
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019
1003

PAPER Special Section on Reconfigurable Systems

GUINNESS: A GUI Based Binarized Deep Neural Network
Framework for Software Programmers

Hiroki NAKAHARA†a), Haruyoshi YONEKAWA†b), Tomoya FUJII†c), Masayuki SHIMODA†d),
and Shimpei SATO†e), Members

SUMMARY The GUINNESS (GUI based binarized neural network
synthesizer) is an open-source tool flow for a binarized deep neural net-
work toward FPGA implementation based on the GUI including both the
training on the GPU and inference on the FPGA. Since all the operation is
done on the GUI, the software designer is not necessary to write any scripts
to design the neural network structure, training behavior, only specify the
values for hyperparameters. After finishing the training, it automatically
generates C++ codes to synthesis the bit-stream using the Xilinx SDSoC
system design tool flow. Thus, our tool flow is suitable for the software
programmers who are not familiar with the FPGA design. In our tool flow,
we modify the training algorithms both the training and the inference for a
binarized CNN hardware. Since the hardware has a limited number of bit
precision, it lacks minimal bias in training. Also, for the inference on the
hardware, the conventional batch normalization technique requires addi-
tional hardware. Our modifications solve these problems. We implemented
the VGG-11 benchmark CNN on the Digilent Inc. Zedboard. Compared
with the conventional binarized implementations on an FPGA, the classifi-
cation accuracy was almost the same, the performance per power efficiency
is 5.1 times better, as for the performance per area efficiency, it is 8.0 times
better, and as for the performance per memory, it is 8.2 times better. We
compare the proposed FPGA design with the CPU and the GPU designs.
Compared with the ARM Cortex-A57, it was 1776.3 times faster, it dis-
sipated 3.0 times lower power, and its performance per power efficiency
was 5706.3 times better. Also, compared with the Maxwell GPU, it was
11.5 times faster, it dissipated 7.3 times lower power, and its performance
per power efficiency was 83.0 times better. The disadvantage of our FPGA
based design requires additional time to synthesize the FPGA executable
codes. From the experiment, it consumed more three hours, and the total
FPGA design took 75 hours. Since the training of the CNN is dominant, it
is considerable.
key words: machine learning, deep learning, pruning, FPGA

1. Introduction

1.1 Convolutional deep Neural Network (CNN)

Convolutional deep Neural Networks (CNN) are the cur-
rent state-of-the-art for many embedded computer vision
tasks, such as a hand-written character recognition [13], a
face detector [27], a scene determination [24], and an ob-

Manuscript received July 27, 2018.
Manuscript revised December 3, 2018.
Manuscript publicized February 27, 2019.
†The authors are with Department of Information and Com-

munications Engineering, Tokyo Institute of Technology, Tokyo,
152–8552 Japan.

a) E-mail: nakahara@ict.e.titech.ac.jp
b) E-mail: yonekawa@reconf.ict.e.titech.ac.jp
c) E-mail: fujii@reconf.ict.e.titech.ac.jp
d) E-mail: shimoda@reconf.ict.e.titech.ac.jp
e) E-mail: satos@eda.ict.e.titech.ac.jp

DOI: 10.1587/transinf.2018RCP0002

Fig. 1 Typical convolutional deep neural network (CNN).

ject recognition [7]. They outperform conventional meth-
ods for accuracy at the 2012 ILSVRC ImageNet recognition
challenge. New networks and their implementations are re-
ported each week. Since applications require more accuracy,
modern CNNs contain millions of floating-point parameters
and need billions of floating-point operations to recognize a
single image. Furthermore, recent CNNs tends to be large
by AI researchers. Consequently, the training and inference
of the CNNs are almost exclusively done on large clusters of
GPUs. However, the GPU platform consumes much power
than the CPU and the FPGA. It cannot be used in the embed-
ded system, which requires low power consumption. Also,
since the modern CNN needs many operations per an image,
the embedded CPU is too slow.

1.2 Binarized CNN for an FPGA

Recent work by Microsoft showed that the FPGA based
deep learning leads us the performance per power efficiency.
Furthermore, the low-precision CNNs have been demon-
strated [5], [26], [38] which uses only one- or two- bit quan-
tization strategy to reduce the hardware size with consider-
able accuracy. It is suitable for the FPGA implementations.
Since the FPGA consists of a fine-grain element, which is
a single-bit LUT (Look-Up Table), it can realize a custom
circuit for such a low-precision circuit. On the other hand,
the GPU consists of a coarse-grain element, which is config-
ured as 8, 16, 32, and 64-bit arithmetic element. Although
it can emulate a low-precision CNN, it cannot efficiently re-
alize it. Recently, a flexible heterogeneous streaming bina-
rized architecture [31], and a variable-width line buffer im-
plementation [36] have been reported. The evaluation re-
sults [22] by Intel indicated that the binarized CNN could
deliver orders of magnitude improvements in performance
and performance/watt over well-optimized software on CPU
and GPU. Although FPGA is less efficient than ASIC, the

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

1004
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019

Fig. 2 Typical CNN design flow using a GPU.

