
How to Train Your Robot with Deep
Reinforcement Learning – Lessons
We’ve Learned

1–22
©The Author(s) 2020
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Julian Ibarz1, Jie Tan1, Chelsea Finn1,3, Mrinal Kalakrishnan2, Peter Pastor2, Sergey Levine1,4

Abstract
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors
from low level sensor observations. Although a large portion of deep RL research has focused on applications in video
games and simulated control, which does not connect with the constraints of learning in real environments, deep RL
has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time,
real world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans
learn – as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous
challenges, some of which are easier to address than others, and some of which are often not considered in RL research
that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic
deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they
have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are
unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide
a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep
RL in the real world.

Keywords
Robotics, reinforcement learning, deep learning

1 Introduction

Robotic learning lies at the intersection of machine learning
and robotics. From the perspective of a machine learning
researcher interested in studying intelligence, robotics is
an appealing medium to study as it provides a lens into
the constraints that humans and animals encounter when
learning, uncovering aspects of intelligence that might not
otherwise be apparent to study when we restrict ourselves
to simulated environments. For example, robots receive
streams of raw sensory observations as a consequence of
their actions, and cannot practically obtain large amounts of
detailed supervision beyond observing these sensor readings.
This makes for a challenging but highly realistic learning
problem. Further, unlike agents in video games, robots
do not readily receive a score or reward function that is
shaped for their needs, and instead need to develop their
own internal representation of progress towards goals. From
the perspective of robotics research, using learning-based
techniques is appealing because it can enable robots to move
towards less structured environments, to handle unknown
objects, and to learn a state representation suitable for
multiple tasks.

Despite being an interesting medium, there is a significant
barrier for a machine learning researcher to enter robotics
and vice-versa. Beyond the cost of a robot, there are many
design choices in choosing how to set-up the algorithm
and the robot. For example, reinforcement learning (RL)
algorithms require learning from experience that the robot
autonomously collects itself, opening up many choices in
how the learning is initialized, how to prevent unsafe

behavior, and how to define the goal or reward. Likewise,
machine learning and RL algorithms also provide a number
of important design choices and hyperparameters that can be
tricky to select.

Motivated by these challenges for the researchers in the
respective fields, our goal in this article is to provide a
high-level overview of how deep RL can be approached
in a robotics context, summarize the ways in which key
challenges in RL have been addressed in some of our
own previous work, and provide a perspective on major
challenges that remain to be solved, many of which are not
yet the subject of active research in the RL community.

There have been high-quality survey articles about
applying machine learning to robotics. Deisenroth et al.
(2013) focused on policy search techniques for robotics,
whereas Kober et al. (2013) focused on RL. More
recently, Kroemer et al. (2019) reviewed the learning
algorithms for manipulation tasks. Sünderhauf et al. (2018)
identified current areas of research in deep learning that
were relevant to robotics, and described a few challenges in
applying deep learning techniques to robotics.

1Robotics at Google
2Everyday Robots, X, The Moonshot Factory
3Stanford University
4University of California Berkeley

Corresponding author:
Julian Ibarz
Email: julianibarz@google.com

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:2

10
2.

02
91

5v
1 

 [
cs

.R
O

] 
 4

 F
eb

 2
02

1



2

Instead of writing another comprehensive literature
review, we first center our discussion around three case
studies from our own prior work. We then provide an in-
depth discussion of a few topics that we consider especially
important given our experience. This article naturally
includes numerous opinions. When sharing our opinions, we
do our best to ground our recommendations in empirical
evidence, while also discussing alternative options. We hope
that, by documenting these experiences and our practices, we
can provide a useful resource both for roboticists interested
in using deep RL and for machine learning researchers
interested in working with robots.

2 Background
In this section, we provide a brief, informal introduction
to RL, by contrasting it with classical techniques of
programming robot behavior. A robotics problem is
formalized by defining a state and action space, and the
dynamics which describe how actions influence the state of
the system. The state space includes internal states of the
robot as well as the state of the world that is intended to be
controlled. Quite often, the state is not directly observable –
instead, the robot is equipped with sensors, which provide
observations that can be used to infer the state. The goal
may be defined either as a target state to be achieved, or
as a reward function to be maximized. We want to find a
controller, (known as a policy in RL parlance), that maps
states to actions in a way that maximizes the reward when
executed.

If the states can be directly or indirectly observed, and
a model of the system dynamics is known, the problem
can be solved with classical methods such as planning or
optimal control. These methods use the knowledge of the
dynamics model to search for sequences of actions that when
applied from the start state, take the system to the desired
goal state or maximize the achieved reward. However, if
the dynamics model is unknown, the problem falls into the
realm of RL (Sutton and Barto 2018). In the paradigm of RL,
samples of state-action sequences (trajectories) are required
in order to learn how to control the robot and maximize
the reward. In model-based RL, the samples are used to
learn a dynamics model of the environment, which in turn
is used in a planning or optimal control algorithm to produce
a policy or the sequence of controls. In model-free RL, the
dynamics are not explicitly modeled, but instead the optimal
policy or value function is learned directly by interaction
with the environment. Both model-based and model-free RL
have their own strengths and weaknesses, and the choice of
algorithm depends heavily on the properties required. These
considerations are discussed further in Sections 3 and 4.

3 Case Studies in Robotic Deep RL
In this section, we present a few case studies of applications
of deep RL to various robotic tasks that we have
studied. The applications span manipulation, grasping, and
legged locomotion. The sensory inputs used range from
low-dimensional proprioceptive state information to high-
dimensional camera pixels, and the action spaces include
both continuous and discrete actions.

By consolidating our experiences from those case studies,
we seek to derive a common understanding of the kinds of
robotic tasks that are tractable to solve with deep RL today.
Using these case studies as a backdrop, we point readers
to outstanding challenges that remain to be solved and are
commonly encountered in Section 4.

3.1 Learning manipulation skills
Reinforcement learning of individual robotic skills has a long
history (Peters et al. 2010; Ijspeert et al. 2002; Peters and
Schaal 2008; Konidaris et al. 2012; Daniel et al. 2013; Kober
et al. 2013; Manschitz et al. 2014). Deep RL provides some
appealing capabilities in this regard: deep neural network
policies can alleviate the need to manually design policy
classes, provide a moderate amount of generalization to
variable initial conditions and, perhaps most importantly,
allow for end-to-end joint training for both perception and
control, learning to directly map high-dimensional sensory
inputs, such as images, to control outputs. Of course, such
end-to-end training itself presents a number of challenges,
which we will also discuss. We discuss a few case studies on
single-task deep robotic learning with a variety of different
methods, including model-based and model-free algorithms,
and with different starting assumptions.

Figure 1. A PR2 learns to place a red trapezoid block into a
shape-sorting cube. With Levine et al. (2016), it learns local
policies for each initial position of the cube, which can be reset
automatically using the robot’s left arm. The local policies are
distilled into a global policy that takes images as input, rather
than the cube’s location.

3.1.1 Guided policy search. Guided policy search meth-
ods (Levine et al. 2016) were among the first deep RL
methods that could be tractably applied to learn individual
neural network skills for image-based manipulation tasks.
The basic principle behind these methods is that the neural
network policy is “guided” by another RL method, typically
a model-based RL algorithm. The neural network policy is
referred to as a global policy, and is trained to perform the
task successfully from raw sensory observations and under
moderate variability in the initial conditions. For example,
as shown in Figure 1, the global policy might be required
to put the red shape into the shape sorting cube at different
positions. This requires the policy to implicitly determine the

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 3

position of the hole. However, this is not supervised directly,
but instead the perception mechanism is learned end-to-end
together with control. Supervision is provided from multiple
individual model-based learners that learn separate local
policies to insert the shape into the hole at a specific position.
In the case of the experiment illustrated in Figure 1, nine
local policies were trained for nine different cube positions,
and a single global policy was then trained to perform the
task from images. Typically, the local policies do not use
deep RL, and do not use image inputs. They instead use
observations that reflect the low-dimensional, “true” state of
the system, such as the position of the shape-sorting cube
in the previous example, in order to learn more efficiently.
Local policies can be trained with model-based methods such
as LQR-FLM (Levine and Abbeel 2014; Levine et al. 2016),
which uses LQR with fitted time-varying linear models, or
model-free techniques such as PI2 (Chebotar et al. 2017b,a).

A full theoretical treatment of the guided policy search
algorithm is outside the scope of this article, and we refer the
reader to prior work on this topic (Levine and Koltun 2013;
Levine and Abbeel 2014; Levine et al. 2016).

An important point of discussion for this article, however,
is the set of assumptions underlying guided policy search
methods. Typically, such methods assume that the local
policies can be optimized with simple, “shallow” RL
methods, such as LQR-FLM or PI2. This assumption
is reasonable for robotic manipulation tasks trained in
laboratory settings, but can prove difficult in (1) open-world
environments where the low-level state of the system cannot
be effectively measured and in (2) settings where resetting
the environment poses a challenge. For example, in the
experiment in Figure 1, the robot is holding the cube in its
left arm during training, so that the position of the cube can
be provided to the low-level policies and so that the robot
can automatically reposition the cube into different positions
deterministically. We discuss these challenges in more detail
in Sections 4.12 and 4.2.3.

Nonetheless, for learning individual robotic skills, guided
policy search methods have been applied widely and to a
broad range of behaviors, ranging from inserting objects
into containers and putting caps on bottles (Levine et al.
2016), opening doors (Chebotar et al. 2017b), and shooting
hockey pucks (Chebotar et al. 2017a). In most cases, guided
policy search methods are very efficient in terms of the
number of samples, particularly as compared to model-free
RL algorithms, since the model-based local policy learners
can acquire the local solutions quickly and efficiently. Image-
based tasks can typically be learned in a few hundred trials,
corresponding to 2-3 hours of real-world training, including
all resets and network training time (Levine et al. 2016;
Chebotar et al. 2017a).

3.1.2 Model-free skill learning. Model-free RL algo-
rithms lift some of the limitations of guided policy search,
such as the need to decompose a task into multiple distinct
and repeatable initial states or the need for a model-based
optimizer that typically operates on a low dimensional state
representation, but at the cost of a substantial increase in the
required number of samples. For example, the Lego block
stacking experiment reported by Haarnoja et al. (2018a)
required a little over two hours of interaction, whereas

Figure 2. Examples of model-free based algorithms learning
skills in a few hours from low-dimensional state observations.
(a) is learning to stack lego blocks with Haarnoja et al. (2018a).
(b) is learning door opening with Gu et al. (2017).

comparable Lego block stacking experiments reported by
Levine et al. (2015) required about 10 minutes of training.
The gap in training time tends to close a bit when we consider
tasks with more variability: guided policy search generally
requires a linear increase in the number of samples with
more initial states, whereas model-free algorithms can better
integrate experience from multiple initial states and goals,
typically with sub-linear increase in sample requirements.
As model-free methods generally do not require a lower-
dimensional state for model-based trajectory optimization,
they can also be applied to tasks that can only be defined
on images, without an explicit representation learning phase.

Although there is a long history of model-free RL in
robotics (Peters et al. 2010; Ijspeert et al. 2002; Peters and
Schaal 2008; Konidaris et al. 2012; Daniel et al. 2013;
Kober et al. 2013; Manschitz et al. 2014), modern model-
free deep RL algorithms have been used more recently
for tasks such as door opening (Gu et al. 2017) and
assembly and stacking of objects (Haarnoja et al. 2018a)
with low-dimensional state observations. These methods
were generally based on off-policy actor-critic designs, such
as DDPG or NAF (Lillicrap et al. 2015; Gu et al. 2016),
soft Q-learning (Haarnoja et al. 2018b,a), and soft actor-
critic (Haarnoja et al. 2019). An illustration of some of
these tasks is shown in Figure 2. From our experiences,
we generally found that simple manipulation tasks, such as
opening doors and stacking Lego blocks, either with a single
position or some variation in position, can be learned in 2-
4 hours of interaction, with either torque control or end-
effector position control. Incorporating demonstration data
and other sources of supervision can further accelerate some
of these methods (Večerı́k et al. 2017; Riedmiller et al.
2018). Section 4.2 describes other techniques to make those
approaches more sample efficient.

Although most model-free deep RL algorithms that have
been applied to learn manipulation skills directly from real-
world data have used off-policy algorithms based on Q-
learning (Haarnoja et al. 2018a; Gu et al. 2017) or actor-
critic designs (Haarnoja et al. 2018b), on-policy policy
gradient algorithms have also been used. Although standard
configurations of these methods can require around 10
times the number of samples as off-policy algorithms, on-
policy methods such as TRPO (Schulman et al. 2015),
NPG (Kakade 2002), and PPO (Schulman et al. 2017)
can be tuned to only be 2-3 times less efficient than off-
policy algorithms in some tasks (Peng et al. 2019). In
some cases, this increased sample requirement may be
justified by ease of use, better stability, and better robustness
to suboptimal hyperparameter settings. On-policy policy

Prepared using sagej.cls



4

gradient algorithms have been used to learn tasks such as peg
insertion (Lee et al. 2019), targeted throwing Ghadirzadeh
et al. (2017), and dexterous manipulation (Zhu et al.
2019) directly on real-world hardware, and can be further
accelerated with example demonstrations (Zhu et al. 2019).

While in principle model-free deep RL algorithms should
excel at learning directly from raw image observations,
in practice this is a particularly difficult training regime,
and good real-world results with model-free deep RL
learning directly from raw image observations have only
been obtained recently, with accompanying improvements
in the efficiency and stability of off-policy model-free RL
methods (Haarnoja et al. 2019, 2018b; Fujimoto et al. 2018).
The SAC algorithm can learn tasks in the real world directly
from images (Haarnoja et al. 2019; Singh et al. 2019), and
several other recent works have studied real-world learning
from images (Schoettler et al. 2019; Schwab et al. 2019).

All of these experiments were conducted in relatively
constrained laboratory environments, and although the
learned skills use raw image observations, they generally
have limited robustness to realistic visual perturbations and
can only handle the specific objects on which they are
trained. We discuss in Section 3.2 how image-based deep
RL can be scaled up to enable meaningful generalization.
Furthermore, a major challenge in learning from raw
image observations in the real world is the problem of
reward specification: if the robot needs to learn from
raw image observations, it also needs to evaluate the
reward function from raw image observations, which itself
can require a hand-designed perception system, partly
defeating the purpose of learning from images in the first
place, or otherwise require extensive instrumentation of the
environment (Zhu et al. 2019). We discuss this challenge
further in Section 4.9.

