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OpenPose: Realtime Multi-Person 2D Pose
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Abstract—Realtime multi-person 2D pose estimation is a key component in enabling machines to have an understanding of people in
images and videos. In this work, we present a realtime approach to detect the 2D pose of multiple people in an image. The proposed
method uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with
individuals in the image. This bottom-up system achieves high accuracy and realtime performance, regardless of the number of people
in the image. In previous work, PAFs and body part location estimation were refined simultaneously across training stages. We
demonstrate that a PAF-only refinement rather than both PAF and body part location refinement results in a substantial increase in both
runtime performance and accuracy. We also present the first combined body and foot keypoint detector, based on an internal annotated
foot dataset that we have publicly released. We show that the combined detector not only reduces the inference time compared to
running them sequentially, but also maintains the accuracy of each component individually. This work has culminated in the release of
OpenPose, the first open-source realtime system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints.

Index Terms—2D human pose estimation, 2D foot keypoint estimation, real-time, multiple person, part affinity fields.
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1 INTRODUCTION

IN this paper, we consider a core component in obtaining
a detailed understanding of people in images and videos:

human 2D pose estimation—or the problem of localizing
anatomical keypoints or “parts”. Human estimation has
largely focused on finding body parts of individuals. Infer-
ring the pose of multiple people in images presents a unique
set of challenges. First, each image may contain an unknown
number of people that can appear at any position or scale.
Second, interactions between people induce complex spatial
interference, due to contact, occlusion, or limb articulations,
making association of parts difficult. Third, runtime com-
plexity tends to grow with the number of people in the
image, making realtime performance a challenge.

A common approach is to employ a person detector
and perform single-person pose estimation for each detec-
tion. These top-down approaches directly leverage existing
techniques for single-person pose estimation, but suffer
from early commitment: if the person detector fails–as it
is prone to do when people are in close proximity–there
is no recourse to recovery. Furthermore, their runtime is
proportional to the number of people in the image, for each
person detection, a single-person pose estimator is run. In
contrast, bottom-up approaches are attractive as they offer
robustness to early commitment and have the potential to
decouple runtime complexity from the number of people
in the image. Yet, bottom-up approaches do not directly
use global contextual cues from other body parts and other
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Fig. 1: Top: Multi-person pose estimation. Body parts be-
longing to the same person are linked, including foot key-
points (big toes, small toes, and heels). Bottom left: Part
Affinity Fields (PAFs) corresponding to the limb connecting
right elbow and wrist. The color encodes orientation. Bot-
tom right: A 2D vector in each pixel of every PAF encodes
the position and orientation of the limbs.

people. Initial bottom-up methods ([1], [2]) did not retain the
gains in efficiency as the final parse required costly global
inference, taking several minutes per image.

In this paper, we present an efficient method for multi-
person pose estimation with competitive performance on
multiple public benchmarks. We present the first bottom-
up representation of association scores via Part Affinity
Fields (PAFs), a set of 2D vector fields that encode the
location and orientation of limbs over the image domain.
We demonstrate that simultaneously inferring these bottom-
up representations of detection and association encodes
sufficient global context for a greedy parse to achieve high-
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(b) Part Confidence Maps

(c) Part Affinity Fields(a) Input Image (d) Bipartite Matching (e) Parsing Results

Fig. 2: Overall pipeline. (a) Our method takes the entire image as the input for a CNN to jointly predict (b) confidence
maps for body part detection and (c) PAFs for part association. (d) The parsing step performs a set of bipartite matchings
to associate body part candidates. (e) We finally assemble them into full body poses for all people in the image.

quality results, at a fraction of the computational cost.
An earlier version of this manuscript appeared in [3].

This version makes several new contributions. First, we
prove that PAF refinement is crucial for maximizing ac-
curacy, while body part prediction refinement is not that
important. We increase the network depth but remove
the body part refinement stages (Sections 3.1 and 3.2).
This refined network increases both speed and accuracy
by approximately 200% and 7%, respectively (Sections 5.2
and 5.3). Second, we present an annotated foot dataset1

with 15K human foot instances that has been publicly re-
leased (Section 4.2), and we show that a combined model
with body and foot keypoints can be trained preserving
the speed of the body-only model while maintaining its
accuracy (Section 5.5). Third, we demonstrate the generality
of our method by applying it to the task of vehicle keypoint
estimation (Section 5.6). Finally, this work documents the
release of OpenPose [4]. This open-source library is the
first available realtime system for multi-person 2D pose
detection, including body, foot, hand, and facial keypoints
(Section 4). We also include a runtime comparison to Mask
R-CNN [5] and Alpha-Pose [6], showing the computational
advantage of our bottom-up approach (Section 5.3).

2 RELATED WORK

Single Person Pose Estimation The traditional approach to
articulated human pose estimation is to perform inference
over a combination of local observations on body parts
and the spatial dependencies between them. The spatial
model for articulated pose is either based on tree-structured
graphical models [7], [8], [9], [10], [11], [12], [13], which para-
metrically encode the spatial relationship between adjacent
parts following a kinematic chain, or non-tree models [14],
[15], [16], [17], [18] that augment the tree structure with
additional edges to capture occlusion, symmetry, and long-
range relationships. To obtain reliable local observations of
body parts, Convolutional Neural Networks (CNNs) have
been widely used, and have significantly boosted the ac-
curacy on body pose estimation [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32]. Tompson et
al. [23] used a deep architecture with a graphical model
whose parameters are learned jointly with the network.
Pfister et al. [33] further used CNNs to implicitly capture
global spatial dependencies by designing networks with

