MUELLER, JAN VAN DER SPIEGEL, DAVID BLACKMAN, 
TIMOTHY CHIU, THOMAS CLARE, CHRISTOPHER DONHAM, 

TZU PU HSIEH, MARC WINAZ 

Departments of Biochemistry and Biophysics and 
Electrical Engineering 

SUMMARY 
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The design of components for a programmable analog neural computer and 
simulator is described. The machine can be scaled to any size and is composed 
of three types of interconnected modules, each containing on a VLSI chip arrays 
of Neurons, modifiable Synapses and Routing Switches. It runs entirely in 
analog mode but the connection architecture, synaptic gains and time constants as 
well as neuron parameters are set digitally from a digital host computer. Each 
neuron has a limited number of inputs and can be connected to any but not all 
other neurons. 

The neuron circuit consists of a rectified summing amplifier, comparator and 
output driver. Inputs to the neurons are currents, outputs are analog voltages. 
The following neuron parameters can be adjusted through digital control: 
threshold (bias), minimum output at threshold and linearity of the transfer 
function. For the computation of synaptic weights by the host computer on the 
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basis of learning algorithms, time segments of the neuron outputs are 
multiplexed, converted to digital form and stored in memory. 

The synaptic weights are implemented by current mirrors that scale the 
neuron outputs after they have been converted linearly from a voltage to a 
current. The weights are set by serial input from the host computer and are 
stored at each synapse. Dynamic range of the weights extends from 0 to 10 with 5 
bit logarithmic resolution; a sixth bit determines the sign. Synaptic time constants 
are programmed at the inputs to the synapse line. 

The routing switches connect vertical and horizontal lines of a cross point 
array and also can cut these lines. Each switch cell is implemented as a 
transmission gate connected to one bit of memory. The switches are set by serial 
input from the host computer. 

The machine is intended for real-world, real-time computations such as vision, 
acoustics or robotics and the development of special purpose neural nets. Even 
at moderate size of 103 to lOS neurons the computational speed is expected to 
exceed by orders of magnitude that of any current digital computer. 

INTRODUCTION 

The computation of real world phenomena in real time requires 
computational power that exceeds by many orders of magnitude the capabilities 
of sequential digital machines. 

Biological brains are able to solve tasks such as seeing or hearing because they 
operate in analog mode which allows simultaneous summing of many inputs from 
interconnected units and permits large scale parallel processing without the need 
for iterative procedures. 

Extrapolation from simulations of simple neural circuits indicate that a 
sequential digital machine would have to operate at speeds of more than 1018 

floating point operations per second in order to match the performance limit of 
the human brain. 

The advantages of neural computation are now widely recognised and 
electronic implementation of neural systems based on analog circuits of neurons 
and synapses is currently being pursued in a number of laboratoriesl -14 where 
several special purpose systems have been fabricated in VLSI1,8,12-17 or macro 
componentsl8. 

Unfortunately, most of the connection architectures and computational 
strategies implemented by biology are not yet known and it seems desirable to 
have available a general purpose machine in which the connections as well as the 
component parameters - such as neuron thresholds and transfer functions, 
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synaptic gains and time constants can be programmed either externally or by the 
machine itself. 

This paper describes the design of a general purpose analog neural computer 
and presents performance data of VLSI modules for the machine. A preliminary 
report has been published elsewhere? 

OVERVIEW OF THE NEURAL COMPUTER 

Before discussing the details of component design, we shall give a general 
overview of the computer. 

The machine architecture, shown in Fig. 1, is loosely based on the cerebral 
cortex in the sense that there are separate neurons, axons and synapses and that 
each neuron can receive only a limited number of inputs. However, in contrast to 
the biological system, the connections can be modified by external control 
permitting exploration of different architectures in addition to adjustment of 
neuron parameters and synaptic weights? The design has evolved from our 
previous experience with manually programmable neuron nets for the analysis of 
acoustical patterns18,19. 

The machine contains large numbers of the following separate elements: 
neurons, synapses, and routing switches. Arrays of these elements are 
fabricated on VLSI chips that are mounted on planer chip carriers each of which 
forms a separate module. The modules are connected directly to neighboring 
modules on a circuit board. Neuron arrays are arranged in rows and columns and 
are surrounded by synaptic and routing switch arrays. The switches select the 
connections between neurons. The direction of data flow is shown in Fig. 2. 

The computer runs entirely in analog mode. However, connection 
architectures, synaptic gains and neuron parameters such as thresholds and time 
constants are set by a digital host computer either directly from the keyboard or 
from stored programs. 

For the implementation of learning algorithms, time segments of the outputs 
from all neurons are multiplexed, digitized and stored in memory of the host 
computer. The stored outputs are used to compute the adjusted synaptic weights 
that are then set by the computer. The multiplexing operation is independent of, 
and does not interfere with the actual analog computations. 

The modular design allows expansion to any degree and at moderate to large 
size, i.e. 103 to lOS neurons, operational speed would exceed by 3 to 6 orders of 
magnitude that of any currently available digital computer. 



138 

IIIIIIIL INES 

• NEURONS 

ffi III SYNAPSES 
I-

~ D S\J ITCHES 
o 
u 
.1-
I./') 
o 
I 

Fig. 1. Layout and general architecture. The machine is composed of different 
modules shown here as squares. Each module contains on a VLSI chip an array 
of components (neurons, synapses or switches) and their control circuits. A 
prototype design would contain 64 neuron modules for a total of 1024 neurons 
each having 64 synapses. The symmetry of the connections between modules 
allows adjustment of the ratio between different modules and unlimited addition 
of modules. 
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Fig. 2. The direction of data flow through the modules. Outputs from each 
neuron leave north and south and are routed through the switch modules east and 
west and into the synapse modules from north and south. They can also bypass 
the synapse modules north and south via lines. Input to the neurons through the 
synapses is from east and west. Power, digital control lines and multiplexed 
neuron outputs run east and west. The multiplexed outputs to the host computer 
are not shown. 
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THE COMPONENT MODULES 

In the following sections we discuss the design of the individual VLSI 
modules. All chips are designed for processes available through MOSIS using the 
Berkeley VLSI tools. 

Several versions of small prototypes have been fabricated in 3u and 2u CMOS, 
and test results are presented. The chip control circuits and operation are also 
discussed. 

The Neuron Module 

Each neuron chip contains 16 neurons, an analog multiplexer and control 
logic (see Fig. 3). 

Input-output relations of the neurons are idealized versions of a typical 
biological neuron. The circuit and the neuron transfer function, which are based 
on an earlier design using discrete components,18 are shown in Fig. 5-8. The 
circuit consists of a rectified summing amplifier, comparator and output driver. 
Each unit has an externally adjustable threshold (bias), an adjustable minimum 
output value at threshold, EX' a linear transfer function above threshold and a 
maximum output (see Figs.4 and 9). Output time constants are selected on the 
switch chips (see below). The output has only one sign; positive or negative input 
polarity is selected at each synapse. 

The output buffers were designed to drive a resistive load of < 1 KOhm and a 
capacitive load of - 100 pF. The actual resistive load will be much less because 
the synaptic inputs which the neuron drives are PET gates and the leak resistance 
to ground of the routing switches is > 1012 Ohm. As tested, the gain-bandwidth 
product of the output buffer was 900 KHz, the slew rate 5x106 Vis, settling time 
14 us and the phase margin 35 degrees. These test results agreed well with the 
SPICE simulations. 

Inputs to each neuron come from synapse chips east and west (SIR, 

SIL), outputs (NO) go to switch chips north and south. Each neuron has a 

separate input that sets the minimum output at threshold ( Ex) which is common 

for all neurons on the chip and selected through a separate synapse line. The 

threshold is set from one of the synapses connected to a ftxed voltage. 
In learning mode the synaptic gains and neuron parameters are computed and 

set from the control computer on the basis of the neuron outputs. For this to be 
possible, an analog multiplexer provides neuron output to a common line, OM, 
which connects to a fast AID converter and stores selected time segments of all 
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neuron outputs in memory. The switches of the multiplexer are controlled by a 
shift register clocked via two phase clocks and master clock, CK. By passing 
control pulses (ORO and OR!) from chip to chip all neurons are read in 
sequence every 2 ms. For discussion of the AjD conversion see below. 

CK 
ORO 

SILl 
SIL 2 

• • • 
SILlS 
SILlS 

ORI 
PHI2 

SIR 
SIR I 

• 2 • • 
SIR IS 

SIR 16 

Fig. 3. Block diagram of the neuron chip containing 16 neurons. 
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Fig. 4. Transfer function of the neuron. Each unit has an adjustable threshold, 
Vt , a linear transfer region above threshold, an adjustable minimum output at 
threshold E and a maximum output, E . The adjustment of Ex and of Vt are x max 
shown in A and B. 
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Fig. 5. Neuron circuit. The extra output at threshold, EX' is controlled by Ix­
Two different versions of this circuit have been fabricated. The first version was 
designed to drive resistive loads and had two outputs of opposite sign. The later 
version had only one output designed for capacitive loads. The layouts of both 
versions are shown in fig. 7. 
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Fig. 6. Operational amplifiers of the neuron circuit. 
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Fig. 7. Layout of two versions of the neuron circuit. The older version is shown 
in A. Notice the big output drivers designed for large resistive loads. The later 
version, B, has only one output. It was fabricated in 2 u CMOS. 

Fig. 8. Photograph of a test chip containing 5 neurons. This is the older 
version of the circuit. 
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o 5 
SUM Of INPUTS/VOLTS 

Fig.9 Transfer characteristic obtained from a neuron on the chip shown in 
Fig. 8. The threshold, Vt was set here to 1.5 V,and the adjustable minimum 
output at threshold E to 1 V . x 

TABLE 1 

NEURON SPECIFICATIONS 

Process 2uCMOS 

Operation Current Summing 

Outputs Oto4V 

Transfer Function Linear1 or sigmoid 2 

Output Impedance < 1KOhm 

Gain- Bandwidth Product 900KHz 

Settling time 14 us 

Threshold Adjustment Logarithmic, + or - , 
5 bit resolution 

Adjustment of Ex o to 4 V, 5 bits 

1) Currently implemented, 2) Planned. 
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Discussion Of The Neuron Properties 

Several aspects of the neuron design require comment. 
1. Threshold adjustment 
The threshold of each neuron is individually adjustable from the synapse chip 

via an extra synapse that is connected to a fIXed input voltage. In this way the 
threshold can be biased in either direction. A neuron with a negative threshold 
bias produces output in the absence of inputs from othe~ neurons. This feature is 
often observed in biological neurons and is also important for certain learning 
algorithms such as backpropagation. 

2. The minimum output at threshold 
Each neuron has an adjustable minimum output at threshold, E that can be 

x 
set to any value between 0 and Emax by application of a current to pin Ex at the 
comparator circuit (see Fig. 5). This adjustment is the same for all neurons on 
one chip. The current is derived from a synapse circuit on the synapse chip which 
generates a selected current. 

The adjustable minimum output at threshold is an important feature which 
enables the neuron to perform logic as well as arithmetic operations by the same 
unit. In the limit the neuron can function either as a boolean switch when E = x 
E , or as a summing amplifier when E is set to O. Intermediate settings max x 
permit combined logic and arithmetic operations (transparent computation) by 
the same unit. This feature is also found in biological neurons which in many 
cases begin ftring at a relatively high rate when the sum of inputs reaches the 
threshold. 

3. The input - output transfer function. 
As currently implemented, the I/O transfer function is linear between E and x 

Emax (see Fig.4). This conforms roughly to the relation between average 
membrane depolarization and ftring rate of a typical biological neuron tested in 
isolation. In most situations the linearity of the I/O function is not critical but 
our experience with a network for acoustical pattern recognition18 showed that 
the linearity contributes to ease of programming and stable operation especially 
in the time domain. 

There are reasons, however, for looking at alternative transfer functions. 
Speciftcally we shall consider designing neurons with a sigmoid transfer function. 
This transfer function is widely used in the simulation of learning algorithms, 
such as backpropagation,20 where it has proven especially effective. A sigmoidal 
transfer function can be obtained by adding one or more non- linear devices, e.g. 
transistors in parallel with the feedback resistor of the summing opamp. 

In order to investigate this point in more detail we have carried out 
simulations of simple learning tasks using a backpropagation algorithm. In the 
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case of learning an XOR function by a 5 neuron network the sigmoid transfer 
functioll performed considerably better for identical initial conditions (less 
iterations and fewer failures to converge). However, linear transfer functions 
with E = 0 or with E > 0 gave acceptable results provided that the derivative of x x 
the function was assumed to be that of a sigmoidal. Further tests on this point 
are planned. 

In addition to its utility for gradient descent learning, a sigmoidal transfer 
function would also enable the neurons to perform multiplication and division of 
different inputs by biasing the operating region into the exponential or 
logarithmic portions of the sigmoid. 

4. Are spiking neurons necessary? 
The neurons shown in Fig. 5 do not generate action potentials but transmit 

instead their output voltages as continuous variables. Nerve fibers have extremely 
high impedances and reliable transmission is achieved by a pulse frequency 
modulation code in which the output of a neuron is transformed into an impulse 
frequency that is then integrated at the synapse. There are, however many 
examples such as in the retina where outputs from short axon neurons are 
continuous potential changes. Except in cases where very precise temporal 
relations must be preserved, as for example in the computation of acoustic delays, 
an individual impulse has little significance. 

We have previously used pulsing neurons in earlier networks for acoustical 
pattern recognition 19 and have found no situation where they could not be 
replaced by neurons with continuous output. In fact when Ex is set high, the 
neurons described here will respond with phase locked pulses to sinusoidal inputs 
and can therefore also be used for acoustical delay computations. If in the future 
pulsing neurons appear essential we can easily insert modules containing such 
neurons into the machine. 

The analog output multiplexer. 

The multiplexer provides the host computer with time segments of the outputs 
from all neurons that are used for monitoring the network performance and as a 
basis for the implementation of learning algorithms and adjustment of synaptic 
weights and/ or connection architectures. It does not interfere with the actual 
operation of the net which is entirely in analog mode. 

The multiplexer consists of 16 analog switches that connect the neuron 
outputs sequentially to a common output line, (see Fig. 3, 10 and 11). This output 
is buffered and provides a signal OM that is sent to an A/D converter over a 
common line. The output signals are stored in the memory of the host computer. 



146 

The switches of the multiplexer are addressed in series by complementary clock 
signals. The addressing circuit is a 16 bit shift register that shifts a "1" from the 
input to the output. The shift register is clocked by two phase clocks which are 
generated on chip from the master clock CK, coming from the host 
microprocessor. This clock runs at 2 MHz. After the last neuron has been read, 
the control circuit generates a pulse, ORO, that is sent to the ORI input of the 
next neuron chip. This module is now ready to send its 16 analog neuron outputs 
sequentially to the output line OM, after which it sends an ORO pulse to the next 
chip in the row. In this way all neurons are read out in sequence. When all chips 
have been read, the microprocessor sends an ORI pulse to the flrst neuron chip 
and the procedure starts over again. In order to synchronize the multiplexer with 
the microprocessor and the AID converter, provisions are made for a control line 
phiZ between the neuron chip and the microprocessor. 

By using one or more fast AID boards (250KHz conversion frequency) the 
outputs of several hundred neurons can be read with msec time resolution which 
is fast enough to provide the host computer with time segments of the state of the 
network. 
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Fig. 11 Layout of the analog multiplexer. This design does not contain the 
buffer in Fig. 10. Only 8 of the 16 shift registers are shown. It has been fabricated 
but not yet tested. 

THE SYNAPSE MODULE 

Each synapse chip contains a 32 x 16 array of synapses. The synaptic weight 
of each synapse is set by serial input from the host computer and is stored at the 
synapse in a 6 bit local memory. The dynamic range of the synapse gains extends 
from 0 to 10 with 5 bit resolution, a sixth bit determines the sign. The gains are 
implemented by current mirrors that scale the neuron output after it has been 
converted from a voltage to a current. 

The modifiable synapse designs reported in the literature use either analog or 
digital signals to set the gains.2-5,9,25,26 For our initial design we chose the latter 
method because of its greater reproducibility and because direct analog setting of 
the gains from the neuron outputs would require a priori knowledge of and 
commitment to a particular learning algorithm. Nevertheless, since analog 
controlled synapses have the advantages of less area and continuous 
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programmability compared to digital versions, we have fabricated but not yet 
tested an analog controlled synapse based on avalanche injection. 

NIl 

ENe EN eLK DATA 

Fig. 12. Diagram of the synapse module. Each synapse gain is set by a 5 bit 
word stored in local memory. The memory is implemented as a quasi-dynamic 
shift register that reads the gain data during the programming phase. Voltage to 
current converters transform the neuron output (NI) into a current. I -Conv are 
current mirrors that scale the currents with 5 bit resolution. The weighted 
currents are summed on a common line to the neuron input (SO). 

