
T
Posted on Jan 30 • Originally published at loopbreaker.substack.com

23 2 2 2 2

Exploring User Privacy in Ollama: Are Local
LLMs Truly Private?
#ai #machinelearning #cybersecurity #opensource

Listen to this article on Substack

Ollama is a startup that offers an open-source tool for running large language models
(LLMs) locally. Ollama has become the top choice for millions of users running AI locally,
because of their focus and emphasis on user privacy.

Ollama was founded through the Y Combinator startup incubator—a fact that made my
eyebrows twist into themselves in disbelief. Why would Y Combinator, a Silicon Valley
incubator formerly run by Sam Altman, invest in a startup focused solely on user
privacy? Why would they back a product that allows users to run LLMs privately?

While these questions remain unanswered for now, I went on a quest to find out: is
Ollama truly private? Join me as I explore Ollama’s code, behavior, and architecture.

https://media2.dev.to/dynamic/image/width=1000,height=420,fit=cover,gravity=auto,format=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fuploads%2Farticles%2Fezilnca34zyxrgftkqdx.jpg
https://dev.to/tnahrf
https://loopbreaker.substack.com/p/exploring-user-privacy-in-ollama
https://dev.to/t/ai
https://dev.to/t/machinelearning
https://dev.to/t/cybersecurity
https://dev.to/t/opensource
https://loopbreaker.substack.com/p/exploring-user-privacy-in-ollama
https://dev.to/tnahrf
https://dev.to/tnahrf

I'll list my findings here. If you want to dive deeper into the details and hardening
methods, go ahead and read the rest of the article.

#1 - After monitoring network usage and examining the code, I found no evidence of
private user data being sent to an external server. However, I did find groundwork that
might enable Ollama to do so in the future, without the users’ knowledge or consent.

#2 - Ollama keeps the user’s chat history in a plain text file named “history”.

#3 - If the history file is deleted, Ollama creates it again silently.

#4 - Restricting access to the history file results in Ollama’s refusal to load a model and
start a session.

#5 - I’ve found a way to run Ollama without updating the history file, but the method
wasn't disclosed in the documentation (see "Hardening Methods" below).

#6 - Ollama creates log files containing every interaction the user makes with the local
API, including the name of the loaded model.

#7 - Ollama automatically updates itself from a remote server, there is no way to opt-
out.

#8 - Pushing to an existing remote repository using Ollama will push all of the user’s
chat history along with it (according to a Youtube video, unverified).

Network Monitoring
The simplest way to verify whether a software is truly private is to check if it sends
packets to an external server. Since Ollama is open-source, everybody’s initial
assumption is "If they were doing that, someone would have noticed by now"—which is
generally true. However, I decided to verify myself rather than blindly trust them.

I wanted to poke around the source code and see if I could find anything out of place.

I started by going over Ollama’s repository, which is written mostly in Golang, with some
C++ for the llama.cpp engine. After getting familiar with the codebase, I found that
Ollama is built as a local HTTP API. The CLI calls the local Ollama API, which handles
model operations and data streaming.

The function Host is used to create the URL instance used for most API calls. It has
“127.0.0.1” hardcoded as the default host for the URL—so far so good.

I did find an automated external HTTP call to https://ollama.com/api/update under
the function IsNewReleaseAvailable—which runs every hour and sends the user’s
operating system, machine architecture, current version, and timestamp to the server.

// config.go

func Host() *url.URL {

 ...

 if err != nil {
 host, port = "127.0.0.1", defaultPort
 if ip := net.ParseIP(strings.Trim(hostport, "[]")); ip != nil {
 host = ip.String()
 } else if hostport != "" {
 host = hostport
 }
 }

 ...

 return &url.URL{
 Scheme: scheme,
 Host: net.JoinHostPort(host, port),
 Path: path,
 }
}

// updater.go

func IsNewReleaseAvailable(ctx context.Context) (bool, UpdateResponse) {

...

query := requestURL.Query()
query.Add("os", runtime.GOOS)
query.Add("arch", runtime.GOARCH)
query.Add("version", version.Version)
query.Add("ts", strconv.FormatInt(time.Now().Unix(), 10))

https://ollama.com/api/update

Note that Ollama uses Electron’s autoUpdater. According to Electron’s documentation:
“autoUpdater enables apps to automatically update themselves” (creepy). I couldn’t find
a way to opt out of automatic updates, meaning the code could potentially change at
any minute, without user awareness or consent.

Network Usage
I could not find any obvious code blocks that send private user data out of the machine.
I went a step further and verified network usage while using the software. I chatted with
several LLMs for a few hours, while monitoring the software’s network usage—and
logged every network interaction from 8:00 PM to 3:00 AM.

...

