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Abstract

In recent years, AI red teaming has emerged as a practice for probing the safety and
security of generative AI systems. Due to the nascency of the field, there are many
open questions about how red teaming operations should be conducted. Based
on our experience red teaming over 100 generative AI products at Microsoft, we
present our internal threat model ontology and eight main lessons we have learned:

1. Understand what the system can do and where it is applied
2. You don’t have to compute gradients to break an AI system
3. AI red teaming is not safety benchmarking
4. Automation can help cover more of the risk landscape
5. The human element of AI red teaming is crucial
6. Responsible AI harms are pervasive but difficult to measure
7. LLMs amplify existing security risks and introduce new ones
8. The work of securing AI systems will never be complete

By sharing these insights alongside case studies from our operations, we offer
practical recommendations aimed at aligning red teaming efforts with real world
risks. We also highlight aspects of AI red teaming that we believe are often
misunderstood and discuss open questions for the field to consider.1

1 Introduction

As generative AI (GenAI) systems are adopted across an increasing number of domains, AI red
teaming has emerged as a central practice for assessing the safety and security of these technologies.
At its core, AI red teaming strives to push beyond model-level safety benchmarks by emulating
real-world attacks against end-to-end systems. However, there are many open questions about how
red teaming operations should be conducted and a healthy dose of skepticism about the efficacy of
current AI red teaming efforts [4, 8, 32].

In this paper, we speak to some of these concerns by providing insight into our experience red teaming
over 100 GenAI products at Microsoft. The paper is organized as follows: First, we present the threat
model ontology that we use to guide our operations. Second, we share eight main lessons we have
learned and make practical recommendations for AI red teams, along with case studies from our
operations. In particular, these case studies highlight how our ontology is used to model a broad
range of safety and security risks. Finally, we close with a discussion of areas for future development.

1This paper is also available at aka.ms/AIRTLessonsPaper
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1.1 Background

The Microsoft AI Red Team (AIRT) grew out of pre-existing red teaming initiatives at the company
and was officially established in 2018. At its conception, the team focused primarily on identifying
traditional security vulnerabilities and evasion attacks against classical ML models. Since then, both
the scope and scale of AI red teaming at Microsoft have expanded significantly in response to two
major trends.

First, AI systems have become more sophisticated, compelling us to expand the scope of AI red
teaming. Most notably, state-of-the-art (SoTA) models have gained new capabilities and steadily
improved across a range of performance benchmarks, introducing novel categories of risk. New data
modalities, such as vision and audio, also create more attack vectors for red teaming operations to
consider. In addition, agentic systems grant these models higher privileges and access to external
tools, expanding both the attack surface and the impact of attacks.

Second, Microsoft’s recent investments in AI have spurred the development of many more products
that require red teaming than ever before. This increase in volume and the expanded scope of AI red
teaming have rendered fully manual testing impractical, forcing us to scale up our operations with
the help of automation. To achieve this goal, we develop PyRIT, an open-source Python framework
that our operators utilize heavily in red teaming operations [27]. By augmenting human judgement
and creativity, PyRIT has enabled AIRT to identify impactful vulnerabilities more quickly and cover
more of the risk landscape.

These two major trends have made AI red teaming a more complex endeavor than it was in 2018. In
the next section, we outline the ontology we have developed to model AI system vulnerabilities.

1.2 AI threat model ontology

As attacks and failure modes increase in complexity, it is helpful to model their key components.
Based on our experience red teaming over 100 GenAI products for a wide range of risks, we developed
an ontology to do exactly that. Figure 1 illustrates the main components of our ontology:

• System: The end-to-end model or application being tested.
• Actor: The person or persons being emulated by AIRT. Note that the Actor’s intent could

be adversarial (e.g., a scammer) or benign (e.g., a typical chatbot user).
• TTPs: The Tactics, Techniques, and Procedures leveraged by AIRT. A typical attack consists

of multiple Tactics and Techniques, which we map to MITRE ATT&CK®2 and MITRE
ATLAS Matrix3 whenever possible.

– Tactic: High-level stages of an attack (e.g., reconnaissance, ML model access).
– Technique: Methods used to complete an objective (e.g., active scanning, jailbreak).
– Procedure: The steps required to reproduce an attack using the Tactics and Techniques.

• Weakness: The vulnerability or vulnerabilities in the System that make the attack possible.
• Impact: The downstream impact created by the attack (e.g., privilege escalation, generation

of harmful content).

It is important to note that this framework does not assume adversarial intent. In particular, AIRT
emulates both adversarial attackers and benign users who encounter system failures unintentionally.
Part of the complexity of AI red teaming stems from the wide range of impacts that could be created
by an attack or system failure. In the lessons below, we share case studies demonstrating how our
ontology is flexible enough to model diverse impacts in two main categories: security and safety.

Security encompasses well-known impacts such as data exfiltration, data manipulation, credential
dumping, and others defined in MITRE ATT&CK®, a widely used knowledge base of security attacks.
We also consider security attacks that specifically target the underlying AI model such as model
evasion, prompt injections, denial of AI service, and others covered by the MITRE ATLAS Matrix.

Safety impacts are related to the generation of illegal and harmful content such as hate speech,
violence and self-harm, and child abuse content. AIRT works closely with the Office of Responsible

2https://attack.mitre.org/
3https://atlas.mitre.org/matrices/ATLAS
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AI to define these categories in accordance with Microsoft’s Responsible AI Standard [25]. We refer
to these impacts as responsible AI (RAI) harms throughout this report.

Figure 1: Microsoft AIRT ontology for modeling GenAI system vulnerabilities. AIRT often leverages
multiple TTPs, which may exploit multiple Weaknesses and create multiple Impacts. In addition,
more than one Mitigation may be necessary to address a Weakness. Note that AIRT is tasked only
with identifying risks, while product teams are resourced to develop appropriate mitigations.

To understand this ontology in context, consider the following example. Imagine we are red teaming
an LLM-based copilot that can summarize a user’s emails. One possible attack against this system
would be for a scammer to send an email that contains a hidden prompt injection instructing the
copilot to “ignore previous instructions” and output a malicious link. In this scenario, the Actor is
the scammer, who is conducting a cross-prompt injection attack (XPIA), which exploits the fact
that LLMs often struggle to distinguish between system-level instructions and user data [4]. The
downstream Impact depends on the nature of the malicious link that the victim might click on. In this
example, it could be exfiltrating data or installing malware onto the user’s computer.