1. Dataset webpage: https://cmu-perceptual-computing-lab.github.
io/foot keypoint dataset/

large receptive fields. The convolutional pose machines ar-
chitecture proposed by Wei et al. [20] used a multi-stage ar-
chitecture based on a sequential prediction framework [34];
iteratively incorporating global context to refine part con-
fidence maps and preserving multimodal uncertainty from
previous iterations. Intermediate supervisions are enforced
at the end of each stage to address the problem of vanishing
gradients [35], [36], [37] during training. Newell et al. [19]
also showed intermediate supervisions are beneficial in a
stacked hourglass architecture. However, all of these meth-
ods assume a single person, where the location and scale of
the person of interest is given.
Multi-Person Pose Estimation For multi-person pose es-
timation, most approaches [5], [6], [38], [39], [40], [41],
[42], [43], [44] have used a top-down strategy that first
detects people and then have estimated the pose of each
person independently on each detected region. Although
this strategy makes the techniques developed for the single
person case directly applicable, it not only suffers from
early commitment on person detection, but also fails to
capture the spatial dependencies across different people that
require global inference. Some approaches have started to
consider inter-person dependencies. Eichner et al. [45] ex-
tended pictorial structures to take a set of interacting people
and depth ordering into account, but still required a person
detector to initialize detection hypotheses. Pishchulin et
al. [1] proposed a bottom-up approach that jointly labels
part detection candidates and associated them to individual
people, with pairwise scores regressed from spatial offsets
of detected parts. This approach does not rely on person
detections, however, solving the proposed integer linear
programming over the fully connected graph is an NP-hard
problem and thus the average processing time for a single
image is on the order of hours. Insafutdinov et al. [2] built
on [1] with a stronger part detectors based on ResNet [46]
and image-dependent pairwise scores, and vastly improved
the runtime with an incremental optimization approach, but
the method still takes several minutes per image, with a
limit of at most 150 part proposals. The pairwise repre-
sentations used in [2], which are offset vectors between
every pair of body parts, are difficult to regress precisely
and thus a separate logistic regression is required to convert
the pairwise features into a probability score.

In earlier work [3], we present part affinity fields (PAFs), a
representation consisting of a set of flow fields that encodes
unstructured pairwise relationships between body parts of
a variable number of people. In contrast to [1] and [2], we

https://cmu-perceptual-computing-lab.github.io/foot_keypoint_dataset/
https://cmu-perceptual-computing-lab.github.io/foot_keypoint_dataset/
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Fig. 3: Architecture of the multi-stage CNN. The first set
of stages predicts PAFs Lt, while the last set predicts con-
fidence maps St. The predictions of each stage and their
corresponding image features are concatenated for each
subsequent stage. Convolutions of kernel size 7 from the
original approach [3] are replaced with 3 layers of convolu-
tions of kernel 3 which are concatenated at their end.

can efficiently obtain pairwise scores from PAFs without
an additional training step. These scores are sufficient for
a greedy parse to obtain high-quality results with realtime
performance for multi-person estimation. Concurrent to this
work, Insafutdinov et al. [47] further simplified their body-
part relationship graph for faster inference in single-frame
model and formulated articulated human tracking as spatio-
temporal grouping of part proposals. Recenetly, Newell
et al. [48] proposed associative embeddings which can be
thought as tags representing each keypoint’s group. They
group keypoints with similar tags into individual people.
Papandreou et al. [49] proposed to detect individual key-
points and predict their relative displacements, allowing a
greedy decoding process to group keypoints into person
instances. Kocabas et al. [50] proposed a Pose Residual
Network which receives keypoint and person detections,
and then assigns keypoints to detected person bounding
boxes. Nie et al. [51] proposed to partition all keypoint de-
tections using dense regressions from keypoint candidates
to centroids of persons in the image.

In this work, we make several extensions to our earlier
work [3]. We prove that PAF refinement is critical and suffi-
cient for high accuracy, removing the body part confidence
map refinement while increasing the network depth. This
leads to a faster and more accurate model. We also present
the first combined body and foot keypoint detector, created
from an annotated foot dataset that will be publicly released.
We prove that combining both detection approaches not
only reduces the inference time compared to running them
independently, but also maintains their individual accuracy.
Finally, we present OpenPose, the first open-source library
for real time body, foot, hand, and facial keypoint detection.

3 METHOD

Fig. 2 illustrates the overall pipeline of our method. The
system takes, as input, a color image of size w × h (Fig. 2a)
and produces the 2D locations of anatomical keypoints for
each person in the image (Fig. 2e). First, a feedforward
network predicts a set of 2D confidence maps S of body
part locations (Fig. 2b) and a set of 2D vector fields L of
part affinity fields (PAFs), which encode the degree of asso-
ciation between parts (Fig. 2c). The set S = (S1,S2, ...,SJ)
has J confidence maps, one per part, where Sj ∈ Rw×h,
j ∈ {1 . . . J}. The set L = (L1,L2, ...,LC) has C vector

fields, one per limb, where Lc ∈ Rw×h×2, c ∈ {1 . . . C}. We
refer to part pairs as limbs for clarity, but some pairs are
not human limbs (e.g., the face). Each image location in Lc

encodes a 2D vector (Fig. 1). Finally, the confidence maps
and the PAFs are parsed by greedy inference (Fig. 2d) to
output the 2D keypoints for all people in the image.

3.1 Network Architecture
Our architecture, shown in Fig. 3, iteratively predicts affinity
fields that encode part-to-part association, shown in blue,
and detection confidence maps, shown in beige. The it-
erative prediction architecture, following [20], refines the
predictions over successive stages, t ∈ {1, . . . , T}, with
intermediate supervision at each stage.

The network depth is increased with respect to [3]. In
the original approach, the network architecture included
several 7x7 convolutional layers. In our current model,
the receptive field is preserved while the computation is
reduced, by replacing each 7x7 convolutional kernel by 3
consecutive 3x3 kernels. While the number of operations for
the former is 2 × 72 − 1 = 97, it is only 51 for the latter.
Additionally, the output of each one of the 3 convolutional
kernels is concatenated, following an approach similar to
DenseNet [52]. The number of non-linearity layers is tripled,
and the network can keep both lower level and higher
level features. Sections 5.2 and 5.3 analyze the accuracy and
runtime speed improvements, respectively.