Layout and performance of the synapse module are shown in Figs. 12 - 16. 
The block diagram of the module is shown in Fig. 12. It consists of an array of 32 
by 16 synapses and a similar array of 6 bit memory elements which is mapped 
onto the synapse matrix. The chip has 32 input lines (NIj) that are coming from 
neuron outputs, routed over switch modules. The inputs, which vary between 0 
and 4 volts are transformed into a current by the V-I converter units shown at the 
top and bottom of the diagram. Associated with the converter is a current 
divider, which generates the required voltages to drive the synapse. Only one V-I 
converter and current divider is needed per column. There are 16 output lines, 
labeled SOj, which carry the sum of the current outputs of the 32 synapses on 
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row i. These output lines are connected to the corresponding 16 inputs of the 
neighboring neurons (see overview Figure 1 and 2). Sixteen additional input lines 
(EIj) are provided in order to be able to increase the fan-in from 32 to 64 and up 
by placing one or more synaptic chips adjacent to each other and connecting the 
outputs (SO) of one chip to the extended inputs (EI) of the other. 

The voltage to current converter takes the neuron output voltage and 
generates a current proportional to the voltage. The circuit, derived from a 
design in reference 21, is shown in Fig. 12. Associated with. the converter is a 
current divider based on a series of current mirrors. This circuit generates 
currents which decrease in a logarithmic fashion allowing the selection of synaptic 
gains (weights) over a range of 0 to 10 with a 5 bit resolution. 
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Fig. 13. The voltage to current converter and the synapse. The V to I 
converter is shown in A. The current divider (B) consists of current mirrors in 
series. The synapse (C) is a steered current circuit. The currents in the PMOS 
transistors are derived from the current divider circuit. A current switch steers 
the current to the neuron input line or to ground. The switch is controlled by the 
memory (C). A current mirror inverts the current to implement excitatory or 
inhibitory connections. 
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The synapse itself consists of a series of current switches in series with a 
current source, schematically shown in Fig. 13. The current source is realized by a 
transistor whose gate and source terminals are connected to the current divider 
circuit, in a current mirror configuration. Separating the current divider circuits 
from the synapse allows sharing the divider circuit among all the synapses on the 
same column. A current inverter controlled by the sign bit allows implementation 
of excitatory and inhibitory connections without doubling the number of inputs. 
The switches that select the current levels and thus. determine the synaptic 
weights are driven by the outputs of the memory elements, as shown in Fig. 13. 

The memory elements consist of cross coupled inverters which are connected 
in series to form one large shift register. This allows the use of the same inverters 
to read the data serially in all memory elements by using a two phase clocking 

scheme. The data is provided by the digital host computer over one line, labeled 
DATA in Fig. 12. The layout of the synapse components and a photograph of a 
prototype chip are shown in figs.14 and 15. 
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Fig.14. Layouts of the synapse components showing in A the V-I converter, in 
B the current divider and in C the current selector and memory. 
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Fig. 15. Photograph of a prototype Synapse chip containing an 8x5 array of 
synapses. The chip was fabricated in 2u CMOS. 

As seen in Fig. 16A, the synaptic transfer function is linear from 0 to 4 V. 
Fig. 16B shows that the synapse exhibits less than 10% variation from chip to 
chip. 

The use of current mirrors permits arbitrary scaling of the synaptic gains 
(weights) with trade off between range and resolution limited to 5 bits. Our 
current design calls for a minimum gain of 1/64 and a maximum of 10. The 
lower end of the dynamic range is determined by the number of possible inputs 
per neuron which when active should not drive the neuron output to its limit, 
whereas the high gain values are needed in situations where a single or only a few 
synapses must be effective such as in the copying of activity from one neuron to 
another or for veto inhibition. The digital nature of the synaptic gain control does 
not allow straightforward implementation of a logarithmic gain scale. Fig. 17 
shows two possible relations between digital code and synaptic gain. In the first 
case, implemented in our current design, the total gain is the sum of 5 individual 
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gains each controlled by one bit. This leads inevitably to jumps in the gain curve. 
In a second case which we are currently investigating, a linear 3 bit gain is 
multiplied by four different constants controlled by the 4th and 5th bit. This 
"floating point" scheme provides better approximation to a logarithmic scale. The 
synapse specifications are summarized in Table 2. 
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Fig. 16. A. synapse transfer characteristics for three different settings. The 
data were obtained from the chip shown in Fig. 13. B. transfer characteristics 
obtained from four different test chips. 
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Fig 17. Digital Code vs. synaptic gain, squares are current design, triangles 
represent a five bit floating point format. 
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Although the resolution of an individual synapse is limited to 5 bits, several 
synapses driven by one neuron can be combined through switching, permitting 
greater resolution and dynamic range. Furthermore, mismatching of synaptic 
currents due to transistor differences can be compensated by this method. 

It might seem that the limited number of inputs per neuron restricts the 
computations that can be performed by anyone neuron. However the results 
obtained by one neuron can be copied through a unity gain synapse to another 
neuron which receives the appropriate additional inputs. 

TABLE 2 

SYNAPSE SPECIFICATIONS 

Process 2uCMOS 

Operation Current Scaling 

Weight control Digital, 6 bits 

Dynamic range 
of weights (gain) o to + -10 

Resolution integer 5 bits + 1 si~ bitl 
floating point 3 + 2 bits 

Output Current Range o to 400 uA 

Transfer Characteristic Linear from 0 to 4 V 

Download time 3us jsynapse 

Input Impedance > 1012 Ohm 

Number of Synapses per Chip 514 

Number of Input Lines 32 

1) Currently implemented, 2) Under development. 
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THE SWITCH MODULE 

The switch modules serve to route the signals between neuron modules and 
the synapse modules thereby changing the connection architecture. A similar 
routing scheme has been employed to make programmable interconnections 
between subcircuits on a VLSI chip.30 Each module contains a 32 x 32 cross point 
array of analog switches which are set by serial digital input. Figs. 18 and 19 show 
a block diagram of the chip's major subsections. They consist of switching fabric, 
control logic, serial-in parallel-out shift register (SIPO) and control, write strobe 
generator (XGen) and gated two-phase clock generator (2PG). 

U00 .. U31 

33x33 DONE I 36 BIT 
S\JITCH DONE2 SIPO 
ARRAY PO"'''' .. P032 

XI!!I!! .. X32 

LOO .. L3! ROO .. R3! 

XGEN ~2 
SIPO 
~ 

CNTL fill 

RESET 

~ ~ 2PG cso RLN 
RUN 

CNTL 

000 .. 031 

Fig. 18. Block diagram of the switch chip. Data is downloaded serially from 
the host computer, parallelized by the SIPO logic, and transferred into the switch 
array by the XGEN circuit. 

Fig. 19 shows a block diagram of the switching fabric. The signals UOQ .. U31 
pass vertically through the chip to DOO .. D31; similarly the signals LOO .. L31 pass 
horizontally through to ROO .. R31. Each square represents a one-bit switch 
control memory and analog switch. The control data can connect an arbitrary 
horizontal line to a vertical line by writing a '1' into the appropriate memory cell. 
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The circles along the right and bottom edges also represent switches and 
memory. The switches that are in series with the horizontal or vertical signals 
allow the microprocessor to "cut" a horizontal or vertical trace in the switch chip. 
This allows the interconnection buses to be partitioned into several segments 
which increases the maximum number of obtainable connection. In addition to 
switches the modules contain circuits which control the time constants of the 
synapse transfer function (see figs. 19,22 and 23). 
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Fig. 19. Diagram of switching fabric. Squares and circles represent switch 
cells which connect the horizontal and vertical connectors or cut the conductors. 
The units labeled T represent programmable time constants. 

Each switch cell is implemented as a CMOS transmission gate connected to 
one bit of memory. The control logic subsystem enables chip load circuits when 
CSI input is active, disables chip load circuits when loading is done and 
propagates CSO to the next switch chip. The global control signal RUN is 
asserted while the chip is loading data. The switch performance is summarized in 
Table 3. 

The SIPO parallelizes serial data received from the microprocessor into 33 bit 
words. Each SIPO bit (PDOO .. PD32) drives one row of switch memories. 
Additionally, several SIPO taps are used to generate the control signals 
SIPODone1 and SIPODone2. These signals are used to detect when the first 33 
bits of a cycle have been received from the microprocessor and to count the 36 
clocks that comprise one cycle. 

The XGen circuit (Fig. 18) maintains the address of the next column to 
receive SIPO data. After a 33 bit word has been assembled by the SIPO, XGen 
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writes it to the proper column of switch memory by asserting one of the XOO.JG2 
control lines. This function is implemented by shifting a "1" through a 33 bit shift 
register. The XDone output is generated after all 33 columns have been loaded; 
this is used by the Control logic to generate the CSO and to shutdown the chip. 

The gated two phase clock generator (2PG) produces the non-overlapping 
two phase clock. The 2PG block includes logic which enables the clock only while 
the microprocessor is loading the switch memory. This reduces the chip's power 
consumption. 

Fig. 20. Photograph of a switch module test chip. 

Figure 21 illustrates the microprocessor interface timing diagram. CLK is a 
system-wide 2 MHz, 50% duty cycle clock. CSI and CSO are daisy chained 
signals used to select a single Switch Chip for loading. DIN is a bused signal used 
to serially transfer data from the CPU to the Switch Chips. 

The load operation is initiated when the Switch Chip detects CSI active during 
the falling edge of CLK. CSI is driven by the microprocessor or by the CSO 
output of the previous switch chip. Thirty-three cycles (with 36 CLKs/cycle) are 
used to serially transfer data into the switch memory. On the 36th CLK of the 
33rd cycle, the Switch Chip generates the CSO signal. This informs the next 
Switch Chip to commence loading. The CSO output of the last cascaded Switch 
Chip is looped back to the processor allowing the CPU to determine the number 
of Switch Chips in the system at run-time. 
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Fig. 21. Timing Diagram for loading the switch memory. 

TABLE 3 

SWITCH CHIP PERFORMANCE 

Process 3uCMOS 

Input capacitance 1pF 

On resistance < 3 KOhm 

Download time 0.5 us/switch 

Off resistance > 1 TOhm 

Memory/switch size 75u x90u 
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During each 36 CLK cycle, 33 bits of switch control memory are loaded. The 

data provided by the processor during the last three CLK's of a cycle are not 
used; this allow the CPU to nybble-align the switch data in its local memory. The 
amount of memory used by the CPU to maintain the image of the switch memory 

is 33 x 36 = 1188 bits. This means that approximately 35 KBytes are necessary in 
a system consisting of 12 Switch Chips/row x 20 Rows/Card = 240 Switch Chips. 

We chose a control scheme for the switch chip that differs from that of the 
synapse chip in order to evaluate their relative merits. The control logic used for 
the synapse chip has certain advantages and will be incorporated into the next 
version of the switch chip. 

ADJUSTMENT OF SYNAPTIC TIME CONSTANTS 

For the analysis or generation of temporal patterns as they occur in motion or 
speech, adjustable time constants of synaptic transfer must be available. This is a 
very important aspect of neural computation and is only beginning to be 
recognized. For a discussion of this topic see refs. 18, 19, 22, 23, 24. From our 
experience, low pass ftltering of the input signal to the synapse with 4 bit control 
of the time constant over a range of 50 us to 500 ms seems sufficient to deal with 
real world data. By combining the low passed input with a direct input of 
opposite sign, both originating from the same neuron, the typical "ON" and "OFF' 
responses which serve as measures of time after beginning and end of events and 
are common in biological systems can be obtained (see fig. 22). 

Several methods to implement large and adjustable time constants are being 
investigated. One way is to charge or discharge a capacitor (of a few pF) through 

a transconductance amplifier, connected as a unity gain buffer.1 If one biases the 
amplifier with currents in the subnanoampere range one can obtain a very low 

gain-bandwidth (GBW) and slew rate. When an input step is applied to the 
amplifier the output will first slew linearly and then evolve exponentially towards 
its fmal value with a rate proportional to the GBW. By adjusting the bias current 
of the amplifier one can in effect change the time constant of the circuit. This 

circuit has been simulated and found to perform creditably (see fig. 23). 
Another scheme is based on translinear circuits. By biasing MOS transistors 

into weak inversion, the voltage-current characteristics is exponential similar as in 
a bipolar transistor. This permits the use of the flexibility of bipolar transistors to 

implement different functions. One possibility is to generate very small currents 
by using a (variable) resistor in series with a transistor in one branch of a current 
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mirror. This current can now be used to charge or discharge a capacitor over tens 
and hundreds of milliseconds. This circuit can also be used in combination with a 
source follower to obtain very small transconductances and hence large time 
constants. The choice among these and other schemes will be based on area, 
power consumption, ease of implementation and uniformity of the time constants 
over a chip and from chip to chip. 

The low pass circuits will be placed on the switch chips at the points shown in 
Fig 19. Since not all synapse inputs need to have this feature, the circuit will be 
placed on only a limited number of lines on the switch chip. 
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Fig. 22 A. Circuit consisting of neurons, synapses, and and low pass synaptic 
tranfer functions to obtain "ON" and "OFF' responses. B. Waveforms recorded 
from the output neurons (bottom trace) in response to a step input (top trace). 
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Fig. 23 A. Circuit for obtaining variable synaptic time constants. By using very 
low bias currents (IBias) in a transconductance amplifier very small slew rates 
can be obtained. The simulated response of this circuit to a square wave is shown 
in B. Although these responses are not exponential, the frequency response of 
the circuit approximates that of a low pass filter. 

INTEGRATION OF THE COMPONENTS 

Figs. 24 A to D demonstrates that the synapses, switches and neurons operate 
together as specified. A prototype switch chip, synapse chip and neuron chip 
were interconnected as shown in fig. 24A. Switch settings and synapse weights 
were controlled by software from a digital host. 

In fig. 24B the weight (gain) of a single synapse was set in steps from 1/32 to 
1.8. In fig. 24C two different inputs were selected on the switch chip and summed 
at the neuron input. Fig. 24D demonstrates the effect of increasing the gain of an 
inhibitory synapse on neuron output. 
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Fig. 24 A. Schematic of the interconnections between three different module 
chips. Input signals were from function generators, outputs were recorded either 
from the neuron output or at the switch outputs. The switch and synapse settings 
were controlled from a digital host computer. The chips were prototypes as 
shown in figs. 8, 15, 20. 

B. Control of neuron output through adjustment of synaptic gain. At the times 
indicated by the arrows the gain was switched in sequence from 1/32 to 1/8, 1/2 
and 1.8. 

C. Two different inputs are selected through the switch chip either alone or 
combined. The inputs to the two synapses are recorded at the output from the 
switch chip (bottom records). The neuron output is the top trace. 

D. This figure shows the suppression of neuron output by inhibition with a DC 
input through a second synapse. Input A to the excitatory synapse was a 
triangular wave plus a constant voltage. Input B to the inhibitory synapse was a 
constant voltage. Increasing the gain of the inhibitory synapse increases the 
inhibition. The mode (excitation or inhibition) was selected by switching the sign 
bit of the synapse. Notice the step at threshold which results from setting the 
extra output at threshold (Ex) to 0.6 V. 
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LOGIC CONTROL 

The switches, synaptic weights and neuron parameters are set by serial input 
from the host computer. 

In our current design groups of the different chips are connected and loaded 
as a daisy chain where the chips are sequentially enabled and the uploading 
continues until all chips are loaded. This method, discussed above has the 
disadvantage that all chips in a group must be reloaded even when changing only 
a single parameter on one chip. 

We are considering a simpler method, where each chip could be addressed 
and uploaded separately. This is be achieved by adding a single memory unit to 
each chip. These memory units are connected from chip to chip and form an 
elongated shift register similar in design to the memory of the switches and 
synapses. The contents of this memory enable the chip to upload data from a 
separate bus. The host computer would shift a single bit into the enabling shift 
register and then load the data into the enabled chip. This method has the added 
advantage that identical data can be loaded into different chips in parallel. 

With a clock rate of 2 MHz data upload times are currently 1.2 ms per switch 
chip and 3.3 ms per synapse chip. Higher clock rates are feasible and would 
reduce upload times accordingly. 

PACKAGING 

The smaller chips containing test structures and individual components are 
packaged by MOSIS in standard 40 pin dips. The complete modules will be 
packaged in 160 lead surface mount quad packs (Fine Pitch EW Standard). 
Input and output lines are arranged at right angles with identical leads on 
opposite sides, as shown in fig.25. The packages are soldered by tape directly on 
circuit boards that provide the interconnections between modules. 

In an alternative method providing higher pin out, the chips are mounted on 
planar chip carriers that are connected by elastomeric connectors. This design 
allows easy replacement of individual modules but the connections may be less 
reliable than with the surface mount packages. However, elastomeric connectors 
are used routinely in watches where they provide reliable service. 

More sophisticated connection techniques such as flip chip mounting or 
deposition of metal lines between closely opposed chips are also possible. 

The chips were designed in a 3 and 2 u CMOS technology. At 0.9 u the 
number of neurons or synapses per chip could be doubled or neurons and 
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synapses could be integrated on one chip thereby reducing the need for off chip 
connections. 

We plan to assemble a prototype machine containing 64 neuron modules for a 
total of 1024 neurons together with appropriate numbers of switch and synapse 
modules on one board. Nets larger than this would require connections between 
boards that could be made by plastic tape with deposited metal lines. The latter 
method shall be used also to connect the digital control circuits to the host 
computer. 