}

// index.ts (electron wrapper)

async function checkUpdate() {
 const available = await isNewReleaseAvailable()
 if (available) {
 logger.info('checking for update')
 autoUpdater.checkForUpdates()
 }
}

function init() {
 if (app.isPackaged) {
 checkUpdate()
 setInterval(() => {
 checkUpdate()
 }, 60 * 60 * 1000)
 }

 ...

}

ollama app.exe, Port: 15460 -> ollama.com @ 7:53 PM (Restart)
ollama app.exe, Port: 15460 -> ollama.com @ 8:53 PM down 5Kb, up 2Kb
ollama app.exe, Port: 15460 -> ollama.com @ 9:53 PM down 5Kb, up 2Kb

This pattern matches the automated update from earlier. Notice the size of the packets
as well—they would need more bandwidth to send chat history to an external server. It
seemed quite promising so far, but there were still more paths to explore.

Log Files
By default, Ollama keeps detailed log files. I find it very dubious—why would a company
so hyper focused on their user’s privacy make their local logs so verbose by default?

What is the point of keeping detailed logs on a user’s device by default, if they’re not
going anywhere?

These log files contain system information, but as far as I am concerned they do not
contain inference history. They do, however, contain every interaction the user made
with the local API, and the name of the model they have loaded.

On Windows, you can find the logs by right-clicking Ollama’s tray icon, then “View logs”.
On Linux, navigate to the following path.

ollama app.exe, Port: 15460 -> ollama.com @ 10:53 PM down 5Kb, up 2Kb
ollama app.exe, Port: 15460 -> ollama.com @ 11:53 PM down 5Kb, up 2Kb
ollama app.exe, Port: 15460 -> ollama.com @ 12:53 AM down 5Kb, up 2Kb
ollama app.exe, Port: 15460 -> ollama.com @ 01:53 AM down 5Kb, up 2Kb
ollama app.exe, Port: 15460 -> ollama.com @ 02:53 AM down 5Kb, up 2Kb

[GIN] [REDACTED FOR PRIVACY] | 200 | 184.3285ms | 127.0.0.1 | POST "/api/chat"
[GIN] [REDACTED FOR PRIVACY] | 200 | 116.5207ms | 127.0.0.1 | POST "/api/chat"

llama_model_loader: loaded meta data with 36 key-value pairs and 197 tensors from
C:\\Users\\T\\.ollama\\models\\blobs\\sha256-(version GGUF V3 (latest))

llama_model_loader: - kv 0: general.architecture str = phi3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Phi 4

Windows:
%appdata%/Local/Ollama/

Linux:
~/.ollama/logs

History File
The creepiest part about Ollama is its history file.

Ollama keeps all of the user’s chat history, in plain text, stored in a file named “history”.
Why? I am not sure, but I have some ideas.

Imagine how surprised I was when I found the file contained all of my chat history, in
plain text, for all to see. At this point questions kept popping up in my head—while I
understand the need to keep some history on memory (not on file), why would it be
stored in plain text? Why would there be a file in the first place? Why isn’t any of this
mentioned in Ollama’s documentation? And why, when preventing access to the history
file, does Ollama refuse to run?

Additionally, they could easily encrypt the file—and then have the software load it and
use its content just the same. It doesn’t have to be stored in plain text. An even better
solution would be to not use a history file at all, and rely on history saved on memory
during a session.

A few notes about Ollama’s history file:

During a session, Ollama creates a “history.tmp” file, where it keeps the current
session’s history in plain text. Once the session is closed, it aggregates the temporary
buffer into the main history file and erases the temporary file.
The history file has a hardcoded size limit, once a session is over if the history file is
larger than the size limit—it removes the first chunk of the buffer until the file fits
under the limit, essentially keeping the latest history.
If the history file is deleted, Ollama creates it again silently. If the file is deleted
during a session, Ollama creates it again silently and then copies the temporary file
buffer into it.
Making the history file read-only results in Ollama refusing to load a model or start a
session.

Currently, Ollama does not send the history file to an external server (as far as I know, I
might still be wrong). But considering the existence of such a file, combined with
automatic updates the user can’t opt out from—I can’t help but think a silent update in
the future might just change this behavior.

Just in case—I’ve gathered some hardening methods to make Ollama truly private.

Hardening Method #1
As straightforward as possible—simply block Ollama’s network access through Windows
firewall. On Linux, I believe it is possible to use UFW for this.

Hardening Method #2
Run Ollama with OLLAMA_NOHISTORY=1 as an environment variable.

I’ve found this method while looking at Ollama’s source code and verified it works.
While not disclosed in the documentation (I wonder why?), it prevents writing to the
history file. Note that this method’s effectiveness could change if Ollama has network
access. I recommend combining this method alongside method #1 to ensure privacy.
Note that log files (under “View logs”) will still be written to and updated.