3.1.3 Learning predictive models for multiple skills with
visual foresight. Although there are situations where a
single skill is all a robot will need to perform, it is not
sufficient for general-purpose robots where learning each
skill from scratch is impractical. In such cases, there is a great
deal of knowledge that can be shared across tasks to speed up
learning. In this section, we discuss one particular case study
of scalable multi-task learning of vision-based manipulation
skills, with a focus on tasks that require pushing or picking
and placing objects. Unlike in the previous section, if our
goal is to learn many tasks with many objects, a challenge
discussed in detail in Section 4.5, it will be most practical
to learn from data that can be collected at scale, without
human supervision or even a human attending the robot. As a
result, it becomes imperative to remove assumptions such as
regular resets of the environment or a carefully instrumented
environment for measuring reward.

Motivated by these challenges, the visual foresight
approach (Finn and Levine 2017; Ebert et al. 2018)
leverages large batches of off-policy, autonomously collected
experience to train an action-conditioned video prediction
model, and then uses this model to plan to accomplish
tasks. The key intuition of this approach is that knowledge
learned about physics and dynamics can be shared across
tasks and largely decoupled from goal-centric knowledge.
These models are trained using streams of robot experience,

consisting of the observed camera images and actions
taken, without assumptions about reward information. After
training, a human provides a goal, by providing an image of
the goal or by indicating that an object corresponding to a
specified pixel should be moved to a desired position. Then,
the robot performs an optimization over action sequences
in an effort to minimize the distance between the predicted
future and the desired goal.

This algorithm has been used to complete object
rearrangement tasks such as grasping an apple and putting
it on a plate, re-orienting a stapler, and pushing other
objects into configurations (Finn and Levine 2017; Ebert
et al. 2018). Further, it has been used for visual reaching
tasks (Byravan et al. 2018), object pushing and trajectory
following tasks (Yen-Chen et al. 2020), for satisfying relative
object positioning tasks (Xie et al. 2018), and for cloth
manipulation tasks such as folding shorts, covering an object
with a towel, and re-arranging a sleeve of a shirt (Ebert et al.
2018). Importantly, each collection of tasks can be performed
using a single learned model and planning approach, rather
than having to re-train a policy for each individual task
or object. This generalization precisely results from the
algorithms ability to leverage broad, autonomously-collected
datasets with hundreds of objects, and the ability to train
reusable, task-agnostic models from this data.

Despite these successes, there are a number of limitations
and challenges that we highlight here. First, although the data
collection process does not require human involvement, it
uses a specialized set-up with the robot in front of a bin with
tilted edges that ensure that objects do not fall out, along with
an action space that is constrained within the bin. This allows
continuous, unattended data collection, discussed further
in Section 4.7. Outside of laboratory settings, however,
collecting data in unconstrained, open-world environments
introduces a number of important challenges, which we
discuss in Section 4.12. Second, inaccuracies in the model
and reward function can be exploited by the planner,
leading to inconsistencies in performance. We discuss these
challenges in Sections 4.6 and 4.9. Finally, finding plans
for complex tasks pose a challenging optimization problem
for the planner, which can be addressed to some degree
using demonstrations (for details, see Section 4.4). This has
enabled the models to be used for tool use tasks such as
sweeping trash into a dustpan, wiping objects off a plate with
a sponge, and hooking out-of-reach objects with a hook (Xie
et al. 2019).

3.2 Learning to grasp with deep RL
Learning to grasp remains one of the most significant
open problems in robotics, requiring complex interaction
with previously unseen objects, closed loop vision-based
control to react to unforeseen dynamics or situations, and
in some cases pre-manipulation to isolate the object to be
grasped. Indeed, most object interaction behaviors require
grasping the object as the first step. Prior work typically
tackles grasping as the problem of identifying suitable grasp
locations (Zeng et al. 2018; Morrison et. al 2018; Mahler
et al. 2018; ten Pas et al. 2017), rather than as an explicit
control problem. The motivation for this problem definition
is to allow the visual problem to be completely separated
from the control problem, which becomes an open loop

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 5

Figure 3. Close-up of our robot grasping setup in our setup
(left) and about 1000 visually and physically diverse training
objects (right). Each robot consists of a KUKA LBR IIWA arm
with a two-finger gripper and an over-the-shoulder RGB camera.

control problem. This separation significantly simplifies the
problem. The drawback is that this approach cannot adapt to
dynamic environments or refine its strategy while executing
the grasp. Can deep RL provide us with a mechanism to learn
to grasp directly from experience, and as a dynamical and
interactive process?

A number of works have studied closed loop grasping (Yu
and Rodriguez 2018; Viereck et al. 2017; Hausman et al.
2017; Levine et al. 2018). In contrast to these methods,
which frame closed-loop grasping as a servoing problem,
QT-Opt Kalashnikov et al. (2018) uses a general-purpose
RL algorithm to solve the grasping task, which enables
multi-step reasoning, in other words, the policy can be
optimized across the entire trajectory. In practice, this
enables this method to autonomously acquire complex
grasping strategies, some of which we illustrate in Figure. 4.
This method is also entirely self-supervised, using only
grasp outcome labels that are obtained automatically by the
robot. Several works have proposed self-supervised grasping
systems (Pinto and Gupta 2016; Levine et al. 2018), but
to the best of the author’s knowledge, this method is the
first to incorporate a multi-step optimization via RL into a
generalizable vision-based system trained on self-supervised
real-world data.

Related to this work, Zeng et al. (2018) recently
proposed a Q-learning framework for combining grasping
and pushing. QT-Opt utilizes a much more flexible action
space, directly commanding gripper motion in all degrees
of freedom in 3 dimensions, and exhibits substantially better
performance and generalization. Finally, in contrast to many
current grasping systems that utilize depth sensing (Mahler
et al. 2018; Morrison et al. 2018) or wrist-mounted
cameras (Viereck et al. 2017; Morrison et al. 2018), QT-
Opt operates on raw monocular RGB observations from an
over-the-shoulder camera that doesn’t need to be calibrated.
The performance of QT-Opt indicates that effective learning

can achieve excellent grasp success rates even with this
rudimentary sensing set-up.

In this work, we focus on evaluating the success rate of the
policy in grasping never seen during training objects in a bin
using a top-down grasping (4 degrees of freedom). This task
definition simplifies some robot safety challenges, which
are discussed more in Section 4.11. However, this problem
still retains the challenging aspects that have been hard to
deal with: unknown object dynamics, geometry, vision based
closed-loop control, self-supervised approach as well as hand
eye coordination by removing the need to calibrate the entire
system (camera and gripper locations as well as workspace
bounds are not given to the policy).

For this specific task, QT-Opt can reach 86% grasp
success when learning completely from data collected from
previous experiments which we will refer to as offline data,
and can quickly reach 96% success with an additional
online data of 28,000 grasps collected during a joint
finetuning training phase. Those results show that RL can be
scalable and practical on a real robotic application by either
allowing to reuse past collected experiences (offline data),
and potentially training purely offline (no additional robot
interaction required) or a combination of offline and online
approaches (called joint finetuning). Leveraging offline data
makes deep RL a practical approach for robotics as it allows
to scale the training dataset to a large enough size to allow
generalization to happen, with a small robotic fleet of 7
robots and over a period of a few months, or by leveraging
simulation, to generalize with a collection effort of just a few
days James et al. (2019); Rao et al. (2020) (see Section 4.3
for more examples of sim-to-real techniques).

Because the policy is learned by optimizing the reward
across the entire trajectory (optimizing for long term reward
using Bellman backup), and is constantly re-planning its next
move with vision as an input, the policy can learn complex
behaviors in a self-supervised manner that would have been
hard to program, such as singulation, pregrasp manipulation,
dealing with a cluttered scene, learning retrial behaviors
as well as handling environment disturbance and dynamic
objects (Figure 4). Retrial behaviors can be learned because
the policy can quickly react to the visual input, at every step,
which may show in one step that the object dropped after the
gripper lifted it from the bin, and thus deciding to re-attempt
a grasp in the new location the object fell to.

Section 4.2 describes some of the design principles we
used to get good data efficiency. Section 4.5 discusses
strategies that allowed us to generalize properly to unseen
objects. Section 4.7 describes ways we managed to scale to
7 robots with one human operator as well as enable 24h/7
day operations. Section 4.4 discusses how we side-stepped
exploration challenges by leveraging scripted policies.

The lessons from this work have been that (1) a lot of
varied data was required to learn generalizable grasping,
which means that we need unattended data collection and
a scalable RL pipeline; (2) the need for large and varied data
means that we need to leverage all of the previously collected
data so far (offline data) and need a framework that makes
this easy is crucial; (3) to achieve maximal performance,
combining offline data with a small amount of online data
allows us to go from 86% to 96% grasp success.

Prepared using sagej.cls



6

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4. Eight grasps from the QT-Opt policy, illustrating some of the strategies discovered by our method: pregrasp manipulation
(a, b), grasp readjustment (c, d), grasping dynamic objects and recovery from perturbations (e, f), and grasping in clutter (g, h).

3.3 Learning Legged Locomotion

Figure 5. The Minitaur robot learns to walk from scratch using
deep RL.

Although walking and running seems effortless activities
for us, designing locomotion controllers for legged robots
is a long-standing challenge (Raibert 1986). RL holds
the promise to automatically design high performance
locomotion controllers (Kohl and Stone 2004; Tedrake et al.
2015; Ha et al. 2018; Hwangbo et al. 2019; Lee et al.
2020a). In this case study, we apply deep RL techniques
on the Minitaur robot (Figure 5), a mechanically simple and
low cost quadruped platform (De 2017). We have overcome
significant challenges and developed various learning-based
approaches, with which agile and stable locomotion gaits
emerge automatically.

Simulation is an important prototyping tool for robotics,
which can help to bypass many challenges of learning on
real systems, such as data efficiency and safety. In fact,
most of the prior work used simulation (Brockman et al.

2016; Coumans and Bai 2016) to evaluate and benchmark
the learning algorithms (Hämäläinen et al. 2015; Heess et al.
2017; Yu et al. 2018; Peng et al. 2018a). Using general-
purpose RL algorithms and a simple reward for walking
fast and efficiently, we can train the quadruped robot to
walk in simulation within 2-3 hours. However, a policy
learned in simulation usually does not work well on the real
robot. This performance gap is known as the reality gap.
Our research has identified the key causes of this gap and
developed various solutions. Please refer to Section 4.3 for
more details. With these sim-to-real transfer techniques, we
can successfully deploy the controllers learned in simulation
on the robots with zero or only a handful of real-world
experiments (Tan et al. 2018; Yu et al. 2019). Without much
prior knowledge and manual tuning, the learning algorithm
automatically finds policies that are more agile and energy
efficient than the controllers developed with the traditional
approaches.

Given the initial policies learned in simulation, it is
important that the robots can continue their learning process
in the real-world in a life-long fashion to adapt their
policies to the changing dynamics and operation conditions.
There are three main challenges for real-world learning
of locomotion skills. The first is sample efficiency. Deep
RL often needs tens of millions of data samples to learn
meaningful locomotion gaits, which can take months of
data collection on the robot. This is further exacerbated
by the need for extensive hyperparameter tuning. We have
developed novel solutions that have significantly reduced

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 7

the sample complexity (Section 4.2) and the need for
hyperparameter tuning (Section 4.1).

Robot safety is another bottleneck for real-world training.
During the exploration stage of learning, the robot often
tries noisy actuation patterns that cause jerky motions and
severe wear-and-tear of the motors. In addition, because the
robot has yet to master balancing skills, the repeated falling
quickly damages the hardware. We discuss in Section 4.11
several techniques that we employ to mitigate the safety
concerns for learning locomotion with real robots.

The last challenge is asynchronous control. On a physical
robot, sensor measurements, neural network inference
and action execution usually happen simultaneously and
asynchronously. The observation that the agent receives may
not be the latest owing to computation and communication
delays. However, this asynchrony breaks the fundamental
assumption of the markovian decision process (MDP).
Consequently, the performance of many deep RL algorithms
drop dramatically in the presence of asynchronous control.
In locomotion tasks, asynchronous control is essential to
achieve high control frequency. In other words, to learn to
walk, the robot has to think and act at the same time. We
discuss our solutions of this challenge in Section 4.8, for both
model-free and model-based learning algorithms.

With the progress to overcome these challenges, we have
developed an efficient and autonomous on-robot training
system (Haarnoja et al. 2019), in which the robot can learn
walking and turning, from scratch in the real world, with
only five minutes of data (Yang et al. 2020) and little human
supervision.

4 Outstanding Challenges in Deep RL and
Strategies to Mitigate Them

In the previous section, we showed a few examples of
applications of deep RL on robotic tasks that enabled
progress over previous approaches in terms of generalization
to a large variety of environments, objects or more complex
behaviors. Those applications required to solve or at least
mitigate a few challenges specific to applying deep RL on
real robots that have been identified over the years. In this
section, we describe those challenges and provide, whenever
available, our current best mitigation strategies that enabled
us to apply deep RL to the applications we discussed in
Section 3.

4.1 Reliable and Stable Learning
Deep RL algorithms are notoriously difficult to use in
practice (Irpan 2018). The performance of commonly
used RL methods depends on careful settings of the
hyperparameters, and often varies substantially between
runs (i.e., for different “random seeds” in simulation).
Off-policy algorithms, which are particularly desirable in
robotics owing to their improved sample efficiency, can
suffer even more from these issues than on-policy policy
gradient methods. We can broadly classify the challenges
of reliable and stable learning into two groups: (1) reducing
sensitivity to hyperparameters, and (2) reducing issues owing
to local optima and delayed rewards.

One approach to reducing the burden of tuning
hyperparameters is to use automated hyperparameter tuning

methods (Chiang et al. 2019). However, such methods
typically require running RL algorithms many times,
which is impractical outside of simulated domains. A
potentially promising alternative available for off-policy
RL methods is to run multiple learning processes with
different hyperparameters on the same off-policy data buffer,
effectively using one run’s worth of data for multiple
independent learning processes. Recent work has explored
this idea in simple simulated domains (Khadka et al. 2019),
though it remains to be seen if such an approach can be
scaled up to real-world robotic learning settings. Another
approach is to develop algorithms that automatically tune
their own hyperparameters, as in the case of SAC with
automated temperature tuning, which has been demonstrated
to greatly reduce the need for hyperparameter tuning across
domains, thus enabling much easier deployment on real-
world robotic systems (Haarnoja et al. 2019). Lastly, we can
aim to develop methods that are, through their design, more
robust to hyperparameter settings. This option, although the
most desirable, is also the toughest, because it likely requires
an in-depth understanding for the real reasons behind the
sensitivity of current RL algorithms, which has so far proven
elusive.