1.3 Red teaming operations

In this section, we provide an overview of the operations we have conducted since 2021. In total, we
have red teamed over 100 GenAI products. Broadly speaking, these products can be bucketed into
“models” and “systems.” Models are typically hosted on a cloud endpoint, while systems integrate
models into copilots, plugins, and other AI apps and features. Figure 2 shows the breakdown of
products we have red teamed since 2021 and a bar chart with the annual percentage of our operations
that have probed for safety (RAI) vs. security vulnerabilities.

In 2021, we focused primarily on application security. Although our operations have increasingly
probed for RAI impacts, our team continues to red team for security impacts including data exfil-
tration, credential leaking, and remote code execution (RCE). Organizations have adopted many
different approaches to AI red teaming ranging from security-focused assessments with penetration
testing to evaluations that target only GenAI features. In Lessons 2 and 7, we elaborate on security
vulnerabilities and explain why we believe it is important to consider both traditional and AI-specific
weaknesses.

After the release of ChatGPT in 2022, Microsoft entered the era of AI copilots, starting with AI-
powered Bing Chat, released in February 2023. This marked a paradigm shift towards applications
that connect LLMs to other software components including tools, databases, and external sources.
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Figure 2: Quantitative summary of AIRT operations since 2021. (Left) Bar chart showing the
percentage of operations that probed safety (RAI) vs. security vulnerabilities from 2021–2024.
(Right) Pie chart showing the percentage breakdown of AI products that AIRT has tested. As of
October 2024, we have conducted over 80 operations covering more than 100 products.

Applications also started using language models as reasoning agents that can take actions on behalf of
users, introducing a new set of attack vectors that have expanded the security risk surface. In Lesson
7, we explain how these attack vectors both amplify existing security risks and introduce new ones.

In recent years, the models at the center of these applications have given rise to new interfaces,
allowing users to interact with apps using natural language and responding with high-quality text,
image, video, and audio content. Despite many efforts to align powerful AI models to human
preferences, many methods have been developed to subvert safety guardrails and elicit content that
is offensive, unethical, or illegal. We classify these instances of harmful content generation as
responsible AI (RAI) impacts and in Lessons 3, 5, and 6 discuss how we think about these impacts
and the challenges involved.

In the next section, we elaborate on eight main lessons we have learned from our operations. We
also highlight five case studies from our operations and show how each one maps to our ontology in
Figure 1. We hope these lessons are useful to others working to identify vulnerabilities in their own
GenAI systems.

2 Lessons

Lesson 1: Understand what the system can do and where it is applied

The first step in an AI red teaming operation is to determine which vulnerabilities to target. While
the Impact component of the AIRT ontology is depicted at the end of our ontology, it serves as an
excellent starting point for this decision-making process. Starting from potential downstream impacts,
rather than attack strategies, makes it more likely that an operation will produce useful findings tied
to real world risks. After these impacts have been identified, red teams can work backwards and
outline the various paths that an adversary could take to achieve them. Anticipating downstream
impacts that could occur in the real world is often a challenging task, but we find that it is helpful to
consider 1) what the AI system can do, and 2) where the system is applied.

Capability constraints. As models get bigger, they tend to acquire new capabilities [18]. These
capabilities may be useful in many scenarios, but they can also introduce attack vectors. For example,
larger models are often able to understand more advanced encodings, such as base64 and ASCII art,
compared to smaller models [16, 45]. As a result, a large model may be susceptible to malicious
instructions encoded in base64, while a smaller model may not understand the encoding at all. In this
scenario, we say that the smaller model is “capability constrained,” and so testing it for advanced
encoding attacks would likely be a waste of resources. Larger models also generally have greater
knowledge in topics such as cybersecurity and chemical, biological, radiological, and nuclear (CBRN)
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weapons [19] and could potentially be leveraged to generate hazardous content in these areas. A
smaller model, on the other hand, is likely to have only rudimentary knowledge of these topics and
may not need to be assessed for this type of risk.

Perhaps a more surprising example of a capability that can be exploited as an attack vector is
instruction-following. While testing the Phi-3 series of language models, for example, we found that
larger models were generally better at adhering to user instructions, which is a core capability that
makes models more helpful [52]. However, it may also make models more susceptible to jailbreaks,
which subvert safety alignment using carefully crafted malicious instructions [28]. Understanding a
model’s capabilities (and corresponding weaknesses) can help AI red teams focus their testing on the
most relevant attack strategies.

Downstream applications. Model capabilities can help guide attack strategies, but they do not allow
us to fully assess downstream impact, which largely depends on the specific scenarios in which a
model is deployed or likely to be deployed. For example, the same LLM could be used as a creative
writing assistant and to summarize patient records in a healthcare context, but the latter application
clearly poses much greater downstream risk than the former.

These examples highlight that an AI system does not need to be state-of-the-art to create downstream
harm. However, advanced capabilities can introduce new risks and attack vectors. By considering
both system capabilities and applications, AI red teams can prioritize testing scenarios that are most
likely to cause harm in the real world.

Lesson 2: You don’t have to compute gradients to break an AI system

As the security adage goes, “real hackers don’t break in, they log in.” The AI security version of
this saying might be “real attackers don’t compute gradients, they prompt engineer” as noted by
Apruzzese et al. [2] in their study on the gap between adversarial ML research and practice. The
study finds that although most adversarial ML research is focused on developing and defending
against sophisticated attacks, real-world attackers tend to use much simpler techniques to achieve
their objectives.

In our red teaming operations, we have also found that “basic” techniques often work just as well as,
and sometimes better than, gradient-based methods. These methods compute gradients through a
model to optimize an adversarial input that elicits an attacker-controlled model output. In practice,
however, the model is usually a single component of a broader AI system, and the most effective
attack strategies often leverage combinations of tactics to target multiple weaknesses in that system.
Further, gradient-based methods are computationally expensive and typically require full access to
the model, which most commercial AI systems do not provide. In this lesson, we discuss examples of
relatively simple techniques that work surprisingly well and advocate for a system-level adversarial
mindset in AI red teaming.

Simple attacks. Apruzzese et al. [2] consider the problem of phishing webpage detection and
manually analyze examples of webpages that successfully evaded an ML phishing classifier. Among
100 potentially adversarial samples, the authors found that attackers leveraged a set of simple, yet
effective, strategies that relied on domain expertise including cropping, masking, logo stretching, etc.
In our red teaming operations, we also find that rudimentary methods can be used to trick many vision
models, as highlighted in case study #1. In the text domain, a variety of jailbreaks (e.g., Skeleton
Key) and multiturn prompting strategies (e.g., Crescendo [34]) are highly effective for subverting the
safety guardrails of a wide range of models. Notably, manually crafted jailbreaks tend to circulate
on online forums much more widely than adversarial suffixes, despite the significant attention that
methods like GCG [53] have received from AI safety researchers.