Hardening Method #3 (Linux)
A workaround to prevent Ollama from writing to the history file on Linux can be found
here, quoting Github user “glassbell”.

This workaround works for me (after deleting the history file with all of the warcrimes
in it):

$ touch history

$ touch history.tmp

\# chattr +i history

\# chattr +i history.tmp

(yes, it also tries to write to the second file)

(also, I don't know how it does it, but if the i attribute is not set, ollama can recreate
the file even if the owner is root and no permissions. Creepy)

I was not able to replicate the same behavior as chattr +i on Windows. Making the
history file read-only causes Ollama to refuse to load models or start sessions. If you
know of an alternative solution for Windows, please let me know!

Sentry PROMOTED

https://github.com/ollama/ollama/issues/3002
https://dev.to/sentry

How I Cut 22.3 Seconds Off an API Call with Sentry
🕒
Struggling with slow API calls? Dan Mindru walks through how he used Sentry's new
Trace View feature to shave off 22.3 seconds from an API call.

Get a practical walkthrough of how to identify bottlenecks, split tasks into multiple
parallel tasks, identify slow AI model calls, and more.

https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/?utm_source=devto&utm_medium=paid-social&utm_campaign=tracing-fy25q3-traceblog&utm_content=static-ad-dansblogcover-read&bb=164741
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/?utm_source=devto&utm_medium=paid-social&utm_campaign=tracing-fy25q3-traceblog&utm_content=static-ad-dansblogcover-read&bb=164741
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/?utm_source=devto&utm_medium=paid-social&utm_campaign=tracing-fy25q3-traceblog&utm_content=static-ad-dansblogcover-read&bb=164741
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/?utm_source=devto&utm_medium=paid-social&utm_campaign=tracing-fy25q3-traceblog&utm_content=static-ad-dansblogcover-read&bb=164741

Code of Conduct Report abuse

Read more →

Top comments (1)

Andrey Rusev • Jan 30

BTW - somebody I know on another network just published a link to a
'comprehensive 298-page International AI Safety Report':

gov.uk/government/publications/int...

According to the description:

A report on the state of advanced AI capabilities and risks – written by 100 AI
experts including representatives nominated by 33 countries and
intergovernmental organisations.

If you feel like it - take a look... Might contain a lot of things we already suspect
;) (jokingly, of course:)

•

Sentry PROMOTED

https://dev.to/code-of-conduct
https://dev.to/report-abuse
https://blog.sentry.io/how-i-cut-22-3-seconds-off-an-api-call-using-trace-view/?utm_source=devto&utm_medium=paid-social&utm_campaign=tracing-fy25q3-traceblog&utm_content=static-ad-dansblogcover-read&bb=164741
https://dev.to/zethix
https://www.gov.uk/government/publications/international-ai-safety-report-2025
https://dev.to/zethix
https://dev.to/sentry

See why 4M developers consider Sentry, “not bad.”
Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can
help.

T

Learn more

https://sentry.io/lp/error-monitoring-for-developers/?utm_source=devto&utm_medium=paid-social&utm_campaign=errors-fy25q1-evergreen&utm_content=static-ad-bugs-errors-stylerefresh-learnmore&bb=108248
https://sentry.io/lp/error-monitoring-for-developers/?utm_source=devto&utm_medium=paid-social&utm_campaign=errors-fy25q1-evergreen&utm_content=static-ad-bugs-errors-stylerefresh-learnmore&bb=108248
https://sentry.io/lp/error-monitoring-for-developers/?utm_source=devto&utm_medium=paid-social&utm_campaign=errors-fy25q1-evergreen&utm_content=static-ad-bugs-errors-stylerefresh-learnmore&bb=108248
https://dev.to/tnahrf
https://sentry.io/lp/error-monitoring-for-developers/?utm_source=devto&utm_medium=paid-social&utm_campaign=errors-fy25q1-evergreen&utm_content=static-ad-bugs-errors-stylerefresh-learnmore&bb=108248

Cybersecurity Researcher. Writes Loopbreaker, a mix of my OCD-fueled musings about AI, Crypto
and Cybersecurity.

LOCATION

Low Earth Orbit

EDUCATION

Self taught

JOINED

Nov 11, 2023

More from T

AI, but at What Cost? Breakdown of AI’s Carbon Footprint
ai development discuss machinelearning# # # #

Top 3 Features in Postgres 17

Learn about the top 3 features in the latest version of Postgres.

Neon PROMOTED

https://dev.to/tnahrf
https://dev.to/tnahrf/ai-but-at-what-cost-breakdown-of-ais-carbon-footprint-4gf9
https://fyi.neon.tech/zekHsyg?bb=169429
https://fyi.neon.tech/zekHsyg?bb=169429
https://dev.to/neon-postgres

See Article

https://fyi.neon.tech/zekHsyg)?bb=169429