The second challenge to reliable and stable learning is
local optima and delayed rewards. In contrast to supervised
learning problems, which put a convex loss function on top
of a nonlinear neural network function approximator, the
RL objective itself can present a challenging optimization
landscape independently of the policy or value function
parameterization, which means that the usual benefits of
over-parameterized networks do not fully resolve issues
relating to local optima. This is indeed part of the
reason why different runs of the same algorithm can
produce drastically different solutions, and it presents a
major challenge for real-world deployment, where even
a single run can be exceptionally time-consuming. Some
methods might provide better resilience to local optima
by preferring stochastic policies that can explore multiple
strategies simultaneously (Ziebart et al. 2008; Toussaint
2009; Rawlik et al. 2013; Fox et al. 2016; Haarnoja et al.
2017, 2018c). More sophisticated exploration strategies
might further alleviate these issues (Fu et al. 2017; Pathak
et al. 2017), and parameter-space exploration strategies
might offer a particularly promising approach to combating
this issue (Burda et al. 2019). Indeed, we have observed in
some of our own experiments that, when collecting large
amount of on-policy data is not an issue, direct parameter
search methods such as augmented random search (Mania
et al. 2018) can often be substantially easier to deploy than
more classic RL methods, likely to their ability to avoid local
optima by exploring directly in the parameter space. It may
therefore prove fruitful to investigate methods that combine
entropy maximization and parameter space exploration as a
way to avoid the local optima and delayed reward issues that
make real-world deployment challenging.

4.2 Sample Efficiency
Many popular RL algorithms require millions of stochastic
gradient descent (SGD) steps to train policies that can
accomplish complex tasks (Schulman et al. 2017; Mnih et al.
2013). This often means that millions of interaction with the

Prepared using sagej.cls



8

real world will be required for robotic tasks, which is quite
prohibitive in practice. Without any improvement in sample
efficiency to those algorithms, the number of training steps
will only increase as the model size increases to tackle more
and more complex robotic tasks.

We have found that some classes of RL algorithms are
much more sample efficient than others. RL algorithms
can be categorized into model-based versus model-free
methods. Among the model-free methods, they are often
categorized into on-policy and off-policy methods. Generally
speaking, among model-free techniques, off-policy methods
are about an order of magnitude more data efficient than
on-policy methods. Model-based methods could be another
order of magnitude more data efficient than their model-
free counterparts. In the following sections we discuss our
experiences with these methods.

4.2.1 Off-Policy Algorithms On-policy algorithms such as
policy gradient methods (Peters and Schaal 2006; Schulman
et al. 2015) have recently become popular owing to their
stability and their ability to learn policies for a wide
variety of tasks. Unfortunately, on-policy algorithms have the
constraint to only use a sample coming from the latest policy
that is being trained. This has the unfortunate consequence
that the number of required data samples is equal and often
larger to the number of training steps needed to train a
model, which in practice, can be millions of steps. Training
an on-policy model may thus require several millions and
sometimes billions of action executions in the real world
which is often prohibitive.

Off-policy methods do not assume that the samples are
coming from the current trained policy. In practice, this
means the samples can be reused multiple times across
back-propagations, potentially hundreds or thousands of
times, without any over-fitting in complex visual tasks. In
Kalashnikov et al. (2018), up to 15 training steps of batch
size 32 were done per collect step on real robots during
a finetuning phase, which is equivalent to 480 gradient
descents per collect step. Recently, SAC (Haarnoja et al.
2019), an off-policy method, was able to learn to walk on
a quadruped robot, from scratch, with just 2 hours of real
robot data coming from a single robot. Note that further
increasing the ratio between the number of training steps and
the number of collected samples may decrease the training
performance due to overfitting. The optimal ratio is often task
dependent, policy dependent or algorithm dependent, which
is an important hyper-parameter to tune.

4.2.2 Model-Based Algorithms Model-based algorithms
such as Draeger et al. (1995) choose the optimal action by
leveraging a model of the environment. The agent may learn
from the experience generated using this model instead of
collected in the real environment. Thus the amount of data
required for model-based methods is usually much less than
their model-free counterparts. For example, we leveraged
such a technique to effectively learn to walk, from scratch,
with only a few minutes of real robot data (Nagabandi et al.
2018; Yang et al. 2020). The downside is that these methods
require to have access to such a model, which is often
challenging to acquire in practice. We cover model-based
techniques in more detail in Section 4.6.

4.2.3 Input Remapping for High-Dimensional Observa-
tions When learning from high-dimensional observations,
e.g. image observations, learning visual representations can
occupy substantial amount of training and sample complex-
ity. One trick for addressing this challenge is via input
remapping. In particular, when policies are trained in a labo-
ratory environment, the true underlying state of the system
may be observable during training, even when the policy
to be learned must use vision. In these settings, one policy
or multiple local policies can be efficiently learned without
vision using privileged state information, and these policies
can be distilled into a final policy that takes raw observations
as input and is trained to produce the output of the non-
vision policies. This trick has been successful in a num-
ber of settings including robotic manipulation from image
pixels (Levine et al. 2016; Pinto et al. 2018), autonomous
driving (Chen et al. 2020), and robotic locomotion from a
history of proprioceptive sensor measurements (Lee et al.
2020b).

Figure 6. PR2 learning to scoop a bag of rice into a bowl with a
spatula (left) using a learned visual state representation (right),
using Finn et al. (2016b). The feature points visualized on the
right images were learned without supervision with an
autoencoder.

When the true states of objects cannot be measured and the
local policies must themselves handle image observations,
these observations can be first encoded into a lower-
dimensional state space via an autoencoder, such as a spatial
autoencoder that summarizes the image with a set of feature
points in image-space (Finn et al. 2016b) – an example of
such features are illustrated in Figure 6. Unsupervised feature
learning methods such as autoencoders (Finn et al. 2016b;
Ghadirzadeh et al. 2017), contrastive losses (Sermanet et al.
2018), and correspondence learning (Florence et al. 2018,
2019), provide a reasonable solution in cases where the
inductive biases of the unsupervised algorithm effectively
match the needs of the state representation.

4.2.4 Offline Training Image classifiers used by compa-
nies, such Facebook or Google, are trained on tens of million
of labeled images (Kuznetsova et al. 2020), or pre-trained on
billions of images (Mahajan et al. 2018; Xie et al. 2020), to
reach the level of quality required by certain products. Nat-
ural language processing (NLP) systems for machine trans-
lation, or speech recognition systems such as BERT (Devlin
et al. 2019), also require billions of samples to generalize
and have descent performance for real applications. In a way,

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 9

supervised learning systems are also inefficient, but in many
applications, the gains in generalization and performance
that deep learning provides compensates for the cost of
collecting such large amounts of data. Similarly, a general
purpose robot may also require a large volume of data to train
on, unless significant improvements have been made in our
learning algorithms. Offline training enable us to use all the
data collected so far to train our policies, and thus, potentially
scale to billions of real world samples.

Off-policy methods can leverage all the data collected in
the past, across many experiments. In most RL benchmarks,
off-policy methods are still collecting new data as the
training happens. However, off-policy methods can also be
trained without collecting any new data during the training
phase; similar to supervised learning problems. We call this
offline training, whereas other work may call it batch RL.
In Section 3.2, we have shown that this mode of training
allowed us to generalize grasping policies to unseen objects
with just 500,000 trials. If we compare this dataset to the
ImageNet dataset, which has about 1 million images, we can
see that the amount of data to learn this complex robotic
task from vision sensor, using RL, is in the same order of
magnitude as learning to classify 1,000 types of objects.
In both cases, the learned models have shown the ability
to generalize to a wide variety of unseen object instances.
There are challenges to stabilize offline training. The offline
training can become unstable if the state-action distribution
from the latest policy differs too much from the one that
was used to collect the training data. Recent work just
started to identify and address to some extent this specific
problem (Kumar et al. 2019; Agarwal et al. 2020; Fujimoto
et al. 2019).

An important technique to bypass the sample efficiency
problem is to use simulators, which can generate realistic
experience much faster than real time. Combining with
sim-to-real transfer techniques, simulators allow us to learn
policies that can be deployed in the real world with a minimal
amount of real world interaction. In the next section, we
discuss the use of simulation.

4.3 Use of Simulation
Simulation is becoming increasingly accurate over the years,
which makes it a good proxy to real robots. One bottleneck
of robotic learning is to collect a large amount of data
autonomously and safely. While collecting enough real data
on the physical system is slow and expensive, simulation
can run orders of magnitude faster than real-time, and
can start many instances simultaneously. In addition, data
can be collected continuously without human intervention.
On the real robot, human supervision is always needed
for resetting experiments, monitoring hardware status and
ensuring safety. In contrast, experiments can be reset
automatically, and safety is not a problem in simulation.
Thus, prototyping in simulation is faster, cheaper and safer
than experimenting on the real robot. These enable fast
iteration of developing and tuning learning algorithms. The
fast pace of experiments allow us to efficiently shape the
reward function, sweep the hyper-parameters, fine-tune the
algorithm, and test whether a given task falls within the
robot’s hardware capability. From our own experience, we

have benefited tremendously from prototyping in simulation
(Tan et al. 2018).

In addition to prototyping, can we directly use the
policies trained in simulation on real robots? Unfortunately,
deploying these policies can fail catastrophically due to the
reality gap. Modeling errors cause a mismatch in robot
dynamics, and rendered images often do not look like their
real-world counterparts. The reality gap is a major obstacle
that prevents the application of learning to robotics. In
simulations, the robots can learn to backflip (Peng et al.
2018a), bicycle stunts (Tan et al. 2014), and even put on
clothes (Clegg et al. 2018). In contrast, it is still very
challenging to teach robots to perform basic tasks such
as walking in the real world. Bridging the reality gap will
allow robotics to fully tap into the power of learning. More
importantly, bridging the reality gap is important to push
the advancement of machine learning for robotics towards
the right direction. In the last few years, the OpenAI Gym
benchmark (Brockman et al. 2016) is the key driving force
behind the development of deep RL and its application
to robotics. However, these simulation benchmarks are
considerably easier than their real world equivalent. It does
not take into consideration the detailed dynamics, partial
observability, latency, and safety aspects of robotics. Thus,
the scores which researchers optimize their algorithms for
can be misleading: the learning algorithms that perform well
in the Gym environments may not work well on real robots.
If we can bridge this reality gap, we would have a far
better simulation benchmark for robotics, which can focus
the research effort to the most pressing challenges in robot
learning, such as non-Markovian assumption (asynchronous
control), partial observability and safe exploration and
actuation. In the following section, we outline a few
methods that have been employed successfully for sim-to-
real transfer.

4.3.1 Addressing Partial Observations In simulation, we
can access the ground-truth state of the robot, which can
significantly simplify the learning of tasks. In contrast, in the
real-world, we are restricted to partial observations that are
usually noisy and delayed, due to the limitation of onboard
sensors. For example, it is difficult to precisely measure
the root translation of a legged robot. To eliminate this
difference, we can remove the inaccessible states during
training (Tan et al. 2018), apply state estimation, add more
sensors (e.g. Motion Capture) (Haarnoja et al. 2019) or learn
to infer the missing information (e.g. reward) (Yang et al.
2019). On the other hand, if used properly, the ground-
truth states in simulation can significantly speed up learning.
“Learning by cheating” (Chen et al. 2020) first leveraged the
ground-truth states to learn a privileged agent, and in the
second stage, imitated this agent to remove the reliance on
the privileged information.

4.3.2 Better Simulation The reality gap is caused by
the discrepancy between the simulation and the real-world
physics. This error has many sources, including incorrect
physical parameters, un-modeled dynamics, and stochastic
real environment. However, there is no general consensus
about which of these sources plays a more important role.
After a large number of experiments with legged robots, both
in simulation and on real robots, we found that the actuator

Prepared using sagej.cls



10

dynamics and the lack of latency modeling are the main
causes of the model error. Developing accurate models for
the actuator and latency significantly narrow the reality gap
(Tan et al. 2018). We successfully deployed agile locomotion
gaits that are learned in simulation to the real robot without
the need for any data collected on the robot.

4.3.3 Domain Randomization The idea behind domain
randomization is to randomly sample different simulation
parameters while training the RL policy. This can include
various dynamics parameters (Peng et al. 2018b; Tan
et al. 2018) of the robot and the environment, as well
as visual and rendering parameters such as textures and
lighting (Sadeghi and Levine 2017; Tobin et al. 2017).
Similar to data augmentation methods in supervised learning,
policies trained under such diverse conditions tend to be
more robust to such variations, and can thus perform better
in the real-world.

4.3.4 Domain Adaptation The success of adversarial
training methods such as generative adversarial networks
(GAN) (Goodfellow et al. 2014) have resulted in their
application to several other problems, including sim-to-real
transfer. Adapter networks have been trained that convert
simulated images to look like their real-world counterparts,
which can then be used to train policies in simulation (James
et al. 2017; Shrivastava et al. 2017; Bousmalis et al. 2017,
2018; Rao et al. 2020). An alternative approach is that
of James et al. (2019) which trains an adapter network to
convert real-world images to canonical simulation images,
allowing a policy trained only in simulation to be applied
in the real-world. Training of the real-to-sim adapter was
achieved by using domain-randomized simulation images as
a proxy for real-world images, removing the need for real-
world data altogether. The resulting policy achieved 70%
grasp success in the real-world with the QT-Opt algorithm,
with no real-world data, and reaches a success rate of 91%
after fine-tuning on just 5,000 real-world grasps: a result
which previously took over 500,000 grasps to achieve.

4.4 Side-Stepping Exploration Challenges
In RL, “exploration” refers most generally to the problem
of choosing a policy that allows an agent to discover high-
reward regions of the state space. Such a policy may not itself
have very high average reward – typically, good exploration
strategies are risk-seeking (Bellemare et al. 2016), highly
stochastic (Ziebart et al. 2008; Toussaint 2009; Rawlik et al.
2013; Fox et al. 2016; Osband et al. 2016; Haarnoja et al.
2017), and prioritize novelty over exploitation (Bellemare
et al. 2016; Fu et al. 2017; Pathak et al. 2017).