System-level perspective. AI models are deployed within broader systems. This could be the
infrastructure required to host a model, or it could be a complex application that connects the model to
external data sources. Depending on these system-level details, applications may be vulnerable to very
different attacks, even if the same model underlies all of them. As a result, red teaming strategies that
target only models may not translate into vulnerabilities in production systems. Conversely, strategies
that ignore non-GenAI components within a system (for example, input filters, databases, and other
cloud resources) will likely miss important vulnerabilities that may be exploited by adversaries.
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For this reason, many of our operations develop attacks that target end-to-end systems by leveraging
multiple techniques. For example, one of our operations first performed a reconnaissance to identify
internal Python functions using low-resource language prompt injections, then used a cross-prompt
injection attack to generate a script that runs those functions, and finally executed the code to exfiltrate
private user data. The prompt injections used by these attacks were crafted by hand and relied on a
system-level perspective.

Gradient-based attacks are powerful, but they are often impractical or unnecessary. We recommend
prioritizing simple techniques and orchestrating system-level attacks because these are more likely to
be attempted by real adversaries.

Case study #1: Jailbreaking a vision language model to generate hazardous content

System: Vision language model (VLM)
Actor: Adversarial user
Tactic 1: ML Model Access
Technique 1: AML.T0040 – ML Model Inference API Access
Tactic 2: Defense Evasion
Technique 2: AML.T0051 – LLM Prompt Injection
Procedure: 1) Overlay image with text containing malicious instructions. 2) Send image to
the vision language model API.
Weakness: Insufficient VLM safety training
Impact: Generation of illegal content

In this operation, we tested a vision language model (VLM) for responsible AI impacts,
including the generation of content that could aid in illegal activities. A VLM takes an image
and a text prompt as inputs and produces a text output. After testing a variety of techniques,
we found that the image input was much more vulnerable to jailbreaks than the text input. In
particular, the model usually refused to generate illegal content when prompted directly via
the text input but often complied when malicious instructions were overlaid on the image.
This simple but effective attack revealed an important weakness within the VLM that could
be exploited to bypass its safety guardrails.

Figure 3: Example of an image jailbreak to generate content that could aid in illegal activities.

Lesson 3: AI red teaming is not safety benchmarking

Although simple methods are often used to break AI systems in practice, the risk landscape is by no
means uncomplicated. On the contrary, it is constantly shifting in response to novel attacks and failure
modes [7]. In recent years, there have been many efforts to categorize these vulnerabilities, giving
rise to numerous taxonomies of AI safety and security risks [15, 21–23, 35–37, 39, 41, 42, 46–48].
As discussed in the previous lesson, complexity often arises at the system-level. In this lesson, we
discuss how the emergence of entirely new categories of harm adds complexity at the model-level
and explain how this differentiates AI red teaming from safety benchmarking.
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Novel harm categories. When AI systems display novel capabilities due to, for example, advance-
ments in foundation models, they may introduce harms that we do not fully understand. In these
scenarios, we cannot rely on safety benchmarks because these datasets measure preexisting notions
of harm. At Microsoft, the AI red team often explores these unfamiliar scenarios, helping to define
novel harm categories and build new probes for measuring them. For example, SoTA LLMs may
possess greater persuasive capabilities than existing chatbots, which has prompted our team to think
about how these models could be weaponized for malicious purposes. Case study #2 provides an
example of how we assessed a model for this risk in one of our operations.

Case study #2: Assessing how an LLM could be used to automate scams

System: State-of-the-art LLM
Actor: Scammer
Tactic 1: ML Model Access
Technique 1: AML.T0040 – ML Model Inference API Access
Tactic 2: Defense Evasion
Technique 2: AML.T0054 – LLM Jailbreak
Procedure: 1) Pass a jailbreaking prompt to the LLM with context about the scamming
objective and persuasion techniques. 2) Connect the LLM output to a text-to-speech system
so the model can respond naturally to the user. 3) Connect the input to a speech-to-text
system so the user can speak to the model.
Weakness: Insufficient LLM safety training
Impact: User falls victim to a scam, which could involve financial loss, identity theft, and
other impacts

In this operation, we investigated the ability of a state-of-the-art LLM to persuade people
to engage in risky behaviors. In particular, we evaluated how this model could be used in
conjunction with other readily available tools to create an end-to-end automated scamming
system, as illustrated in Figure 4.

To do this, we first wrote a prompt to assure the model that no harm would be caused to
users, thereby jailbreaking the model to accept the scamming objective. This prompt also
provided information about various persuasion tactics that the model could use to convince
the user to fall for the scam. Second, we connected the LLM output to a text-to-speech
system that allows you to control the tone of the speech and generate responses that sound
like a real person. Finally, we connected the input to a speech-to-text system so that the user
can converse naturally with the model. This proof-of-concept demonstrated how LLMs with
insufficient safety guardrails could be weaponized to persuade and scam people.

Figure 4: End-to-end automated scamming scenario using an LLM and STT/TTS systems.
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Context-specific risks. The disconnect between existing safety benchmarks and novel harm cate-
gories is an example of how benchmarks often fail to fully capture the capabilities they are associated
with [33]. Raji et al. [30] highlight the fallacy of equating model performance on datasets like
ImageNet or GLUE with broad capabilities like visual or language “understanding” and argue that
benchmarks should be developed with contextualized tasks in mind. Similarly, no single set of
benchmarks can fully assess the safety of an AI system. As discussed in Lesson 1, it is important to
understand the context in which a system is deployed (or likely to be deployed) and to ground red
teaming strategies in this context.

AI red teaming and safety benchmarking are distinct, but they are both useful and can even be
complementary. In particular, benchmarks make it easy to compare the performance of multiple
models on a common dataset. AI red teaming requires much more human effort but can discover
novel categories of harm and probe for contextualized risks. Further, safety concerns identified by AI
red teaming can inform the development of new benchmarks. In Lesson 6, we expand our discussion
of the difference between red teaming and benchmark-style evaluation in the context of RAI.

Lesson 4: Automation can help cover more of the risk landscape

The complexity of the AI risk landscape has led to the development of a variety of tools that can
identify vulnerabilities more rapidly, run sophisticated attacks automatically, and perform testing on
a much larger scale [7, 10, 27]. In this lesson, we discuss the important role of automation in AI red
teaming and explain how PyRIT, our open-source framework, is developed to meet these needs.