Fig. 25. Schematic drawing of a neuron chip mounted on a chip carrier. The 
carrier is 2 cm wide and has 40 contacts on each side. The horizontal continuous 
lines carry control signals. 

SOFIWARE CONTROL AND OPERATION 

Connections, synaptic gains, neuron parameters and time constants are set 
from the host computer either manually or through implementation of learning 
algorithms that derive these parameters on the basis of the neuron outputs. The 
connections would be routed under graphic control or through routing routines as 
they are used in circuit board design. Eventually we envision developing a macro 
language that would generate and store libraries of computational architectures 
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which could be linked into larger systems for specific tasks. Examples of such 
subsystems are feature specific receptor fields,27-29 temporal pattern analyzers, or 
circuits for motion control. 

The primary areas of application include real-world, real-time or compressed­
time pattern analysis and recognition, robotics, the design of dedicated neural 
circuits and the exploration of different learning algorithms. Input to the machine 
can come from sensory transducer arrays such as an electronic retina, cochlea 
8,15,16 or tactile sensors. For other computational tasks; input is provided by the 
host computer through activation of selected neuron populations via threshold 
control. 

The learning speed depends very much on the algorithm. In dynamic cases, 
where execution mode becomes rate limiting, the gradient descent methods such 
as backpropagation would be executed faster than on digital machines. Feed­
forward algorithms such as sequential convolutions can be executed in a few 
cycles and would be very efficient. 

The full potential of the machine is realized in execution mode, especially in 
situations involving neural computation of dynamic systems i.e. situations in which 
time is a variable. Acoustical pattern recognition and the computation of moving 
images are prominent examples. But even for rapid recognition of stationary 
patterns the machine would prove superior to sequential machines. High speed 
character recognition, sorting of particle tracks in high energy physics or target 
acquisition from fast moving vehicles fall into this category. In general, systems 
that require solutions of many simultaneous equations would benefit. A large 
scale winner-take-all computation where the units are mutually inhibiting is 
extremely time consuming for digital methods but can be solved in real time by 
analog computation. 

In these applications the machine could exceed by orders of magnitude the 
computational speed of any currently available digital computer. An estimate of 
attainable speed can be made as follows: 

Consider the network shown in fig. 26 with N neurons each receiving M 
inputs. Each input has an RC stage generating time constants in the range of 1ms 
to 1 sec and a gain stage (G .. ) which establishes the input's weight. The weighted 
sum of a neuron's inputs islJfed into an amplifier which has a sigmoidal transfer 
function. 

The network is described by N*M differential equations which yield the 
voltages on the capacitors as a function of time and the neuron outputs. 
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Fig. 26. Electrical model of the simulated network. 

In the above figure the voltage Vij (the voltage on the jth capacitor of the ith 
neuron) is given by: 

-V .. /C.. * (1/R.. + I/R' .. ) + N /C .. *R.. 
IJ IJ IJ IJ X IJ IJ 

where N is the voltage from the neuron driving this input 
x 

The output voltage of the jth neuron is given by: 

t.4 

S ( I Vij *Gij) 
1=1 

where Sex) = 1/(1 + exp(-x» 

(1) 

(2) 

These equations were solved with a fourth order Runge-Kutta algorithm using 
an adaptive step size [31]. The gains Gj' were uniformly distributed in 
[-1..1] while the interconnections were randoml~ selected. The external input was 
a square wave whose period was 5ms and duty cycle was 50%. The equations 
were integrated for 5ms of simulated time on a Sun 4/110 workstation with a 
floating point unit. 
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Table 4 presents the CPU time used to solve various sized networks with 
randomly selected tim~ constants in the range of 1ms to 1 sec. Each entry 
represents the average of at least 20 random networks and time constants. 

Neurons 

16 

16 

16 

32 

32 

32 

TABLE 4 

SIMULATION RESULTS 

CPU time for 5 ms 
Inputs/Neuron simulation (seconds) 

8 8.9 

12 18.9 

16 25.9 

8 26.7 

12 55.6 

16 104.6 

The data in table 4 indicate that the CPU time scales greater than O(N*M). 
However, even if we make we the conservative assumption of linear scaling, the 
results demonstrate that a Sun 4/110 rated at 5 MFLOPS requires 20-40 seconds 
of CPU time per connection to integrate one second of network time. The neural 
analog machine configured for 1000 neurons each with 100 inputs could therefore 
run at speeds equivalent to more than lOll FLOPS. Larger networks would scale 
accordingly. 

The analog hardware can easily support 1 usec time constants which would 
increase the speed advantage by another factor of 103. Finally, the neuron 
transfer function assumed for the simulations was a sigmoid which is 
differentiable everywhere. The VLSI hardware also supports a thresholding 
transfer function (see fig. 9) which has a finite number of discontinuities in its 
derivative. Simulation of this transfer function requires extremely small steps, 
increasing simulation times 100 fold. 
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A CHIP THAT FOCUSES 
AN IMAGE ON ITSELF 

T. Delbriick 
California Institute of Technology 

Pasadena, California, 91125 
e-mail: tobi@hobiecat.caltech.edu 

In the modeling of neural systems, time is often treated as a sequencer, 
rather than as an expresser of information. We believe that this point of view 
is restricted, and that in biological neural systems, time is used throughout 
as one of the fundamental representational dimensions. We have developed 
this conviction partially because we model neural circuitry in analog VLSI, 
where time is a natural dimension to work with, and we believe there are deep 
similarities between the technology we use and the one nature has chosen for 
us. 

Neurobiologists are beginning to explore neural control systems that self­
generate sensory input. The focus chip we report here models the focusing 
system of our eye. The human focusing mechanism is a one-dimensional con­
trol system in which experimenters have access to both visual input and motor 
output signals. For our model, the primary hypothesis about this system is 
that control signals are generated actively, by the motor system in the course 
of control. We have built and partially characterized a model system, using 
analog VLSI circuit primitives already developed for other purposes, that in­
corporates this hypothesis. This chip focuses an image on itself, using time 
domain information about the quality of the optical image and the motion of 
the lens. 

THE HUMAN ACCOMMODATION SYSTEM 

The process by which the eye focuses an image onto the retina is called 
accommodation. The eye accommodates by distorting the curvature of the 
lens. When muscle fibers running radially outward from the lens contract, the 
increased tension on the lens flattens it, focusing farther away. When muscle 
fibers running circumferentially around the lens contract, the decreased tension 
on the lens allows it to bulge, focusing closer (Weale, 1960). In our model 
system the focus is changed by changing the distance between a rigid lens and 
the chip, much like focusing a camera. 

171 
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(a) 

(b) 

2 sec 

Figure 1. Recordings of fluctuations in human accommodation. These records 
were obtained using an infrared split-beam optometer. The optical distance to 
the target was 1 D. (a) Pupillary aperture was 7 mm. (b) Pupillary aperture 
was 1 mm. The retinal illumination was kept the same for each trial. (Adapted 
from Campbell et al. (1959) with permission.) 

The stimulus for accommodation is not known, although there are results 
that positively indicate certain possibilities. The obvious possibility is the blur 
of the retinal image. The problem with imagining a control system for accom­
modation that uses retinal blur is that blur is an even-error signal: static blur 
does not say which way to change the accommodation to sharpen the retinal 
image. Other possibilities for the error signal that are odd-error have been 
proposed. In an elegant set of experiments, Campbell and Westheimer (1959) 
showed that chromatic and spherical aberration were sufficient odd-error sig­
nals in subjects with paralyzed accommodation. They did not show that these 
were necessary cues in subjects with normal accommodation reflexes. Given 
the possibility that image blur is one of the primary cues to accommodation, 
we might ask, exactly what functional of the image is used as the primary cue? 
The precise answer is unknown, though there are clues. For example, Fujii et al. 
(1970) showed that intensity gradient was more important than total contrast 
modulation, as a stimulus to accommodation. 

Accommodation fluctuates even under steady-state conditions. The exis­
tence of these fluctuations has been known, or at least postulated, for a long 
time (see, for example, Helmholtz, 1924). Campbell et al. (1959) were among 
the first researchers to obtain recordings of these fluctuations. Figure 1 shows 
examples of these fluctuations; Figure 2 shows power spectra for the records in 
Figure 1. We can see that the amplitude of the fluctuations decreases with a 
smaller pupillary aperture, and their character changes. The fluctuations have 
a characteristic frequency that shows up as a pronounced bump in the power 
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Figure 2. Power spectra for the records from Figure 1. Note that the peak 
in the power spectrum for the signal in Figure l(a) disappears in the spectrum 
for Figure l(b). (Adapted from Campbell et al. (1959) with permission.) 

spectrum, usually near 2 Hz. The amplitude of the fluctuations increases as the 
optical distance to the target gets smaller (Denieul, 1982). For optical distances 
of 4 D (=25 cm viewing distance), the size of the fluctuations can grow larger 
than 0.1 D (~ ± 0.5 cm fluctuation in focal distance). These oscillations are 
below perceptual thresholds under ordinary conditions, yet stimuli oscillating at 
below the perceptual threshold can drive the accommodation system (Kotulak 
and Schor, 1986b). 

THE MODEL OF ACCOMMODATION USED BY THE CHIP 

In our model, the measure of image quality is denoted by the term sharp­
ness, or by the symbol s. The state of accommodation is denoted by the symbol 
I. In the current physical realization of our system, the lens is moved, rather 
than distorted, so this accommodative state is equivalent to the lens position, 
relative to the point at which the lens settles in the absence of any stimulus. 
The idea for our circuit came from a paper by Kotulak and Schor (1986). The 
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essence of the idea is simply stated: The sign of s t indicates whether accommo­
dation is changing in the correct direction, and the sign of i indicates in which 
direction the accommodation is currently changing. The sign of the product si 
gives the sign of the error signal for i. 

Still open is the question of what to use as the error magnitude. Kotulak 
and Schor (1986) suggested that Isjil would be a reasonable choice; for the 

model reported here, tanh(si) is used as the error signal for i. We integrate this 
error signal with respect to time, using the mass of the lens. The discussion 
section of this report notes some other possible uses of. the error signal, besides 
integrating it with a mass. 

We can now write a dynamical equation for the motion of the lens: 

(1) 

An explanation of the terms in Equation (1) follows. First, the driving term 
is Stanh(si). Second, there are natural restoring spring (K) and damping 
(D) forces. Third, there is a noise term NN(t). The presence of this noise is 
essential to the operation of the system. 

We imagine that the sharpness function s(1) will peak at some 10 • The 
approximate form of this function, as computed by our chip, will be derived 
later; for now, we take this sharpness function to be a Gaussian of width (T, 

peaked around 10: 
1 - 10 

~=-­
(T 

(2) 

We see that ~ is the displacement from the correct focal point, in units of (T. 

The constant (T is the depth of field in this model system. Using this s(1) in the 
dynamical equation (1) we obtain 

(3) 

This equation represents a simple harmonic oscillator with the addition of noise 
and a novel forcing term. The noise term is essential, because in the absence 
of noise and in the presence of damping and restoring forces, the system will 
eventually settle down to 1 = 0, no matter what the form of the sharpness 
function s(1). 

The difference between our model and that of Kotulak and Schor (1986) is 
that these researchers use Is/il as the error magnitude. Their choice is sensible 
because it compensates, in a sense, for large s signals produced by rapid focus 
changes and not by positional focus errors. We use tanh( si) as our error signal 
because it is difficult to build a well-behaved four-quadrant analog divider. At 

t A dot over a quantity indicates differentiation with respect to time. 
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the time this circuit was built, a product seemed more biologically plausible 
than did a quotient. Any error function E( s, i) that is positive in the first and 
third quadrants and negative in the second and fourth quadrants, will retain 
the correct sign-of-error properties. 

d 

To lens driver 

e 

x [err 

f 

Figure 3. A schematic illustration of the circuitry of the chip. 

THE CHIP CIRCUITRY 

The chip consists of a one-dimensional silicon retina (Figure 3a,b), an image 
sharpness computation (3c,d), a differentiator (3e), and an analog multiplier 
(Figure 3g). All the individual circuits used in this chip have been described in 
detail elsewhere, so the description here will be confined to a brief functional 
discussion. 

The Sharpness Computation 

An image falls on the one-dimensional silicon retina (Figure 3a, b) (Ma­
howald and Mead, 1988). Each output of the retina is a differential voltage 
between the output of a logarithmic photoreceptor (a) and the spatial aver­
age computed with a resistive network (b). We call this differential voltage 
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Vi for the ith pixel. Each differential voltage is turned into a current by an 
absolute-value transconductance amplifier (c) (Mead, 1989). The ith current 
is Ii = h tanh(IVij21), where the units of voltage are kTjqli. The body-effect 
factor Ii is typically about 0.7. The bias current Ib, and hence the transcon­
ductance G = 2kf~ql<' is set with an externally variable control (Mead, 1989). 
These Ii are fed into a circuit that computes a voltage s that is logarithmic 
in the maximum Ii (d). This circuit is an adaptation of the winner-take-all 
circuit (Lazzaro et aI. 1989), in which the common inhibitory wire encodes the 
logarithm of the maximum input current. If several Ii are equal and are larger 
than all other Ij, s will be proportional to the logarithm of the sum of these 1;. 
This voltage, s, is used as our measure of the image sharpness. 

(a) 

Receptors 

(b) 

--- / =-.=:--:.::..------' 

---

--------
Resistive network 

Difference 

eSharpness 

Figure 4. Graphical illustration of the sharpness computation. (a) Soft edge. 
(b) Sharp edge. The space constant ..\ of smoothing is the same for (a) and 
(b). When the edge is twice as sharp the maximum difference between the 
receptors and the resistive net is nearly twice as large, the deficit being caused 
by the fact that the extent over which the edge is smeared approaches the scale 
of smoothing. 
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The sharpness computation is illustrated graphically in Figure 4. The re­
sistive network computes a smoothed version of the log intensities. The space 
constant ,X of smoothing in the resistive network is controllable. The sharpness 
8 is the maximum difference between the local log intensity and the local spa­
tial average computed by the resistive network. This maximum will occur at 
locations where the slope of the intensity profile changes. When the slope of 
the intensity profile changes, a distance of O(,x) along the resistive network is 
required for the network to assume the new slope. The equation governing the 
behavior of a continuous one-dimensional resistive network is 

,X2_ - = V(x) - I(x) d (dV) 
dx dx 

where V(x) is the voltage on the network at location x, and I(x) is the input 
voltage, in our case the log intensity (Mead, 1989). In order to change ~~ by 
some amount ~(slope), the difference V - I, integrated over a distance of O(,x), 
must satisfy fo(>.) (V - I)dx ,...., ~(slope). When the space constant is not too 
large compared with the extent of the blurred edge, the sharpness 8 will satisfy 

( ~(slope)) 8 = log(maxlV(x) - I(x)1) ,....,log ,X (4) 

When ,X is large compared with the extent of the edge, the reported sharpness 
will not depend on the edge sharpness. On the other hand, when ,X is comparable 
to the receptor spacing, the differences V(x) - I(x) will be small. Circuit 
offsets will more easily dominate the image induced signals, and will cause the 
sharpness output to assume a constant value close to the point of optimum 
focus. The optimum space constant was determined experimentally to be a few 
receptor spacings. 

Since ~(slope) is inversely proportional to the distance of the lens from the 
focal plane (Figure 6), the slope of the sharpness function will be independent 
of the lens aperture or other geometrical parameters of the system. When the 
image becomes blurred to the point where image induced signals are comparable 
in size to circuit offsets, the sharpness signal will flatten out. 

Future versions of this chip will probably compute the image sharpness 
measure by either simply summing the outputs of the absolute value amplifiers, 
or by computing the maximum first difference in the log intensities. 

Time Domain Circuitry 

A follower-integrator (Figure 3( e)), with externally controllable time con­
stant 7, and transfer function H(8) = 1/(78 + 1), computes a delayed version 
s of the sharpness signal 8; the difference (8 - s) is a good approximation to 
the derivative s for frequencies below 1/7 (Mea?, 1989). An external sensor (f) 
gives the lens velocity as a differential voltage 1. 
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Error Signal Computation 

The product of the differential voltage s and the velocity signal i is com­
puted by a wide-range Gilbert multiplier (g) (Mead, 1989) to produce the error­
signal current Ierr = S tanh (i) tanh (s) . The multiplier bias current is once 
again externally controllable, and corresponds to the constant S in Equation 
(1). This function has characteristics very similar to the function tanh (i s) used 

in Equations (1) and (3). The primary difference is that tanh(is) saturates 
more quickly as one moves away from the i and s axes, away from the origin. 
The current Ierr is amplified externally, and is used to drive a solenoid attached 
to the lens. Finally, the mass of the optical arrangement acts to integrate this 
error signal with respect to time. 

The current version of the chip consists of a 40-pixel array. It was fabricated 
through the MOSIS foundry in 2JL p-well technology. Each pixel is 165JLm wide. 