In practice, effective exploration is particularly challeng-
ing in tasks with sparse reward. In the most extreme version
of this problem, the agent must essentially find a (high
reward) needle in a (zero reward) haystack. Unfortunately,
the most natural formulation of many practical robotics
tasks has this property. For many tasks, it is most natural
to formulate them as binary reward tasks (Irpan 2018): a
grasping robot can either succeed or fail at grasping an
object, a pouring robot can pour water into a glass or not,
and a mobile robot can reach the destination or not. One can
reasonably regard these as the most basic task specification,

with any more informative reward (e.g., distance to the goal)
as additional engineer-provided shaping.

For this reason, a number of prior works have
focused on studying exploration for sparse-reward robotic
tasks (Andrychowicz et al. 2017; Schoettler et al. 2019).
Numerous methods for improving exploration have been
proposed in the literature (Ziebart et al. 2008; Toussaint
2009; Rawlik et al. 2013; Fox et al. 2016; Osband et al. 2016;
Pathak et al. 2017; Haarnoja et al. 2017), and many of these
can be applied directly to real-world robotic RL. However,
for certain real-world robotic tasks, this problem can often be
side-stepped using a combination of relatively simple manual
engineering and demonstration data, and this provides a
very powerful mechanism for avoiding a major challenge
and instead focusing on other issues, such as efficiency
and generalization. The use of demonstrations to mitigate
exploration challenges has a long history in robotics (Ijspeert
et al. 2002; Peters and Schaal 2008; Daniel et al. 2013;
Manschitz et al. 2014), and has been used in a number
of recent works (Jain et al. 2019; Nair et al. 2018). There
are various ways to incorporate the demonstrations into
the learning process, which are discussed in the following
section.

4.4.1 Initialization A simple way to incorporate demon-
strations to mitigate the exploration challenge is to pre-train
a policy network with demonstrations via imitation learning
(also called behavioral cloning) (Bojarski et al. 2016). This
approach has been used in a variety of prior robotic learning
works (Ijspeert et al. 2002; Peters and Schaal 2008; Daniel
et al. 2013; Manschitz et al. 2014).

Although this approach is simple and often effective, it
suffers from two major challenges. First, imitation learning
lacks effective guarantees on performance both in theory and
in practice (Ross et al. 2011), and the resulting policies can
suffer from “compounding errors,” where a small mistake
throws the policy into an unexpected state, where it makes
a bigger mistake. Second, the learned initialization can be
easily forgotten by the RL. As it is common practice to
begin RL with a high random exploration factor, RL can
quickly decimate the pre-trained policy, and end up in a
state that is no better than random initialization. Note that
some algorithms and policy representations are particularly
amenable to initialization from demonstrations. For example,
dynamic movement primitives (DMPs) can be initialized
from demonstrations in a way that does not suffer from
compounding errors (Schaal 2006), whereas guided policy
search can be initialized from demonstration by pre-training
the local policies, which in practice tends to be a lot more
stable than demonstration pre-training for standard policy
gradient or actor-critic methods (Levine et al. 2015).

4.4.2 Data Aggregation Another technique for incorpo-
rating demonstrations in off-policy model-free RL is to add
demonstration data to the data buffer for the off-policy
algorithm. This method is often used with Q-learning or
actor-critic style algorithms (Večerı́k et al. 2017; Wu et al.
2019). This can in principle mitigate the exploration chal-
lenge, because the algorithm is exposed to high-reward
behavior, but tends to be problematic in practice, because
commonly used approximate dynamic programming meth-
ods (i.e., value function estimation) need to see both good

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 11

Figure 7. Using both unsupervised interaction and
teleoperated demonstration data, the robot learns a visual
dynamics model and action proposal model that enables it to
perform new tasks with novel, previously-unseen tools
(using Xie et al. (2019)). The task specification is shown on the
left and the robot performing the task is shown on the right.

and bad experience to learn which actions are desirable.
Therefore, when the demonstrations are much better than
the agent’s own experience, the value function will typically
learn that the demonstrated states are better, but might
fail to learn which actions must be taken to reach those
states. Therefore, this tends to be much more effective when
combined with the next method.

4.4.3 Joint Training Instead of simply pre-training the
policy with supervised learning, we can train it jointly,
adding together the loss from the policy gradient objective
with the loss for behavioral cloning (Hester et al. 2018; Wu
et al. 2019; Johannink et al. 2019). This simple approach
provides a much stronger signal to the learner, generally
succeeding in staying close to the demonstrations, but at
the cost of biasing policy learning: if the demonstrations are
suboptimal, the behavioral cloning loss may prevent the RL
algorithm from discovering a better policy.

4.4.4 Demonstrations in Model-Based RL In model-
based RL, demonstration data can also be aggregated with
the agent’s experience to produce better models. However, in
contrast to the model-free setting, for model-based RL this
approach can be quite effective, because it would enable the
learned model to capture correct dynamics in important parts
of the state space. When combined with a good planning
method, which can also use the demonstrations (e.g., as
a proposal distribution), including demonstrations into the
model training dataset can enable a robot to perform complex
behaviors, such as using tools (Figure 7), which would
be extremely difficult to discover automatically (Xie et al.
2019).

4.4.5 Scripted Policies In addition to demonstrations, we
can also overcome the exploration challenge with a moderate
amount of manual engineering, by designing “scripted”
policies that can serve as initialization. Scripted policies
can be incorporated into the learning process in much the
same way as demonstrations, and can provide considerable
benefit. In the QT-Opt grasping system (Figure 3), scripted
policies are used to pre-populate the data buffer with a higher
proportion of successful grasps than would be obtained
with purely random actions. Although aggregating such data
from a small number of demonstrations would have limited
effectiveness, the advantage of a scripted policy is that it can

be used to collect very large datasets. In the final QT-Opt
experiment, the scripted policy was used to collect 200,000
grasp attempts, with a success rate around 15-30% Although
this success rate is much lower than the final policy, which
succeeds 96% of the time, it was sufficient to bootstrap an
effective vision-based grasping skill.

Another reason why we pre-populate the replay buffer
only with a scripted policy is to help keep a ratio of
successful and unsuccessful episodes close to 50%. This is
motivated by techniques trying to re-balance equally each
class when training a multi-class classifier as in Chawla et al.
(2002). A poor performing policy doesn’t generate good
data to train a Q-function since it requires both good and
bad attempts to be able to learn a good ranking of what a
good or bad action is. At the beginning of the training, the
policy is bad because the Q-function being learned hasn’t
converged yet. Such a policy only generates unsuccessful
episodes which can’t be used to train a good Q-function. This
is why the policy is only used to generate data once it reached
a certain amount of performance. Our rule of thumb is to only
start using the trained policy for data collection once it has
reached 20+% success.

Scripted policies can also be used in a “residual” RL
framework, which serves a similar purpose as joint training
with demonstrations. In residual RL (Silver et al. 2018;
Tan et al. 2018; Johannink et al. 2019), the reinforcement
learner learns a policy that is additively combined with
the scripted policy, i.e. πfinal(s) = πscripted(s) + πlearned(s).
The motivation is similar: unlike pure initialization, the
residual approach always retains the scripted component.
However, unlike joint training with demonstrations, residual
RL can overcome the bias in the scripted policy by learning
to “undo” πscripted(s), and therefore can in principle still
converge to the optimal policy.

4.4.6 Reward Shaping Shaping the reward function can
also side-step exploration challenges by providing the RL
algorithm with additional guidance for exploration. For
example, for a reaching task, one can use the distance of the
agent to the goal as a negative reward which will significantly
speed up the exploration. We’ve used this approach in
several works for learning manipulation skills, such as door
opening and peg insertion, where object location information
is available during training (Gu et al. 2017; Levine et al.
2016). This approach is very effective for any tasks where
the agent has to go to a specific know location, such as in
navigation tasks Francis et al. (2020). However, we’ve found
in practice that such an approach can be difficult to scale to
many diverse manipulation tasks. This is due to two factors.
First, it can be very difficult to weight the shaping terms
properly to avoid any greedy and unintentional sub-optimal
behaviors. For example, to open the door, one may want to
get close to the handle, but may require to take some distance
from it to take a different approach with the gripper if the
handle can’t be moved with the current orientation. Such
behavior would go against the shaping of the reward, and
thus the reward shaping may make it impossible to discover
such a behavior if its weight is too high. Second, and perhaps
more importantly in real-world environments, such shaped
reward functions require knowledge of the precise state of the
environment, such as object locations relative to the robot.

Prepared using sagej.cls



12

This is feasible in simulation but can be very challenging
on real robots, where the only input may be an image. Once
one wants to tackle multiple manipulation tasks, dealing
with those variations may be difficult to program even in
simulation, since the state configuration one has to deal with
can grow exponentially.

While we have discussed how the challenge of exploration
can be side-stepped by employing demonstrations, scripted
policies, and reward shaping, the study of exploration and
curiosity in robotic learning still plays an important role.
Indeed, we can regard those approaches as a means to
parallelize research on robotic learning: if we aim to study
perception, generalization, and complex tasks, we can avoid
needing to solve exploration as a prerequisite.

4.5 Generalization
Generalization to any new skills, environments or tasks
still remains an unsolved problem. Solving this problem is
required to allow robots to operate in a wide variety of
real-world scenarios. However, there are a few restricted
situations where we have seen good generalization. In the
next section, we cover two important aspects: (1) good
data diversity guaranteeing to cover the space we want to
generalize and (2) having a correct train and test evaluation
protocol that allows us to optimize our system towards better
generalization.

4.5.1 Data Diversity Good data diversity that covers the
space of generalization we care about is critical to have good
performance with deep learning. Deep RL is no exception.
In QT-Opt, we cared about generalization to the objects that
were never seen during training. Thus, we made sure that
during data collection, the agent would see more than 1,000
different object types. If we had only collected data with a
small set of objects, we may not achieve the generalization
capability that we need. It is the same analogy that we cannot
expect a model trained on CIFAR (with 100 classes) to
generalize as well as a model trained on ImageNet (with
1,000 classes). This is also true for robotics. If we want to
generalize to any objects, we may need to collect data with
thousands of them. If we want the policy to be agnostic to the
robot arm geometry, we may need to train with thousands of
arm variations, etc.

A lot of recent work has leveraged domain randomization
in simulation to obtain good sim-to-real transfer because they
cared about generalization to a new environment. There is
a tradeoff here as more environment diversity may cause
the policies to have lower performance. Often this can be
alleviated with larger and better neural network architectures.
As an example, a larger and deeper than usual neural network
was required in Kalashnikov et al. (2018) for the Q-function
to deal with the large variety of objects and to achieve good
performance on test objects.

4.5.2 Proper Evaluation To get good generalization, the
entire system, including its hyperparameters, has to be tuned
to optimize for it. This means that when we define the
evaluation protocol, we have to be thoughtful to have two
MDPs: one for training, and a separate one for evaluation.

This separation of MDP has to be done based on what
we care to generalize against: if we want a policy that can
grasp new objects, we should have the training MDP with

a different set of objects than the testing MDP, both in
simulation and the real setup. If we care about generalizing
to new robot dynamics, we should make sure to define our
training MDP with different dynamics than our testing MDP.

4.6 Avoiding Model Exploitation
There have been notable success stories in robotics with
model-based RL approaches that learn a model of the
dynamics and use that model to choose actions (Deisenroth
et al. 2013; Levine et al. 2016; Lenz et al. 2015; Finn
and Levine 2017; Nagabandi et al. 2018; Xie et al. 2019;
Kurutach et al. 2018; Yang et al. 2020). Here, we use
the term ‘model-based’ to describe algorithms that learn a
model of the dynamics from data, not to refer to the setting
where a model is known a priori. Empirically, these methods
have enjoyed superior sample complexity in comparison to
model-free approaches (Deisenroth et al. 2013; Nagabandi
et al. 2018; Yang et al. 2020), have scaled to vision-based
tasks (Levine et al. 2016; Finn et al. 2016b; Finn and Levine
2017), and demonstrated generalization capabilities to many
objects and tasks when the model is trained on large, diverse
datasets (Finn and Levine 2017; Yang et al. 2020). These
generalization capabilities are a natural byproduct of being
able to train on off-policy datasets.

Despite the benefits of model-based RL methods, a
primary, well-known challenge faced by such model-based
RL approaches is model exploitation, i.e. when the model
is imperfect in some parts of the state space, and the
optimization over actions finds parts of the state space where
the model is erroneously optimistic. This can result in poor
action selection. Although this challenge is real, we have
found that, in practice, we have multiple tools for mitigating
it.

First, we have found that optimization under the model is
successful when the data distribution consists of particularly
broad distributions over actions and states (Finn and Levine
2017). In problem domains where this is not possible, one
effective tool is data aggregation, which interleaves the data
collection and model learning, similar to DAGGER (Ross
et al. 2011). Whenever the model is inaccurate and gets
exploited, more data in the real world is collected to re-
train the model. Another tool is to represent and account
for model uncertainty (Deisenroth and Rasmussen 2011).
Acquiring accurate uncertainty estimates when using neural
network models is particularly challenging, though there has
been some success on physical robots (Nagabandi et al.
2020). If we cannot obtain uncertainty estimates, then we can
alternatively model the data distribution that the model was
fit, and constrain the optimization to that distribution. We
have found this approach to be particularly effective when
using models fit locally around a relatively small number
of trajectories (Levine et al. 2016; Chebotar et al. 2017b).
We can achieve a similar effect, but without having to refit
models from scratch, by learning to adapt models to local
contexts from a few transitions (Clavera et al. 2019): this
approach allows us to automatically construct local models
from short windows of experience. These local models have
been demonstrated on a variety of robotic manipulation and
locomotion problems.

Even if the learned model is accurate for a single-step
prediction, error can accumulate over the a long-horizon

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 13

plan. For example, the predicted and real trajectories can
quickly diverge after a contact event, even if the single-
step model error is small. We found that using multi-step
losses (Finn and Levine 2017; Yang et al. 2020), shorter
horizons (when applicable) (Nagabandi et al. 2018) and
replanning (Finn and Levine 2017; Nagabandi et al. 2018)
are effective strategies for limiting the error accumulation,
and recovering from model exploitation.

4.7 Robot Operation at Scale
Recent advances in deep learning have also contributed to
faster compute architectures and the availability of ever
growing (labeled) data sets (Garofolo et al. 1993; Deng
et al. 2009). In addition, various open-source efforts, such
as those of Paszke et al. (2017) and Abadi et al. (2015),
have contributed to minimizing the cost of entry. Importantly,
progress was enabled also because the time it took to train
deep models and iterate on them became shorter and shorter.
This holds true for robotic learning as well. The faster
training data can be collected and a hypothesis can be tested,
the faster progress will be made.