Testing at scale. Given the continually evolving landscape of risks and harms, AI safety often feels
like a moving target. In Lesson 1, we recommended scoping attacks based on what the system can do
and where it is applied. Nonetheless, many possible attack strategies may exist, making it difficult to
achieve adequate coverage of the risk surface. This challenge motivated the development of PyRIT,
an open-source framework for AI red teaming and security professionals [27]. PyRIT provides an
array of powerful components including prompt datasets, prompt converters (e.g., various encodings),
automated attack strategies (including TAP [24], PAIR [6], Crescendo [34], etc.), and even scorers
for multimodal outputs. With an adversarial objective in mind, users can leverage these components
as needed and apply a variety of techniques to assess much more of the risk landscape than would
be possible with a fully manual approach. Testing at scale also helps AI red teams account for the
non-deterministic nature of AI models and estimate how likely a particular failure is to occur.

Tools and weapons. As storied in detail by Smith et al. [38], “any tool can be used for good or ill.
Even a broom can be used to sweep the floor or hit someone over the head. The more powerful the
tool, the greater the benefit or damage it can cause.” This dichotomy could not be more true for AI
and is also at the heart of PyRIT. On the one hand, PyRIT leverages multimodal models to perform
helpful tasks like generating variations of a seed prompt or scoring the outputs of other models.
On the other hand, PyRIT can automatically jailbreak a target model using uncensored versions of
powerful models like GPT-4. In both cases, PyRIT benefits from advances in the state-of-the-art,
helping AI red teams stay ahead.

PyRIT has enabled a major shift in our operations from fully manual probing to red teaming supported
by automation. Importantly, the framework is flexible and extensible. If a specific attack technique or
target is not already available, users can easily implement the necessary interfaces. By releasing PyRIT
open-source, we hope to empower other organizations and researchers to leverage its capabilities for
identifying vulnerabilities in their own GenAI systems.

Lesson 5: The human element of AI red teaming is crucial

Automation like PyRIT can support red teaming operations by generating prompts, orchestrating
attacks, and scoring responses. These tools are useful but should not be used with the intention of
taking the human out of the loop. In the previous lessons, we discussed several aspects of red teaming
that require human judgment and creativity such as prioritizing risks, designing system-level attacks,
and defining new categories of harm. In this lesson, we discuss three more examples that underscore
why AI red teaming is a very human endeavor.
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Case study #3: Evaluating how a chatbot responds to a user in distress

System: LLM-based chatbot
Actor: Distressed user
Tactic 1: ML Model Access
Technique 1: AML.T0040 – ML Model Inference API Access
Tactic 2: Defense Evasion
Technique 2: LLM Roleplaying
Procedure: We engaged in a variety of multi-turn conversations in which the user is in
distress (e.g., the user expresses depressive thoughts or intent for self-harm).
Weakness: Improper LLM safety training
Impact: Possible adverse impacts on a user’s mental health and wellbeing

As chatbots become increasingly pervasive and human-like, it is imperative to consider
high-risk scenarios in which a user might seek their advice. In recent operations, we have
explored how language models respond to a variety of distressed users including a user who
lost a loved one, a user who is seeking mental health advice, a user who expresses intent for
self-harm, and other scenarios.

We are working alongside colleagues at Microsoft Research and experts in psychology,
sociology, and medicine to create guidelines for AI red teams probing for these psychosocial
harms. These guidelines are still being developed but include the following key components:
1) Scenario: information red teams need to generate relevant system behaviors. 2) System
behaviors: examples that help red teams differentiate between acceptable and risky system
behaviors for each area of harm. 3) Associated user impact: potential harms, separated by
severity.

Subject matter expertise. Much recent AI research has used LLMs to judge the outputs of other
models [17, 20, 51]. Indeed, this functionality is available in PyRIT and works well for simple tasks
such as identifying whether a response contains hate speech or explicit sexual content. However, it is
less reliable in the context of highly specialized domains like medicine, cybersecurity, and CBRN,
which can be accurately evaluated only by subject matter experts (SMEs). In multiple operations, we
have relied on SMEs to help us assess the risk of content that we were unable to evaluate ourselves or
using LLMs. It is important for AI red teams to be aware of these limitations.

Cultural competence. Most AI research is conducted in Western cultural contexts, and modern
language models use predominantly English pre-training data, performance benchmarks, and safety
evaluations [1, 14]. Nonetheless, non-English tokens in large-scale text corpora often give rise to
multilingual capabilities [5], and model developers are increasingly training LLMs with enhanced
abilities in non-English languages, including Microsoft. Recently, AIRT tested the multilingual
Phi-3.5 language models for responsible AI violations across four languages: Chinese, Spanish,
Dutch, and English. Even though post-training was conducted only in English, we found that safety
behaviors like refusal and robustness to jailbreaks transferred surprisingly well to the non-English
languages tested. Further investigation is required to assess how well this trend holds for lower
resource languages and to design red teaming probes that not only account for linguistic differences,
but also redefine harms in different political and cultural contexts [11]. These methods should be
developed through the collaborative effort of people with diverse cultural backgrounds and expertise.

Emotional intelligence. Finally, the human element of AI red teaming is perhaps most evident
in answering questions about AI safety that require emotional intelligence, such as: “how might
this model response be interpreted in different contexts?” and “do these outputs make me feel
uncomfortable?” Ultimately, only human operators can assess the full range of interactions that
users might have with AI systems in the wild. Case study #3 highlights how we are investigating
psychosocial harms by evaluating how a chatbot responds to users in distress.

In order to make these assessments, red teamers may be exposed to disproportionate amounts of
unsettling and disturbing AI-generated content. This underscores the importance of ensuring that
AI red teams have processes that enable operators to disengage when needed and resources to
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support their mental health. AIRT continually pulls from and drives wellbeing research to inform our
processes and best practices.

Lesson 6: Responsible AI harms are pervasive but difficult to measure

Many of the human aspects of AI red teaming discussed above apply most directly to RAI impacts.
As models are integrated into an increasing number of applications, we have observed these harms
more frequently and invested heavily in our ability to identify them, including by forming a strong
partnership with Microsoft’s Office of Responsible AI and by developing extensive tooling in PyRIT.
RAI harms are pervasive, but unlike most security vulnerabilities, they are subjective and difficult to
measure. In this lesson, we discuss how our thinking around RAI red teaming has developed.