FPGA-ASIC gap may be reduced for designs that heavily
utilize hard blocks. Hence, FPGA offers an attractive so-
lution, which deliver superior efficiency improvements over
software, without having to lock into a fixed ASIC solution.

The CNN consists of the convolutional layers, pool-
ing layers, and the fully connected layers. The existing
works [25], [36] analyzed the profile of the CNN. Previous
works indicated that in the convolutional layers are bounded
by computations, while the FC layers are bounded by mem-
ory access. Although the binarized convolutional layer was
accelerated by many of XNOR gates (binarized multipliers),
the memory access bottleneck for the FC layers still remain.
One challenge to speed up the binarized CNN is eliminate
the FC layers. The known method for that is the pruning
technique for the FC layer [11]. Even if such procedures,
the FC layers still exist. In the paper, we use a binarized
average pooling layer instead of internal FC layers.

1.3 Known Problem for Software Programers

Figure 2 shows a typical CNN design flow using a GPU.
First, the software designers prepare the training data con-
sisting of image set and its labels. Typically, to improve the
recognition accuracy, it applies the pre-processing to raw
image set. This version supports rotation, flipping, color
exchange operations. Also, they write the target CNN struc-
ture by Python code. Second, they train the CNN using the
deep learning framework on the GPU to accelerate the train-
ing time. Then, the CNN weights are generated. Finally,
they perform the inference by using the trained weight and
input test image.

There are training and inference phases to realize the
deep learning on the FPGA In the paper, we assume that the
training is done by the GPU, while the FPGA only does the
inference. Unfortunately, the software designer must con-
vert the Python code for the CNN into the hardware descrip-
tion language (e.g. Verilog-HDL). Recently, to solve the de-
scription gap between the HDL code and the Python one,
a high-level synthesis (HLS) has been released. However,
even if they can be familiar with the HLS, the refactoring
is still necessary to bring out the potential of the FPGA. It

means that it requires much design time compared with the
GPU based design. To solve this problem, we also propose a
GUI based framework which warps the deep learning design
tools and the FPGA ones.

There are FPGA based deep learning frameworks from
academia [6], [8], [9], [29], [33]. Only our framework sup-
ports the binarized CNN to reduce the amount of hardware
further. The software designer can realize the deep learn-
ing on the FPGA with accessing the API which controls the
hardware. Also, in the paper, we modify the training algo-
rithm for the hardware realization.

1.4 Contributions of the Paper

1. We developed an open-source GUI based binarized
deep learning framework which supports both the train-
ing on the GPU and the inference on an FPGA. As far
as we know, the tool is the first GUI-based framework
of the binarized CNN for an FPGA. Since our GUI re-
quires no knowledge of the hardware design, the soft-
ware designer can quickly realize the high performance
per area CNN on the FPGA. We opened the GUIN-
NESS (GUI based Neural Network Synthesizer) frame-
work for a binary deep neural network toward FPGA
implementation as an open source. It is available for
every designer at [19].

2. We modified the training algorithm both the training
and the inference for the binarized CNN hardware.
Since the hardware has a limited number of bit preci-
sion, it lacks the minimal bias. Also, for the inference
on the hardware, the conventional batch normalization
technique requires additional hardware. Our modifica-
tions solved these problems.

3. We implemented the VGG-11 benchmark CNN on the
Digilent Inc. Zedboard. Compared with the conven-
tional binarized implementations on an FPGA, the clas-
sification accuracy was almost the same, the perfor-
mance per power efficiency is 5.1 times better, as for
the performance per area efficiency, it is 8.0 times bet-
ter, and as for the performance per memory, it is 8.2
times better.

4. We compared the proposed FPGA design with the
CPU and the GPU designs. Compared with the ARM
Cortex-A57, it was 1776.3 times faster, it dissipated 3.0
times lower power, and its performance per power ef-
ficiency was 5706.3 times better. Also, compared with
the Maxwell GPU, it was 11.5 times faster, it dissi-
pated 7.3 times lower power, and its performance per
power efficiency was 83.0 times better. The disadvan-
tage of our FPGA based design requires additional time
to synthesize the FPGA executable codes. From the ex-
periment, it consumed more three hours, and the total
FPGA design took 75 hours. Since the training of the
CNN is dominant, it is considerable.

This paper is built on past publications [20], [34].

NAKAHARA et al.: GUINNESS: A GUI BASED BINARIZED DEEP NEURAL NETWORK FRAMEWORK FOR SOFTWARE PROGRAMMERS
1005

Fig. 3 The GUINNESS (GUI based binarized deep neural network synthesizer) GUI.

1.5 Organization of the Paper

The rest of the paper is organized as follows: Chapter 2 in-
troduces our GUI based design flow; Chapter 3 shows the
training algorithms used in the framework; Chapter 4 shows
the architecture for the binarized CNN; Chapter 5 shows the
experimental results; Chapter 6 concludes the paper.