We tested the function of the sharpness sensor by focusing the image of an 
edge onto the chip, and varying the distance from the chip to the focal plane of 
the lens (Figure 5). The output peaked around the point of sharpest focus and 
fell off on either side, as expected. The width of the peak was consistent with 
geometrical calculations, as will be discussed later. The slope of the sharpness 
function was not affected by decreasing the aperture, since the slope of the 
logarithm of any linear function is identical. 

Some theoretical characteristics of of the sharpness output s can be derived 
as follows. An image that is not in the focal plane of the lens can be represented 
as the original image convolved with a pill-box shaped kernal. The diameter of 
this pill-box is the diameter of the circle of confusion at the image plane (Horn, 
1968, Horn and Sjoberg, 1981). This procedure uses only geometrical optics; 
on the scales with which we are concerned, diffractive effects are negligible. 
Figure 6(a) defines the geometrical parameters. A perfect step edge will be 
smeared out into an intensity distribution I (Figure 6(b)) given by 

(5) 

where u = x/r represents the distance along the image plane away from the axis 
of the lens, in units of the radius of the circle of confusion (Figure 6( a)). (The 
units of intensity here are arbitrary.) The diameter of the circle of confusion is 

81A 
r=--

f 
(6) 

where 81 = 1 - 10 is the distance of the image plane away from the focal plane, 
A is the diameter of the lens aperture, and f is the focal length of the lens. 
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Figure 5. Output from sharpness sensor. The focusing target was a high 
contrast black and white edge. Using a smaller aperture resulted in a peak 
that was only slightly broadened, because the space constant ,\ was several 
times the receptor spacing d. The curves were hand fitted. The widths of the 
dead-zones were computed from the geometrical parameters A = 19mm and 
A = 5.3mm, f = 19mm, and d = 1651lm, shown in Figure 6. As the distance 
between the chip and the focal plane is increased to more than is shown in 
this figure, the sharpness output flattens out. This flattening is due to circuit 
offsets dominating image induced signals. For smaller apertures (larger depths 
of field), the flattening occurs farther from the focal plane. 

When 81 ~ df / A, s should take on a constant value, because the extent 
of the edge spans less than one receptor spacing. We compare this prediction 
with the measurements of the sharpness output shown in Figure 5. 

Because measuring image sharpness is equivalent to some measure of the 
spectral power at the highest spatial frequencies, we can expect some effects 
of spatial aliasing. This aliasing will cause spurious changes in the reported 
sharpness, due only to lateral movement of the image, and not to changes 
in the focus. A scene that is rich in texture will not suffer these spurious 
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(a) 

lens 

(b) 

Figure 6. (a) Definitions of dimensions used in the text. The focal length f 
shown here is the effective focal length for the object being viewed; it is simply 
the distance from the lens at which the scene is in focus. d is the distance 
between receptors on the chip. 61 is the distance between the chip and the focal 
plane. (b) Several blurred edges at various distances from the focal plane. The 
spatial profiles of the intensities are derived in the text. 

changes in the reported sharpness; each edge in the image has a different offset 
relative to the receptor array, and the sharpness sensor chooses the edge with 
the maximum contrast, as seen by the array. The same principal will apply to 
a two-dimensional sensor array for a single edge, as long as the edge does not 
lie along one of the principal axes of the array. An array with randomly jittered 
pixel locations would be even better, since it has no preferred axes. 

The most straightforward elimination of these spurious changes comes from 
filtering the image before it falls on the sharpness sensor, to eliminate spatial 
frequency content above the Nyquist frequency for the receptor spacing. This 
filtering could occur in the human eye, where the optical cut-off frequency has 
been reported to be matched to the receptor spacing at the center of the fovea 
(Snyder and Miller, 1977). 

Alternatively, we suggest that aliasing will only occur when the scene is 
in focus. Thus, alias-induced signals can be used as indicators of good focus. 
In general, the magnitudes of local time and space derivatives of the image, 
produced by lateral movement of the scene across the sensor, will serve as a good 
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indicator of the focus. By integrating these signals over time and space we can 
obtain an extremely robust measure of the image quality. This is precisely the 
type of operation biological retinas can do very well. When the eye is fixating 
a scene, there are constant slow drift and rapid microsaccadic eye movements 
(Steinman et al. 1973). We suggest that these eye movements may generate 
signals that are used by the focusing mechanism of the eye. 

A PHYSICAL REALIZATION OF THE SYSTEM 

A schematic illustration of the system as it is now constructed is shown in 
Figure 7. The lens actuator is a solenoid with a ferromagnetic plug attached to 
the lens. The velocity of the lens is sensed with a linear variable transformer. 
The primary coil is excited with a DC current. The velocity is the differential 
voltage 'induced in the secondary coil. 

Figure 9, shows records of the lens position obtained from this rather prim­
itive setup using two different-sized apertures. Figure 10 shows the power spec­
tra of these records. 

Velocity Error Signal 

Lens Velocity 

ocusing Servo 

Image Sharpness 

Figure 7. A schematic illustration of the physical interface with the optical 
system. The output of the chip drives a solenoid which is attached to the lens. 
The velocity of the lens is sensed with a variable transformer. The mass of the 
lens serves to integrate, with respect to time, the force signal produced by the 
chip. 
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DYNAMICAL PROPERTIES OF THE SYSTEM 

N ow that we have a dynamical system model we can easily test its ex­
planatory power. Consider Figures 1 and 2; they show the effect a change in 
depth of field has on human accommodation fluctuations. Figure 8 shows what 
happens when the model system, represented by Equation (3), is subjected to 
a simulation of the same change in depth of field. The position 10 of the focus 
target is shown by the thin solid line. Halfway through the simulation, the 
target jumps from one side of the zero point to the other. The zero on the 
vertical axis represents the equilibrium point in the absence of any focusing 
target. The only difference between the two simulations is in the width (J' of 
the sharpness function, shown on the left. The results are tantalizingly sim­
ilar to the records shown in Figure 1 for the human accommodation system. 
However, the behavior of the dynamical system represented by Equation (1) is 
dependent in a complex way on the values of the parameters. In the absence of 
the image-dependent term (S = 0), Equation (1) reduces to a simple harmonic 
oscillator driven by a stochastic noise process. Adding back in the sharpness 
term (S =I 0) and selecting the correct set of parameters produces the behav­
ior shown in Figure 8, but a different choice of parameters could have led to 
qualitatively different behavior. 

We have distinguished three qualitatively different regimes of operation of 
our dynamical system. The first represents the behavior shown in Figures 1 
and 2 for the human accommodation system and in Figure 8 for the simula­
tions. In this regime, increasing the depth of field decreases the amplitude and 
coherence of the fluctuations in accommodation. In the second regime, not 
shown in this report, increasing the depth of field does not substantially change 
the character of the fluctuations. In the third regime, increasing the depth of 
field increases the amplitude and coherence of the oscillations. The third regime 
is shown in Figures 9 and 10 for data taken from our physical realization of the 
system. 

To understand these effects, we make a simple analysis of the relative 
effects of the sharpness (S), damping (D), and depth of field ((J') parameters in 
the dynamical system represented by Equation (3), letting the spring constant 
(K) and noise (N) terms be small. The effect of the damping is to limit the 
saturated velocity of the lens. This velocity is attained when the nonlinear 
sharpness term, S tanh( si) is saturated and r = o. In this state, Iii = S / D. 
This condition will be self consistent when the sharpness term is saturated, 
which will, to first order, happen when 

·1· = 1.2 ds > 1 
S dl - . (7) 

The sharpness function is steepest just outside the dead zone that is caused 
by finite receptor spacing and other optical blurring. There, 81 = df / A, and 
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Figure 8. Results of simulations of the dynamical equation (3). The point 
of optimum focus 10 switched from +1/2 to -1/2 halfway through the record. 
The noise source N(t) was a Gaussian process of variance 1. The values of the 
constants were M = 2.5, S = 500, J{ = 1, D = 50, N = 100. (a) (T = 0.35. (b) 
(T = 2.5. The form of the sharpness functions for parts (a) and (b) are shown 
on the left. The effect of the depth of field on the amplitude and coherence of 
the waveform is similar to that shown in Figures 1 and 2. 

from Equation (4), dttl) Il=df/ A = ;If. Using this value for ~: and the saturated 

velocity SID in Equation (7), we find that the sharpness term will be saturated 
S2A 

when D2 fd 2': 1. 
As long as this inequality holds, the amplitude of the oscillations will not 

depend on the depth of field. Intuitively, the velocity will be saturated every 
time the system crosses the zero point, and an excursion will be halted by the 
effect of the saturated driving term. This situation corresponds with the second 
regime of operation mentioned previously. 

When the inequality in Equation (7) is no longer satisfied (for example, 
when the aperture A becomes small enough), we obtain the first regime of 
operation, in which an increase in depth of field causes the fluctuations to lose 
their amplitude and coherence. Intuitively, the limiting velocity will no longer 
saturate the driving term. This leaves the system more susceptible to the built­
in noise. This condition corresponds to the behavior shown by the human 
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Figure 9. Records of lens motion obtained by integrating the velocity signal 
numerically. 

accommodation system in Figures 1 and 2, and by the simulation records in 
Figure 8. 

The third regime of operation appears when a saturated excursion past 
the zero point ends because the sharpness derivative ~! becomes small, and 
not because i2 gets small (Equation (7)). Figures 9 and 10 show records of 
the lens motion obtained from our physical realization of the system. We can 
see from these figures that decreasing the lens aperture increases the amplitude 
of the fluctuations, opposite to the behavior shown by human accommodation 
and to the simulation results. In our system, because the sharpness is encoded 
logarithmically, it is not the slope of the sharpness function that depends on the 
aperture, but rather the point of defocus where the sharpness function flattens 
out. 

If the model is an accurate representation of the behavior of human ac­
commodation, then we may conclude two principles of that system. First, the 
human accommodation system probably does not encode the sharpness loga­
rithmically, as we do in our model system. The effect of a change of depth of 
field in the human system appears as a change in the slope ~f. Second, human 
accommodation is optimized so that the strength of the sharpness term is as 
small as it can be and still allow the system to operate un~r long depth of 
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Figure 10. Power spectra for the records in Figure 9. The behavior is opposite 
to that shown by the human accommodation system in Figure 2. The reason 
for this difference is discussed in the text. 

field. If the sharpness term was any larger, the fluctuations would be larger 
than they need to be under conditions of short depth of field. 

DISCUSSION 

The human accommodation system provides a simple example of a biologi­
cal control system in which needed information may be generated actively by the 
motor system, in the course of control. The system described here represents 
a control system of a relatively unexplored variety. The system is unstable; 
small oscillations around the desired state are amplified until a nonlinearity 
becomes saturated. The system relies on noise for initiation of control. We 
might hope that these characteristics would circumvent many of the problems 
of gain control about which designers of control systems worry, but probably 
these problems are simply pushed into another arena. 

We have omitted many features of the human accommodation system. The 
concept of volition is alien to our formulation; our system has no means of de­
ciding that it would like to alter its focus in a particular direction. In the human 
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accommodation system, volition certainly plays an important role in directing 
the apparatus toward the desired state. Also, our system has no concept of a 
linkage between vergence and accommodation. In the human accommodation 
system, there is strong coupling between vergence eye movements and accom­
modative response (Johnson et al. 1982). Our system's lens is mass dominated, 
and the damping forces are small relative to the restoring forces. The human 
lens system is probably spring dominated, with large damping forces (Ejiri et 
al. 1969). The role of the slow reaction time (1/3 sec.) in the human accom­
modation system has not been worked out, but could· signify the presence of a 
neural integrator like that seen in the vestibulo-ocular reflex (Robinson, 1981). 
Alternatively, there might not be any neural or physical integration of the error 
signal; the error signal might affect the velocity of the lens directly. The use of 
a saturating nonlinearity is biologically plausible (Marg, 1955). The presence 
of noise is essential for operation of our system; human accommodation is quite 
noisy even in the absence of any stimulus (Johnson et al. 1984). The hypothesis 
that time domain information is being used is just that - a hypothesis, albeit 
an attractive one. A related hypothesis is that image sharpness is the primary 
image-quality cue that the human accommodation system uses. We have used 
sharpness in our model of accommodation, but this computational convenience 
does not indicate that other cues, such as chromatic or spherical aberration, 
might not be used as well. 

Several features of the system we have built appear repeatedly in silicon 
models of the nervous system, and are worth pointing out. Quantities are scaled 
logarithmically, so that a large dynamic range is compressed into a workable 
operating range. Nonlinear aspects of operation can be advantageous. Time, 
as an intrinsic dynamical variable, appears naturally when we use analog com­
putation. The active generation of time domain information may turn out to 
be useful in other contexts. 
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ABSTRACT 

A CCD imager whose sampling structure is loosely modeled after the 
biological visual system is described. Its architecture and advantages over 
conventional cameras for pattern recognition are discussed. The sensor has 
embedded in its structure a logarithmic transformation that makes it size and 
rotation invariant. Simulations on real images using the actual sensor 
geometry have been performed to study the sensor performance for 2D 
pattern recognition and object tracking. 

A CCD imager consisting of 30 concentric circles and 64 sensors per 
circle, whose pixel size increases linearly with eccentricity has been 
fabricated. The central part has a constant resolution with 102 photocells. 
The CCD is made in a three phase buried channel technology with triple 
poly and double metal layers. Preliminary results of the testing are given 
showing the validity of the design. 
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INTRODUCTION 

Charge coupled devices are structures that can move charge packets or perform 
simple mathematical operations on the packets. They consist of an array of MOS 
capacitors which, when pulsed with a high voltage, drive the silicon in deep 
depletion. The charge packets stored near the semiconductor-insulator interface of the 
MOS capacitors are the samples of an analog signal. A proper sequence of pulses on 
the gates of the capacitors will shift the packet from one capacitor to the next, 
resulting in a delay, summation, subtraction, multiplicatio/1 or filtering of the charge 
packets. These properties, together with the photosensitivity of silicon material, 
make CCD technology well suited to implement a variety of structures and 
functions. Indeed, since their invention twenty years ago, CCD's have been widely 
used as image sensors [1-2], memories [3], filters [4-5] and analog signal processors 
[6-7] as well as retinal neural net processors [8]. CCD technology offers the 
capabilities of high density, high speed and low power implementation of these 
functions. 

The area of solid-state imagers, dominated by CCD cameras, has been mainly 
driven by color video cameras and machine vision for automatic inspection. 
Megapixels CCD's are currently available and cameras for high definition color 
television (HDTV) are being developed [9]. 

In this paper we will describe the features, design and implementation of a 
foveated retina-like sensor realized in a CCD technology. The proposed architecture 
is very different from the conventional image sensors and is intended for use in object 
recognition, pattern classification and tracking. Other image sensors and artificial 
retinas have been built previously. The pioneering work by C. Mead has resulted in 
neural based vision systems which incorporate several features of the biological 
visual system [10-12]. These imagers have been fabricated with CMOS technology. 
The sensor described in this paper complements these developments in two aspects: it 
makes use of an alternate technology, i.e. CCD technology, and captures the 
sampling structure of the biological visual system. Although no other biological 
features have been incorporated in the current design, the technology and architecture 
lend themselves well to include charge coupled neural processing elements. 

RETINA-LIKE SENSOR 

Imaging has been done traditionally with sensor arrays that have a uniform 
resolution over its entire photosensitive area. This is typical for systems used to 
generate an undistorted image such as for TV or video. However, this method is not 
necessarily the optimum strategy from a viewpoint of efficient visual perception and 
recognition. In situations where one needs real-time coordination between sensory 
perception and motor control, such as machine vision for robotics, target recognition 
or autonomous navigation, one is not interested in an exact reproduction. Quick 
detection, localization and tracking of an object is of prime importance in the first 
place. Zooming-in on the right object, once it is detected and tracked, will provide the 
required fine details. This calls for a non-conventional sensing scheme optimized to 
perform scene analysis rather than reproduction. 
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It is instructive in this respect to look at the biological visual system. Research 
on the anatomy of the eye has revealed that the photoreceptors are not uniformly 
distributed over the retina. The cone density shows a peak in the center of the visual 
field and decreases towards the periphery. The receptive field, receiving projections 
form the foveal area, of a simple cell in the visual cortex (area VI) receives inputs 
from 12 by 20 receptors in the fovea. These cells can resolve linewidths at least equal 
to the receptor spacing. In order to be able to obtain this high resolution, an area of 
equally densily spaced receptors is required. However as one moves away from the 
center the inverse magnification (defined as the inverse of the cortical surface devoted 
to a given portion of visual space) and the field size increase as a function of retinal 
eccentricity [13-15]. It has been suggested that the mapping of the retinal surface 
into the striate cortex can, under certain conditions, be described by a complex 
logarithmic function [16]. This may provide the scale and rotation invariances 
observed in the biological visual system. 