3.2 Simultaneous Detection and Association
The image is analyzed by a CNN (initialized by the first 10
layers of VGG-19 [53] and fine-tuned), generating a set of
feature maps F that is input to the first stage. At this stage,
the network produces a set of part affinity fields (PAFs)
L1 = φ1(F), where φ1 refers to the CNNs for inference
at Stage 1. In each subsequent stage, the predictions from
the previous stage and the original image features F are
concatenated and used to produce refined predictions,

Lt = φt(F,Lt−1), ∀2 ≤ t ≤ TP , (1)

where φt refers to the CNNs for inference at Stage t, and
TP to the number of total PAF stages. After TP iterations,
the process is repeated for the confidence maps detection,
starting in the most updated PAF prediction,

STP = ρt(F,LTP ), ∀t = TP , (2)
St = ρt(F,LTP ,St−1), ∀TP < t ≤ TP + TC , (3)

where ρt refers to the CNNs for inference at Stage t, and TC
to the number of total confidence map stages.

This approach differs from [3], where both the PAF and
confidence map branches were refined at each stage. Hence,
the amount of computation per stage is reduced by half.
We empirically observe in Section 5.2 that refined affinity
field predictions improve the confidence map results, while
the opposite does not hold. Intuitively, if we look at the
PAF channel output, the body part locations can be guessed.
However, if we see a bunch of body parts with no other
information, we cannot parse them into different people.

Fig. 4 shows the refinement of the affinity fields across
stages. The confidence map results are predicted on top of
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Stage 1 Stage 2 Stage 3

Fig. 4: PAFs of right forearm across stages. Although there
is confusion between left and right body parts and limbs in
early stages, the estimates are increasingly refined through
global inference in later stages.

the latest and most refined PAF predictions, resulting in a
barely noticeable difference across confidence map stages.
To guide the network to iteratively predict PAFs of body
parts in the first branch and confidence maps in the second
branch, we apply a loss function at the end of each stage.
We use an L2 loss between the estimated predictions and
the groundtruth maps and fields. Here, we weight the loss
functions spatially to address a practical issue that some
datasets do not completely label all people. Specifically, the
loss function of the PAF branch at stage ti and loss function
of the confidence map branch at stage tk are:

f tiL =
C∑

c=1

∑
p

W(p) · ‖Lti
c (p)− L∗c(p)‖22, (4)

f tkS =
J∑

j=1

∑
p

W(p) · ‖Stk
j (p)− S∗j (p)‖22, (5)

where L∗c is the groundtruth PAF, S∗j is the groundtruth part
confidence map, and W is a binary mask with W(p) = 0
when the annotation is missing at the pixel p. The mask
is used to avoid penalizing the true positive predictions
during training. The intermediate supervision at each stage
addresses the vanishing gradient problem by replenishing
the gradient periodically [20]. The overall objective is

f =
TP∑
t=1

f tL +
TP+TC∑
t=TP+1

f tS. (6)

3.3 Confidence Maps for Part Detection
To evaluate fS in Eq. (6) during training, we generate the
groundtruth confidence maps S∗ from the annotated 2D
keypoints. Each confidence map is a 2D representation of
the belief that a particular body part can be located in any
given pixel. Ideally, if a single person appears in the image,
a single peak should exist in each confidence map if the
corresponding part is visible; if multiple people are in the
image, there should be a peak corresponding to each visible
part j for each person k.

We first generate individual confidence maps S∗j,k for
each person k. Let xj,k ∈ R2 be the groundtruth position of
body part j for person k in the image. The value at location
p ∈ R2 in S∗j,k is defined as,

S∗j,k(p) = exp

(
−||p− xj,k||22

σ2

)
, (7)

where σ controls the spread of the peak. The groundtruth
confidence map predicted by the network is an aggregation
of the individual confidence maps via a max operator,

S∗j (p) = max
k

S∗j,k(p). (8)

     Neck candidates

     Hip candidates

     Midpoint 

— Connection 
     candidates

— Correct connections

— Wrong connections

     Predicted PAFs

(a) (b) (c)

Fig. 5: Part association strategies. (a) The body part detection
candidates (red and blue dots) for two body part types and
all connection candidates (grey lines). (b) The connection
results using the midpoint (yellow dots) representation:
correct connections (black lines) and incorrect connections
(green lines) that also satisfy the incidence constraint. (c) The
results using PAFs (yellow arrows). By encoding position
and orientation over the support of the limb, PAFs eliminate
false associations.
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We take the maximum of
the confidence maps instead of
the average so that the preci-
sion of nearby peaks remains
distinct, as illustrated in the right figure. At test time, we
predict confidence maps, and obtain body part candidates
by performing non-maximum suppression.

3.4 Part Affinity Fields for Part Association
Given a set of detected body parts (shown as the red and
blue points in Fig. 5a), how do we assemble them to form
the full-body poses of an unknown number of people? We
need a confidence measure of the association for each pair
of body part detections, i.e., that they belong to the same
person. One possible way to measure the association is to
detect an additional midpoint between each pair of parts
on a limb and check for its incidence between candidate
part detections, as shown in Fig. 5b. However, when people
crowd together—as they are prone to do—these midpoints
are likely to support false associations (shown as green
lines in Fig. 5b). Such false associations arise due to two
limitations in the representation: (1) it encodes only the
position, and not the orientation, of each limb; (2) it reduces
the region of support of a limb to a single point.

Part Affinity Fields (PAFs) address these limitations.
They preserve both location and orientation information
across the region of support of the limb (as shown in Fig. 5c).
Each PAF is a 2D vector field for each limb, also shown in
Fig. 1d. For each pixel in the area belonging to a particular
limb, a 2D vector encodes the direction that points from
one part of the limb to the other. Each type of limb has a
corresponding PAF joining its two associated body parts.

Consider a single limb shown in the figure below.
Let xj1,k and xj2,k be the groundtruth positions of body
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parts j1 and j2 from the limb c for
person k in the image. If a point p
lies on the limb, the value at L∗c,k(p)
is a unit vector that points from j1 to
j2; for all other points, the vector is zero-valued.

To evaluate fL in Eq. 6 during training, we define the
groundtruth PAF, L∗c,k, at an image point p as
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Part j1
Part j2
Part j3

d1
j2 d2

j3

z12
j2j3

(a) (b) (c) (d)

Fig. 6: Graph matching. (a) Original image with part detec-
tions. (b) K-partite graph. (c) Tree structure. (d) A set of
bipartite graphs.