2. Related Work

For FPGA realizations of a CNN, many implementa-
tions have been reported including a hand-written charac-
ter recognition [13], a face detector [27], a scene determi-
nation [24], an object recognition [7], and speech recogni-
tion [10] are implemented. The recursive residue number
system (NRNS) based CNN has been proposed [21]. The
restricted Boltzmann machine (RBM) based CNN has been
proposed [14] Qiu et al. analyzed the hardware profile for
the CNN implementation, and they showed that in the con-
volutional operation part, the MAC operation was a bot-
tleneck, while in the full connection part, the memory ac-
cess was bottleneck [25]. To reduce the design time for the
CNN, many tools/frameworks from academia/industry have
been released [6], [8], [9], [16]–[18], [29], [33], [36]. Also,
the OpenCL based CNN on an FPGA is an attractive solu-
tion for the software programmer who does not know the
hardware [1], [35]. To further reduce the hardware, binary
CNNs [20], [22], [31], [34], [36] have been implemented on
an FPGA.

3. Our GUI Based Design Tool Flow

Figure 3 shows the developed GUI written in PythonQt4,
which warps design tools for a deep learning training and
an FPGA design. Our GUINNESS framework supports

the binarized CNN for the FPGA realization. It consists
of a project setting, a CNN specification, a training, and
an FPGA synthesis. First, software designers specify the
project directory. Second, they specify the CNN parame-
ters including each layer type (convolution, max pooling,
average pooling, and dense), the number of feature maps,
feature map size, and do/not training. The GUI prepares the
pre-designed CNNs such as, the TensorFlow tutorial CNN,
the VGG-11, the VGG-16, and LeNet-5, thus, the design-
ers must not specify all the CNN. Third, they specify the
training parameters consisting of the training image dataset,
the number of training (epochs), the optimization algorithm
(SGD, Adam), use/not GPU. Also, the GUI provides the
graphical view of the training process. Thus, the users can
easily understand the training process. Finally, they set the
target FPGA board, since the GUI calls the Xilinx SDSoC
which focuses on the support FPGA board. After push-
ing the “Generate Bitstream” button, the GUI generates the
C++ code including pragmas to realize a high performance
per area CNN circuit. Then, it synthesizes the CNN circuit.
At a time, it converts the pre-trained weight into a text file
to be loaded into an on-chip memory of an FPGA.

Figure 4 shows a proposed FPGA design flow, which
is performed by the GUINNESS GUI. First, after the end of
specifying parameters of the training, the GUI generates the
Python scripts to determine the CNN and its training. Then,
it calls the Chainer to train the CNN on the GPU, and it pro-
duces the binarized CNN weight. Second, after the end of a
set of FPGA board and its clock frequency, it converts from
the Python scripts into C++ codes consisting of the process-
ing system (PS) code and the programmable logic (PL) one.
The PL code is synthesized by the HLS to generate the bit-
stream to realize the CNN accelerator, while the PS code is
compiled by the gcc to control the PL and supply the API
for the software designer. Also, after finish the configura-
tion, the binarized CNN is realized, and it loads the con-

1006
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019

Fig. 4 Proposed FPGA design flow.

verted weight file to perform the inference. In this version,
we use the Xilinx SDSoC to generate these executable codes
and the operating system. Thus, the software designer can
realize the binarized CNN on the FPGA without no scripts,
and can easily access its hardware through the API on the
PS.

The disadvantage of the proposed FPGA tool flow is
to consume additional design time to synthesize the FPGA
executable code compared with the GPU based realization.
However, compared with the CNN training time, the FPGA
design time is shorter. Thus, its disadvantage can be ig-
nored.

4. Training Algorithms Used in the GUINNESS

For both the inference and training, the CNN may take min-
imum value of the bias. Thus, it is not suitable for the low
precision hardware realization. In the worst case, since it
takes difference activation, the recognition result tends to be
changed. To solve the problem, we modify the training al-
gorithm. First, we explain the batch normalization, which is
an essential technique for the binarized CNN.

4.1 Batch Normalization

Typically, to accelerate training time and convergence, a set
of training data (mini-batch) is back-propagated and it up-
dates weights at a time. It is called by mini-batch training.
In this case, since the impact on the difference in the distri-
bution of data for each batch (internal covariate shift), the
convergence of the training tends to be slow, and the trainer
must carefully determine the initial value of the parame-
ters. These problems are solved by batch normalization
(BN) [28] which corrects the difference in the distribution
by shift and scaling operations.

At the training, the BN finds parameters γ and β to reg-
ularize the variance to 1 and the average to 0 for each mini-
batch. The BN algorithm for training is shown as follows:

Algorithm 4.1: Input: Mini-batch B = {X1, X2, . . . , Xm}
Output: Parameters γ and β.

1. Obtain average for each mini-batch: μB ← 1
m

∑m
i=1 Xi.