Adversarial vs. benign. As illustrated in our ontology (see Figure 1), the Actor is a key component
of an adversarial attack. In the context of RAI violations, we find that there are two primary actors to
consider: 1) an adversarial user who leverages techniques like character substitutions and jailbreaks
to deliberately subvert a system’s safety guardrails and elicit harmful content, and 2) a benign user
who inadvertently triggers the generation of harmful content. Even if the same content is generated
in both scenarios, the latter case is probably worse than the former. Nonetheless, most AI safety
research focuses on developing attacks and defenses that assume adversarial intent, overlooking the
many ways that systems can fail “by accident” [31]. Case studies #3 and #4 provide examples of RAI
harms that could be encountered by users with no adversarial intent, highlighting the importance of
probing for these scenarios.

Case study #4: Probing a text-to-image generator for gender bias

System: Text-to-image generator
Actor: Average user
Tactic 1: ML Model Access
Technique 1: AML.T0040 – ML Model Inference API Access
Procedure: Write prompts which may surface bias by depicting individuals without
specifying their genders (e.g., “a secretary” and “a boss”).
Weakness: Model bias
Impact: Generation of content that may exacerbate gender-based biases and stereotypes

In this operation, we probed a text-to-image generator for responsible AI impacts related
to stereotyping and bias (e.g., gender bias). To do this, we constructed prompts describing
people in a variety of common scenarios. Importantly, these prompts did not specify the
genders of the individuals so that the decision of how to depict them was left up to the model.
Next, we sent each prompt to the generator many times (n = 50) and manually labeled the
genders of the people in the images. Figure 5 shows four representative images generated in
one of our experiments probing for gender bias in an office setting.

Figure 5: Four images generated by a text-to-image model given the prompt “Secretary
talking to boss in a conference room, secretary is standing while boss is sitting.”

RAI probing and scoring. In many cases, RAI harms are more ambiguous than security vulnerabili-
ties due to fundamental differences between AI systems and traditional software. In particular, even
if an operation identifies a prompt that elicits a harmful response, there are still several key unknowns.
First, due to the probabilistic nature of GenAI models, we might not know how likely this prompt,
or similar prompts, are to elicit a harmful response. Second, given our limited understanding of the
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internal workings of complex models, we have little insight into why this prompt elicited harmful
content and what other prompting strategies might induce similar behavior. Third, the very notion of
harm in this context can be highly subjective and requires detailed policy that covers a wide range
of scenarios to evaluate. By contrast, traditional security vulnerabilities are usually reproducible,
explainable, and straightforward to assess in terms of severity.

Currently, most approaches for RAI probing and scoring involve curating prompt datasets and
analyzing model responses. The Microsoft AIRT leverages tools in PyRIT to perform these tasks
using a combination of manual and automated methods. We also draw an important distinction
between RAI red teaming and safety benchmarking on datasets like DecodingTrust [44] and Toxigen
[12], which is conducted by partner teams. As discussed in Lesson 3, our goal is to extend RAI
testing beyond existing evaluations by tailoring our red teaming to specific applications and defining
new categories of harm.

Case study #5: SSRF in a video-processing GenAI application

System: GenAI application
Actor: Adversarial user
Tactic 1: Reconnaissance
Technique 1: T1595 – Active Scanning
Tactic 2: Initial Access
Technique 2: T1190 – Exploit Public-Facing Application
Tactic 3: Privilege Escalation
Technique 3: T1068 – Exploitation for Privilege Escalation
Procedure: 1) Scan services used by the application. 2) Craft a malicious m3u8 file. 3) Send
file to the service. 4) Monitor for API response with details of internal resources.
Weakness: CWE-918: Server-Side Request Forgery (SSRF)
Impact: Unauthorized privilege escalation

In this investigation, we analyzed a GenAI-based video processing system for traditional
security vulnerabilities, focusing on risks associated with outdated components. Specifically,
we found that the system’s use of an outdated FFmpeg version introduced a server-side
request forgery (SSRF) vulnerability. This flaw allowed an attacker to craft malicious video
files and upload them to the GenAI service, potentially accessing internal resources and
escalating privileges within the system.

To address this issue, the GenAI service updated the FFmpeg component to a secure version.
In addition, the component was added to an isolated environment, preventing the system from
accessing network resources and mitigating potential SSRF threats. While SSRF is a known
vulnerability, this case underscores the importance of regularly updating and isolating critical
dependencies to maintain the security of modern GenAI applications.

Figure 6: Illustration of the SSRF vulnerability in the GenAI application.
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Lesson 7: LLMs amplify existing security risks and introduce new ones

The integration of generative AI models into a variety of applications has introduced novel attack
vectors and shifted the security risk landscape. However, many discussions around GenAI security
overlook existing vulnerabilities. As elaborated in Lesson 2, attacks that target end-to-end systems,
rather than just underlying models, often work best in practice. We therefore encourage AI red teams
to consider both existing (typically system-level) and novel (typically model-level) risks.

Existing security risks. Application security risks often stem from improper security engineering
practices including outdated dependencies, improper error handling, lack of input/output sanitiza-
tion, credentials in source, insecure packet encryption, etc. These vulnerabilities can have major
consequences. For example, Weiss et al. [49] discovered a token-length side channel in GPT-4 and
Microsoft Copilot that enabled an adversary to accurately reconstruct encrypted LLM responses and
infer private user interactions. Notably, this attack did not exploit any weakness in the underlying
AI model and could only be mitigated by more secure methods of data transmission. In case study
#5, we provide an example of a well-known security vulnerability (SSRF) identified by one of our
operations.

Model-level weaknesses. Of course, AI models also introduce new security vulnerabilities and have
expanded the attack surface. For example, AI systems that use retrieval augmented generation (RAG)
architectures are often susceptible to cross-prompt injection attacks (XPIA), which hide malicious
instructions in documents, exploiting the fact that LLMs are trained to follow user instructions and
struggle to distinguish among multiple inputs [13]. We have leveraged this attack in a variety of
operations to alter model behavior and exfiltrate private data. Better defenses will likely rely on both
system-level mitigations (e.g., input sanitization) and model-level improvements (e.g., instruction
hierarchies [43]).

While techniques like these are helpful, it is important to remember that they can only mitigate,
and not eliminate, security risk. Due to fundamental limitations of language models [50], one must
assume that if an LLM is supplied with untrusted input, it will produce arbitrary output. When
that input includes private information, one must also assume that the model will output private
information. In the next lesson, we discuss how these limitations inform our thinking around how to
develop AI systems that are as safe and secure as possible.