L∗c,k(p) =

{
v if p on limb c, k
0 otherwise.

(9)

Here, v = (xj2,k − xj1,k)/||xj2,k −xj1,k||2 is the unit vector
in the direction of the limb. The set of points on the limb
is defined as those within a distance threshold of the line
segment, i.e., those points p for which

0≤v · (p− xj1,k)≤ lc,k and |v⊥ · (p− xj1,k)| ≤σl,
where the limb width σl is a distance in pixels, the limb
length is lc,k = ||xj2,k − xj1,k||2, and v⊥ is a vector perpen-
dicular to v.

The groundtruth part affinity field averages the affinity
fields of all people in the image,

L∗c(p) =
1

nc(p)

∑
k

L∗c,k(p), (10)

where nc(p) is the number of non-zero vectors at point p
across all k people.

During testing, we measure association between candi-
date part detections by computing the line integral over the
corresponding PAF along the line segment connecting the
candidate part locations. In other words, we measure the
alignment of the predicted PAF with the candidate limb that
would be formed by connecting the detected body parts.
Specifically, for two candidate part locations dj1 and dj2 ,
we sample the predicted part affinity field, Lc along the line
segment to measure the confidence in their association:

E =

∫ u=1

u=0
Lc (p(u)) ·

dj2 − dj1

||dj2 − dj1 ||2
du, (11)

where p(u) interpolates the position of the two body parts
dj1 and dj2 ,

p(u) = (1− u)dj1 + udj2 . (12)

In practice, we approximate the integral by sampling and
summing uniformly-spaced values of u.

3.5 Multi-Person Parsing using PAFs
We perform non-maximum suppression on the detection
confidence maps to obtain a discrete set of part candidate lo-
cations. For each part, we may have several candidates, due
to multiple people in the image or false positives (Fig. 6b).
These part candidates define a large set of possible limbs.
We score each candidate limb using the line integral compu-
tation on the PAF, defined in Eq. 11. The problem of finding
the optimal parse corresponds to aK-dimensional matching
problem that is known to be NP-Hard [54] (Fig. 6c). In
this paper, we present a greedy relaxation that consistently
produces high-quality matches. We speculate the reason is

that the pair-wise association scores implicitly encode global
context, due to the large receptive field of the PAF network.

Formally, we first obtain a set of body part detection
candidates DJ for multiple people, where DJ = {dm

j :
for j ∈ {1 . . . J},m ∈ {1 . . . Nj}}, where Nj is the number
of candidates of part j, and dm

j ∈ R2 is the location
of the m-th detection candidate of body part j. These
part detection candidates still need to be associated with
other parts from the same person—in other words, we
need to find the pairs of part detections that are in fact
connected limbs. We define a variable zmn

j1j2
∈ {0, 1} to

indicate whether two detection candidates dm
j1

and dn
j2

are connected, and the goal is to find the optimal assign-
ment for the set of all possible connections, Z = {zmn

j1j2
:

for j1, j2 ∈ {1 . . . J},m ∈ {1 . . . Nj1}, n ∈ {1 . . . Nj2}}.
If we consider a single pair of parts j1 and j2 (e.g.,

neck and right hip) for the c-th limb, finding the optimal
association reduces to a maximum weight bipartite graph
matching problem [54]. This case is shown in Fig. 5b. In this
graph matching problem, nodes of the graph are the body
part detection candidates Dj1 and Dj2 , and the edges are all
possible connections between pairs of detection candidates.
Additionally, each edge is weighted by Eq. 11—the part
affinity aggregate. A matching in a bipartite graph is a
subset of the edges chosen in such a way that no two edges
share a node. Our goal is to find a matching with maximum
weight for the chosen edges,

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

Emn · zmn
j1j2 , (13)

s.t. ∀m ∈ Dj1 ,
∑

n∈Dj2

zmn
j1j2 ≤ 1, (14)

∀n ∈ Dj2 ,
∑

m∈Dj1

zmn
j1j2 ≤ 1, (15)

where Ec is the overall weight of the matching from limb
type c, Zc is the subset of Z for limb type c, and Emn is the
part affinity between parts dm

j1
and dn

j2
defined in Eq. 11.

Eqs. 14 and 15 enforce that no two edges share a node, i.e.,
no two limbs of the same type (e.g., left forearm) share a
part. We can use the Hungarian algorithm [55] to obtain the
optimal matching.

When it comes to finding the full body pose of mul-
tiple people, determining Z is a K-dimensional matching
problem. This problem is NP-Hard [54] and many relax-
ations exist. In this work, we add two relaxations to the
optimization, specialized to our domain. First, we choose a
minimal number of edges to obtain a spanning tree skeleton
of human pose rather than using the complete graph, as
shown in Fig. 6c. Second, we further decompose the match-
ing problem into a set of bipartite matching subproblems
and determine the matching in adjacent tree nodes inde-
pendently, as shown in Fig. 6d. We show detailed compar-
ison results in Section 5.1, which demonstrate that minimal
greedy inference well-approximates the global solution at
a fraction of the computational cost. The reason is that
the relationship between adjacent tree nodes is modeled
explicitly by PAFs, but internally, the relationship between
nonadjacent tree nodes is implicitly modeled by the CNN.
This property emerges because the CNN is trained with a
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(a) Original Person Parsing (b) PAF-Redundant Parsing

Fig. 7: Importance of redundant PAF connections. (a) Two
different people are wrongly merged due to a wrong neck-
nose connection. (b) The higher confidence of the right ear-
shoulder connection avoids the wrong nose-neck link.

large receptive field, and PAFs from non-adjacent tree nodes
also influence the predicted PAF.

With these two relaxations, the optimization is decom-
posed simply as:

max
Z

E =
C∑

c=1

max
Zc

Ec. (16)

We therefore obtain the limb connection candidates for each
limb type independently using Eqns. 13- 15. With all limb
connection candidates, we can assemble the connections
that share the same part detection candidates into full-body
poses of multiple people. Our optimization scheme over
the tree structure is orders of magnitude faster than the
optimization over the fully connected graph [1], [2].