Despite advances in data-efficiency (Section 4.2), deep
RL still requires a fair amount of data, especially if visual
information (images) is part of the observation. The majority
of robot learning experiments to date were conducted on a
single robot closely monitored by a single human operator.
This one-to-one relation between robot and operator has been
a tedious but effective way to ensure continuous and safe
operation. The human can reset the scene, stop the robot
in unsafe situations, and simply restart and reset the robot
on failures. However, to scale up data collection efforts and
increase the throughput of evaluation runs, robots need to
run without human supervision. It is impractical to allocate
more operators to a setup with multiple robots, or whenever a
single robot is meant to run 24h/7, and especially both. In the
following we discuss the particular challenges that arise in
those settings, namely (1) designing the experimental setup
to maximize throughput, i.e. the number of episodes/trials
per hour, (2) facilitating continuous operation of the robots,
and (3) dealing with non-stationarity due to environment
changes.

4.7.1 Experiment design The experimental setup itself,
i.e. how a particular robot is set up to tackle a specific
task, is an important and often overlooked aspect of
a successful experiment. Oftentimes the setup has been
carefully engineered or the task has been chosen such that
the robot can reset the scene to facilitate unattended and
potentially round-the-clock operation. For example, in (Pinto
and Gupta 2016; Levine et al. 2018; Kalashnikov et al. 2018;
Zeng et al. 2018; Cabi et al. 2019; Dasari et al. 2019), the
workspaces are convex, the objects involved allow for safe
interaction, and action-spaces are mostly restricted to top-
down combined with either intrinsic compliance of the robot
itself and/or a wrist mounted force-torque sensor to detect
and stop unsafe motions. Ideally, the experimental setup is
as unconstrained as possible, but in practice is restricted to
create a safe action space for the robot (see Section 4.11.1).

4.7.2 Facilitating continuous operation Round-the-clock
operation will stress the robot itself as well as the
experimental setup. Repeated potentially unintended contact

of the robot with objects and environment will wear out any
experimental setup eventually and needs to be considered
upfront. The challenge for long running experiments is to
increase the mean-time-between-failure while ensuring that
the data that is being collected is indeed useful for training.
The former requires to understand the root cause for each
intervention and develop fail-safe redundancies. We discuss
this challenge more in Section 4.12. Similarly, to ensure
that the collected data is not compromised, adding sanity
checks is recommended along with actually using the data
early to train and re-train models. Despite simply acquiring
more data faster, running experiments around-the-clock also
ensures that robots are exposed to varying amounts of
lighting conditions allowing us to train more robust policies.
However, spot-checking the collected data is important as
we noticed, for example that the ceiling lights automatically
turned off for parts of the night resulting in very dark images
compromising the data.

4.7.3 Non-Stationarity due to Environment Changes
A learned policy will fail if environment aspects have
significantly changed since training. For example, the
lighting conditions may significantly shift at night if
windows are present in the room, and evaluations done at
night may have very different results if no data collection
happened at that time. The underlying dynamics may
have shifted significantly since training due to hardware
degradation. Hardware degradation, such as change of
battery level, wear and tear, and hardware failure, are the
major causes of dynamic changes. Traditional learning-
based approaches, which have distinctive training and testing
phases, assuming stationary distribution between phases,
suffer from hardware degradation or environment changes
not captured in the collection phase. In extreme cases of
locomotion, a learned policy can stop working after merely
a few weeks due to significant robot dynamic changes. To
address these challenges, learning algorithms need to adjust
online (Yu et al. 2017), optimize for quick adaptation (Finn
et al. 2017a; Yang et al. 2019), or learn in a lifelong fashion.

This can also have consequences for evaluation protocols
where comparing two learned policies or even the same
one at different times. We recently found that the best
policy learned in Levine et al. (2018) was sensitive to
a hardware degradation of the fingers, which caused a
consistent performance drop of 5% in as little as 800 grasps
executed on a single robot. One way to mitigate this is to
use proper A/B testing protocols as described in Tang et al.
(2010).

4.8 Asynchronous Control: Thinking and
Acting at the Same Time

The MDP formulation assumes synchronous execution:
the observed state remains unchanged until the action is
applied. However, on real robotic systems, the execution is
asynchronous. The state of the robot is continuously evolving
as the state is measured, transmitted, the action calculated
and applied. Latency measures the delay from when the
observation is measured at the sensor, to when the action
is actually executed at the actuator. This delay is usually
on the order of milliseconds to seconds, depending on the
hardware and the complexity of the policy. The existence

Prepared using sagej.cls



14

of latency means that the next state of the system does not
directly depend on the measured state, but instead on the
state after a delay of latency after the measurement, which
is not observable. Latency violates the most fundamental
assumption of MDP (Xiao et al. 2020), and thus can cause
failure to some RL algorithms. For example, we tested soft
actor-critic (SAC) (Haarnoja et al. 2018c) and QT-Opt (Xiao
et al. 2020), two state-of-the-art off-policy algorithms, to
learn walking on a simulated quadruped robot or grasping
objects with an arm, with different latencies. Although both
QT-Opt and SAC can learn efficiently when the latency is
zero, they failed when we increase the latency.

Clearly, we need special treatments to combat the non-
Markovianness introduced by latency. For model-based
methods, the planning component is often computationally
expensive, and incurs additional latency. For example,
the popular sample-based planner, cross-entropy method
(CEM) (De Boer et al. 2005), needs to rollout many
trajectories and update the underlying distribution of optimal
action sequences. Even if CEM is parallelized using the
latest GPU, planning alone can still take tens of milliseconds.
To accommodate such latency, in Yang et al. (2020), we
plan the optimal action sequence based on a future state,
which is predicted using the learned dynamic model, to
compensate for the latency caused by the planning algorithm.
For model-free methods, one approach is to add recurrence
to the policy network, and in particular, include the previous
actions taken by the policy as part of the state definition.
The recurrent neural network could learn to extrapolate
the observation to when the action is applied, from the
memorized previous observations. Another approach along
the same line, which avoids the additional cost of training
recurrent neural networks, is to augment the observation
space with a window of previous observations and actions.
In practice, we find that the latter is simpler and equally
effective (Haarnoja et al. 2018c; Xiao et al. 2020).

4.9 Setting Goals and Specifying Rewards
A critical component required for any application of RL
is the reward function. In simulation or video game
environments, the reward function is typically easy to
specify, because one has full access to the simulator or game
state, and can determine whether the task was successfully
completed or access the score of the game. In the real
world, however, assigning a score to quantify how well a
task was completed can be a challenging perceptual problem
of its own. In most of our case studies, we sidestep this
difficulty in one of the following ways. (1) Instrumenting
the environment with additional sensors that provide reward
information. For example, an inertial measurement unit was
used to measure the angle of the door and the handle to learn
a door-opening task in Chebotar et al. (2017b), or a motion
capture device was used to measure how fast the quadruped
robot walks (Haarnoja et al. 2019). (2) Simple heuristics
such as image subtraction or target joint encoder values can
be valuable in some cases. For example, Kalashnikov et al.
(2018) used the gripper encoder values and a comparison of
images with and without the grasping in order to determine
whether an object was successfully grasped. (3) Learning a
visual prediction model as in Finn and Levine (2017) avoids
the need to define reward functions at training time: instead,

the reward is specified at evaluation time based on a goal
image or equivalent representation. However, none of these
methods necessarily generalizes to any possible robot task
one might wish to solve using RL.

Learning the reward function itself is a promising avenue
for addressing this problem. It can be learned explicitly, from
demonstrations (Finn et al. 2016a), from human annotation
(Cabi et al. 2019), from human preferences (Sadigh et al.
2017; Christiano et al. 2017), or from multiple sources of
human feedback (Bıyık et al. 2020). In these examples,
reward function learning is typically done in parallel with the
RL process, because new experience data helps train a better
reward function approximation. However, large amounts of
demonstrations or annotations may be required. The process
of learning reward functions from demonstrations, called
inverse RL is an underspecified problem Ziebart et al.
(2008), making it difficult to scale to image observations,
and exploitation of the reward can happen even with in-the-
loop reward learning. There are promising techniques to try
to address some of these problems, including using meta-
learned priors (Xie et al. 2018) or active queries (Singh et al.
2019), but learning rewards with minimal human supervision
in the general case remains an unsolved problem.

4.10 Multi-Task Learning and Meta-Learning
One promising approach towards enabling robots to learn
tasks efficiently is to leverage previous experience from
other tasks rather than training for a task completely from
scratch. Multi-task learning approaches aim to do exactly
this by learning multiple tasks at once, rather than training
for a single task. Similarly, meta-learning algorithms train
across multiple tasks such that learning a new future task
can be done very efficiently. Although these approaches have
shown considerable promise in enabling robots to quickly
adapt to new object configurations (Duan et al. 2017), new
objects (Finn et al. 2017b; James et al. 2018), and new
terrains or environment conditions (Clavera et al. 2019; Yu
et al. 2019), a number of challenges remain in order to make
them practical for learning across many different robotic
control tasks in the real world.

The first challenge is to specify the task collection. These
algorithms assume a collection of training tasks that are
representative of the kinds of tasks that the robot must
generalize or adapt to at test time. However, specifying a
reward function for a single task already presents a major
challenge (Section 4.9), let alone for tens or hundreds of
tasks. Some prior works have proposed solutions to this
problem by deriving goals or skills in an unsupervised
manner (Gregor et al. 2017; Jabri et al. 2019). However, we
have yet to see these approaches show significant success in
real world settings.

Another significant challenge lies in the optimization
landscape of multiple tasks. Learning multiple tasks at
once can present a challenge even for supervised learning
problems due to different tasks being learned at different
rates (Chen et al. 2018; Schaul et al. 2019) or the challenges
in determining how to resolve conflicting gradient signals
between tasks (Sener and Koltun 2018). These optimization
challenges can be exacerbated in RL settings, where they
are confounded with challenges in trading off exploration
and exploitation. These challenges are less severe for

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 15

similar tasks (Duan et al. 2016; Finn et al. 2017a; Rakelly
et al. 2019), but pose a major challenge for more distinct
tasks (Parisotto et al. 2016; Rusu et al. 2015).

Finally, as we scale learning algorithms towards many
different tasks, all of the existing challenges discussed above
remain and can be even more tricky, including the need
for resetting the environment towards state that are relevant
for the current task 4.12, operating robots at scale 4.7, and
handling non-stationarity 4.7.3.

4.11 Safe Learning
Safety is critical when we apply RL on real robots.
Although sufficient exploration leads to more efficient
learning, directly exploring in the real world is not always
safe. Repeated falling, self-collisions, jerky actuation, and
collisions with obstacles may damage the robot and its
surroundings, which will require costly repairs and manual
interventions (Section 4.12).

4.11.1 Designing Safe Action Spaces One simple way
to avoid unsafe behaviors is to restrict the action space
such that any action that a learned policy can take is safe.
This is usually very restrictive and cannot be applied to all
applications. However, there are many cases, particularly in
semi-static environments and tasks, such as grasping and
manipulation, where this is the right approach. Grasping
objects in a bin is a very common task in logistics. In
these settings, safety can typically be enforced by restricting
the work space. For example, in Levine et al. (2018) and
Kalashnikov et al. (2018), all actions are selected through
sampling, and unsafe samples are rejected. This allows us to
perform safety checks or add constraints to the action space.
By using a geometric model of the robot and the world, we
can reject actions that are outside the 3D volume above the
bin, and reject actions that violate kinematic or geometric
constraints. We can also enforce constraints on the velocity
of the arm.

Although this allows us to handle safety for parts of the
robot and environment that can be modeled, it does not
deal with anything that is unmodeled, such as objects in
the scene that we might want to grasp or push aside before
grasping. We can mitigate this issue by using a force-torque
sensor at the end-effector to detect and stop motion when an
impact occurs. From the point of view of the RL agent, this
action appears to have a truncated effect. This combination
of strategies can provide for a workable level of safety in
a simple and effective way for tasks that are quasi-static in
nature.

4.11.2 Smooth Actions Typically, exploration strategies
are realized by adding random noise to the actions.
Uncorrelated random noise injected in the action space for
exploration can cause jerky motions, which may damage the
gearbox and the actuators, and thus is unsafe to execute on
the robot. Options for smoothing out jerky actions during
exploration include: reward shaping by penalizing jerkiness
of the motion, mimicking smooth reference trajectories
(Peng et al. 2018a), learning an additive feedback together
with a trajectory generator (Iscen et al. 2018), sampling
temporal coherent noise (Haarnoja et al. 2019; Yang et al.
2020), or smoothing the action sequence with low-pass

filters. All these techniques work well, although additional
manual tuning or user-specified data may be required.

In the locomotion case study (Section 3.3), because the
learning algorithm can freely explore the policy space, the
converged gait may not be periodic, may be jerky or may
use too much energy, which can damage the robot and
its surroundings. They usually do not resemble the gaits
of animals that we are familiar with in nature. Although
it is possible to mitigate these problems by shaping the
reward function, we find that a better alternative that
requires less tuning is to incorporate a periodic and smooth
trajectory generator into the learning process. We develop
a novel neural network architecture, policies modulated
trajectory generator (PMTG) (Iscen et al. 2018), which can
effectively incorporate prior knowledge of locomotion and
regularize the learned gait. PMTG subdivides the controller
into an open-loop and a feedback component. The open-
loop trajectory generator creates smooth and periodic leg
motion, whereas the feedback policy, represented by a neural
network, can be learned to modulate this trajectory generator,
to change walking speed, direction and style. As a result, the
PMTG policies are safe to be deployed or directly learned on
the real robot.

4.11.3 Recognizing Unsafe Situations It is crucial to
recognize that unsafe situations is about to happen, so
that a recovering policy can be deployed to keep the
robot safe, or to shutdown the robot completely. Heuristic-
based approaches can be designed to recognize these unsafe
states or actions by checking whether the action will cause
collision, or whether the power and the torque exceed
the limit. Performing these rule-based safety checks often
require careful tuning and a rich set of onboard sensors.
Furthermore, we can also employ learning to recognize
unsafe situations. These approaches can use ensemble
models to estimate uncertainty (Deisenroth and Rasmussen
2011; Eysenbach et al. 2018) of certain predictions, which
can be a good indicator whether any unsafe behavior may
happen, or can directly learn the probability of future
unsafe behaviors from experience (Gandhi et al. 2017;
Srinivasan et al. 2020). Once a precarious situation is
recognized, a recovering policy can be deployed to move the
robot back to a safe state. The task policy, the recovering
policy and the classifier for safety can all be learned
simultaneously (Eysenbach et al. 2018; Thananjeyan et al.
2020). For example, in a locomotion task, when the robot
is in a balance state, the task policy (walking) is executed
and updated. When the robot is about to fall, which is
predicted by the learned Q function, the recovering policy
(stand up) takes over. The data collected in this mode is used
to update the recovering policy. We showed that learning
them simultaneously can dramatically reduce the number of
falls during training.