2. Obtain variance for each mini-batch: σ2
B ←

1
m

∑m
i=1(Xi − μB)2.

3. Perform normalization: X̂i ← Xi−μB√
σ2

B+ε
.

4. Obtain γ and β, that regularizes the variance to 1 and
the average to 0 for Bi ← γX̂i + β.

5. Terminate.

Above Algorithm performs the normalization for each
mini-batch. A hyperparameter ε is set for a coefficient sta-
bilization, which is used to adjust the training time. Since
both γ and β have been already trained during classification,
the CNN with BN reads them from the off-chip memory.
Thus, the operation for the CNN with BN is introduced as
follows:

Y =
n∑

i=0

wixi,

B = γY + β,

z = fsgn(B),

where wi, xi, z are binary variables, while Y , B, γ, and β are
integer ones. Above expression shows that the CNN with
BN requires additional cost for the multiplier and the adder
for area, while the memory access for γ and β.

4.2 Bias Elimination for CNN Training

As shown in Algorithm 4.1, the BN normalizes an internal
variables Y . Let Y ′ be the output of the BN operation. Then,
we have

Y ′ = γ
Y − μB√
σ2

B + ε
+ β

NAKAHARA et al.: GUINNESS: A GUI BASED BINARIZED DEEP NEURAL NETWORK FRAMEWORK FOR SOFTWARE PROGRAMMERS
1007

=
γ√
σ2

B + ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Y −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝μB −

√
σ2

B + ε

γ
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

From above expression, the signed activation function
becomes

f ′sgn(Y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(
i f Y < −μB +

√
σ2

B+ε

γ
β

)

−1 (otherwise).

That is, the value of the active function is determined
by the value of the above equation. In this case, since x0 = 1,
Y can be equivalent to the following expression:

Y =
n∑

i=0

wixi − μB +

√
σ2

B + ε

γ
β

=

n∑
i=1

wixi +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝w0 − μB +

√
σ2

B + ε

γ
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (1)

Thus, for the CNN training, we assume that the orig-
inal μ is w0 − μB, then, the bias w0 is merged into μ. The
GUINNESS generates the Python script which does not in-
clude bias parameters. As a result, we can avoid the bias lost
problem even if we use a low precision bias.

4.3 Batch Normalization Free CNN Inference

Although the BN is an essential technique for the binarized
CNN, it requires an additional area for the multiplier and
the adder, and the memory access for parameters. In this
paper, we introduce a batch normalization free binarized
CNN which has an equivalence to the BN operation. Since
it does not requires additional area, the hardware becomes
more straightforward than the one including BN operation.

From Expr. (1), we have the following:

Y =
n∑

i=1

wixi +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝w0 − μB +

√
σ2

B + ε

γ
β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑
i=1

wixi +W ′

�
n∑

i=1

wixi + �W� (2)

The binarized CNN with the BN is converted into the
EXNOR-MAC with an integer bias �W ′�. Since the activa-
tion function adopted in our framework is a sign function,
its calculation result is always binary value (positive or neg-
ative one). Since the input xi and the weight wi are binary,
the result of the convolution is integer precision. Since it
is sufficient to decide positive or negative one, even if W′
rounded up to the integer �W ′� is used, the same calculation
result is accomplished. Therefore, it is possible to replace
the BN with integer precision bias. In this paper, we call this

the BN free binarized CNN. This expression approximates
the BN operation by a shifting one. In the circuit, since the
BN operation is replaced into the integer bias, the hardware
becomes simpler, and the memory access is reduced. There-
fore, the BN free binarized CNN is faster and smaller than
conventional ones.

5. Binarized CNN Architecture for the FPGA

The proposed GUINNESS framework supports the bina-
rized CNN, which is suitable for the FPGA realization. We
tuned the binarized CNN by removing internal full connec-
tion layers without affecting the overall accuracy. Then, they
are replaced by an implementation-friendly binarized aver-
age pooling layer. Figure 5 shows our binarized CNN.

5.1 Binarized Average Pooling

In the CNN, almost parameters are focused on the FC lay-
ers. To remove them, we replace the internal FC layers
into an average pooling one. Previous works (Network-in-
network [15] and GoogLeNet [30]) directly connected the
output of the convolutional layer to the softmax layer. It im-
plies that the inference can be correctly performed without
FC layers. Figure 6 shows that the binarized average pool-
ing circuit. Since the binarized average pooling is equivalent
to the 1’s counter and the threshold detector, which can be
realized by just outputting the MSB of the 1’s counter. Thus,
the binarized average pooling circuit can be implemented by
a simple circuit.

5.2 Binarized CNN Using an Average Pooling

For each L × L feature map of the last layer of the convo-
lutional ones, it can be replaced into a binarized averaging
pooling with a L×L kernel. We attach a FC layer to the out-
put of the 1 dimensional neurons generated by the average
pooling layer. This is equivalent to eliminate the internal FC

Fig. 5 Proposed binarized CNN using an average pooling layer.