Our current model also incorporates redundant PAF con-
nections (e.g., between ears and shoulders, wrists and shoul-
ders, etc.). This redundancy particularly improves the accu-
racy in crowded images, as shown in Fig. 7. To handle these
redundant connections, we slightly modify the multi-person
parsing algorithm. While the original approach started from
a root component, our algorithm sorts all pairwise possible
connections by their PAF score. If a connection tries to
connect 2 body parts which have already been assigned to
different people, the algorithm recognizes that this would
contradict a PAF connection with a higher confidence, and
the current connection is subsequently ignored.

4 OPENPOSE

A growing number of computer vision and machine learn-
ing applications require 2D human pose estimation as an
input for their systems [56], [57], [58], [59], [60], [61], [62].
To help the research community boost their work, we have
publicly released OpenPose [4], the first real-time multi-
person system to jointly detect human body, foot, hand, and
facial keypoints (in total 135 keypoints) on single images.
See Fig. 8 for an example of the whole system.

4.1 System
Available 2D body pose estimation libraries, such as Mask
R-CNN [5] or Alpha-Pose [6], require their users to imple-
ment most of the pipeline, their own frame reader (e.g.,
video, images, or camera streaming), a display to visualize
the results, output file generation with the results (e.g.,
JSON or XML files), etc. In addition, existing facial and
body keypoint detectors are not combined, requiring a
different library for each purpose. OpenPose overcome all of

Fig. 8: Output of OpenPose, detecting body, foot, hand, and
facial keypoints in real-time. OpenPose is robust against
occlusions including during human-object interaction.

these problems. It can run on different platforms, including
Ubuntu, Windows, Mac OSX, and embedded systems (e.g.,
Nvidia Tegra TX2). It also provides support for different
hardware, such as CUDA GPUs, OpenCL GPUs, and CPU-
only devices. The user can select an input between images,
video, webcam, and IP camera streaming. He can also select
whether to display the results or save them on disk, enable
or disable each detector (body, foot, face, and hand), enable
pixel coordinate normalization, control how many GPUs to
use, skip frames for a faster processing, etc.

OpenPose consists of three different blocks: (a)
body+foot detection, (b) hand detection [63], and (c) face
detection. The core block is the combined body+foot key-
point detector (Section 4.2). It can alternatively use the
original body-only models [3] trained on COCO and MPII
datasets. Based on the output of the body detector, facial
bounding box proposals can roughly be estimated from
some body part locations, in particular ears, eyes, nose,
and neck. Analogously, the hand bounding box proposals
are generated with the arm keypoints. This methodology
inherits the problems of top-down approaches discussed
in Section 1. The hand keypoint detector algorithm is ex-
plained in further detail in [63], while the facial keypoint
detector has been trained in the same fashion as that of
the hand keypoint detector. The library also includes 3D
keypoint pose detection, by performing 3D triangulation
with non-linear Levenberg-Marquardt refinement [64] over
the results of multiple synchronized camera views.

The inference time of OpenPose outperforms all state-
of-the-art methods, while preserving high-quality results.
It is able to run at about 22 FPS in a machine with a
Nvidia GTX 1080 Ti while preserving high accuracy (Sec-
tion 5.3). OpenPose has already been used by the research
community for many vision and robotics topics, such as
person re-identification [56], GAN-based video retargeting
of human faces [57] and bodies [58], Human-Computer In-
teraction [59], 3D pose estimation [60], and 3D human mesh
model generation [61]. In addition, the OpenCV library [65]
has included OpenPose and our PAF-based network archi-
tecture within its Deep Neural Network (DNN) module.

4.2 Extended Foot Keypoint Detection
Existing human pose datasets ([66], [67]) contain limited
body part types. The MPII dataset [66] annotates ankles,
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Fig. 9: Foot keypoint analysis. (a) Foot keypoint annotations,
consisting of big toes, small toes, and heels. (b) Body-only
model example at which right ankle is not properly esti-
mated. (c) Analogous body+foot model example, the foot
information helps predict the right ankle location.

knees, hips, shoulders, elbows, wrists, necks, torsos, and
head tops, while COCO [67] also includes some facial
keypoints. For both of these datasets, foot annotations are
limited to ankle position only. However, graphics applica-
tions such as avatar retargeting or 3D human shape re-
construction ([61], [68]) require foot keypoints such as big
toe and heel. Without foot information, these approaches
suffer from problems such as the candy wrapper effect, floor
penetration, and foot skate. To address these issues, a small
subset of foot instances out of the COCO dataset is labeled
using the Clickworker platform [69]. It is split up with 14K
annotations from the COCO training set and 545 from the
validation set. A total of 6 foot keypoints are labeled (see
Fig. 9a). We consider the 3D coordinate of the foot keypoints
rather than the surface position. For instance, for the exact
toe positions, we label the area between the connection of
the nail and skin, and also take depth into consideration by
labeling the center of the toe rather than the surface.

Using our dataset, we train a foot keypoint detection
algorithm. A näive foot keypoint detector could have been
built by using a body keypoint detector to generate foot
bounding box proposals, and then training a foot detector
on top of it. However, this method suffers from the top-
down problems stated in Section 1. Instead, the same archi-
tecture previously described for body estimation is trained
to predict both the body and foot locations. Fig. 10 shows
the keypoint distribution for the three datasets (COCO,
MPII, and COCO+foot). The body+foot model also incor-
porates an interpolated point between the hips to allow
the connection of both legs even when the upper torso is
occluded or out of the image. We find evidence that foot
keypoint detection implicitly helps the network to more
accurately predict some body keypoints, in particular leg
keypoints, such as ankle locations. Fig. 9b shows an example
where the body-only network was not able to predict ankle
location. By including foot keypoints during training, while
maintaining the same body annotations, the algorithm can
properly predict the ankle location in Fig. 9c. We quantita-
tively analyze the accuracy difference in Section 5.5.