4.11.4 Constraining Learned Policies One obvious way
to avoid unsafe behaviors is to penalize unsafe actions each
time they are taken. However, this can be hard in practice,
as careful tuning is needed for the weights of this penalty
term. A more effective alternative is to formulate safe RL
as a constrained markov decision process (C-MDP) (Altman
1999). For example, TRPO (Schulman et al. 2015) ensures
a stable learning using a KL divergence constraint. More

Prepared using sagej.cls



16

recently, (Achiam et al. 2017; Bohez et al. 2019) have also
applied constraint-based optimization to model safety as
a set of hard constraints. In our locomotion projects, we
formulated a C-MDP that has inequality constraints on the
roll and the pitch of the robot base, which constitutes a rough
measure of balance. If the state of the robot stays within the
constraints throughout the entire training process, the robot
is guaranteed to stay upright. This minimizes the chance of
falling when the robot is learning to walk. The constrained
formulation usually performs better because as long as the
constraints are met, no gradients is generated, and thus no
interference can happen between the safety constraints and
the reward objective. However, too stringent constraints will
limit exploration and can lead to slow learning.

4.11.5 Robustness to Unseen Observations Last but
not least, even if the training process is safe, the final
learned policy can execute unexpected, and potentially
unsafe, actions when encountering unseen observations. To
improve the generalization of the policy to unseen situations,
we adopted a robust control approach. We use domain
randomization, which samples different physical parameters,
or add perturbation forces, either randomly or adversarially
(Pinto et al. 2017), to the robot during training, to force
it to learn to react under a wide variety of observations.
Before deploying the policy on the robots, we also perform
extensive evaluations in simulation about the safety and
the performance of the controller on untrained scenarios.
Occasionally, the robot, which is trained to be robust and
passed all the safety checks in simulation, can still misbehave
in the real world. In these rare situations, the model-
based or heuristic-based safety checks, such as self-collision
detection, power/torque limit, acceleration threshold, etc.,
will trigger and shut down the robot.

4.12 Robot Persistence
We use the term robot persistence to refer to the capability
of the robot to persist in collecting data and training with
minimal human intervention. Persistence is crucial for larger-
scale robotic learning, because the effectiveness of modern
machine learning models (i.e., deep neural networks) is
critically dependent on the quantity and diversity of training
data, and persistence is required to collect large training sets.
We can divide the problem of robot persistence into two
main categories: (1) self persistence – the robot must avoid
damaging itself during training; (2) task persistence – the
robot must act so that it can continue to perform the task.
Robot persistence is critical for enabling autonomous data
collection safely and at scale.

4.12.1 Self Persistence We define self-persistence as the
ability for the robot to keep its full range of motion while
performing a task. If the robot were to collide with itself,
or the environment, and end up damaging itself, it may end
up losing certain abilities, requiring human intervention. In
Section 4.11, we provide a few strategies to improve self-
persistence.

4.12.2 Task Persistence Task persistence is the capability
of the robotic setup to accomplish a range of tasks,
repeatedly, in the case of grasping, hundreds of thousands
of times to learn the task. Being able to retry a task is tightly

coupled with the environment itself and is to this day, still an
unsolved problem for a large range of tasks.

Challenges can occur where the robot work-space is
limited, and thus objects required to accomplish a task may
accidentally be thrown out of reach. In this case, we need to
find exploration strategies that avoid ending up in such states,
in a very limited data regime, to avoid human interventions
that are needed every time such an unrecoverable state is
encountered. In high dimensional states, such as images, this
becomes a challenging problem as even defining those states
becomes a challenge on its own: how do we know from an
image that an object has fallen off the bin?

Another class of challenges that we also put in this
category is what is often called “environment reset”. In
many cases, once the task is accomplished, changes in the
environment may need to happen before another trial can
be done. This is easy to do in simulation: just reset the
state of the environment. In the real world, this can often
be much harder to accomplish, as resetting the environment
is a sequence of robotic tasks, which may be as hard or
harder than the task we are trying to learn itself. An example
is learning to screw the cap of a bottle again, we may
have to unscrew it to be able to try to screw it again.
Pouring or assembly tasks are also examples where resetting
the environment may be as challenging or may require
many steps to accomplish. Automating the whole process of
environment reset is required if we want the robot to persist
to learn the task. It becomes a challenge of identifying the
right set of sub-tasks whose reset action we already learned
how to do with a robot.

On occasion, some tasks are physically irreversible, such
as welding two pieces of metal, cutting food with a knife,
cutting paper with scissors, or writing with a marker. In those
cases, other robots may have to bring new objects to the robot
trying to learn those tasks, which may be much harder than
trying to accomplish the task itself.

Solving task persistence remains mostly an open problem.
Although guided policy search methods that can handle
random initial states have been developed (Montgomery and
Levine 2016; Montgomery et al. 2017), they still rely on
clustering the initial states into a discrete set of “similar”
states, which may be impractical in some cases, such as the
diverse grasping task discussed in Section 3.2 and the diverse
pushing task in Section 3.1.3, where the “state” includes the
positions and identities of all objects in the scene. Previous
work such as Pinto and Gupta (2016); Finn and Levine
(2017) limited the task and action space to be within a bin,
which helped keep objects in it by having raised side walls
as well as tackled tasks that required a simple reset: just open
the gripper above the bin and bring it back to a home position
which can easily be scripted. Because task persistence was
resolved to some extent, some of those work managed to
collect millions of trials (Levine et al. 2018; Kalashnikov
et al. 2018). Unfortunately, many tasks do not have these nice
properties. For example, Chebotar et al. (2017a) leveraged a
human to perform the reset by bringing the puck back to a
position where the hockey stick could hit it again. Haarnoja
et al. (2019) had to bring the legged robot back to its initial
starting position every time the robot reached the end of
the limited 5m workspace. In both cases, task persistence
was not achieved and humans were performing the reset

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 17

procedure. This makes data collection hard to scale because
(1) it was very time consuming for a human and (2) in both
cases, they stopped because they started to feel back pain
while performing the environment reset. As such, only a few
hours of data, and less than 1,000 trials were performed.

More recently, work such as that of Eysenbach et al.
(2018) tried to tackle this issue of task persistence by
integrating environment reset as part of the learning
procedure, in a task-agnostic way. However this work only
explored tasks which have a unique starting point, that can be
reached from most states. This strategy is not always possible
such as in self-driving cars, where going backward to come
back to the starting point is generally not safe.

5 Discussion and Conclusions
In this article, we discussed how deep RL algorithms can be
approached in a robotics context. We provided a brief review
of recent work on this topic, a more in-depth discussion
focusing on a set of case studies, and a discussion of the
major challenges in deep RL as it pertains to real-world
robotic control. Our aim was to present the reader with
a high-level summary of the capabilities of current deep
RL methods in the robotics domain, discuss which issues
make deployment of deep RL methods difficult, and provide
a perspective on how some of those difficulties can be
mitigated or avoided.

Although deep RL is often regarded as being too
inefficient for real-world learning scenarios, described in
Section 4.2, we discuss how in fact deep RL methods have
been applied successfully on tasks ranging from quadrupedal
walking, to grasping novel objects, to learning varied and
complex manipulation skills. These case studies illustrate
that deep RL can in fact be used to learn directly in
the real wold, can learn to utilize raw sensory modalities
such as camera images, and can learn tasks that present
a substantial physical challenge, such as walking and
dexterous manipulation. Most importantly, these case studies
illustrate that policies trained with deep RL can generalize
effectively, such as in the case of the robotic grasping
experiments discussed in Section 3.2.

However, utilizing deep RL does present a number of
significant challenges, and though these challenges do not
preclude current applications of deep RL in robotics, they
do limit its impact. Some of these challenges have partial or
complete current solutions, whereas some do not. Although
current deep RL methods are not as inefficient as often
believed, provided that an appropriate algorithm is used
and the hyperparameters are chosen correctly, efficiency and
stability remain major challenges, and additional research
on RL algorithm design should focus on further improving
both. The use of simulation can further reduce challenges
due to sample efficiency, though simulation alone does
not solve all issues with robotic learning. Exploration can
pose a major challenge in robotic RL, but we outline a
variety of ways in which exploration challenges can be side-
stepped in practical robotic control problems, from utilizing
demonstrations to baseline hand-engineered controllers. Of
course, not all exploration challenges can be overcome in
this way, but “solving” the difficult RL exploration problem
should not be a prerequisite for effective application of deep

RL in robotics. Generalization presents a challenge for deep
RL, but in contrast to arguments made in many prior works,
we do not believe that this issue is any more pronounced than
in any other machine learning field, and the availability of
large and diverse data can enable RL policies to generalize
in the same way as it enables generalization for supervised
models. Indeed, deep RL is likely to have an advantage here
– if generalization is limited primarily by data quantity and
diversity, automatically labeled robotic experience can likely
be collected in much larger amounts than hand-labeled data.

Beyond the algorithmic challenges in deep RL, robotic
deep RL also presents a number of challenges that are
unique to the robotics setting: learning complex skills
requires considerable data collection by the robots, which
requires the ability to keep the robots operational with
minimal human intervention. Conducting training without
persistent human oversight is itself a significant engineering
challenges, and requires certain best practices, as we discuss
in Section 4.7. This last challenge is tightly connected
to designing persistent robots, as we desire for the robot
to be an autonomous agent in the real world, there are
many challenges that are often overlooked in simulated
environments which we discuss in Section 4.12. As robots
exist in the real world, they must also obey real-time
constraints, which means that policies must be evaluated
in parallel and with a limited time budget alongside the
motion of the robot – this presents challenges in the
classically synchronous MDP model (Section 4.8). Finally,
and importantly, real-world RL requires to define a reward
function. Although it is common in RL research to assume
that the reward function or reward signal is an external signal
that is provided by the environment, in robotic learning this
function must itself be programmed, or otherwise learned
by the robot. As we expand the number of tasks we want
our robots to accomplish via techniques such as multi-task
or meta-learning discussed in Section 4.10, the efforts in
defining those reward functions will continue to increase.
This can serve as a major barrier to deployment of RL
algorithms in practice, though it can be mitigated with a
variety of automatic and semi-automatic reward acquisition
methods, as discussed in Section 4.9.

We believe that these challenges, though addressed in part
over the past few years, offer a fruitful range of topics for
future research. Addressing them will bring us closer to a
future where RL can enable any robot to learn any task.
This would lead to an explosive growth in the capabilities
of autonomous robots – when the capabilities of robots are
limited primarily by the amount of robot time available
to learn skills, rather than the amount of engineering time
necessary to program them, robots will be able to acquire
large skill repertoires. A suitable goal for robotic deep RL
research would be to make robotic RL as natural and scalable
as the learning performed by humans and animals, where
any behavior can be acquired without manual scaffolding or
instrumentation, provided that the task is specified precisely,
is physically possible, and does not pose an unreasonable
exploration challenge.

Prepared using sagej.cls



18

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R,
Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S,
Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever
I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y and
Zheng X (2015) TensorFlow: Large-scale machine learning
on heterogeneous systems. URL http://tensorflow.

org/. Software available from tensorflow.org.
Achiam J, Held D, Tamar A and Abbeel P (2017) Constrained

Policy Optimization. In: International Conference on Machine
Learning.

Agarwal R, Schuurmans D and Norouzi M (2020) An optimistic
perspective on offline reinforcement learning. In: International
Conference on Machine Learning.

Altman E (1999) Constrained Markov decision processes,
volume 7. CRC Press.

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R,
Welinder P, McGrew B, Tobin J, Abbeel OP and Zaremba W
(2017) Hindsight experience replay. In: Advances in Neural
Information Processing Systems. pp. 5048–5058.

Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D
and Munos R (2016) Unifying count-based exploration and
intrinsic motivation. In: Advances in Neural Information
Processing Systems. pp. 1471–1479.

Bıyık E, Losey DP, Palan M, Landolfi NC, Shevchuk G and Sadigh
D (2020) Learning reward functions from diverse sources of
human feedback: Optimally integrating demonstrations and
preferences. arXiv preprint arXiv:2006.14091 .

Bohez S, Abdolmaleki A, Neunert M, Buchli J, Heess N and
Hadsell R (2019) Value constrained model-free continuous
control. arXiv preprint arXiv:1902.04623 .

Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B,
Goyal P, Jackel LD, Monfort M, Muller U, Zhang J et al.
(2016) End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 .

Bousmalis K, Irpan A, Wohlhart P, Bai Y, Kelcey M, Kalakrishnan
M, Downs L, Ibarz J, Pastor P, Konolige K et al. (2018) Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping. In: International Conference on Robotics and
Automation. IEEE, pp. 4243–4250.

Bousmalis K, Silberman N, Dohan D, Erhan D and Krishnan
D (2017) Unsupervised pixel-level domain adaptation with
generative adversarial networks. In: Conference on Computer
Vision and Pattern Recognition.

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J,
Tang J and Zaremba W (2016) OpenAI Gym. arXiv preprint
arXiv:1606.01540 .

Burda Y, Edwards H, Storkey A and Klimov O (2019) Exploration
by random network distillation. In: International Conference
on Learning Representations.

Byravan A, Leeb F, Meier F and Fox D (2018) Se3-pose-nets:
Structured deep dynamics models for visuomotor control.
International Conference on Robotics and Automation .

Cabi S, Colmenarejo SG, Novikov A, Konyushkova K, Reed S,
Jeong R, Zolna K, Aytar Y, Budden D, Vecerik M, Sushkov O,
Barker D, Scholz J, Denil M, de Freitas N and Wang Z (2019)

A Framework for Data-Driven Robotics.
Chawla NV, Bowyer KW, Hall LO and Kegelmeyer WP (2002)

SMOTE: Synthetic Minority Over-Sampling Technique.
Journal of Artificial Intelligence Research 16: 321–357.

Chebotar Y, Hausman K, Zhang M, Sukhatme G, Schaal S and
Levine S (2017a) Combining model-based and model-free
updates for trajectory-centric reinforcement learning. In:
International Conference on Machine Learning. JMLR. org,
pp. 703–711.