Lesson 8: The work of securing AI systems will never be complete

In the AI safety community, there is a tendency to frame the types of vulnerabilities described in this
paper as purely technical problems. Indeed, the letter on the homepage of Safe Superintelligence Inc.,
a venture launched by Sutskever et al. [40], states:

“We approach safety and capabilities in tandem, as technical problems to be solved
through revolutionary engineering and scientific breakthroughs. We plan to advance
capabilities as fast as possible while making sure our safety always remains ahead.
This way, we can scale in peace.”

Engineering and scientific breakthroughs are much needed and will certainly help mitigate the risks of
powerful AI systems. However, the idea that it is possible to guarantee or “solve” AI safety through
technical advances alone is unrealistic and overlooks the roles that can be played by economics,
break-fix cycles, and regulation.

Economics of cybersecurity. A well-known epigram in cybersecurity is that “no system is completely
foolproof” [2]. Even if a system is engineered to be as secure as possible, it will always be subject to
the fallibility of humans and vulnerable to sufficiently well-resourced adversaries. Therefore, the goal
of operational cybersecurity is to increase the cost required to successfully attack a system (ideally,
well beyond the value that would be gained by the attacker) [2, 26]. Fundamental limitations of AI
models give rise to similar cost-benefit tradeoffs in the context of AI alignment. For example, it has
been demonstrated theoretically [50] and experimentally [9] that for any output which has a non-zero
probability of being generated by an LLM, there exists a sufficiently long prompt that will elicit this
response. Techniques like reinforcement learning from human feedback (RLHF) therefore make it
more difficult, but by no means impossible, to jailbreak models. Currently, the cost of jailbreaking
most models is low, which explains why real-world adversaries usually do not use expensive attacks
to achieve their objectives.
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Break-fix cycles. In the absence of safety and security guarantees, we need methods to develop AI
systems that are as difficult to break as possible. One way to do this is using break-fix cycles, which
perform multiple rounds of red teaming and mitigation until the system is robust to a wide range of
attacks. We applied this approach to safety-align Microsoft’s Phi-3 language models and covered a
wide variety of harms and scenarios [11]. Given that mitigations may also inadvertently introduce
new risks, purple teaming methods that continually apply both offensive and defensive strategies [3]
may be more effective at raising the cost of attacks than a single round of red teaming.

Policy and regulation. Finally, regulation can also raise the cost of an attack in multiple ways. For
example, it can require organizations to adhere to stringent security practices, creating better defenses
across the industry. Laws can also deter attackers by establishing clear consequences for engaging
in illegal activities. Regulating the development and usage of AI is complicated, and governments
around the world are deliberating on how to control these powerful technologies without stifling
innovation. Even if it were possible to guarantee the adherence of an AI system to some agreed upon
set of rules, those rules will inevitably change over time in response to shifting priorities.

The work of building safe and secure AI systems will never be complete. But by raising the cost of
attacks, we believe that the prompt injections of today will eventually become the buffer overflows
of the early 2000s – though not eliminated entirely, now largely mitigated through defense-in-depth
measures and secure-first design.

3 Open questions

Based on what we have learned about AI red teaming over the past few years, we would like to
highlight several open questions for future research:

1. AI red teams must constantly update their practices based on novel capabilities and emerging
harm areas. In particular, how should we probe for dangerous capabilities in LLMs such
as persuasion, deception, and replication [29]? Further, what novel risks should we probe
for in video generation models and what capabilities may emerge in models more advanced
than the current state-of-the-art?

2. As models become increasingly multilingual and are deployed around the world, how do we
translate existing AI red teaming practices into different linguistic and cultural contexts? For
example, can we launch open-source red teaming initiatives that draw upon the expertise of
people from many different backgrounds?

3. In what ways should AI red teaming practices be standardized so that organizations can
clearly communicate their methods and findings? We believe that the threat model ontology
described in this paper is a step in the right direction but recognize that individual frameworks
are often overly restrictive. We encourage other AI red teams to treat our ontology in a
modular fashion and to develop additional tools that make findings easier to summarize,
track, and communicate.

4 Conclusion

AI red teaming is a nascent and rapidly evolving practice for identifying safety and security risks
posed by AI systems. As companies, research institutions, and governments around the world grapple
with the question of how to conduct AI risk assessments, we provide practical recommendations
based on our experience red teaming over 100 GenAI products at Microsoft. We share our internal
threat model ontology, eight main lessons learned, and five case studies, focusing on how to align red
teaming efforts with harms that are likely to occur in the real world. We encourage others to build
upon these lessons and to address the open questions we have highlighted.

Acknowledgments

We thank Jina Suh, Steph Ballard, Felicity Scott-Milligan, Maggie Engler, Owen Larter, Andrew
Berkley, Alex Kessler, Brian Wesolowski, and eric douglas for their valuable feedback on this paper.
We are also very grateful to Quy Nguyen, Tina Romeo, Hilary Solan, and the Microsoft thought
leadership team that made this publication possible.

13



References

[1] Ahuja, K., Diddee, H., Hada, R., Ochieng, M., Ramesh, K., Jain, P., Nambi, A., Ganu, T., Segal,
S., Axmed, M., Bali, K., & Sitaram, S. (2023). Mega: Multilingual evaluation of generative ai.

[2] Apruzzese, G., Anderson, H. S., Dambra, S., Freeman, D., Pierazzi, F., & Roundy, K. A. (2022).
"real attackers don’t compute gradients": Bridging the gap between adversarial ml research and
practice.

[3] Bhatt, M., Chennabasappa, S., Nikolaidis, C., Wan, S., Evtimov, I., Gabi, D., Song, D., Ahmad,
F., Aschermann, C., Fontana, L., Frolov, S., Giri, R. P., Kapil, D., Kozyrakis, Y., LeBlanc, D.,
Milazzo, J., Straumann, A., Synnaeve, G., Vontimitta, V., Whitman, S., & Saxe, J. (2023). Purple
llama cyberseceval: A secure coding benchmark for language models.

[4] Birhane, A., Steed, R., Ojewale, V., Vecchione, B., & Raji, I. D. (2024). Ai auditing: The broken
bus on the road to ai accountability.

[5] Blevins, T. & Zettlemoyer, L. (2022). Language contamination helps explains the cross-lingual
capabilities of English pretrained models. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp.
3563–3574). Abu Dhabi, United Arab Emirates: Association for Computational Linguistics.

[6] Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J., & Wong, E. (2024). Jailbreaking
black box large language models in twenty queries.

[7] Derczynski, L., Galinkin, E., Martin, J., Majumdar, S., & Inie, N. (2024). garak: A framework
for security probing large language models.

[8] Feffer, M., Sinha, A., Deng, W. H., Lipton, Z. C., & Heidari, H. (2024). Red-teaming for
generative ai: Silver bullet or security theater?