5 DATASETS AND EVALUATIONS

We evaluate our method on three benchmarks for multi-
person pose estimation: (1) MPII human multi-person

(a) MPII (b) COCO (c) COCO+Foot

Fig. 10: Keypoint annotation configuration for the 3 datasets.

dataset [66], which consists of 3844 training and 1758 testing
groups of multiple interacting individuals in highly articu-
lated poses with 14 body parts; (2) COCO keypoint chal-
lenge dataset [67], which requires simultaneously detecting
people and localizing 17 keypoints (body parts) in each per-
son (including 12 human body parts and 5 facial keypoints);
(3) our foot dataset, which is a subset of 15K annotations out
of the COCO keypoint dataset. These datasets collect images
in diverse scenarios that contain many real-world challenges
such as crowding, scale variation, occlusion, and contact.
Our approach placed first at the inaugural COCO 2016
keypoints challenge [70], and significantly exceeded the
previous state-of-the-art results on the MPII multi-person
benchmark. We also provide runtime analysis comparison
against Mask R-CNN and Alpha-Pose to quantify the effi-
ciency of the system and analyze the main failure cases.

5.1 Results on the MPII Multi-Person Dataset
For comparison on the MPII dataset, we use the toolkit [1]
to measure mean Average Precision (mAP) of all body
parts following the “PCKh” metric from [66]. Table 1 com-
pares mAP performance between our method and other
approaches on the official MPII testing sets. We also com-
pare the average inference/optimization time per image in
seconds. For the 288 images subset, our method outper-
forms previous state-of-the-art bottom-up methods [2] by
8.5% mAP. Remarkably, our inference time is 6 orders of
magnitude less. We report a more detailed runtime analysis
in Section 5.3. For the entire MPII testing set, our method
without scale search already outperforms previous state-
of-the-art methods by a large margin, i.e., 13% absolute
increase on mAP. Using a 3 scale search (×0.7,×1 and×1.3)
further increases the performance to 75.6% mAP. The mAP
comparison with previous bottom-up approaches indicate
the effectiveness of our novel feature representation, PAFs,
to associate body parts. Based on the tree structure, our
greedy parsing method achieves better accuracy than a
graphcut optimization formula based on a fully connected
graph structure [1], [2].

In Table 2, we show comparison results for the different
skeleton structures shown in Fig. 6. We created a custom val-
idation set consisting of 343 images from the original MPII
training set. We train our model based on a fully connected
graph, and compare results by selecting all edges (Fig. 6b,
approximately solved by Integer Linear Programming), and
minimal tree edges (Fig. 6c, approximately solved by Integer
Linear Programming, and Fig. 6d, solved by the greedy
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Method Hea Sho Elb Wri Hip Kne Ank mAP s/image
Subset of 288 images as in [1]

Deepcut [1] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 57995
Iqbal et al. [41] 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 10
DeeperCut [2] 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 230
Newell et al. [48] 91.5 87.2 75.9 65.4 72.2 67.0 62.1 74.5 -
ArtTrack [47] 92.2 91.3 80.8 71.4 79.1 72.6 67.8 79.3 0.005
Fang et al. [6] 89.3 88.1 80.7 75.5 73.7 76.7 70.0 79.1 -
Ours 92.9 91.3 82.3 72.6 76.0 70.9 66.8 79.0 0.005

Full testing set
DeeperCut [2] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485
Iqbal et al. [41] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10
Levinko et al. [71] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6 -
ArtTrack [47] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 0.005
Fang et al. [6] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7 -
Newell et al. [48] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5 -
Fieraru et al. [72] 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0 -
Ours (one scale) 89.0 84.9 74.9 64.2 71.0 65.6 58.1 72.5 0.005
Ours 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.005

TABLE 1: Results on the MPII dataset. Top: Comparison
results on the testing subset defined in [1]. Middle: Compar-
ison results on the whole testing set. Testing without scale
search is denoted as “(one scale)”.

Method Hea Sho Elb Wri Hip Kne Ank mAP s/image
Fig. 6b 91.8 90.8 80.6 69.5 78.9 71.4 63.8 78.3 362
Fig. 6c 92.2 90.8 80.2 69.2 78.5 70.7 62.6 77.6 43
Fig. 6d 92.0 90.7 80.0 69.4 78.4 70.1 62.3 77.4 0.005
Fig. 6d (sep) 92.4 90.4 80.9 70.8 79.5 73.1 66.5 79.1 0.005

TABLE 2: Comparison of different structures on our custom
validation set.

algorithm presented in this paper). Both methods yield
similar results, demonstrating that it is sufficient to use
minimal edges. We trained our final model to only learn the
minimal edges to fully utilize the network capacity, denoted
as Fig. 6d (sep). This approach outperforms Fig. 6c and even
Fig. 6b, while maintaining efficiency. The fewer number of
part association channels (13 edges of a tree vs 91 edges of
a graph) needed facilitates the training convergence.

Fig. 11a shows an ablation analysis on our validation set.
For the threshold of PCKh-0.5 [66], the accuracy of our PAF
method is 2.9% higher than one-midpoint and 2.3% higher
than two intermediate points, generally outperforming the
method of midpoint representation. The PAFs, which en-
code both position and orientation information of human
limbs, are better able to distinguish the common cross-over
cases, e.g., overlapping arms. Training with masks of un-
labeled persons further improves the performance by 2.3%
because it avoids penalizing the true positive prediction in
the loss during training. If we use the ground-truth keypoint
location with our parsing algorithm, we can obtain a mAP of
88.3%. In Fig. 11a, the mAP obtained using our parsing with
GT detection is constant across different PCKh thresholds
due to no localization error. Using GT connection with our
keypoint detection achieves a mAP of 81.6%. It is notable
that our parsing algorithm based on PAFs achieves a similar
mAP as when based on GT connections (79.4% vs 81.6%).
This indicates parsing based on PAFs is quite robust in asso-
ciating correct part detections. Fig. 11b shows a comparison
of performance across stages. The mAP increases monoton-
ically with the iterative refinement framework. Fig. 4 shows
the qualitative improvement of the predictions over stages.