Fig. 6 Binarized average pooling circuit.

1008
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019

Fig. 7 Streaming binarized 2D convolutional circuit.

layers and replace with the average pooling one. The reason
to remain the last FC layer is to map the output neurons for
classification.

5.3 Shared XNOR-MAC Circuit with Streaming Opera-
tion

Although we used the binarized MAC operation instead of
the floating-point one, it consumes much hardware to realize
the entirely parallel XNOR-MAC operation. Since the typi-
cal CNN has different number of feature maps in the layer, a
heterogeneous streaming architecture requires many LUTs
for a large size of XNOR operations.

In the paper, to realize the high-performance with less
hardware, we proposed a shared XNOR-MAC circuit sup-
porting a streaming operation as shown in Fig. 7. To re-
duce the memory access, we use the shift register to make a
streaming data flow from the memory for the feature map.
Also, it share the different size of XNOR-MAC circuit into
a single bitwise XNOR circuit followed by adder-trees, bias
adder, and a write controller. The circuit reads the corre-
sponding inputs from the shift register, then it applies to the
bitwise binarized MAC operation. Next, it adds the pre-
computed bias, which is obtained by both the pre-trained
bias and the batch normalization value. Since the kernel
crosses the boundary of the feature map, we attach the write
control logic to the output of the circuit.

6. Experimental Results

6.1 FPGA Implementation

We implemented the binarized CNN for the VGG-11 on
the Xilinx Inc. Zedboard, which has the Xilinx Zynq FPGA
(XC7Z020, 53,200 LUTs, 106,400 FFs, 280 18Kb BRAMs,
220 DSP48Es). We used the Xilinx Inc. SDSoC 2016.4 to
generate the bitstream with timing constraint 143.78 MHz.
Our implementation used 18,325 LUTs, 19,913 FFs, 32
18Kb BRAMs, and a DSP48E. Also, it satisfied the neces-
sary timing constraint. As for the number of operations for
the implemented CNN, since it performed 3 × 3 MAC op-
erations for 256 feature maps at 143 MHz, it was 329.47

Table 1 Comparison with other low bit precision CNN realizations on
the FPGA.

Implementation Zhao et al. [36] FINN [31] Ours
FPGA Board Zedboard PYNQ board Zedboard
(FPGA) (XC7Z020) (XC7Z020) (XC7Z020)
Clock (MHz) 143 166 143
LUTs 46900 42823 14509
18Kb BRAMs 94 270 32
DSP Blocks 3 32 1
Test Error 12.27% 19.9% 18.2%
Time [msec] 5.94 2.24 2.37
(FPS) (168) (445) (420)
Power [W] 4.7 2.5 2.3
FPS/Watt 35.7 178.0 182.6
FPS/LUT 35.8×10−4 103.9×10−4 289.4×10−4

FPS/BRAM 1.8 1.6 13.1

GOPS (Giga Operations Per Seconds). As for the mem-
ory bandwidth, for 256 feature maps, since it reads 3 × 3
binarized weights, 3 × 3 binarized inputs, and send a bi-
narized output at a time, it was 86.9 GB per second. We
measured the total board power consumption, which was
2.3 Watt. Since the implemented CNN operated 329.47
GOPS with 11,986 Slices, the area efficiency was 274.8
(GOPS/Slice×10−4). Also, the performance per power ef-
ficiency was 143.25 (GOPS/W).

6.2 Compared with Conventional Binarized CNN Imple-
mentations

Table 1 compares binarized CNN implementations on the
same FPGA. From Table 1, compared with Zhao’s imple-
mentation, the classification accuracy was almost the same,
as for the performance per power efficiency (FPS/Watt), it is
5.1 times better, as for the performance per area efficiency
(FPS/LUT), it is 8.0 times better, and as for the performance
per memory (FPS/BRAM), it is 7.3 times better. Compared
with the FINN, the classification accuracy was almost the
same, the performance per power efficiency is almost the
same, as for the performance per area efficiency, it is 2.8
times better, and as for the performance per memory, it is
8.2 times better.

6.3 Comparison with other Embedded Platforms

We compared our binarized CNN with other embedded plat-
forms. We used the NVIDIA Jetson TX1 board which has
both the embedded CPU (ARM Cortex-A57) and the em-
bedded GPU (Maxwell GPU). Following the benchmark-
ing [23], the CPU and GPU run the VGG11 using Caffe [2]
version 0.14. Also, we measured the total power consump-
tion. Note that, in the experiment, to measure the latency,
we set the number of batch size to one.

Table 2 compares our FPGA implementation with other
platforms. Compared with the ARM Cortex-A57, it was
1776.3 times faster, it dissipated 3.0 times lower power, and
its performance per power efficiency was 5706.3 times bet-
ter. Also, compared with the Maxwell GPU, it was 11.5

NAKAHARA et al.: GUINNESS: A GUI BASED BINARIZED DEEP NEURAL NETWORK FRAMEWORK FOR SOFTWARE PROGRAMMERS
1009

Table 2 Comparison with embedded platforms with respect to the
VGG11 forwarding (Batch size is 1).