The sampling structure of the retina-like imager is loosely modeled after the 
early stages of the biological visual system to capture the logarithmic mapping 
discussed above. Rather than using a uniform square grid, as is done in commercial 
cameras, the retina sensor has a highly non-uniform sampling grid. The center, called 
the fovea, has a constant resolution while the peripheral sensors are organized in a 
circular fashion whose size increases linearly with eccentricity [17]. A schematic 
representation of the periphery is shown in Fig. la. 

r 
u 

A B 

Figure I (a): Schematic of the retina-like sensor. The middle part consists 
of a constant resolution photosensitive area (fovea) while the 
peripheral area is organized in a circular fashion whose sensor 
size increases linearly with eccentricity; (b) Cortical 
representation of the image as a result of the retino-cortical 
logarithmic mapping of the peripheral sensors. 

v 
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A point in the retinal plane can be described by its polar coordinates (r,9): 

z = r exp(j9). 

After mapping the retinal plane into a Cartesian plane (cortical) as shown in Fig. 1b, 
the new coordinates become, 

w = In(z) = In(r) + j9 

= u + jv 

This complex logarithmic transformation has interesting properties for pattern 
recognition. Its advantages for 2D shape recognition [18,19] and motion stereo [20] 
have been pointed out earlier. Its main characteristics are size and rotation 
invariances. These properties are characteristic of the human visual system as well: 
an object does not change its perceived shape when it is rotated or scaled. Rotation of 
the image impinging on the sensor will result in a linear translation along the v axis 
in the Cartesian plane. Similarly, an enlarged image will be represented in the 
cortical plane as a translated version of the original image. This can be easily seen as 
follows: if one scales the object by a factor "a" such that 

z' = ar exp(j9) 

the transformed image becomes, 

w' = u + jv + In(a). 

This is schematically shown in Fig. 2 for two circles of different size. The scale 
in variance is also valid for any object if its translation is scaled in the same 
proportion as the object. This is a direct consequence of the logarithmic mapping. 
This can be easily proven using the graphical representation of Fig. 1, where objects 
o and its scaled version 0' are mapped into features m and m'. 
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Figure 2: Logarithmic mapping of two circles of different size (a), 
illustrating that magnification results in a simple translation in 
the cortical plane (b). 

The mapping of the sampling structure is similar to a Mellin transform whose 
modulus is independent of scale changes [21]. : 

f(r) ----> M(ro) = d f(r)r -jeo-l dr 

f(ar) ----> a-jro M(ro) 

This transformation can be obtained by taking the Fourier transform of the scaled 
function in which the coordinate r is replaced by, 

r = eU or u = In(r), and dr = eU du 

M(ro) = .r f(eli)r -jrou du 
-00 
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Because of the scale and translation invariant properties of the Mellin and Fourier 
transform, respectively, both transforms have attracted considerable attention for 
image correlation in optical systems [22]. Also the optical Mellin transform in 
conjunction with a circular photodiode array has been used for scale invariant pattern 
classification [23]. The imaging system, described in this paper, has the logarithmic 
transformation, required for the size invariance, built into the hardware structure of 
the sensor and does not require any additional computation. 

It has been shown that the algorithm results in a leading edge invariant 
representation and in intensity invariance [24]. Also in the·use of camera motion, the 
apparent motion of the objects caused by a translation along the optical axis will 
result in a translation along the e axis of the transformed image. However, the 
invariances are true only under certain conditions: the scaling should occur along the 
optic axis or rotation around the optic axis. It should be pointed out that the 
transform is not translation invariant, a characteristic also observed by the human 
visual system: indeed as one moves his eyes away from an object it looses its exact 
shape until it gets completely blurred. 

Besides its scale and rotation invariances the retina-like sensor has also the 
important property that it reduces the amount of information considerably. This is 
important because one of the main limitations in pattern recognition is the immense 
amount of data to be processed. Reducing the data as much as possible and as early as 
possible is a high priority. Because the transformation is built into the sensor's 
hardware there are no computations required to transform the incoming images. The 
sensor's sampling structure acts as a spatially inhomogeneous filter that attenuates 
the importance of points away from the origin. In this respect it can be considered as 
a structure that performs a modified Fourier transform in which an exponential 
weighting function has been included into the transform [16, 19]. 

Simulations of the retina-like imager have shown that this representation 
facilitates scene analysis in comparison to a conventional constant resolution sensor, 
in particular when objects of widely different sizes have to be recognized [18]. 
Research in the field of active vision and sensory-motor coordination have exploited 
different strategies. It is important to be able to look at a scene with a wide visual 
field and at the same time to sample certain areas in greater detail. The peripheral 
vision provides the wide view and is typically used for alerting and guidance 
purposes. For this task one wants to work with a minimum amount of data in order 
to be able to respond quickly. Once the object is tracked, one likes to explore it with 
a high resolution. The fovea performs this function and corresponds to the focus of 
attention. The sensor, as shown in Fig. 1, combines both functions in one and thus 
provides a good compromise between high resolution and data reduction. This 
approach allows us to reduce the amount of data at the very early stage, i.e. at the 
sensor level. Further reduction is possible by incorporating into the same structure 
some primitive functions such as motion detection and edge detection. The 
architecture with the large peripheral area lends itself well for such modifications. A 
second version of the retina-like sensor that has these functions built in is under 
development. 
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DESCRIPTION OF THE CCD RETINA-LIKE SENSOR 

Overall Sensor Organization 

The sensor is functionally divided into two main areas as schematically shown 
in Fig. 1a. The middle section is a constant resolution CCD that is built with 
minimum feature sizes. It provides the high resolution fovea. Around the fovea is the 
peripheral area whose function is to provide a wide field of view while keeping the 
amount of data to a minimum. It realizes also the logarithmic mapping required for 
the scale invariance. The cell dimensions increase with eccentricity according to, 

hi = ao . sk-1, k=1,2, 3, .... , m 

where ao is the minumum cell dimension, k is the concentric circle number, 
counting from outward, s is a scaling factor, and m is the number of concentric 
circles. In our design, s is made equal to 1.094. The size of the cells increases then 
from 30 for the smallest to 412 micrometers for the outer circle. The sizes and the 
corresponding cell density as a function of eccentricity are shown in Fig. 3 and Fig. 
4, respectively, illustrating the logarithmic nature of the sampling structure. 
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Figure 3: Size of the photosensitive cells as a function of the circle number. 
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Figure 4: Cell density versus eccentricity 

Peripheral Imaging Area 

The peripheral imaging section consists of thirty concentric circles whose radii 
increase exponentially, according to Fig. 3. These circles are grouped in three arrays, 
each consisting of 10 circles clocked differently. There are 64 sensors per circle for a 
total of 1920 pixels. The pixel density is highest in the innermost rows with a pitch 
of 30 )..Lm. The scaling of the pixel size is quite dramatic as can be seen in Fig. 3 

with a size increasing from 30 to 412 )..Lm going from the inner to the outer circles. 
Figure 5 gives a schematic picture of the actual geometry implemented in the imager. 
Notice the three blocks of concentric circles. The central part is the fovea. The slice 
cut out of the periphery to the right is required to provide the read-out and coupler 
structures, as described later. 



Figure 5: Schematic of the actual peripheral and foveal areas. The ratio 
between the smallest and largest radius is 13.7; diameter is 
0.94cm 
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The imager has a modified interline transfer structure. The basic cell consists of a 
photoreceptor, a transfer gate separating the sensor from the CCD channel, and a 
three phase CCD shift register. A diode is used as a photoelement rather than a semi­
transparent CCD because of its better photosensitivity [25]. The cell dimensions are 
30 by 30 !lIll. An array of these cells forms the basic pattern for all circular CCD's. 
These arrays, scaled and rotated by computer, are easily pieced together. The 
photosensitive area is defined by an aluminum light shield allowing to make the 
photosites any desired shape. A more detailed description of the actual 
implementation of the peripheral structure is given in [26]. 

Fovea 

The inner part of the imaging structure consists of a relatively high density 
square array that is tilted 45 degrees. A unique layout, read out and clocking scheme 
allows routing of the clock lines into this highly populated central area to read out 
the charge packets effectively without taking too much real estate [26]. The sensors 



198 

are stacked, forming a checker board pattern. Fig. 6 gives a schematic view of the 
fovea's photosites pattern. The total number of sensors in the fovea is 102. The 
effective pixel pitch is 60 J..lm. 

Figure 6: Schematic drawing of the fovea, illustrating the sensor 
geometry. The total number of pixels is 102. 

Read-out Structures 

Two blocks are required to read out the data. One is a linear CCD register called 
the radial CCD (RCCD). It has a cell size of 30 J..lm and is a three-phase buried 
channel CCD. This register is used to read out the circular CCD's. This eliminates 
separate outputs for each circular CCD thus reducing the amount of output pins at 
the expense of lower read out speed. Another version with parallel read out of the 
circular CCD's under design will provide a faster readout, to be used for tracking fast 
moving objects. 

The charge packets of one cell of each circular CCD are transferred simultanously 
after being scaled into the RCCD that is read out quickly before the next charge 
packets from the circular registers are transferred into it. However, because the radial 
CCD has a constant cell size, while the cells of the circular CCD increase 
exponentially one needs to scale the incoming charge packets before reading them in 
the RCCD. ,is is done by using a fixed-ratio divider between the radial and circular 
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register. It accounts for the scaling of the sensor, preserving information but reducing 
the size of the charge packets. The RCCD and coupling cells cut out a part of the 
peripheral area (Fig. 5). This slice occupies an area of two and a half photosites. 

The output of the RCCD consists of a diode that can be reversed biased by a 
reset transistor. When charge packets are dumped into the output node the diode will 
discharge, resulting in a voltage drop that is detected by a source follower. The 
maximum voltage drop for a full charge packet is about 1 V. The output consists of 
a double sourcefollower and is designed for speed and low noise. 

The total chip dimensions are Ilmm by Ilmm. It is mounted in a 30 pin 
package with optical transparent window. A photograph Of the whole sensor is 
shown in Fig. 7. The chip is fabricated in lMEC's triple poly, three phase, buried 
channel CCD techology. Two poly layers are used for the three phases in the 
shiftregisters, while the third layer defines the transfer gates. 

Figure 7: Microphotograph of the retina-like sensor, including a 
central fovea region. The chip area is llxll mm2. 

A detailed view of the fovea is shown in Fig. 8. The stripe in the middle is a read-out 
register that feeds into the radial CCD. The ten inner circular CCDs can be seen 
around the fovea. 
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Figure 8: Photograph of the fovea, conslstmg of 102 
photosensitive cells, and the first ten concentric 
circles. 

Driving Electronics 

One of the complications of this architecture is the relatively large amount of 
clocks and control signals to read out and synchronize the charge flow. Up to 18 
different clocks are required. When the sensor has to be used as part of a moving 
platform for tracking purposes, it is important to minimize the number of wires and 
external interconnections. Also the dimensions and weight of the clock drivers should 
be small. For this reason an integrated clocking system has been developed that 
generates all the required clocks. It has been fabricated in a 2 !lm CMOS process. The 
chip is fully custom designed in order to reduce the amount of real estate and power 
dissipation as much as possible. The total chip area is less than 3 mm2. A 
photograph of the chip is given in Fig. 9 [27]. This chip will be mounted together 
with the CCD imager on a lightweight substrate and incorporated into the motor 
control platform. The chip is fully functional. Measured outputs of the controller 
chip is shown in Fig. 10. 
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Figure 9: Microphotograph of the controller chip of the retina sensor, 
generating all required pulses to drive the sensor; the size is 
1.7x1.7 mm2. 

Figure 10: Measured output pulses of the controller chip, showing (a) the 
pulses required for performing the adding and weighting 
function; (b) the sync pulse and the three phase clocks for the 
middle ten circles at the start of a new frame [27]. 
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SIMULATION RESULTS OF THE RETINA-LIKE SENSOR 

The actual sampling structure of the CCD sensor is slightly different from the 
one proposed in Fig. 1 due to the slice which is cut out of the peripheral area and the 
actual pixel geometry. In order to evaluate the effect of these differences, several 
simulations were done using the actual sampling grid and pixel geometry. Fig. 11 
shows how an image sampled with the actual CCD (Fig. 11a) is mapped into the 
cortical plane (lIb). The mapping of a magnified image (Fig. 11c) is shown in Fig. 
lId. One notices the scale invariance. The jagged line is the result of the finite pixel 
size. The slight assymetry is caused by the slice cut out of the peripheral area. 

A B 

c D 

Figure 11: (a) Original image and (b) cortical image; (c) magnified image of 
(a) and corresponding cortical image (d). Notice the invariances in 
the cortical image. 
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In Fig. 12 a more complex image and its scanned representation is shown. 

A. 

B. 

Figure 12: (a) A complex imag.e (the "Apollo of Veio"), (b) and its 
mapped image on the cortical plane. 
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Figure 13: (a) Image used for tracking experiment: the bright square in the 
lower left comer is the target that moves against a relatively 
busy background; (b) Trajectory of the target and fovea. 
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One of the most obvious and immediate applications of the proposed sensor is 
the tracking of moving targets. The small amount of information and the relatively 
wide visual field allow the reduction of the execution time of the segmentation 
algorithms and the computation of the position and speed of the moving object. For 
this reason anthropomorphic algorithms simulating the ocular movements of a 
human subject gazing at a target in motion have been developed and tested [28]. The 
motor strategy proposed is a succession of saccadic and smooth pursuit movements, 
in analogy with the human behavior: as soon as the target enters the visual field its 
position and velocity is computed, and the target is "foveated" and the sensor moved 
at the computed speed. At every new frame the measure of the target speed is updated 
and used to correct the sensor motion. If the object is too far from the fovea, the 
measured position is used to drive a correction saccade. Of course, during the 
tracking, it is necessary to subtract from the optic flow, which is computed from the 
cortical images, the velocity field of the points belonging to the background; this last 
field is due to the camera motion and so computable from motor commands. In Fig. 
13 an example of the performance is shown. The original image is given in Fig. 13a. 
In this case the picture of the Apollo of Fig. 12 serves as a background image and the 
small bright square target on the lower left comer serves as the moving target. The 
target is moved over a parabolic trajectory at constant speed. The output is shown 
schematically in Fig. 13b. In this figure the trajectory of the fovea is shown together 
with the parabolic trajectory of the target. As can be seen the superposition is good 
apart from a big saccade to the left on the right branch of the parabola (caused by a 
wrong estimate of the optical flow) which is corrected soon after. We can compare 
this experiment with one that makes use of a constant resolution camera. The size of 
the background image comprizes about 512x512 pixels and the target 70x70 pixels. 
The number of photosites in the retina camera is 1920. If these sensors would have 
been distributed evenly in a constant resolution camera it would correspond to an 
array of about 45x45 cells. This is less than the size of the target. One could project 
the whole image (background) on the 45x45 array, but in that case the target would 
get lost in the background, making it impossible to track it. Thus, the advantage of 
the retina-like sensor is that it can cover a large field without sacrificing the 
resolution of the target. This make the tracking faster and more efficient than with a 
constant resolution camera. 

Figure 14: Oplical flow comjJQted from a sequence of9 images 
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In Fig. 14 the result of a different experiment is presented. The picture shows the 
optical flow computed from a sequence of 9 images acquired during a motion of a 
camera along the optical axis and toward the picture of the "Apollo" is shown. It can 
be noticed that the optical flow vectors are parallel as is expected. 

MEASUREMENTS 

The devices were fabricated on 125 cm p-type Si wafers with 56 sensors per 
wafer. Measured technological parameters are typical of the IMEC process. Short 
circuit testing gives a high yield. Preliminary functional testing demonstrates that the 
sensor works correctly and well. Proper clocking is the most important factor in 
operating the chip - controlling the substrate voltage, the high and low voltages and 
rise and fall times of the clocks can critically affect performance. 

A. 

Signal Valid 

B. 500mV 

Output Voltage 

Figure 15: (a) Measured output waveforms corresponding to one column of the CCD; 
(a) dark output and (b) the output under uniform illumination. 
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Figure 15 is an unfiltered output signal found from the chip. Figure I5a is the 
dark response which is uniform and low. A couple of cells around one quarter from 
the right of the trace have a larger output than the others. It is a systematic signal 
that occurs in each sample and which is caused by the layout. It can be easily 
corrected for in software. The layout of the next version which is currently being 
fabricated was modified to eliminate this problem. Figure I5b is the sensor output 
under partial uniform illumination. The top trace is the signal valid. indicating that a 
charge packet has been placed on the output. The bottom trace is the actual output. 
Several features need to be mentioned. The row (circle) 11 peak is still present. which 
is due to the same layout effect as was observed in the dark current. At row 30 
(shown at the beginning of the trace) an improperly generated clock pulse causes a 
large fixed output signal. This can be corrected by changing the clock driver circuit. 
Rows 12-29 show a uniform response. The inner section. rows 1-10 gives different 
outputs. This is also the result of the layout where the size of the photosensor is 
scaled differently in comparison to the coupler ratio. This had to be done due to lack 
of space. The displayed pattern corresponds to the actual design and is the same for 
each tested sensor. Also this will be modified in the next version. Finally. the 
response at the right side of the photo is the fovea. A good uniformity is obtained 
but the output signal is considerably smaller. This is due to a different photosensitive 
area. 