5.2 Results on the COCO Keypoints Challenge

The COCO training set consists of over 100K person in-
stances labeled with over 1 million keypoints. The testing set
contains “test-challenge” and “test-dev”subsets, which have
roughly 20K images each. The COCO evaluation defines

Normalized distance

0.1 0.2 0.3 0.4 0.5

M
ea

n
 a

v
er

ag
e 

p
re

ci
si

o
n

 %

0

10

20

30

40

50

60

70

80

90

100

GT detection

GT connection

PAFs with mask

PAFs

Two-midpoint

One-midpoint

Normalized distance

0.1 0.2 0.3 0.4 0.5

M
ea

n
 a

v
er

ag
e 

p
re

ci
si

o
n
 %

0

10

20

30

40

50

60

70

80

90

100

1-stage

2-stage

3-stage

4-stage

5-stage

6-stage

(a) (b)

Fig. 11: mAP curves over different PCKh thresholds on
MPII validation set. (a) mAP curves of self-comparison
experiments. (b) mAP curves of PAFs across stages.

Team AP AP50 AP75 APM APL

Top-Down Approaches
Megvii [43] 78.1 94.1 85.9 74.5 83.3
MRSA [44] 76.5 92.4 84.0 73.0 82.7
The Sea Monsters* 75.9 92.1 83.0 71.7 82.1
Alpha-Pose [6] 71.0 87.9 77.7 69.0 75.2
Mask R-CNN [5] 69.2 90.4 76.0 64.9 76.3

Bottom-Up Approaches
METU [50] 70.5 87.7 77.2 66.1 77.3
TFMAN* 70.2 89.2 77.0 65.6 76.3
PersonLab [49] 68.7 89.0 75.4 64.1 75.5
Associative Emb. [48] 65.5 86.8 72.3 60.6 72.6
Ours 64.2 86.2 70.1 61.0 68.8
Ours [3] 61.8 84.9 67.5 57.1 68.2

TABLE 3: COCO test-dev leaderboard [73], “*” indicates
that no citation was provided. Top: some of the highest top-
down results. Bottom: highest bottom-up results.

the object keypoint similarity (OKS) and uses the mean
average precision (AP) over 10 OKS thresholds as the main
competition metric [70]. The OKS plays the same role as the
IoU in object detection. It is calculated from the scale of the
person and the distance between predicted and GT points.
Table 3 shows results from top teams in the challenge. It is
noteworthy that our method has a higher drop in accuracy
when considering only people of higher scales (APL).

Method AP AP50 AP75 APM APL

GT Bbox + CPM [20] 62.7 86.0 69.3 58.5 70.6
SSD [74] + CPM [20] 52.7 71.1 57.2 47.0 64.2
Ours [3] 58.4 81.5 62.6 54.4 65.1

+ CPM refinement 61.0 84.9 67.5 56.3 69.3
Ours 65.3 85.2 71.3 62.2 70.7

TABLE 4: Self-comparison experiments on the COCO val-
idation set. Our new body+foot model outperforms the
original work in [3] by 6.9%.

In Table 4, we report self-comparisons on the COCO
validation set. If we use the GT bounding box and a sin-
gle person CPM [20], we can achieve an upper-bound for
the top-down approach using CPM, which is 62.7% AP.
If we use the state-of-the-art object detector, Single Shot
MultiBox Detector (SSD) [74], the performance drops 10%.
This comparison indicates the performance of top-down
approaches rely heavily on the person detector. In contrast,
our original bottom-up method achieves 58.4% AP. If we
refine the results by applying a single person CPM on each
rescaled region of the estimated persons parsed by our
method, we gain a 2.6% overall AP increase. We only update
estimations on predictions in which both methods roughly
agree, resulting in improved precision and recall. The new
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architecture without CPM refinement is approximately 7%
more accurate than the original approach, while increasing
the speed ×2.

Method AP AP50 AP75 APM APL Stages
5 PAF - 1 CM 65.3 85.2 71.3 62.2 70.7 6
4 PAF - 2 CM 65.2 85.3 71.4 62.3 70.1 6
3 PAF - 3 CM 65.0 85.1 71.2 62.4 69.4 6
4 PAF - 1 CM 64.8 85.3 70.9 61.9 69.6 5
3 PAF - 1 CM 64.6 84.8 70.6 61.8 69.5 4
3 CM - 3 PAF 61.0 83.9 65.7 58.5 65.3 6

TABLE 5: Self-comparison experiments on the COCO vali-
dation set. CM refers to confidence map, while the numbers
express the number of estimation stages for PAF and CM.
Stages refers to the number of PAF and CM stages. Reducing
the number of stages increases the runtime performance.

We analyze the effect of PAF refinement over confidence
map estimation in Table 5. We fix the computation to a
maximum of 6 stages, distributed differently across the PAF
and confidence map branches. We can extract 3 conclusions
from this experiment. First, PAF requires a higher number
of stages to converge and benefits more from refinement
stages. Second, increasing the number of PAF channels
mainly improves the number of true positives, even though
they might not be too accurate (higher AP 50). However,
increasing the number of confidence map channels further
improves the localization accuracy (higher AP 75). Third, we
prove that the accuracy of the part confidence maps highly
increases when using PAF as a prior, while the opposite
results in a 4% absolute accuracy decrease. Even the model
with only 4 stages (3 PAF - 1 CM) is more accurate than
the computationally more expensive 6-stage model that
first predicts confidence maps (3 CM - 3 PAF). Some other
additions that further increased the accuracy of the new
models with respect to the original work are PReLU over
ReLU layers and Adam optimization instead of SGD with
momentum. Differently to [3], we do not refine the current
approach with CPM [20] to avoid harming the speed.