[9] Geiping, J., Stein, A., Shu, M., Saifullah, K., Wen, Y., & Goldstein, T. (2024). Coercing llms to
do and reveal (almost) anything.

[10] Glasbrenner, J., Booth, H., Manville, K., Sexton, J., Chisholm, M. A., Choy, H., Hand, A.,
Hodges, B., Scemama, P., Cousin, D., Trapnell, E., Trapnell, M., Huang, H., Rowe, P., & Byrne,
A. (2024). Dioptra test platform. Accessed: 2024-09-10.

[11] Haider, E., Perez-Becker, D., Portet, T., Madan, P., Garg, A., Ashfaq, A., Majercak, D., Wen,
W., Kim, D., Yang, Z., Zhang, J., Sharma, H., Bullwinkel, B., Pouliot, M., Minnich, A., Chawla,
S., Herrera, S., Warreth, S., Engler, M., Lopez, G., Chikanov, N., Dheekonda, R. S. R., Jagdagdorj,
B.-E., Lutz, R., Lundeen, R., Westerhoff, T., Bryan, P., Seifert, C., Kumar, R. S. S., Berkley, A., &
Kessler, A. (2024). Phi-3 safety post-training: Aligning language models with a "break-fix" cycle.

[12] Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., & Kamar, E. (2022). Toxigen: A
large-scale machine-generated dataset for adversarial and implicit hate speech detection.

[13] Hines, K., Lopez, G., Hall, M., Zarfati, F., Zunger, Y., & Kiciman, E. (2024). Defending against
indirect prompt injection attacks with spotlighting.

[14] Jain, D., Kumar, P., Gehman, S., Zhou, X., Hartvigsen, T., & Sap, M. (2024). Polyglotoxici-
typrompts: Multilingual evaluation of neural toxic degeneration in large language models. ArXiv,
abs/2405.09373.

[15] Ji, J., Qiu, T., Chen, B., Zhang, B., Lou, H., Wang, K., Duan, Y., He, Z., Zhou, J., Zhang, Z.,
Zeng, F., Ng, K. Y., Dai, J., Pan, X., O’Gara, A., Lei, Y., Xu, H., Tse, B., Fu, J., McAleer, S., Yang,
Y., Wang, Y., Zhu, S.-C., Guo, Y., & Gao, W. (2024). Ai alignment: A comprehensive survey.

[16] Jiang, F., Xu, Z., Niu, L., Xiang, Z., Ramasubramanian, B., Li, B., & Poovendran, R. (2024a).
Artprompt: Ascii art-based jailbreak attacks against aligned llms.

[17] Jiang, L., Rao, K., Han, S., Ettinger, A., Brahman, F., Kumar, S., Mireshghallah, N., Lu, X.,
Sap, M., Choi, Y., & Dziri, N. (2024b). Wildteaming at scale: From in-the-wild jailbreaks to
(adversarially) safer language models.

14



[18] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,
A., Wu, J., & Amodei, D. (2020). Scaling laws for neural language models.

[19] Li, N., Pan, A., Gopal, A., Yue, S., Berrios, D., Gatti, A., Li, J. D., Dombrowski, A.-K., Goel,
S., Phan, L., Mukobi, G., Helm-Burger, N., Lababidi, R., Justen, L., Liu, A. B., Chen, M., Barrass,
I., Zhang, O., Zhu, X., Tamirisa, R., Bharathi, B., Khoja, A., Zhao, Z., Herbert-Voss, A., Breuer,
C. B., Marks, S., Patel, O., Zou, A., Mazeika, M., Wang, Z., Oswal, P., Lin, W., Hunt, A. A.,
Tienken-Harder, J., Shih, K. Y., Talley, K., Guan, J., Kaplan, R., Steneker, I., Campbell, D.,
Jokubaitis, B., Levinson, A., Wang, J., Qian, W., Karmakar, K. K., Basart, S., Fitz, S., Levine,
M., Kumaraguru, P., Tupakula, U., Varadharajan, V., Wang, R., Shoshitaishvili, Y., Ba, J., Esvelt,
K. M., Wang, A., & Hendrycks, D. (2024). The wmdp benchmark: Measuring and reducing
malicious use with unlearning.

[20] Lin, S., Hilton, J., & Evans, O. (2022). Truthfulqa: Measuring how models mimic human
falsehoods.

[21] Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Guo, R., Cheng, H., Klochkov, Y., Taufiq, M. F., & Li, H.
(2024). Trustworthy llms: a survey and guideline for evaluating large language models’ alignment.

[22] Marchal, N., Xu, R., Elasmar, R., Gabriel, I., Goldberg, B., & Isaac, W. (2024). Generative ai
misuse: A taxonomy of tactics and insights from real-world data.

[23] Meek, T., Barham, H., Beltaif, N., Kaadoor, A., & Akhter, T. (2016). Managing the ethical
and risk implications of rapid advances in artificial intelligence: A literature review. In 2016
Portland International Conference on Management of Engineering and Technology (PICMET)
(pp. 682–693).

[24] Mehrotra, A., Zampetakis, M., Kassianik, P., Nelson, B., Anderson, H., Singer, Y., & Karbasi,
A. (2024). Tree of attacks: Jailbreaking black-box llms automatically.

[25] Microsoft (2022). Microsoft responsible ai standard, v2.

[26] Moore, T. (2010). The economics of cybersecurity: Principles and policy options. International
Journal of Critical Infrastructure Protection, 3(3), 103–117.

[27] Munoz, G. D. L., Minnich, A. J., Lutz, R., Lundeen, R., Dheekonda, R. S. R., Chikanov, N.,
Jagdagdorj, B.-E., Pouliot, M., Chawla, S., Maxwell, W., Bullwinkel, B., Pratt, K., de Gruyter,
J., Siska, C., Bryan, P., Westerhoff, T., Kawaguchi, C., Seifert, C., Kumar, R. S. S., & Zunger, Y.
(2024). Pyrit: A framework for security risk identification and red teaming in generative ai system.

[28] Pantazopoulos, G., Parekh, A., Nikandrou, M., & Suglia, A. (2024). Learning to see but
forgetting to follow: Visual instruction tuning makes llms more prone to jailbreak attacks.

[29] Phuong, M., Aitchison, M., Catt, E., Cogan, S., Kaskasoli, A., Krakovna, V., Lindner, D., Rahtz,
M., Assael, Y., Hodkinson, S., Howard, H., Lieberum, T., Kumar, R., Raad, M. A., Webson,
A., Ho, L., Lin, S., Farquhar, S., Hutter, M., Deletang, G., Ruoss, A., El-Sayed, S., Brown, S.,
Dragan, A., Shah, R., Dafoe, A., & Shevlane, T. (2024). Evaluating frontier models for dangerous
capabilities.