Chebotar Y, Kalakrishnan M, Yahya A, Li A, Schaal S and Levine
S (2017b) Path integral guided policy search. In: International
Conference on Robotics and Automation. IEEE, pp. 3381–
3388.

Chen D, Zhou B, Koltun V and Krähenbühl P (2020) Learning by
cheating. In: Conference on Robot Learning. PMLR.

Chen Z, Badrinarayanan V, Lee CY and Rabinovich A
(2018) GradNorm: Gradient Normalization for Adaptive Loss
Balancing in Deep Multitask Networks. In: International
Conference on Machine Learning.

Chiang HTL, Faust A, Fiser M and Francis A (2019) Learning
navigation behaviors end-to-end with autorl. IEEE Robotics
and Automation Letters 4(2).

Christiano PF, Leike J, Brown T, Martic M, Legg S and Amodei D
(2017) Deep reinforcement learning from human preferences.
In: Advances in Neural Information Processing Systems. pp.
4299–4307.

Clavera I, Nagabandi A, Liu S, Fearing RS, Abbeel P, Levine
S and Finn C (2019) Learning to Adapt in Dynamic, Real-
World Environments through Meta-Reinforcement Learning.
In: International Conference on Learning Representations.

Clegg A, Yu W, Tan J, Liu CK and Turk G (2018) Learning to dress:
synthesizing human dressing motion via deep reinforcement
learning. In: SIGGRAPH Asia 2018 Technical Papers. ACM.

Coumans E and Bai Y (2016) pybullet, a python module for physics
simulation, games, robotics and machine learning. http:

//pybullet.org/.
Daniel C, Neumann G, Kroemer O and Peters J (2013) Learning

sequential motor tasks. In: International Conference on
Robotics and Automation. IEEE.

Dasari S, Ebert F, Tian S, Nair S, Bucher B, Schmeckpeper K, Singh
S, Levine S and Finn C (2019) RoboNet: Large-Scale Multi-
Robot Learning. In: Conference on Robot Learning.

De A (2017) Modular Hopping and Running via Parallel
Composition. PhD Thesis.

De Boer PT, Kroese DP, Mannor S and Rubinstein RY (2005) A
tutorial on the cross-entropy method. Annals of operations
research 134(1).

Deisenroth M and Rasmussen C (2011) Pilco: A model-based and
data-efficient approach to policy search. In: International
Conference on Machine Learning. Omnipress, pp. 465–472.

Deisenroth MP, Neumann G and Peters J (2013) A survey on policy
search for robotics. In: Foundations and Trends in Robotics,
volume 2. Now Publishers, Inc., pp. 1–142.

Deng J, Dong W, Socher R, Li LJ, Li K and Fei-Fei L (2009)
Imagenet: A large-scale hierarchical image database. In:
Conference on Computer Vision and Pattern Recognition. Ieee,
pp. 248–255.

Devlin J, Chang MW, Lee K and Toutanova K (2019) BERT:
Pre-training of Deep Bidirectional Transformers for Language

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 19

Understanding. In: NAACL-HLT.
Draeger A, Engell S and Ranke H (1995) Model predictive control

using neural networks. Control Systems Magazine 15(5).
Duan Y, Andrychowicz M, Stadie B, Ho OJ, Schneider J, Sutskever

I, Abbeel P and Zaremba W (2017) One-shot imitation
learning. In: Advances in Neural Information Processing
Systems. pp. 1087–1098.

Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I and Abbeel P
(2016) Rl2: Fast reinforcement learning via slow reinforcement
learning. arXiv preprint arXiv:1611.02779 .

Ebert F, Finn C, Dasari S, Xie A, Lee A and Levine S (2018) Visual
foresight: Model-based deep reinforcement learning for vision-
based robotic control. arXiv preprint arXiv:1812.00568 .

Eysenbach B, Gu S, Ibarz J and Levine S (2018) Leave
no Trace: Learning to Reset for Safe and Autonomous
Reinforcement Learning. In: International Conference on
Learning Representations.

Finn C, Abbeel P and Levine S (2017a) Model-agnostic meta-
learning for fast adaptation of deep networks. In: International
Conference on Machine Learning. JMLR. org.

Finn C and Levine S (2017) Deep visual foresight for planning
robot motion. In: International Conference on Robotics and
Automation. IEEE.

Finn C, Levine S and Abbeel P (2016a) Guided cost learning:
Deep inverse optimal control via policy optimization. In:
International Conference on Machine Learning. pp. 49–58.

Finn C, Tan XY, Duan Y, Darrell T, Levine S and Abbeel P (2016b)
Deep Spatial Autoencoders for Visuomotor Learning. In:
International Conference on Robotics and Automation. IEEE,
pp. 512–519.

Finn C, Yu T, Zhang T, Abbeel P and Levine S (2017b) One-
Shot Visual Imitation Learning via Meta-Learning. In:
Conference on Robot Learning, Proceedings of Machine
Learning Research, volume 78.

Florence P, Manuelli L and Tedrake R (2019) Self-supervised
correspondence in visuomotor policy learning. IEEE Robotics
and Automation Letters 5(2): 492–499.

Florence PR, Manuelli L and Tedrake R (2018) Dense object nets:
Learning dense visual object descriptors by and for robotic
manipulation. In: Conference on Robot Learning. pp. 373–385.

Fox R, Pakman A and Tishby N (2016) Taming the Noise in
Reinforcement Learning via Soft Updates. In: Conference on
Uncertainty in Artificial Intelligence. AUAI Press.

Francis A, Faust A, Chiang HTL, Hsu J, Kew JC, Fiser M and
Lee TWE (2020) Long-range indoor navigation with prm-
rl. IEEE Transactions on Robotics 36(4): 1115–1134. DOI:
10.1109/TRO.2020.2975428.

Fu J, Co-Reyes J and Levine S (2017) Ex2: Exploration with
exemplar models for deep reinforcement learning. In:
Advances in Neural Information Processing Systems. pp. 2577–
2587.

Fujimoto S, Meger D and Precup D (2019) Off-Policy Deep
Reinforcement Learning without Exploration. In: International
Conference on Machine Learning.

Fujimoto S, van Hoof H and Meger D (2018) Addressing
Function Approximation Error in Actor-Critic Methods. In:
International Conference on Machine Learning.

Gandhi D, Pinto L and Gupta A (2017) Learning to fly by
crashing. In: International Conference on Intelligent Robots

and Systems. IEEE, pp. 3948–3955.
Garofolo JS, Lamel LF, Fisher WM, Fiscus JG and Pallett DS

(1993) Darpa timit acoustic-phonetic continous speech corpus
cd-rom. nist speech disc 1-1.1. NASA STI/Recon technical
report n 93.

Ghadirzadeh A, Maki A, Kragic D and Björkman M (2017) Deep
predictive policy training using reinforcement learning. In:
International Conference on Intelligent Robots and Systems.
IEEE, pp. 2351–2358.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A and Bengio Y (2014) Generative
adversarial nets. In: Advances in Neural Information
Processing Systems. pp. 2672–2680.

Gregor K, Rezende DJ and Wierstra D (2017) Variational
Intrinsic Control. In: International Conference on Learning
Representations, Workshop Track Proceedings.

Gu S, Holly E, Lillicrap T and Levine S (2017) Deep reinforcement
learning for robotic manipulation with asynchronous off-
policy updates. In: International Conference on Robotics and
Automation. IEEE, pp. 3389–3396.

Gu S, Lillicrap T, Sutskever I and Levine S (2016) Continuous deep
q-learning with model-based acceleration. In: International
Conference on Machine Learning. pp. 2829–2838.

Ha S, Kim J and Yamane K (2018) Automated deep reinforcement
learning environment for hardware of a modular legged robot.
In: International Conference on Ubiquitous Robots. IEEE.

Haarnoja T, Ha S, Zhou A, Tan J, Tucker G and Levine S
(2019) Learning to walk via deep reinforcement learning. In:
Robotics: Science and Systems.

Haarnoja T, Pong V, Zhou A, Dalal M, Abbeel P and Levine S
(2018a) Composable deep reinforcement learning for robotic
manipulation. In: International Conference on Robotics and
Automation. IEEE.

Haarnoja T, Tang H, Abbeel P and Levine S (2017) Reinforcement
learning with deep energy-based policies. In: International
Conference on Machine Learning. JMLR. org, pp. 1352–1361.

Haarnoja T, Zhou A, Abbeel P and Levine S (2018b) Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. In: International Conference
on Machine Learning.

Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J,
Kumar V, Zhu H, Gupta A, Abbeel P et al. (2018c) Soft
Actor-Critic Algorithms and Applications. arXiv preprint
arXiv:1812.05905 .

Hämäläinen P, Rajamäki J and Liu CK (2015) Online control of
simulated humanoids using particle belief propagation. ACM
Transactions on Graphics (TOG) 34(4).

Hausman K, Chebotar Y, Kroemer O, Sukhatme GS and Schaal
S (2017) Regrasping using Tactile Perception and Supervised
Policy Learning. In: AAAI Symposium on Interactive Multi-
Sensory Object Perception for Embodied Agents.

Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez
T, Wang Z, Eslami S, Riedmiller M et al. (2017) Emergence
of locomotion behaviours in rich environments. arXiv preprint
arXiv:1707.02286 .

Hester T, Vecerı́k M, Pietquin O, Lanctot M, Schaul T, Piot B,
Horgan D, Quan J, Sendonaris A, Osband I, Dulac-Arnold
G, Agapiou J, Leibo JZ and Gruslys A (2018) Deep Q-
learning From Demonstrations. In: Conference on Artificial
Intelligence.

Prepared using sagej.cls



20

Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V
and Hutter M (2019) Learning agile and dynamic motor skills
for legged robots. Science Robotics 4(26).

Ijspeert A, Nakanishi J and Schaal S (2002) Movement imitation
with nonlinear dynamical systems in humanoid robots. In:
International Conference on Robotics and Automation. IEEE.

Irpan A (2018) Deep reinforcement learning doesn’t work
yet. https://www.alexirpan.com/2018/02/14/

rl-hard.html.
Iscen A, Caluwaerts K, Tan J, Zhang T, Coumans E, Sindhwani

V and Vanhoucke V (2018) Policies Modulating Trajectory
Generators. In: Conference on Robot Learning.

Jabri A, Hsu K, Gupta A, Eysenbach B, Levine S and Finn C (2019)
Unsupervised curricula for visual meta-reinforcement learning.
In: Advances in Neural Information Processing Systems. pp.
10519–10530.

Jain D, Li A, Singhal S, Rajeswaran A, Kumar V and Todorov E
(2019) Learning deep visuomotor policies for dexterous hand
manipulation. In: International Conference on Robotics and
Automation. IEEE, pp. 3636–3643.

James S, Bloesch M and Davison AJ (2018) Task-Embedded
Control Networks for Few-Shot Imitation Learning. In:
Conference on Robot Learning.

James S, Davison AJ and Johns E (2017) Transferring End-to-
End Visuomotor Control from Simulation to Real World for
a Multi-Stage Task. In: Conference on Robot Learning.

James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan
A, Ibarz J, Levine S, Hadsell R and Bousmalis K (2019)
Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks. In: Conference
on Computer Vision and Pattern Recognition.

Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea
JA, Solowjow E and Levine S (2019) Residual Reinforcement
Learning for Robot Control. In: International Conference on
Robotics and Automation. IEEE.

Kakade SM (2002) A natural policy gradient. In: Advances in
Neural Information Processing Systems. pp. 1531–1538.

Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E,
Quillen D, Holly E, Kalakrishnan M, Vanhoucke V and Levine
S (2018) Scalable deep reinforcement learning for vision-based
robotic manipulation. In: Conference on Robot Learning,
Proceedings of Machine Learning Research. PMLR.

Khadka S, Majumdar S, Nassar T, Dwiel Z, Tumer E, Miret
S, Liu Y and Tumer K (2019) Collaborative Evolutionary
Reinforcement Learning. In: International Conference on
Machine Learning.

Kober J, Bagnell JA and Peters J (2013) Reinforcement learning
in robotics: A survey. The International Journal of Robotics
Research 32(11): 1238–1274.

Kohl N and Stone P (2004) Policy Gradient Reinforcement
Learning for Fast Quadrupedal Locomotion. In: International
Conference on Robotics and Automation. IEEE.

Konidaris G, Kuindersma S, Grupen R and Barto A (2012)
Robot learning from demonstration by constructing skill trees.
International Journal of Robotics Research 31(3): 360–375.

Kroemer O, Niekum S and Konidaris G (2019) A review of robot
learning for manipulation: Challenges, representations, and
algorithms. CoRR abs/1907.03146. URL http://arxiv.

org/abs/1907.03146.

Kumar A, Fu J, Soh M, Tucker G and Levine S (2019) Stabilizing
Off-Policy Q-Learning via Bootstrapping Error Reduction.
In: Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Kurutach T, Clavera I, Duan Y, Tamar A and Abbeel P (2018)
Model-Ensemble Trust-Region Policy Optimization. In:
International Conference on Learning Representations.

Kuznetsova A, Rom H, Alldrin N, Uijlings JRR, Krasin I, Pont-
Tuset J, Kamali S, Popov S, Malloci M, Kolesnikov A, Duerig
T and Ferrari V (2020) The open images dataset V4: Unified
image classification, object detection, and visual relationship
detection at scale. International Journal of Computer Vision
128(7).

Lee J, Hwangbo J, Wellhausen L, Koltun V and Hutter M (2020a)
Learning quadrupedal locomotion over challenging terrain.
Science Robotics 5. URL http://dx.doi.org/10.

1126/scirobotics.abc5986.
Lee J, Hwangbo J, Wellhausen L, Koltun V and Hutter M (2020b)

Learning quadrupedal locomotion over challenging terrain.
Science Robotics 5(47).

Lee MA, Zhu Y, Srinivasan K, Shah P, Savarese S, Fei-Fei L, Garg
A and Bohg J (2019) Making Sense of Vision and Touch:
Self-Supervised Learning of Multimodal Representations for
Contact-Rich Tasks. In: International Conference on Robotics
and Automation. IEEE.

Lenz I, Knepper RA and Saxena A (2015) Deepmpc: Learning
deep latent features for model predictive control. In: Robotics:
Science and Systems. Rome, Italy.

Levine S and Abbeel P (2014) Learning neural network policies
with guided policy search under unknown dynamics. In:
Advances in Neural Information Processing Systems. pp. 1071–
1079.

Levine S, Finn C, Darrell T and Abbeel P (2016) End-to-end
training of deep visuomotor policies. The Journal of Machine
Learning Research 17(1): 1334–1373.