Photo I6a and I6b are the dynamic response of the sensor to a projected light 
spot. The outputs of five columns are shown on one trace. The single output pulse 
in the 3rd block is the response to the light spot. There is very little crosstalk 
between neighboring circles. However. one can see a small pulse in the different 
columns which indicates that there is some charge overflow between the neighboring 
diodes or cells on the same circle. This is a function of the bias voltages and light 
intensity. No special effort was made to reduce this effect during these preliminary 
measurements. In Fig.I5d the pulse has shifted to the left corresponding to the light 
spot which has been projected in the next column. 

Measurements of the output signal versus light intensity gives a linear response. 
The spectral response peaks around 580 nm. These preliminary results are promising 
and are demonstrating that the basic concept of the structure works. The results have 
been used to make an optimized redesign of the sensor. The sensitivity at 400 and 
700nm is about 75% of the peak value. 
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A. 

B. 

Figure 16: The output of five columns with one pixel 
illuminated in column three (a) and in column two 
(b). The top traces are the signal valid outputs. 
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DISCUSSION AND CONCLUSION 

A space-variant CCD sensor which capture certain aspects of the sampling 
structure of the human visual system has been discussed and presented. The imager 
consisting of a fovea and peripheral areas has been designed and fabricated. The 
preliminary results are promising and show that the basic elements of the imager are 
functioning properly. The detailed characterization is going on and will be used for 
further optimization of a second prototype. 

The "anatomy" of the sensor provides pseudo scale and rotation invariances. In 
this respect it is similar to a Mellin transform. Simulations have been performed 
using the actual imager's sampling grid. It has been shown that this new structure 
offers advantages for scene analysis and tracking purposes over conventional cameras. 
It is the purpose to incorporate some primitive feature extraction function on the next 
chip. The retina-like imager will then serve as input to an analog neural network that 
is independenlty being developed [29]. Also the question of image decomposition in 
its primitives and how to implement this in the neural network is being investigated 
[30]. 

The sensor will also be useful as part of an optical image processing system for 
pattern recognition or correlations. 
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Visual experience is intrinsically subjective. The manifest unity of our 
perceptions belies the indeterminacy of our sensations. A single pattern of 
excitation on the retinal receptors is consistent with many possible worlds of 
objects. The simple problem of determining object brightness exemplifies the 
ambiguities inherent in the retinal image. The photons incident on a given 
receptor may indicate the presence of a bright or dark object depending on the 
overall level of illumination. In mediating automatic gain control, the horizontal 
cells of the retina express an assumption about the nature of the illuminant. 
These neurons in the most peripheral part of the visual system take the first 
step toward interpretation of the image. By a process of lateral inhibition, they 
discount the effect of illumination and determine the brightness of an object 
relative to that of nearby objects. At all levels of complexity, the visual system 
interprets each data point within the context of the scene. This interpretation 
is consistent with the input data and with the internal structure of the system. 
Through evolution, the structure of the visual system provides correspondence 
between the mental image and the objective world. 

As a result of the work of many engineers and scientists, artificial visual 
systems are also evolving. System synthesis can lead to a better understanding 
of natural systems, since it demands a concrete formulation of the relationships 
among representation, system architecture, and the visual world. Marr, who 
pioneered a computational approach to vision, has been a major influence in 
this field (Marr, 1982). He viewed vision as a form of information processing 
that must be based on constraints that come from consideration of the visual 
world. He described a process as taking place within a definite representational 
framework according to a specific algorithm. 

In 1976, Marr and Poggio proposed a collective algorithm for stereopsis 
that could perform feature matching between two images (Marr, 1976). The 
crux of the problem is that images with dense, homogeneous textures contain 
many identical features. Each feature can be matched to several features in the 
corresponding image, but only one match is correct. It is not possible to find the 
correct match without considering several features simultaneously. Constraints 
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derived from an analysis of space, objects, and projective geometry specify 
interactions among features that permit identification of a correct match. These 
constraints are based on assumptions about the nature of the visual world. 

Marr's algorithm describes a locally connected, fedback, nonlinear system 
suitable for realization in an electronic medium. The system architecture em­
bodies the assumptions of the algorithm. Using this architecture, we have syn­
thesized an analog CMOS circuit that finds regions of correspondence between 
two one-dimensional images in real time. Experiments on simplified images 
demonstrate the circuit's tolerance to transistor misII\atch resulting from the 
collective nature of the algorithm. 

We have fabricated and tested two chips that use this correspondence cir­
cuit. One of these chips performs stereo matching based on static contrast 
features in the image. The other chip takes advantage of natural time con­
stants of the analog system, and uses time derivatives of intensity to drive the 
correspondence circuitry. 

Evolving electronic artificial vision increases our awareness of the role of 
the physical nature of the system. Algorithms for vision must be consistent not 
only with the external world, but also with the properties of the computational 
medium. 

STEREOPSIS 

The review presented here will be brief. A more complete description of 
the problem of stereopsis can be found in (Julesz, 1971; Poggio and Poggio, 
1984). 

Binocular vision generates two images of a scene, one from each eye. Be­
cause the two eyes regard the scene from different points of view, they may 
differ in their impression of the relationships between objects. Figure 1 shows 
two eyes of an observer in cross-section. The lens of the eye projects an image 
of targets in three-dimensional space onto the the surface of the retina. The 
position of a feature in the projected image depends on the visual direction of 
the target. Visual direction is the angle of the line of sight between the retina 
and the target. When the eyes fixate on a point, the locus of points in space 
having equal visual direction in both eyes is called the horopter. All targets 
on the horopter are said to have zero disparity, because they project to cor­
responding points on the two retinas. Targets closer to the viewer than the 
horopter have crossed (negative) disparity, and targets more distant than the 
horopter have uncrossed (positive) disparity. The principle task of stereopsis is 
to determine the disparity between corresponding regions of the images from 
the two eyes. This information, along with the state of vergence of the eyes and 
the eyes' separation in the head, specifies the distance between the target and 
the viewer. 
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Figure 1 Stereopsis. This figure illustrates the projection of an image of four 
identical targets (dark disks) onto the right and left eyes of an observer. The 
lines going through the lens connecting each target with the retina are lines of 
sight. The intersections of the lines of sight indicate possible target positions in 
space. False targets (transparent disks) are located at the intersections of lines 
of sight that originate from different targets in the two eyes. 

Calculation of disparity requires the determination of correspondence be­
tween features on the two retinas. This task would be straightforward if features 
could be identified uniquely. However, the random-dot stereograms developed 
by Bela Julesz (Julesz, 1960) demonstrate that the human visual system can 
compute disparity even when there are many identical features in close proxim­
ity (Figure 2). It has been shown that occlusion events are primary cues to the 
determination of depth (Shimojo et al. 1985). Researchers in artificial vision, 
however, have focused on the matching of stationary features visible to both 
eyes in attacking the problem of stereopsis (Poggio and Poggio, 1984). 
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(a) 

(b) 

L R 

Figure 2 Random-dot stereograms. (a) Making a random-dot stereogram. A 
random pattern of Is and Os is generated to be presented to the left eye. An 
identical copy of the pattern is made for the right eye, except that a central 
square region within the image (labeled with As and Bs) is displaced to the right. 
When the two images are fused, this square region will appear closer than the 
background. Occluded areas (areas having no counterpart in the opposite eye's 
image) are labeled with X's and Y's. (Modified from (Julesz, 1971)). (b) A 
random-dot stereogram showing a raised square. You can fuse the stereogram 
by letting your eyes diverge as though you were looking at infinity. Your left 
eye should see the pattern on the left, and your right eye should see the pattern 
on the right. The primary difficulty is focusing on the paper while your eyes 
are diverged. Myopic readers will find it helpful to remove their glasses. 
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THE MARRjPOGGIO STEREO ALGORITHM 

Marr and Poggio (Marr, 1976) describe a collective stereo algorithm that 
succeeds in finding the disparity in random-dot stereograms. Their algorithm is 
designed to find the disparity in a region of limited depth around the horopter. 
The algorithm can be used for stereo matching in one- or two-dimensional im­
ages. One-dimensional stimuli can be used to test many of the basic features 
of a stereo matching algorithm, because the eyes are displaced from each other 
along a line; therefore, only disparities along a line contribute to depth per­
ception. We can understand the algorithm by consideri~g three simple rules 
derived from the properties of images and of physical surfaces. These rules 
allow the correct correspondence of features on two retinas to be found in the 
presence of false matches. 

The first rule is that features in the two images must be similar to cor­
respond to each other. For example, dark features within one image should 
correspond to dark features in the other image. This rule is called the com­
patibility constraint. Psychophysical evidence suggests that the human visual 
system obeys some form of compatibility constraint. For example, people are 
unable to fuse images of reversed contrast (Julesz, 1971). 

The second rule is that a feature from one image should correspond 
uniquely to one feature from the other image. This constraint is derived from 
the fact that a point on a surface has only one spatial location at a given time. 
The uniqueness constraint is violated in the case of transparent surfaces, when 
an image feature is a combination of points from two physical surfaces. 

The third rule is based on the observation that objects, being cohesive, 
occupy a localized region of depth. The continuity constraint used in the al­
gorithm assumes that surfaces of objects are oriented parallel to the viewer so 
that changes in disparity will be rare, occurring only at surface boundaries. 

The representational framework of the algorithm is depicted in Figure 3. 
Input to the algorithm is provided by two one-dimensional retinas that encode 
the horizontal positions of features in the image. In the output representation, 
real space is divided into a grid of discrete positions. The spatial dimensions of 
distance (disparity) and horizontal position are encoded by a two dimensional 
array of correlators. Activation of one of these correlators indicates the presence 
of target in the region of space to which it corresponds. 

The constraints of the algorithm are embodied in the connections among 
elements. The compatibility constraint is implemented by feedforward input 
to the correlators from the retinas. The correlators receive two inputs, one 
from each eye. A correlator is stimulated by a nonlinear combination of its 
inputs; the two inputs must signal the presence of a similar feature in order to 
drive the correlator. False matches may be formed between features that do 
not correspond - features that are not actually generated by the same target 
in space. False matches are suppressed by feedback connections within the 
correlator array that implement the continuity and uniqueness constraints. 
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Figure 3 The representational framework of the cooperative algorithm. De­
picted is the algorithm's response to the scene illustrated in Figure 1. The left 
and right retinas are represented on the vertical and horizontal axes. Corre­
lators (not shown explicitly) are arranged in lines that are angled 45 degrees 
from the axes. Each line corresponds to a single disparity. The outputs of each 
retina are transmitted along lines of sight running perpendicular to the retinal 
axis. Each correlator receives input from the two pixels whose lines of sight 
intersect at its location. \Vherever there are similar features from the right 
and left eye, they form a match (circle) at the intersection of their two lines 
of sight. Targets at the same distance in space form matches located on the 
same disparity plane. Open circles are false matches, and filled circles are true 
matches. Inhibitory interaction among correlation elements run along lines of 
sight (dotted lines). Solid lines along disparity planes indicate positive coupling 
between correlators. 

Positive coupling between correlators at the same disparity encourages the 
continuity of the solution. The positive coupling is implemented in the original 
algorithm by a fixed set of connections among correlators in the same disparity 
plane. If a correlator is active, it drives the correlators to which it is cou­
pled. Correlators at the correct disparity are all driven by retinal inputs with 
matching features and so tend to be active. Because correlators at the true 
disparity are surrounded by correlators that are likely to be active, they receive 
not only positively correlated retinal inputs but large inputs via positive cou­
pling between correlators. The false matches receive less input from neighboring 
correlators. 

The uniqueness constraint states that each feature from one eye can be 
matched to only one feature from the other eye. This constraint is implemented 
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by an inhibitory interaction among correlators that receive input from the same 
pixel. This interaction performs a winner-take-all function that selects true 
matches by suppressing all but the maximally driven correlator. The final state 
of activation of the correlator array indicates the positions of genuine targets 
in space. 

THE CHIP 

The Marr /Poggio stereo correspondence algorithm is well suited to a cir­
cuit implementation because it requires only local connectivity. The system 
architecture leads to a physical structure that instantiates the representational 
framework of the algorithm. Figure 4 provides a simplified view of the chip 
architecture. The chip correlates the outputs of two one-dimensional retinas, 
and the representation of the solution expands into the second dimension of the 
silicon surface. The circuits are analog nonlinear elements that compute the 
correspondence between regions of the retinal images in real time. 

If Retina pixel 

o Correllator 

JVV'- Resistive element 1 ( Lines of Sight 

Figure 4 Chip architecture. This schematic is topologically identical to the 
representational framework of the algorithm shown in Figure 3 except fewer 
pixels and disparity planes are shown. The top and bottom rows of pixels are 
one- dimensional retinas. Between the retinas is the array of disparity planes. 
The central row represents zero disparity. The computational elements shown 
in the legend are described in the text. The actual chips have 40 pixel retinas 
and nine disparity planes. 

The heart of the chip is the correlator array. The input to a correlator 
comes from two pixels, one pixel from each retina. The retinal output is an 
analog function of the image. The current input to a correlator is a nonlinear 
combination of the output from two pixels. Each disparity plane represents 
a point-by-point cross-correlation between the two retinas, at a spatial offset 
corresponding to that plane's disparity. 
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We have fabricated and characterized two variants of the chip. The original 
version of the chip uses static contrast as a feature to drive the correlation. The 
computation performed by the retinas is similar to a convolution of the image 
with a center-surround filter. The analog values of the computation are used 
to compute a cross-correlation between the two images. The retinas are one­
dimensional versions of the silicon retina (Mahowald, 1989). The photoreceptor 
takes the logarithm of the incoming light intensity. Outputs of the photorecep­
tors are averaged on a resistive network. The differential voltage between the 
resistive net and the photoreceptor provides input to a modified Gilbert multi­
plier, which is located in a correlator cell (Mead, 1989). The multiplier produces 
a current that is the basis for the correlator computation. 

Left Pixel 
Correlator 

Input Right Pixel 

Figure 5 Retinal circuitry and modified Gilbert multiplier. The left pixel is 
located in the left retina, and the right pixel is located in the right retina. The 
multiplier is located in a correlator cell. Each correlator has its own multiplier, 
which receives input from a unique combination of pixels. 

The multiplier performs a four quadrant multiplication biased around ~: 

h 
Imult = (2 )(1 + tanh(V.) tanh(Vi)). 

V. and Vi are the differential voltages from the right and left retinas. The 
resistive network acts as a reference level for the computation; intensities 



221 

brighter than the average are "white," whereas those darker than the aver­
age are "black." The output of a black pixel multiplied by the output of an­
other black pixel results in a current into the correlate that is greater than ~, 
whereas the output of a black pixel multiplied by the output of a white pixel 
results in a current that is less than ~. The magnitude of the signal coming 
into the multiplier is related to the contrast of the feature. 

Another variant of the chip uses time derivatives of intensity as features for 
the correlation. The retinas consist of arrays of change-sensitive pixels, called 
hysteretic receptors (Delbriick and Mead, 1989). The response of one of these 
pixels to an increase in light intensity is a sharp and transient decrease in the 
output voltage. The response to a decrease in light intensity is very small. The 
hysteretic receptor has a gain for transients that is about 100 times larger than 
the gain for the steady-state illumination level. 

Hysteretic receptor 

I 

Rectifier Correlator 

Input 

Figure 6 Time derivative pixel and series connected transistors. The half-wave 
current-rectifier circuit bias current is labeled h. 

The output of the hysteretic element is capacitively coupled to a half-wave 
current-rectifier circuit biased to generate a small current when the intensity is 
unchanging (Lazzaro, this volume). This bias also controls the time constant of 
the circuit. Even small increases in intensity increase the current through the 
rectifier. The voltage output of the rectifier is broadcast to the correlator array 
along a line of sight. 
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The correlation of signals from the right and left pixels is performed in the 
correlator cell by mear.s of two serially connected transistors. In subthreshold, 
these two transistors compute the function: 

IrII 
Imult=-I I· 

r + I 

Ir and II are the currents through the rectifiers in the right and left pixels, 
respectively. This operation is a normalized multiplication of the two retinal 
inputs. If either retinal input is small, the current into the correlator is small. 
When the images on the retinas are unchanging, the input to the correlator is 
proportional to the bias current of the rectifiers. When there is a change in the 
input, the current into the correlator can be up to three orders of magnitude 
larger than the bias current (Figure 7). 

The time-derivative chip has the advantage that the correlator cell is com­
pact. In addition, the derivative-based correlator input has a range larger than 
the multiplier current in the static contrast chip. However, the operation of the 
correlator array is easier to conceptualize in the chip that uses static contrast 
as a matching primitive. Most of our discussion will focus on the operation of 
the static contrast-sensitive chip; description of the change-sensitive chip will 
be postponed until the section on experimental results. 

The operation of the correlator array depends on cooperative interactions 
among correlators. The connections between correlators implement the continu­
ity and uniqueness constraints of the original algorithm. Figure 8 schematically 
depicts the interactions at a correlation element. The correlator itself is simple; 
it is a single electrical node. The computations performed at a correlator node 
are complex: Currents from saturating nonlinear sources are summed to create 
a voltage; this voltage is used to control a nonlinear conductance; and the con­
ductance determines the extent of electrotonic coupling. Although the number 
of interactions at this node are small by neural standards, the correlator circuit 
demonstrates the high computational density available in an analog medium. 