Platform Embedded Embedded FPGA
CPU GPU

Device ARM Maxwell Zynq7020
Cortex-A57 GPU

Clock Freq. 1.9 GHz 998 MHz 143.78 MHz
Memory 16GB 4GB 4.9 Mb

eMMC Flash LPDDR4 BRAM

Time [msec] 4210.0 27.23 2.37
(FPS) [s−1] (0.23) (36.7) (421.9)
Power [W] 7 17 2.3
Efficiency [FPS/W] 0.032 2.2 182.6

Design Time [Hours] 72 72 75

times faster, it dissipated 7.3 times lower power, and its per-
formance per power efficiency was 83.0 times better. Thus,
the binarized CNN on the FPGA is suitable for the embed-
ded system.

Also, we compared the design time the FPGA imple-
mentation with other ones. For the training, three days were
necessary to archive more than 80% classification accuracy
using the GPU, so both the CPU and the GPU consumed
72 hours to implement. Additionally, the FPGA design re-
quired additional design time to synthesis generated C++
codes. Since it consumed three hours totally, the FPGA de-
sign took 75 hours. Although the FPGA design requires
more design times, it is considerable.

7. Conclusion

In the paper, we showed the GUINNESS framework for a bi-
narized deep neural network toward FPGA implementation.
In this framework, the training is done on the GPU, while the
inference is realized on the FPGA. Since all the operation is
done on the GUI, the software designer must not write any
scripts/codes to design the neural network structure, train-
ing behavior, only specify the values for hyperparameters.
Thus, our tool flow is suitable for the software programmers
who are not familiar with the FPGA design. In our tool flow,
we modified the training algorithm both the training and the
inference for the binarized CNN hardware. For the training,
the minimal bias is merged into another parameter for the
batch normalization. For the inference, the additional op-
erations for the batch normalization is concentrated into the
bias addition. In the experiment, we implemented the VGG-
11 benchmark CNN on the Digilent Inc. Zedboard. Com-
pared with the conventional binarized implementations on
an FPGA, the classification accuracy was almost the same,
the performance per power efficiency is 5.1 times better, as
for the performance per area efficiency, it is 8.0 times better,
and as for the performance per memory, it is 8.2 times better.
We compared the proposed FPGA design with the CPU and
the GPU designs. Compared with the ARM Cortex-A57, it
was 1776.3 times faster, it dissipated 3.0 times lower power,
and its performance per power efficiency was 5706.3 times
better. Also, compared with the Maxwell GPU, it was 11.5
times faster, it dissipated 7.3 times lower power, and its per-

formance per power efficiency was 83.0 times better. The
disadvantage of our FPGA based design required additional
time to synthesize the FPGA executable codes, which was
more three hours. However, since the training of the CNN
is dominant, it is considerable.

The open-source GUINNESS framework [19] is avail-
able for every designer.

Acknowledgements

This research is supported in part by the Grants in Aid for
Scientific Research from JSPS, and the New Energy and
Industrial Technology Development Organization (NEDO).
In addition, thanks to the Xilinx Inc. University Program
(XUP), and the support by the NVIDIA Corporation. Re-
viewer’s comments are improved the paper.

References

[1] U. Aydonat, S. O’Connell, D. Capalija, A.C. Ling, and G.R.
Chiu, “An OpenCL deep learning accelerator on Arria10,” FPGA,
pp.55–64, 2017.

[2] Caffe, Deep learning framework, http://caffe.berkeleyvision.org/
[3] Chainer, A powerful, flexible, and intuitive framework of neural net-

works, http://chainer.org/
[4] The CIFAR-10 data set, http://www.cs.toronto.edu/˜kriz/cifar.html
[5] M. Courbariaux, I. Hubara, D. Soudry, R.E. Yaniv, and Y. Bengio,

“Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1,” Computer Re-
search Repository (CoRR), March 2016, http://arxiv.org/pdf/1602.
02830v3.pdf

[6] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S.
Areibi, “Caffeinated FPGAs: FPGA Framework For Convolutional
Neural Networks,” ICCAD, pp.1–4, 2016.

[7] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun and E.
Culurciello, “Hardware accelerated convolutional neural networks
for synthetic vision systems,” Int’l Symp. on Circuits and Systems
(ISCAS), pp.257–260, 2010.

[8] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W.
Zhang, and J. Cong, “FP-DNN: An Automated Framework for Map-
ping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid
Templates,” FCCM, pp.152–159, 2017.

[9] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “An-
gel-Eye: A Complete Design Flow for Mapping CNN onto Cus-
tomized Hardware,” ISVLSI, pp.24–29, 2016.

[10] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, H. Yang, and W.J. Dally, “ESE: Efficient speech recogni-
tion engine with sparse LSTM on FPGA,” FPGA, pp.75–84, 2017.