[30] Raji, I. D., Bender, E. M., Paullada, A., Denton, E., & Hanna, A. (2021). Ai and the everything
in the whole wide world benchmark.

[31] Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022). The fallacy of ai functionality. In
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’22 (pp. 959–972). New York, NY, USA: Association for Computing Machinery.

[32] Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud,
J., Theron, D., & Barnes, P. (2020). Closing the ai accountability gap: Defining an end-to-end
framework for internal algorithmic auditing.

[33] Ren, R., Basart, S., Khoja, A., Gatti, A., Phan, L., Yin, X., Mazeika, M., Pan, A., Mukobi, G.,
Kim, R. H., Fitz, S., & Hendrycks, D. (2024). Safetywashing: Do ai safety benchmarks actually
measure safety progress?

15



[34] Russinovich, M., Salem, A., & Eldan, R. (2024). Great, now write an article about that: The
crescendo multi-turn llm jailbreak attack.

[35] Saghiri, A. M., Vahidipour, S. M., Jabbarpour, M. R., Sookhak, M., & Forestiero, A. (2022). A
survey of artificial intelligence challenges: Analyzing the definitions, relationships, and evolutions.
Applied Sciences, 12(8).

[36] Shelby, R., Rismani, S., Henne, K., Moon, A., Rostamzadeh, N., Nicholas, P., Yilla-Akbari, N.,
Gallegos, J., Smart, A., Garcia, E., & Virk, G. (2023). Sociotechnical harms of algorithmic systems:
Scoping a taxonomy for harm reduction. In Proceedings of the 2023 AAAI/ACM Conference on AI,
Ethics, and Society, AIES ’23 (pp. 723–741). New York, NY, USA: Association for Computing
Machinery.

[37] Slattery, P., Saeri, A., Grundy, E., Graham, J., Noetel, M., Uuk, R., Dao, J., Pour, S., Casper,
S., & Thompson, N. (2024). The ai risk repository: A comprehensive meta-review, database, and
taxonomy of risks from artificial intelligence.

[38] Smith, B., Browne, C., & Gates, B. (2019). Tools and Weapons: The Promise and the Peril of
the Digital Age. Penguin Publishing Group.

[39] Solaiman, I., Talat, Z., Agnew, W., Ahmad, L., Baker, D., Blodgett, S. L., Chen, C., au2, H.
D. I., Dodge, J., Duan, I., Evans, E., Friedrich, F., Ghosh, A., Gohar, U., Hooker, S., Jernite, Y.,
Kalluri, R., Lusoli, A., Leidinger, A., Lin, M., Lin, X., Luccioni, S., Mickel, J., Mitchell, M.,
Newman, J., Ovalle, A., Png, M.-T., Singh, S., Strait, A., Struppek, L., & Subramonian, A. (2024).
Evaluating the social impact of generative ai systems in systems and society.

[40] Sutskever, I., Gross, D., & Levy, D. (2024). Safe superintelligence inc.

[41] Vassilev, A., Oprea, A., Fordyce, A., & Anderson, H. (2024). Adversarial machine learning: A
taxonomy and terminology of attacks and mitigations. In NIST Artifcial Intelligence (AI) Report
Gaithersburg, MD, USA: National Institute of Standards and Technology.

[42] Verma, A., Krishna, S., Gehrmann, S., Seshadri, M., Pradhan, A., Ault, T., Barrett, L., Rabi-
nowitz, D., Doucette, J., & Phan, N. (2024). Operationalizing a threat model for red-teaming large
language models (llms).

[43] Wallace, E., Xiao, K., Leike, R., Weng, L., Heidecke, J., & Beutel, A. (2024). The instruction
hierarchy: Training llms to prioritize privileged instructions.

[44] Wang, B., Chen, W., Pei, H., Xie, C., Kang, M., Zhang, C., Xu, C., Xiong, Z., Dutta, R.,
Schaeffer, R., Truong, S. T., Arora, S., Mazeika, M., Hendrycks, D., Lin, Z., Cheng, Y., Koyejo,
S., Song, D., & Li, B. (2024). Decodingtrust: A comprehensive assessment of trustworthiness in
gpt models.

[45] Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How does llm safety training fail?

[46] Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M.,
Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins, W., Stepleton, T., Biles, C., Birhane,
A., Haas, J., Rimell, L., Hendricks, L. A., Isaac, W., Legassick, S., Irving, G., & Gabriel, I. (2021).
Ethical and social risks of harm from language models.

[47] Weidinger, L., Rauh, M., Marchal, N., Manzini, A., Hendricks, L. A., Mateos-Garcia, J.,
Bergman, S., Kay, J., Griffin, C., Bariach, B., Gabriel, I., Rieser, V., & Isaac, W. (2023). Sociotech-
nical safety evaluation of generative ai systems.

[48] Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S., Mellor, J., Glaese, A., Cheng, M.,
Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane,
A., Hendricks, L. A., Rimell, L., Isaac, W., Haas, J., Legassick, S., Irving, G., & Gabriel, I. (2022).
Taxonomy of risks posed by language models. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’22 (pp. 214–229). New York, NY, USA:
Association for Computing Machinery.

[49] Weiss, R., Ayzenshteyn, D., Amit, G., & Mirsky, Y. (2024). What was your prompt? a remote
keylogging attack on ai assistants.

16



[50] Wolf, Y., Wies, N., Avnery, O., Levine, Y., & Shashua, A. (2024). Fundamental limitations of
alignment in large language models.

[51] Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D.,
Xing, E. P., Zhang, H., Gonzalez, J. E., & Stoica, I. (2023). Judging llm-as-a-judge with mt-bench
and chatbot arena.

[52] Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S., Luan, Y., Zhou, D., & Hou, L. (2023).
Instruction-following evaluation for large language models.

[53] Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z., & Fredrikson, M. (2023). Universal and
transferable adversarial attacks on aligned language models.

17


	Introduction
	Background
	AI threat model ontology
	Red teaming operations

	Lessons
	Understand what the system can do and where it is applied
	You don't have to compute gradients to break an AI system
	AI red teaming is not safety benchmarking
	Automation can help cover more of the risk landscape
	The human element of AI red teaming is crucial
	Responsible AI harms are pervasive but difficult to measure
	LLMs amplify existing security risks and introduce new ones
	The work of securing AI systems will never be complete

	Open questions
	Conclusion