The uniqueness constraint is implemented via a winner-take-all (WTA) 
circuit shown in Figure 9 (Lazzaro et al. 1989). The WTA circuit establishes 
a competitive feedback interaction between all the correlators along a line of 
sight. Each correlator will participate in two competitive groups; one group for 
a pixel from the left retina and another group for a pixel from the right retina. 
On the stereo correspondence chip, the number of channels participating in each 
WTA competition is equal to the number of disparity planes. 
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Figure 7 The retinal response and correlation performed by the motion­
sensitive Marr chip. (a) The retinal signal generated by a pixel in response 
to a flashing LED. The LED signal is shown in the top trace. The magnitude 
of the modulation is 5 percent. The output of the pixel is shown in the bottom 
trace. The current maximum is approximately 4 nA. The zero input bias into 
the correlator is 100 pA. (b) Response of a single correlator to a flashing LED. 
The traces labeled "Right Only" and "Left Only" show the output of the cor­
relator when only one retina is stimulated. The trace labeled "Both" shows the 
correlator response when both retinas are stimulated. 

The competitive interaction is optimized to suppress false matches. Be­
cause competition takes place along lines of sight, all false matches are com­
peting with true matches. A simple analysis of the current flowing through 
the WTA circuits of the correlators receiving retinal inputs shows that false 
matches can never suppress true matches. 

The matching process can be broken down into competitions between two 
targets at a time. Imagine that there are two targets, A and B. Denote the pixel 
response to target A as a and the pixel response to target Bas b. Figure 10{a) 
shows the system response to a two target stimulus in which a > b. Input to the 
correlator that correlates the response of pixel ar in the right retina and pixel al 
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crossing at this node 

Coupling to/from 
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Figure 8 Simplified version of the electrical interactions at a correlation ele­
ment. The correlator output voltage, Vi,j,d, is determined by the sum of the 
currents flowing into the node. The primary input, I(i,j), is a current that is a 
nonlinear AND-type function of the signals from pixel i in the right retina and 
pixel j in the left retina. Correlation elements in the same disparity plane are 
coupled by resistive elements. The schematic of the resistive element indicates 
that the resistance is nonlinear and controllable. Two transistors drawing cur­
rent to ground provide inhibition. The voltages V;R and ~L are a function of 
the correlator voltages along the line of sight of pixel i and pixel j respectively. 

in the left retina is a2 • If a > b, this correlator sets the WTA circuits associated 
with ar and a" so that each WTA circuit sinks a current a2

2 (a total of a2 ). The 
retinal input to the false match between a r and bl is abo The current available 
for this false match to suppress the true match between br and bl is ab _ ~2. 
The false match can suppress the true match only if ab - a2

2 > ~. Figure lO(b) 
shows the amount of current by which the false match can suppress the true 
match, as a function of the ratio of the contrast of the targets, ~. Intuitively, 
the false matches AB have a higher correlation input than the true match BB, 
but the suppression of the AB matches by the AA match is always sufficient 
to let the BB match win. The false match never has enough current to win 
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Figure 9 The winner-take-all circuit. (a) Schematic of a simple two-channel winner­
take-all circuit. To understand how the circuit works in subthreshold, imagine that 
the circuit is in equilibrium and that each channel is receiving an identical input 
current. In this configuration, It = h = loutl = lout2. The voltage on the common 
line, Vc , is therefore constrained to be logarithmic in the input current. The voltages 
on the output nodes, VI and V2, are constrained to supply the bias current to the 
common line through source-follower transistors, T2l and T2 2 • These voltages are 
above the common line voltage by an amount that is logarithmic in the bias current. 
To make one channel win over the other, we increase its input current. Increasing 
the current to one channel charges up that channel's output node. The voltage on 
the common line will follow the output voltage of the winning channel with a voltage 
difference set by the bias current. The output node will stop charging when the current 
through its TI transistor is equal to the new input current. The output voltage of the 
winning channel will increase logarithmically with input current. The loser will be 
suppressed. (b) Current-voltage characteristic of the two channel WTA circuit. The 
voltage output of the two channels is plotted against the ratio of their input currents. 
Since the voltage on the common line, Vc , controls the current out of both channels, 
the capacitor of the channel with less current will be discharged until its TI transistor 
draws only its input current. For current differences between the channels of more 
than a few percent, the TI transistor of the losing channel will come out of saturation; 
the output voltage will be within a few k{ of ground. When the current difference 
between channels is small, the output voltage on the losing channel is determined by 
the Early voltage of the TI transistor and by the level of the input current. 

over the true match. Correlations between two features of equal value present 
the most difficult case. False matches then generate the same correlator inputs 
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Figure 10 Suppressing false targets. (a) The computation of the correspon­
dence between two targets, A and B, is illustrated using the representation 
explained in Figure 3. The magnitude of the retinal input to the correlator is 
shown as the area of a filled circle. Pixels associated with the lines of sight are 
labeled. (b) The function j(o) = -t02 + 0 - t, where 0 is the ratio of the 
contrast of the targets, ~. The function j(o) represents the amount of current 
by which the false match can suppress the true match in units of b2 • If the value 
of j(o) is negative, that much extra current would need to be supplied to the 
false match in order for it to tie with the true match in the WTA competition. 

as do true matches. We can suppress these false matches only by invoking the 
continuity constraint. 

The continuity constraint is mediated by resistive elements that couple the 
correlation nodes within a disparity plane. The resistor is implemented with 
the same circuit that is used in the static retina to compute the local aver­
age illumination level. The resistor circuit has the saturating current-voltage 
characteristic described by 

V 
1= Gtanh( 2")' 

The units of voltage are k:; The parameter G is controlled by an external 
voltage. 
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In the correlator array, resistive coupling locally averages the activity level 
within a disparity plane by providing a path for current flow. Within a uniform 
disparity region of the image, the correlators at the correct disparity plane will 
all be receiving positively correlated retinal input. Other disparity planes will be 
receiving some anticorrelated input. A correlator that is receiving anticorrelated 
input will draw current from neighboring correlators within its disparity plane. 
The WTA circuit is thus able to suppresses the correlators in the disparity 
planes signaling false targets. 

The strength of coupling must be limited if the chip is to function prop­
erly. The saturating characteristic of the resistor is important in allowing the 
disparity to change as a function of horizontal image position. The current that 
can be drawn from the winning disparity region across a disparity discontinuity 
is limited by the nonlinearity of the resistor. Saturation of the resistor allows a 
large voltage difference to form across the edge (Hutchinson, 1988). 

We can write a system of equations that capture most of the operation 
of the system. These equations assume that the transistors in the circuits are 
being operated in subthreshold. The drain-source current Ids of a transistor 
operated in subthreshold is given by: 

where vg is the gate voltage, v.. is the source voltage, and Vd is the drain 
voltage. The constant 10 is about 10-15 amps. The constant" represents the 
body effect (Mead, 1989) and is about 0.7. The constant Vo is the Early voltage 
and is typically a few tens of volts (Mead, 1989). All voltages are in units of 
kT 
q 

The dynamical equation describing the interactions at a correlator node is 

d (R L C dt Vi,j,d = I Ii ,Ij ) 

+ Gtanh(Vi+l,j+1,d - Vi,j,d) 

+ Gtanh(Vi-1,j-1,d - Vi,j,d) 

_ Ioe"v,R (1- e-V.,j,d + V~'d) 

_ Ioe"VjL (1- e-V.,j,d + V~,d) 

In this equation, C is the capacitance on a correlator node. Vi,j,d is the corre­
lator voltage, and the subscripts refer to the inputs from pixel i on the right 
retina, pixel j from the left retina, and disparity plane d. The disparity planes 
run from -do to +do, zero disparity referring to alignment of the two reti­
nas. I(If,If) is the correlation input from the right and left pixels. The next 
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two terms are the resistor currents to and from neighboring correlators at the 
same disparity. The constant G is controllable externally. The final two terms 
represent the nonlinear inhibition performed by the WTA circuit. 

The common-line voltages on the winner-take-all circuits are given by 

for common lines emmanating from the right retina. A similar expression holds 
for the left retina. This equation represents a summation over a line of sight. 
The WTA bias current is denoted lb. 

It is difficult to gain a quantitative understanding of this system, since 
the circuit elements are nonlinear and extensively cross-coupled. For a given 
stimulus, the total positive current into each disparity plane is a fixed quantity, 
depending only on the retinal stimulus and not on the state of the correlator 
array. Current can only leave the disparity plane through the WTA circuits. 
The current-voltage characteristic of the WTA circuit determines the corre­
lator voltage. The distribution of correlation input among the correlators in 
a disparity plane determines the state of the system. The spread of current 
within a single disparity plane is a function of the voltages of the correlators 
in the other disparity planes. In a simple resistive network, the space constant 
is set by the relationship between the lateral resistance and the conductance 
to ground. In the correlator array, the WTA inhibition sets the strengths of 
conductances between the output nodes and ground, based on the maximum 
correlator voltages along each line of sight. Consequently, the space constant of 
the network depends on the data. A current may propagate laterally for a long 
distance in one context, yet the same current may be quickly shunted to ground 
under another set of inputs. Context dependence makes the circuit (and the al­
gorithm (Marr et al. 1978)) very difficult to characterize. This report describes 
the function of the chip by looking at specific examples. 

EXPERIMENTAL RESULTS 

Presentation of data to the system is simplified by the fact that photosen­
sors are integrated on the chip; a single lens focused on the surface of the silicon 
projects an image onto two parallel, one-dimensional retinas. We can generate 
artificial disparities by using two images of bars, one for each retina. When the 
two images are identical, the shift of one image relative to the other determines 
the disparity. We can create images with multiple disparity regions by shifting 
portions of the images relative to each other. The output of the retinas and of 
the two dimensional array of correlators is scanned serially off the chip using 
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the method described in (Sivilotti et al. 1987). The output voltages of the cor­
relators produce an output current by controlling the gate of a transistor. The 
output current is sensed by an off-chip current-sense amplifier. 

The response of the chip to a simple pattern with two disparity regions 
is shown in Figure 11. The image is clearly segmented into two depth planes. 
In this example, the correlation is performed based on dense retinal signals. 
The space constant of the resistive network in the retina is set to be large, 
so that its principle function is to act as the reference value for determining 
positive and negative contrast. Because the stimulus is high contrast, most of 
the retinal outputs are saturated either high or low. Many false matches occur, 
since several consecutive pixels on the retinas are black or white. 

To limit the number of false targets generated by large areas of uniform 
contrast, we can use the retina to enhance edges in the image. Figure 12 shows 
the chip's response to an edge-enhanced input. The computed disparity of the 
wide bar is continuous, even though the input is present mainly at the edges. 
When all the disparity planes are tied at a low value due to lack of retinal 
input, the current through the resistor can spread along a disparity plane to fill 
in the correct solution. When the disparity planes have similar retinal inputs, 
the impedance of a losing correlator node is set by the Early voltage of its Tl 
transistor. If the lateral resistance is small, the space constant of the losing 
disparity plane is large, so the solution spreads a long way. 

In addition to filling in the solution in regions of low retinal input, the 
resistors help to suppress false matches. Ideally a false match can never be 
bigger than a true match, so the resistors do not have to draw much current for 
the false matches to be suppressed. Unfortunately, the circuit elements we are 
using are not ideal. Transistor mismatches in the multipliers and pixel elements 
introduce random variations in the correlator inputs. Offsets may result in a 
false match being up to twice as big as a true match (Mead, 1989). The resistive 
coupling between correlation nodes helps reduce the effect of circuit offsets. 

The ability of the resistors to suppress unwanted signals is a function of 
their strength. Decreasing the resistance couples correlators within a dispar­
ity plane more strongly and helps to suppress false matches and offsets. The 
strength of the resistors determines the area over which retinal inputs are aver­
aged. The disparity plane with the largest average input wins. If the correlators 
within a disparity plane are too strongly coupled, then they act as a unit. The 
retinal input to the entire disparity plane is averaged, and the plane with the 
largest total input current wins. To allow breaks in disparity, we must limit the 
resistance. 

We can investigate the effects of changing the coupling between correlators 
by examining the area around the discontinuity, in an image with two dispar­
ities. Figure 13 shows the output of the correlators on both of the winning 
disparity planes. When the lateral resistance is large, very little current flows, 
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Figure 11 Finding two disparity planes. (a) The chip was tested using black and white bar 
patterns that could be tilted, as shown by the shaded bars. The degree of tilt determines 
the disparity of the pattern between the two retinas; when the bars are perpendicular to the 
retinas they are at zero disparity. We can construct a disparity discontinuity by combining 
two such bar patterns at different degrees of tilt. Such a stimulus is shown in dotted outline 
superimposed over the array. (b) Retinal response to this input pattern. The space constant 
of the resistive network is longer than the bar width, so the retinal output is not edge en­
hanced. (c) The product of the two retinal outputs, computed off-chip and displayed in the 
same format as the actual chip output. It is an approximation to what the array of correla­
tors is receiving as input. High correlation values are dark. High correlations away from the 
correct disparity plane are false matches. (d) Analog voltage output from the chip, encoded 
by gray levels, shows segmentation into two disparity planes. The cooperative interactions 
among correlators suppresses false correlations. 
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Figure 12 Filling in the solution. (a) Retinal response to this input pattern. 
The space constant of the resistive network is shorter than the width of the 
large bar. Due to the averaging properties of the resistive net, the response to 
the edge of the wide bar is smaller than the response to the narrow bar. The 
response is enhanced at the edge of the wide bar. In the central region of the 
wide bar, the retinal output is near zero. (b) Analog output from the chip. 
The solution breaks into two disparity regions. The central area of the bar is 
filled in. 

and the winning correlator clearly dominates the loser. Since the resistor satu­
rates, the voltage difference across the break can increase without drawing more 
current across the edge. 

As the resistance decreases relative to the multiplier bias, the disparity 
discontinuity becomes less sharp. The resistors draw current from the winning 
correlator at the break. Figure 13 illustrates the effect of decreases in the 
lateral resistance. When the ratio of the multiplier bias current to the resistor 
saturation current is 0.30 (small resistance case), the current flowing through 
the resistor is able to supply some current to all the correlators across the break. 
The solution propogates across the change in disparity, so the winning disparity 
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Figure 13 Correlator outputs for an image with two regions of different dis­
parity. The input image has one region at disparity +2 next to another region 
of disparity -1. The boundary between the regions occurs in the center of the 
image. The analog outputs of the correlators on the +2 and -1 disparity planes 
are shown for different multiplier bias currents. The off-chip current-sense am­
plifier saturates at 3.7 volts. The zero-point reference voltage is 2.4 volts. The 
ratio, r, of the multiplier bias current to the resistor bias current is shown next 
to the curve, along with the disparity plane, d. 

plane is less distinguishable from the losing plane. When the ratio is larger, the 
losing plane is clearly distinguished from the winning plane. 

The variant of the chip that uses motion signals as features for correla­
tion has a larger input signal and smaller offsets than has the static contrast­
sensitive chip. There is only one current mirror between the output voltage 
generated by the retina and the input current to the correlator. These mir­
rors are mismatched between correlators, but the mismatches are smaller than 
those generated by the cascaded mirrors in the Gilbert multiplier. Because of 
its stronger input signals, the time derivative chip is more able to fill in areas 
of the solution that are not receiving retinal input, while still finding multiple 
disparity regions. Using a 40-pixel input array, the time derivative chip is able 
reliably to find correct solutions for images with three disparity regions, whereas 
the static contrast chip can discriminate only two disparity regions (Figures 14, 
15 and 16). The larger correlation input, however, means that the correlators 
are less able to suppress transient false matches (Figure 15). 
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For images with uniform intensity areas, the motion chip eliminates many 
false targets while maintaining a large input signal. The spatial extent of the 
time-derivative signal coming from the retinas is set by the speed of motion 
and the time constant of the derivative elements. An element generates few 
false matches by correlating with its previous position (rather than its current 
position) in the other retina if the time constant is short. As in the case of the 
edge-enhancing static retina, the retinal signal is small in areas of uniform il­
lumination. Spatially uniform intensity regions do not generate time-derivative 
signals when the image is displaced. The retinal input to ,the correlators gen­
erated at moving edges is very large compared to the retinal input in regions 
of unchanging intensity. The current supplied by a saturated resistor can be 
large compared to the static correlator input, but still small compared to the 
motion-generated signals. The solution can propagate effectively in regions of 
no image motion, whereas the signals from moving edges are easily able to break 
the solution into multiple disparity regions. 

The integrative properties of the correlators may aid in filling in the so­
lution. The dynamics of the correlators are set by the WTA circuits. The 
winning channel is discharged logarithmically in time by what is essentially a 
diode-connected transistor. In the absence of any competing input, the win­
ning channel takes a long time to decay (Figure 16). Therefore, the solution is 
integrated spatially as the stimulus moves over the pixel array. The fact that 
the winner stays active for a long time does not generate any false matches. In 
contrast, many false matches would be generated if the retinal derivative circuit 
had a large time constant. 
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Figure 14 Image with three constant-disparity regions. Boundaries between 
regions are indicated by vertical markers. This binocular pair, when fused, 
shows a central region containing 4 white bars standing out over a surrounding 
background. 