[11] S. Han, H. Mao, and W.J. Dally, “Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding,” ICLR, 2016.

[12] M. Kim and P. Smaragdis, “Bitwise neural networks,” CoRR,
abs/1601.06071, 2016.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol.86,
no.11, pp.2278–2324, 1998.

[14] B. Li, M.H. Najafi, and D.J. Lilja, “Using stochastic computing to
reduce the hardware requirements for a restricted boltzmann ma-
chine classifier,” FPGA, pp.36–41, 2016.

[15] M. Lin, Q. Chen, and S. Yan, “Network in Network,” https://arxiv.
org/abs/1312.4400

[16] Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic code generation
of convolutional neural networks in FPGA implementation,” FPT,
pp.61–68, 2016.

http://dx.doi.org/10.1145/3020078.3021738
http://dx.doi.org/10.1109/iscas.2010.5537908
http://dx.doi.org/10.1109/fccm.2017.25
http://dx.doi.org/10.1109/isvlsi.2016.129
http://dx.doi.org/10.1145/3020078.3021745
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/2847263.2847340
http://dx.doi.org/10.1109/fpt.2016.7929190

1010
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019

[17] Y. Ma, Y. Cao, S.B.K. Vrudhula, and J.-S. Seo, “An automatic RTL
compiler for high-throughput FPGA implementation of diverse deep
convolutional neural networks,” FPL, pp.1–8, 2017.

[18] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S.B.K. Vrudhula, “Scalable
and modularized RTL compilation of Convolutional Neural Net-
works onto FPGA,” FPL, pp.1–8, 2016.

[19] H. Nakahara, H. Yonekawa, T. Fujii, M. Shimoda, and S. Sato,
“GUINNESS: AGUI based neural network synthesizer for an
FPGA,” https://github.com/HirokiNakahara/GUINNESS/

[20] H. Nakahara, T. Fujii, and S. Sato, “A fully connected layer elimi-
nation for a binary convolutional neural network on an FPGA,” FPL
pp.1–4, 2017.

[21] H. Nakahara and T. Sasao, “A deep convolutional neural network
based on nested residue number system,” FPL, pp.1–6, 2015.

[22] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC,” FPT, pp.77–84, 2016.

[23] https://github.com/charlyng/Embedded-Deep-Learning/tree/master/
Benchmark-Performance

[24] M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal, “Mem-
ory-centric accelerator design for convolutional neural networks,”
Int’l Conf. on Computer Design (ICCD), pp.13–19, 2013.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with em-
bedded FPGA platform for convolutional neural network,” ISFPGA,
pp.26–35, 2016.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” https://arxiv.org/pdf/1603.05279.pdf

[27] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I.
Durdanovic, E. Cosatto, and H.P. Graf, “A massively parallel co-
processor for convolutional neural networks,” Int’l Conf. on Ap-
plication-specific Systems, Architectures and Processors (ASAP),
pp.53–60, 2009.

[28] I. Sergey and S. Christian, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015.

[29] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta,
J.K. Kim, A. Mishra, and H. Esmaeilzadeh, “DNNWEAVER: From
High-Level Deep Network Models to FPGA Acceleration,” MICRO,
pp.1–6, 2016.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with
Convolutions,” Computer Vision and Pattern Recognition (CVPR),
pp.1–9, 2015.

[31] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M.
Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable Bi-
narized Neural Network Inference,” ISFPGA, pp.65–74, 2017.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” ICLR, 2015.

[33] S.I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework
for Mapping Convolutional Neural Networks on FPGAs,” FCCM,
pp.40–47, 2016.

[34] H. Yonekawa and H. Nakahara, “On-Chip Memory Based Binarized
Convolutional Deep Neural Network Applying Batch Normalization
Free Technique on an FPGA,” IPDPS Workshops, pp.98–105, 2017.

[35] J. Zhang and J. Li, “Improving the performance of Open-
CL-based FPGA accelerator for convolutional neural network,”
FPGA, pp.25–34, 2017.

[36] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating Binarized Convolutional
Neural Networks with Software-Programmable FPGAs,” ISFPGA,
pp.15–24, 2017.

[37] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G.
Yang, “F-CNN: An FPGA-based framework for training Convolu-
tional Neural Networks,” ASAP, pp.107–114, 2016.

[38] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training Low Bitwidth Convolutional Neural Networks with Low

Bitwidth Gradients,” http://arxiv.org/pdf/1606.06160v2.pdf

Appendix A: Expansion of the GUINNESS

The current version of the GUINNESS (last updated 2nd,
June, 2018) can be expanded to a novel CNN and its
hardware realization. The GUINNESS consists of mainly
the CNN training part and its inference hardware one.
As for the training, the user can modify the “func-
tion binary conv2d.py” script to define a new precision
or/and convolution operation, and the “LoadConfig” func-
tion in “guinness.py” to define a new pre-defined CNN.
Also, to revise a CNN inference hardware, the user can im-
prove the “gen cpp code v3.py” script for the FPGA imple-
mentation.