Levine S and Koltun V (2013) Guided policy search. In:
International Conference on Machine Learning. pp. 1–9.

Levine S, Pastor P, Krizhevsky A, Ibarz J and Quillen D
(2018) Learning Hand-Eye Coordination for Robotic Grasping
with Deep Learning and Large-Scale Data Collection. The
International Journal of Robotics Research 37(4-5).

Levine S, Wagener N and Abbeel P (2015) Learning Contact-Rich
Manipulation Skills with Guided Policy Search. International
Conference on Robotics and Automation .

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y,
Silver D and Wierstra D (2015) Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 .

Mahajan D, Girshick R, Ramanathan V, He K, Paluri M, Li Y,
Bharambe A and van der Maaten L (2018) Exploring the limits
of weakly supervised pretraining. In: European Conference on
Computer Vision.

Mahler J, Matl M, Liu X, Li A, Gealy D and Goldberg K
(2018) Dex-Net 3.0: Computing Robust Vacuum Suction Grasp
Targets in Point Clouds Using a New Analytic Model and
Deep Learning. International Conference on Robotics and
Automation .

Mania H, Guy A and Recht B (2018) Simple random search of static
linear policies is competitive for reinforcement learning. In:
Advances in Neural Information Processing Systems.

Prepared using sagej.cls



Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine 21

Manschitz S, Kober J, Gienger M and Peters J (2014) Learning
to sequence movement primitives from demonstrations. In:
International Conference on Intelligent Robots and Systems.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I,
Wierstra D and Riedmiller M (2013) Playing Atari with Deep
Reinforcement Learning. In: Advances in Neural Information
Processing Systems, Deep Learning Workshop.

Montgomery W, Ajay A, Finn C, Abbeel P and Levine S (2017)
Reset-free guided policy search: Efficient deep reinforcement
learning with stochastic initial states. In: International
Conference on Robotics and Automation. IEEE, pp. 3373–
3380.

Montgomery WH and Levine S (2016) Guided policy search
via approximate mirror descent. In: Advances in Neural
Information Processing Systems. pp. 4008–4016.

Morrison D, Corke P and Leitner J (2018) Closing the Loop for
Robotic Grasping: A Real-time, Generative Grasp Synthesis
Approach. In: Robotics: Science and Systems.

Morrison et al D (2018) Cartman: The low-cost Cartesian
Manipulator that won the Amazon Robotics Challenge. In:
International Conference on Robotics and Automation. IEEE.

Nagabandi A, Konolige K, Levine S and Kumar V (2020) Deep
Dynamics Models for Learning Dexterous Manipulation. In:
Conference on Robot Learning.

Nagabandi A, Yang G, Asmar T, Pandya R, Kahn G, Levine S
and Fearing RS (2018) Learning image-conditioned dynamics
models for control of underactuated legged millirobots. In:
International Conference on Intelligent Robots and Systems.
IEEE, pp. 4606–4613.

Nair A, McGrew B, Andrychowicz M, Zaremba W and Abbeel P
(2018) Overcoming exploration in reinforcement learning with
demonstrations. In: International Conference on Robotics and
Automation. IEEE, pp. 6292–6299.

Osband I, Blundell C, Pritzel A and Van Roy B (2016) Deep
exploration via bootstrapped dqn. In: Advances in Neural
Information Processing Systems. pp. 4026–4034.

Parisotto E, Ba J and Salakhutdinov R (2016) Actor-Mimic: Deep
Multitask and Transfer Reinforcement Learning. CoRR .

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z,
Lin Z, Desmaison A, Antiga L and Lerer A (2017) Automatic
differentiation in pytorch. In: Advances in Neural Information
Processing Systems Workshop on Autodiff.

Pathak D, Agrawal P, Efros AA and Darrell T (2017) Curiosity-
driven exploration by self-supervised prediction. In:
Conference on Computer Vision and Pattern Recognition
Workshops. IEEE, pp. 16–17.

Peng XB, Abbeel P, Levine S and van de Panne M (2018a)
Deepmimic: Example-guided deep reinforcement learning of
physics-based character skills. ACM Transactions on Graphics
(TOG) 37(4).

Peng XB, Andrychowicz M, Zaremba W and Abbeel P
(2018b) Sim-to-real transfer of robotic control with dynamics
randomization. In: International Conference on Robotics and
Automation. IEEE.

Peng XB, Kumar A, Zhang G and Levine S (2019) Advantage-
weighted regression: Simple and scalable off-policy reinforce-
ment learning. arXiv preprint arXiv:1910.00177 .

Peters J, Mülling K and Altün Y (2010) Relative entropy policy
search. In: AAAI Conference on Artificial Intelligence.

Peters J and Schaal S (2006) Policy gradient methods for
robotics. In: International Conference on Intelligent Robots
and Systems. IEEE, pp. 2219–2225.

Peters J and Schaal S (2008) Reinforcement learning of motor skills
with policy gradients. Neural Networks 21(4): 682–697.

Pinto L, Andrychowicz M, Welinder P, Zaremba W and Abbeel P
(2018) Asymmetric actor critic for image-based robot learning.
In: Proceedings of Robotics: Science and Systems. Pittsburgh,
Pennsylvania. DOI:10.15607/RSS.2018.XIV.008.

Pinto L, Davidson J, Sukthankar R and Gupta A (2017)
Robust adversarial reinforcement learning. In: International
Conference on Machine Learning. JMLR. org.

Pinto L and Gupta A (2016) Supersizing self-supervision: Learning
to grasp from 50K tries and 700 robot hours. In: International
Conference on Robotics and Automation. IEEE.

Raibert MH (1986) Legged Robots That Balance. Cambridge, MA,
USA: Massachusetts Institute of Technology. ISBN 0-262-
18117-7.

Rakelly K, Zhou A, Finn C, Levine S and Quillen D (2019) Efficient
Off-Policy Meta-Reinforcement Learning via Probabilistic
Context Variables. In: International Conference on Machine
Learning.

Rao K, Harris C, Irpan A, Levine S, Ibarz J and Khansari M (2020)
Rl-cyclegan: Reinforcement learning aware simulation-to-real.
In: Conference on Computer Vision and Pattern Recognition.

Rawlik K, Toussaint M and Vijayakumar S (2013) On stochastic
optimal control and reinforcement learning by approximate
inference. In: International Joint Conference on Artificial
Intelligence.

Riedmiller M, Hafner R, Lampe T, Neunert M, Degrave J, van de
Wiele T, Mnih V, Heess N and Springenberg JT (2018)
Learning by Playing Solving Sparse Reward Tasks from
Scratch. In: International Conference on Machine Learning.

Ross S, Gordon G and Bagnell D (2011) A reduction of imitation
learning and structured prediction to no-regret online learning.
In: International Conference on Artificial Intelligence and
Statistics.

Rusu AA, Colmenarejo SG, Gulcehre C, Desjardins G, Kirkpatrick
J, Pascanu R, Mnih V, Kavukcuoglu K and Hadsell R (2015)
Policy distillation. arXiv preprint arXiv:1511.06295 .

Sadeghi F and Levine S (2017) CAD2RL: Real Single-Image Flight
Without a Single Real Image. Robotics: Science and Systems .

Sadigh D, Dragan AD, Sastry S and Seshia SA (2017) Active
preference-based learning of reward functions. In: Robotics:
Science and Systems.

Schaal S (2006) Dynamic movement primitives-a framework for
motor control in humans and humanoid robotics. In: Adaptive
motion of animals and machines. Springer, pp. 261–280.

Schaul T, Borsa D, Modayil J and Pascanu R (2019) Ray
Interference: a Source of Plateaus in Deep Reinforcement
Learning. In: Multidisciplinary Conference on Reinforcement
Learning and Decision Making.

Schoettler G, Nair A, Luo J, Bahl S, Ojea JA, Solowjow E and
Levine S (2019) Deep Reinforcement Learning for Industrial
Insertion Tasks with Visual Inputs and Natural Rewards. In:
International Conference on Intelligent Robots and Systems.

Schulman J, Levine S, Abbeel P, Jordan M and Moritz P
(2015) Trust Region Policy Optimization. In: International
Conference on Machine Learning.

Prepared using sagej.cls



22

Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O
(2017) Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Schwab D, Springenberg TJ, Martins FM, Neunert M, Neunert M,
Abdolmaleki A, Hertweck T, Hafner R, Nori F and Riedmiller
AM (2019) Simultaneously Learning Vision and Feature-based
Control Policies for Real-world Ball-in-a-Cup. Robotics:
Science and Systems .

Sener O and Koltun V (2018) Multi-task learning as multi-objective
optimization. In: Advances in Neural Information Processing
Systems. pp. 527–538.

Sermanet P, Lynch C, Chebotar Y, Hsu J, Jang E, Schaal S,
Levine S and Brain G (2018) Time-contrastive networks: Self-
supervised learning from video. In: International Conference
on Robotics and Automation. IEEE.

Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W and Webb
R (2017) Learning from simulated and unsupervised images
through adversarial training. In: Conference on Computer
Vision and Pattern Recognition.

Silver T, Allen K, Tenenbaum J and Kaelbling L (2018) Residual
policy learning. arXiv preprint arXiv:1812.06298 .

Singh A, Yang L, Finn C and Levine S (2019) End-To-End Robotic
Reinforcement Learning without Reward Engineering. In:
Robotics: Science and Systems.

Srinivasan K, Eysenbach B, Ha S, Tan J and Finn C (2020) Learning
to be Safe: Deep RL with a Safety Critic.

Sünderhauf N, Brock O, Scheirer WJ, Hadsell R, Fox D, Leitner
J, Upcroft B, Abbeel P, Burgard W, Milford M and Corke P
(2018) The limits and potentials of deep learning for robotics.
The International Journal of Robotics Research 37(4-5).

Sutton RS and Barto AG (2018) Reinforcement learning: An
introduction. MIT press.

Tan J, Gu Y, Liu CK and Turk G (2014) Learning bicycle stunts.
ACM Transactions on Graphics (TOG) 33(4).

Tan J, Zhang T, Coumans E, Iscen A, Bai Y, Hafner D, Bohez S and
Vanhoucke V (2018) Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots. Robotics: Science and Systems .

Tang D, Agarwal A, O’Brien D and Meyer M (2010)
Overlapping Experiment Infrastructure: More, Better, Faster
Experimentation. In: International Conference on Knowledge
Discovery and Data Mining. ACM.

Tedrake R, Zhang TW and Seung HS (2015) Learning to Walk in
20 minutes. In: Workshop on Adaptive and Learning Systems.

ten Pas A, Gualtieri M, Saenko K and Platt R (2017) Grasp
Pose Detection in Point Clouds. The International Journal of
Robotics Research 36(13-14): 1455–1473.

Thananjeyan B, Balakrishna A, Nair S, Luo M, Srinivasan K,
Hwang M, Gonzalez JE, Ibarz J, Finn C and Goldberg K (2020)
Recovery rl: Safe reinforcement learning with learned recovery
zones.

Tobin J, Fong R, Ray A, Schneider J, Zaremba W and Abbeel P
(2017) Domain Randomization for Transferring Deep Neural
Networks from Simulation to the Real World. In: International
Conference on Intelligent Robots and Systems. IEEE.

Toussaint M (2009) Robot trajectory optimization using approx-
imate inference. In: International Conference on Machine
Learning. ACM, pp. 1049–1056.

Večerı́k M, Hester T, Scholz J, Wang F, Pietquin O, Piot B,
Heess N, Rothörl T, Lampe T and Riedmiller M (2017)

Leveraging demonstrations for deep reinforcement learning
on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817 .

Viereck U, ten Pas A, Saenko K and Platt R (2017) Learning a
visuomotor controller for real world robotic grasping using
simulated depth images. In: Conference on Robot Learning.

Wu YH, Charoenphakdee N, Bao H, Tangkaratt V and Sugiyama M
(2019) Imitation Learning from Imperfect Demonstration. In:
International Conference on Machine Learning, Proceedings
of Machine Learning Research.

Xiao T, Jang E, Kalashnikov D, Levine S, Ibarz J, Hausman K and
Herzog A (2020) Thinking while moving: Deep reinforcement
learning with concurrent control. In: International Conference
on Learning Representations.

Xie A, Ebert F, Levine S and Finn C (2019) Improvisation through
Physical Understanding: Using Novel Objects as Tools with
Visual Foresight.

Xie A, Singh A, Levine S and Finn C (2018) Few-Shot Goal
Inference for Visuomotor Learning and Planning. In:
Conference on Robot Learning, Proceedings of Machine
Learning Research, volume 87. pp. 40–52.

Xie Q, Luong MT, Hovy E and Le QV (2020) Self-Training
With Noisy Student Improves ImageNet Classification. In:
Conference on Computer Vision and Pattern Recognition.

Yang Y, Caluwaerts K, Iscen A, Tan J and Finn C (2019) Norml:
No-reward meta learning. In: AAMAS.

Yang Y, Caluwaerts K, Iscen A, Zhang T, Tan J and Sindhwani
V (2020) Data Efficient Reinforcement Learning for Legged
Robots. In: Conference on Robot Learning.

Yen-Chen L, Bauza M and Isola P (2020) Experience-Embedded
Visual Foresight. In: Conference on Robot Learning.

Yu K and Rodriguez A (2018) Realtime State Estimation with
Tactile and Visual sensing. Application to Planar Manipulation.
In: International Conference on Robotics and Automation.
IEEE.

Yu W, Tan J, Bai Y, Coumans E and Ha S (2019) Learning fast
adaptation with meta strategy optimization.

Yu W, Tan J, Liu CK and Turk G (2017) Preparing for the Unknown:
Learning a Universal Policy with Online System Identification.
In: Robotics: Science and Systems.

Yu W, Turk G and Liu CK (2018) Learning symmetric and low-
energy locomotion. ACM Transactions on Graphics (TOG)
37(4).

Zeng A, Song S, Welker S, Lee J, Rodriguez A and Funkhouser T
(2018) Learning synergies between pushing and grasping with
self-supervised deep reinforcement learning. In: International
Conference on Intelligent Robots and Systems. pp. 4238–4245.

Zhu H, Gupta A, Rajeswaran A, Levine S and Kumar V (2019)
Dexterous manipulation with deep reinforcement learning:
Efficient, general, and low-cost. In: International Conference
on Robotics and Automation. IEEE.

Ziebart BD, Maas A, Bagnell JA and Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: National
Conference on Artificial Intelligence.

Prepared using sagej.cls