Figure 15 Scanned correlator-array output for motion sensitive chip, showing 
solution divided into three regions. Image is being moved slowly across the 
retinas. Bright areas signify a match. The picture was taken 0.25 seconds after 
the start of image motion. Transient false matches are not well suppressed. 
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(a) 

(b) 

Figure 16 (a) Scanned correlator array output showing response of the chip 
to the still input pattern. When there are no motion signals from the retina, 
the correlator array outputs are averaged over the whole disparity plane. Each 
disparity plane appears as a horizontal bar. (b) Scanned correlator array out­
put, 0.65 seconds after stopping motion of the input pattern. The solution is 
still visible because the state of the winning correlators decays slowly. 
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DISCUSSION 

Computational and synthetic approaches to artificial vision have a syn­
ergistic relationship. The stereo matching circuit profits from many of the 
strengths of Marr's computational algorithm. For example, resistive coupling 
between correlators enables the system to function in spite of large offsets. To 
average out offsets and to suppress false matches, we must set the resistors at 
a low value. Strong coupling results in a limited number of disparity regions 
that can be correctly identified in a single image. It is not yet understood what 
the intrinsic limitations are on the number of different disparity planes the chip 
can find. That the chip can find any solution in the presence of large offsets is 
a testament to the robust nature of the collective algorithm. 

The chip architecture, which is an embodiment of the representational 
framework of the algorithm, uses a value-unit encoding (Ballard, 1986). Rather 
than encoding target depth by the magnitude of a voltage, activation of a 
correlator unit represents the presence of a target in a discrete region of three­
dimensional space. Disparity is determined by the pattern of activity in the 
correlator array. The WTA inhibition is analog in nature; if two correlation 
elements are more or less equally stimulated by retinal input and cooperative 
interactions, then their outputs are comparable. If the disparity of the image is 
between two disparity planes, both are activated. When properly interpreted, 
the value-unit encoding achieves a resolution that is finer than a single pixel, 
even though the individual circuit elements are imprecise. 

Implementation of algorithms in a physical medium stimulates their de­
velopment in unforseen directions. For example, the use of optically acquired 
images precipitated the development of a variety of input features for stereo 
matching (Nishihara, 1984). These features are more robust to noise and verti­
cal offsets between images than are the abstract binary tokens used as matching 
features in the original algorithm. 

The static contrast-sensitive chip uses the analog value of a center-surround 
computation, which is easy to implement, as a primitive for stereo matching. 
The computation performed by the retinas on the chip retains information 
about the contrast between objects and is biologically plausible (Mahowald and 
Mead, 1989). The use of a center-surround matching primitive has been inves­
tigated by Mayhew and Frisby (1981). The use of time derivatives of intensity 
as a matching primitive has not been previously explored. Retinal neurons that 
generate transient responses, similar to those generated by the time-derivative 
silicon retinas, are known to project, via several relays, to disparity-tuned cells 
in layer IVb of the primary visual cortex (Poggio, 1984). The use of tran­
sient matching primitives introduces time as a representational dimension in 
the stereo correspondence computation. 

Little research has been done in time-based algorithms for stereopsis be­
cause it is difficult to simulate temporal functions using traditional methods. It 
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is known that time is an intrinsic part of the disparity computation in natural 
systems. Perceptual psychologists have shown that binocular time delay and 
disparity can be substituted for each other in moving stimuli (Burr and Ross, 
1979). Binocular time delay has been used to characterize disparity sensitive 
neurons in visual cortex (Gardner et al. 1985). Signals that are time delayed 
between the two eyes result from motion in a complex environment in which 
surfaces occlude one another. (Shimojo et al. 1985). 

Parallel, analog hardware greatly facilitates real-time processing of complex 
inputs. The time-derivative correlating chip is a first step' toward a real-time, 
interactive system for stereopsis. Using time derivatives has improved the per­
formance of the chip by reducing the effect of offsets. In the future, we hope 
to expand the chip's representation to include binocular time delay. By tak­
ing advantage of the properties of the analog medium, we hope to gain further 
insights into the problem of stereopsis. 

Acknowledgements 
We thank Jin Luo and Tor Lande for technical assistance. We thank 

Hewlett-Packard for computing support, and DARPA and MOSIS for chip fab­
rication. This work was sponsored by the Office of Naval Research and the 
System Development Foundation. 

References 

Ballard, D.H. (1986). Cortical connections and parallel processing: Structure 
and function. The Behavioral and Brain Sciences 9: 67-120. 

Burr, D.C., and Ross, J. (1979). How does binocular delay give information 
about depth? Vision Research 19: 523-532. 

Delbriick, T., and Mead, C.A. (1989). An electronic photoreceptor sensitive to 
small changes in intensity. In Touretsky, D. S. (ed), Advances in Neural Infor­
mation Processing Systems 1., pp 712-727, San Mateo, CA: Morgan Kaufman. 

Gardner, J.C., Douglas, R.M., and Cyander, M.S. (1985). A time-based stereo­
scopic depth mechanism in the visual cortex. Brain Research 328: 154-157. 

Hutchinson, J., Koch, C., Luo, J., and Mead, C. (1988). Computing motion 
using analog and binary resistive networks. IEEE Computer March pp. 52-63. 

Julesz, B. (1960). Binocular depth perception of computer-generated patterns. 
Bell Syst. Tech. J. 39: 1125-1162. 

Julesz, B. (1971). Foundations of Cyclopean Perception. Chicago, IL: The 
University of Chicago Press. 



238 

Lazzaro, J., Ryckebusch S., Mahowald, M.A., and Mead, C.A. (1989). Winner­
Take-All circuits of O(n) complexity. In Touretsky, D.S. (ed), Advances in Neu­
ral Information Processing Systems 1. pp. 703-711, San Mateo, CA! Morgan 
Kaufman. 

Mahowald, M.A. and Mead, C.A. (1989). Silicon retina. In Mead, C.A. Analog 
VLSI and Neural Systems, pp. 257-278, Reading, MA: Addison-Wesley. 

Marr, D., Palm, G., and Poggio, T. (1978). Analysis of a cooperative stereo 
algorithm. Biological Cybernetics 28: 223-239. 

Marr, D., and Poggio, T. (1976). Cooperative computation of stereo disparity. 
Science 194: 283-287. 

Marr, D. (1982). Vision, New York: W. H. Freeman. 

Mayhew, J. and Frisby, J.P. (1981). Psychophysical and computational studies 
towards a theory of human stereopsis. Artificial Intelligence 17: 349-385. 

Mead, C.A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison­
Wesley. 

Mead, C.A. and Mahowald, M.A. (1988). A silicon model of early visual pro­
cessing. Neural Networks. 1: 91-97. 

Nishihara, H. (1984). Practical real-time imaging stereo matcher. Optical En­
gineering 23: 536-545. 

Poggio, G. (1984). Processing of stereoscopic information in primate visual 
cortex. In Edelman, G. M., Gall W. E., and Cowan, W. M. (eds), Dynamic 
aspects of neocortical function, pp. 613-635, New York: John Wiley & Sons. 

Poggio, G. and Poggio, T. (1984). The analysis of stereopsis. Annual Review 
of Neuroscience 7: 379-412. 

Shimojo, S., Silverman, G.H., and Nakayama, K. (1985). An occlusion-related 
mechanism of depth perception based on motion and interocular sequence. N a­
ture 333: 265-268. 

Sivilotti, M.A., Mahowald, M.A., and Mead, C.A. (1987). Real-time visual 
computations using analog CMOS processing arrays. In Losleben, (ed), Ad­
vanced Research in VLSI, Proceedings of the 1987 Stanford Conference, pp. 
295-312, Cambridge, MA : MIT Press. 



10 

ADAPTIVE RETINA 

Carver Mead 
California Institute of Technology 

Pasadena, California, 91125 

Retinal Computation 

Mahowald describes a silicon model of the computation performed by the 
first layer of visual processing, located in the outer plexiform layer of the retina 
[Mahowald 88,891. The lateral spread of information at the outer plexiform layer 
is mediated by a two-dimensional resistive network. The voltage at every point 
in the network represents a spatially weighted average of the photoreceptor 
inputs. The farther away an input is from a point in the network, the less 
weiglit it is given. The weighting function decreases in a generally exponential 
manner with distance. 

Each photoreceptor in the network is linked to its six neighbors with re­
sistive elements, to form the hexagonal array shown in Figure 1. Each node of 
the array has a single bias circuit to control the strength of the six associated 
resistive connections. The photoreceptors act as voltage inputs that drive the 
resistive network through conductances. Because a transconductance amplifier 
was used in place of a bidirectional conductance, the photoreceptor acts an ef­
fective voltage source. No current can be drawn from the output node of the 
photoreceptor, because the amplifier input is connected to only the gate of a 
transistor. 

Figure 1 Schematic of pixel from the Mahowald retina. The output is the 
difference between the potential of the local receptor and that of the resistive 
network. The network computes a weighted average over neighboring pixels 

239 
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The resistive network computes a spatially weighted average of photore­
ceptor inputs. The spatial scale of the weighting function is determined by 
the product of the lateral resistance and the conductance coupling the photore­
ceptors into the network. Varying the conductance of the transconductance 
amplifier or the strength of the resistors changes the space constant of the 
network, and thus changes the effective area over which signals are averaged. 

The receptive field of the output of this computation shows an antagonis­
tic center-surround response. This behavior is a result of the interaction of the 
photoreceptors, the resistive network, and the output amplifier. A transconduc­
tance amplifier provides a conductance through which the resistive network is 
driven toward the photoreceptor potential. A second amplifier senses the volt­
age difference across the conductance, and generates an output proportional to 
the difference between the photoreceptor potential and the network potential 
at that location. The output thus represents the difference between a center 
intensity and a weighted average of the intensities of surrounding points in the 
image. 

Frank Werblin suggested that the model shown in Figure 1 might benefit 
from the known feedback connections from resistive network to photoreceptor 
circuit. Our first attempt to incorporate this suggestion is shown in Figure 2. 
In this pixel circuit, the output node is the emitter of the photo transistor. The 
current out of this node is thus set by the local incident light intensity. The 
current into the output node is set by the potential on the resistive network, 
and hence by the weighted average of the light intensity in the neighborhood. 
The difference between these two currents is converted into a voltage by the ef­
fective resistance of the output node, determined primarily by the Early effect. 
The advantage of this circuit is that small differences between center inten­
sity and surround intensity are translated into large output voltages, but the 
large dynamic range of operation is preserved. A retina fabricated with this 
pixel did indeed show high gain, and operated properly over many orders of 
magnitude in illumination. The transconductance amplifier has a hyperbolic­
tangent relationship between output current and input differential voltage. For 
proper operation, the conductance formed by this amplifier must be consider­
ably smaller than that of the resistive network node. For that reason, when a 
local output node voltage is very different from the local network voltage, the 
amplifier saturates and supplies a fixed current to the node. The arrangement 
thus creates a center-surround response of only slightly different form from that 
of the straightforward implementation of Figure 1. 

Once the new circuit was operating, it was immediately clear that its higher 
gain made it much more sensitive to transistor offset voltages than lower-gain 
versions had been. Under uniform illumination, most pixel outputs were driven 
to one rail or the other. Of course biological retinas must have precisely the 
same problem. No two receptors have the same sensitivity, and no two synapses 
have the same strength. The problem in wetware is even more acute than it is 
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Figure 2 Schematic of a simplified pixel circuit that performs an operation 
similar to that performed by the Mahowald unit of Figure 1. 

in silicon. It is also clear that biological systems use adaptive mechanisms to 
compensate for their lack of precision. The resulting system performance is well 
beyond that of our most advanced engineering marvels. Well, if biology can do 
it, so can we. Once we understand the principle, we can incorporate it into our 
silicon retina. Before we can even start, we need an adaptive mechanism. 

Adaptive Mechanism 

All our analog chips are fabricated in silicon-gate CMOS technology [Mead 
89]. If no metal contact is made to the gate of a particular transistor, that 
gate will be completely surrounded by silicon dioxide-the world's best insu­
lator. Any charge parked on such a floating gate will remain for eons. The 
first floating-gate experiments of which I am aware were performed at Fairchild 
Research Laboratories in the mid 1960's. The first product to represent data 
by charges stored on a floating gate was reported in 1971 [Frohman 71]. In this 
device, which today is called an EPROM, electrons are placed on the gate by 
an avalanche breakdown of the drain junction of the transistor. This injection 
can be done selectively, one junction at a time. Electrons can be removed by 
ultraviolet light incident on the chip. This so-called erase operation is per­
formed on all devices simultaneously. In 1985, Glasser reported a circuit in 
which either a binary one or a binary zero could be stored selectively in each 
location of a floating-gate digital memory [Glasser 85]. The essential insight 
contributed by Glasser's work was that there is no fundamemtal assymetry to 
the current flowing through a thin layer of oxide. Electrons are excited into the 
conduction band of the oxide from both electrodes. The direction of current 
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Figure 3 Schematic of a pixel that is similar to the one depicted in Figure 2, 
but that can be adapted with ultraviolet light to correct for output variations 
among pixels. 

flow is determined primarily by the direction of the electric field in the oxide. 
In other words, the application of ultraviolet illumination to a capacitor with 
silicon-dioxide dielectric has the effect of shunting the capacitor with a very 
small leakage conductance. With no illumination, the leakage conductance is 
effectively zero. The leakage conductance present during ultraviolet illumina­
tion thus provides a mechanism for adapting the charge on a floating gate. 

We can make use of ultraviolet adaptation in our high-gain retina using the 
circuit shown in Figure 3. This circuit is identical to that of Figure 2. except 
that a floating gate has been interposed between the resistive network and the 
pullup transistor for the output node. The network is capacitively coupled to 
the floating node. The current into the output node is thus controlled by the 
voltage on the network, with an offset determined by the charge stored on the 
floating node. There is a region where the floating node overlaps the emitter 
of the photo transistor, shown inside the dark circle in Figure 3. The entire 
chip is covered by second-level metal, except for openings over the phototran­
sistors. The only way in which ultraviolet light can affect the floating gate is 
by interchanging electrons with the output node. If the output node is high, 
the floating gate will be charged high, thereby decreasing the current into the 
output node. If the output node is low, the floating gate will be charged low, 
thereby increasing the current into the output node. The feedback occasioned 
by ultraviolet illumination is thus negative, driving all output nodes toward the 
same potential. 
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Adaptation of the Retina 

A scanned representation of the response of the adaptive retina to uniform 
illumination is shown in Figure 4. The dark bars at the left of each pixel are 
due to a capacitive transient as each pixel output is addressed. The hexago­
nal organization of the pixel array is clearly visible. In this and subsequent 
adaptation examples, the resistive network has been adjusted to have very low 
resistance relative to the transconductance of the amplifiers in each pixel. Un­
der these conditions, the network computes a global aver-age across the chip. 
Notice the wide variance in output voltage; many outputs are saturated pos­
itive, and others are saturated negative. We can adapt these nonuniformities 
by exposing the chip to uniform ultraviolet illumination. Figure 5 shows the 
response of the adapted retina after five minutes of such exposure. Notice that 
all pixel outputs are now uniform. The adaptation has completely eliminated 
offsets due to inhomogenity in device characteristics. 

The response of the retina when two opaque bars are interposed between 
the chip and the light source is shown in Figure 6. No center-surround response 
is observed for this adjustment of the chip, because the network averages over 
the spatial scale of the entire chip. We can now perform an experiment that 
can also be performed on the human visual system. We can adapt the retina 
in the presence of an image fixed in the visual field. The result of adapting 
the silicon retina to the stimulus of Figure 6 is shown in Figure 7. The chip 
has generated an afterimage. The contrast of the afterimage is reversed from 
that of the image to which the retina was adapted. This kind of afterimage is 
produced in our own retinas if we stare at a fixed image for a long time. Our 
retinas are constantly adapting. The only reason that we are not constantly 
confused by such afterimages is that our eyes are constantly in motion. The 
illumination at anyone pixel, averaged over many visual scenes, is the same as 
that for any other pixel. We can approximate the mode of operation of human 
retina by fitting the chip with a quartz lens and operating it at high altitudes, 
where enough ultraviolet light is present in the solar spectrum to adapt the 
circuits continually. 

Once the retina has been adapted, we can increase the resistance of the 
resistive network to reduce the distance over which the lateral averaging takes 
place [Mahowald 89]. With an averaging distance of a few pixels, the retina 
shows a strong center-surround response. The output of the retina under these 
conditions is shown in Figure 8. 
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Figure 4 Scanned representation of the output of the adaptive retina, before 
adaptation 

Figure 5 Scanned representation of the output of the adaptive retina, after 
adaptation 
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Figure 6 Scanned representation of the output of the adaptive retina with 
two opaque bars interposed between the ultraviolet light source and the chip 

Figure 7 Scanned representation of the output of the adaptive retina after 
adaptation with the two dark bars of Figure 6. The negative afterimage is 
clearly visible. 
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Figure 8 Scanned representation of the output of the adaptive retina after 
adaptation, with the space constant of the resistive network adjusted to show 
center-surround response. 
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