Appendix B: Tutorial Document of the GUINNESS

The document for the user is uploated to the followings:
“The GUINNESS introduction and BCNN implemen-

tation on an FPGA,”
https://www.dropbox.com/s/oe6gptgyi4y92el/
guinness tutorial1 v2.pdf

Appendix C: Requirements for the Current Version

The following software and libraries are required to execute
the GUINNESS.

1. Ubuntu 16.04 LTS (14.04 LTS is also supported)
2. Python 3.5.1 (Note that, my recommendation is to in-

stall by Anaconda 4.1.0 (64bit)+Pyenv
3. Python libraries: PyQt4, matplotlib, OpenCV3,

numpy, and scipy
4. CUDA 8.0 (with GPU), CuDNN 6.0. This is opp-

tional, however, we strongly recommend to use the
GPU within a practical training time.

5. Chainer 1.24.0 (more than version 2.0 is not supported)
+ CuPy 2.0

6. Xilinx Inc. SDSoC 2017.4, and 2018.2

Additionally, for the FPGA boards, the following ones
are supported.

1. Xilinx Inc. ZC702, ZC706, ZCU102, and ZCU104
2. Digilent Inc. Zedboard, and Zybo

http://dx.doi.org/10.23919/fpl.2017.8056824
http://dx.doi.org/10.1109/fpl.2016.7577356
http://dx.doi.org/10.23919/fpl.2017.8056771
http://dx.doi.org/10.1109/fpl.2015.7293933
http://dx.doi.org/10.1109/fpt.2016.7929192
http://dx.doi.org/10.1109/iccd.2013.6657019
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1109/asap.2009.25
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1109/fccm.2016.22
http://dx.doi.org/10.1109/ipdpsw.2017.95
http://dx.doi.org/10.1145/3020078.3021698
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1109/asap.2016.7760779

NAKAHARA et al.: GUINNESS: A GUI BASED BINARIZED DEEP NEURAL NETWORK FRAMEWORK FOR SOFTWARE PROGRAMMERS
1011

Hiroki Nakahara received the B.E.,
M.E., and Ph.D. degrees in computer science
from Kyushu Institute of Technology, Fukuoka,
Japan, in 2003, 2005, and 2007, respectively.
He has held research/faculty positions at Kyushu
Institute of Technology, Iizuka, Japan, Kago-
shima University, Kagoshima, Japan, and Ehime
University, Ehime, Japan. Now, he is an asso-
ciate professor at Tokyo Institute of Technol-
ogy, Japan. He was the Workshop Chairman
for the International Workshop on Post-Binary

ULSI Systems (ULSIWS) in 2014, 2015, 2016 and 2017, respectively. He
searved the Program Chairman for the International Symposium on 8th
Highly-Efficient Accelerators and Reconfigurable Technologies (HEART)
in 2017. He received the 8th IEEE/ACM MEMOCODE Design Contest 1st
Place Award in 2010, the SASIMI Outstanding Paper Award in 2010, IPSJ
Yamashita SIG Research Award in 2011, the 11st FIT Funai Best Paper
Award in 2012, the 7th IEEE MCSoC-13 Best Paper Award in 2013, and the
ISMVL2013 Kenneth C. Smith Early Career Award in 2014, respectively.
His research interests include logic synthesis, reconfigurable architecture,
digital signal processing, embedded systems, and machine learning. He is
a member of the IEEE, the ACM, and the IEICE.

Haruyoshi Yonekawa received the B.S.
and M.S. degrees from Tokyo Institute of Tech-
nology (Tokyo Tech), in 2016, and 2018. His
current research interests include reconfigurable
architecture and deep learning. He received
the 24th Reconfigurable Architectures Work-
shop Best Demo Award in 2017.

Tomoya Fujii received the B.S. and M.S.
degrees from Tokyo Institute of Technology (To-
kyo Tech), in 2016, and 2018. His current re-
search interests include reconfigurable architec-
ture and deep learning.

Masayuki Shimoda received the B.E. de-
gree in engineering all from Tokyo Institute of
Technology, Tokyo, Japan, in 2018. He is cur-
rently a Master Student with the Department of
Information and Communications Engineering
of Tokyo Institute of Technology. His current
research interests include Deep Neural Network
and FPGA. He is a member of IEEE.

Shimpei Sato received the B.S., M.S., and
Ph.D. degrees in engineering from Tokyo In-
stitute of Technology (Tokyo Tech), in 2007,
2009, and 2014. He is currently an Assis-
tant Professor with the Department of Informa-
tion and Communications Engineering of To-
kyo Tech. From 2014 to 2016, he worked in
High performance computing area as a post doc-
toral researcher, where he investigated an appli-
cation performance analysis/tuning method. His
current research interests include approximate

computing realization by architecture design and circuit design and their
applications.