5.3 Inference Runtime Analysis
We compare 3 state-of-the-art, well-maintained, and widely-
used multi-person pose estimation libraries, OpenPose [4],
based on this work, Mask R-CNN [5], and Alpha-Pose [6].
We analyze the inference runtime performance of the 3
methods in Fig. 12. Megvii (Face++) [43] and MSRA [44]
GitHub repositories do not include the person detector
they use and only provide pose estimation results given a
cropped person. Thus, we cannot know their exact runtime
performance and have been excluded from this analysis.
Mask R-CNN is only compatible with Nvidia graphics
cards, so we perform the analysis on a system with a
NVIDIA 1080 Ti. As top-down approaches, the inference
times of Mask R-CNN, Alpha-Pose, Megvii, and MSRA are
roughly proportional to the number of people in the image.
To be more precise, they are proportional to the number of
proposals that their person detectors extract. In contrast, the
inference time of our bottom-up approach is invariant to
the number of people in the image. The runtime of Open-
Pose consists of two major parts: (1) CNN processing time
whose complexity is O(1), constant with varying number of
people; (2) multi-person parsing time, whose complexity is
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Fig. 12: Inference time comparison between OpenPose,
Mask R-CNN, and Alpha-Pose (fast Pytorch version). While
OpenPose inference time is invariant, Mask R-CNN and
Alpha-Pose runtimes grow linearly with the number of
people. Testing with and without scale search is denoted
as “max accuracy” and “1 scale”, respectively. This analysis
was performed using the same images for each algorithm
and a batch size of 1. Each analysis was repeated 1000 times
and then averaged. This was all performed on a system with
a Nvidia 1080 Ti and CUDA 8.

O(n2), where n represents the number of people. However,
the parsing time is two orders of magnitude less than the
CNN processing time. For instance, the parsing takes 0.58
ms for 9 people while the CNN takes 36 ms.

Method CUDA CPU-only
Original MPII model 73 ms 2309 ms
Original COCO model 74 ms 2407 ms
Body+foot model 36 ms 10396 ms

TABLE 6: Runtime difference between the 3 models released
in OpenPose with CUDA and CPU-only versions, running
in a NVIDIA GeForce GTX-1080 Ti GPU and a i7-6850K
CPU. MPII and COCO models refer to our work in [3].

In Table 6, we analyze the difference in inference time
between the models released in OpenPose, i.e., the MPII
and COCO models from [3] and the new body+foot model.
Our new combined model is not only more accurate, but is
also ×2 faster than the original model when using the GPU
version. Interestingly, the runtime for the CPU version is
5x slower compared to that of the original model. The new
architecture consists of many more layers, which requires a
higher amount of memory, while the number of operations
is significantly fewer. Graphic cards seem to benefit more
from the reduction in number of operations, while the CPU
version seems to be significantly slower due to the higher
memory requirements. OpenCL and CUDA performance
cannot be directly compared to each other, as they require
different hardware, in particular, different GPU brands.

5.4 Trade-off between Speed and Accuracy
In the area of object detection, Huang et al. [75] show that
region-proposed methods (e.g., Faster-rcnn [76]) achieve
higher accuracy, while single-shot methods (e.g., YOLO [77],
SSD [74]) present higher runtime performance. Analogously
in human pose estimation, we observe that top-down ap-
proaches also present higher accuracy but lower speed
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Fig. 13: Trade-off between speed and accuracy for the main
entries of the COCO Challenge. We only consider those
approaches that either release their runtime measurements
(methods with an asterisk) or their code (rest). Algorithms
with several values represent different resolution configu-
rations. AlphaPose, METU, and single-scale OpenPose pro-
vide the best results considering the trade-off between speed
and accuracy. The remaining methods are both slower and
less accurate than at least one of these 3 approaches.

compared to bottom-up methods, especially for images with
multiple people. The main reason for the lower accuracy
of bottom-up approaches is their limited resolution. While
top-down methods individually crop and feed each detected
person into their networks, bottom-up methods have to feed
the whole image at once, resulting in smaller resolution per
person. For instance, Moon et al. [78] show that refinement
over our original work in [3] (by applying a larger cropped
image patch) results in a higher accuracy boost than refine-
ment over other top-down approaches. As hardware gets
faster and increases its memory, bottom-up methods with
higher resolution might be able to reduce the accuracy gap
with respect to top-down approaches.

Additionally, current human pose performance metrics
are purely based on keypoint accuracy, while speed is
ignored. In order to provide a more complete comparison,
we display both speed and accuracy for the top entries of
the COCO Challenge in Fig. 13. Given those results, single-
scale OpenPose should be chosen for maximum speed,
AlphaPose for maximum accuracy, and METU for a trade-
off between both of them. The remaining approaches are
both slower and less accurate than at least one of these 3
methods. Overall, top-down approaches (e.g., AlphaPose)
provide better results for images with few people, but their
speed considerably drops for images with many people.
We also observe that the accuracy metrics might be mis-
leading. We see in Section 5.2 that PersonLab [49] achieves
higher accuracy than our method. However, our multi-scale
approach simultaneously provides both higher speed and
accuracy than the versions for which they report runtime
results. Note that no runtime results are provided in [49] for
their most accurate (but slower) models.

5.5 Results on the Foot Keypoint Dataset

To evaluate the foot keypoint detection results obtained us-
ing our foot keypoint dataset, we calculate the mean average
precision and recall over 10 OKS, as done in the COCO
evaluation metric. There are only minor differences between
the combined and body-only approaches. In the combined
training scheme, there exist two separate and completely
independent datasets. The larger of the two datasets consists

of the body annotations while the smaller set contains both
body and foot annotations. The same batch size used for
the body-only training is used for the combined training.
Nevertheless, it contains only annotations from one dataset
at a time. A probability ratio is defined to select the dataset
from which to pick each batch. A higher probability is
assigned to select a batch from the larger dataset, as the
number of annotations and diversity is much higher. Foot
keypoints are masked out during the back-propagation pass
of the body-only dataset to avoid harming the net with non-
labeled data. In addition, body annotations are also masked
out from the foot dataset. Keeping these annotations yields a
small drop in accuracy, probably due to overfitting, as those
samples are repeated in both datasets.

Method AP AR AP75 AR75

Body+foot model (5 PAF - 1 CM) 77.9 82.5 82.1 85.6

TABLE 7: Foot keypoint analysis on the foot validation set.

Table 7 shows the foot keypoint accuracy for our vali-
dation set. This set is created from a subset of the COCO
validation set, in particular from the images in which the
ankles of all people are visible and annotated. This results in
a simpler validation set compared to that of COCO, leading
to higher precision and recall numbers compared to those
of body detection (Table 4). Qualitatively, we find a higher
amount of jitter and number of detection errors compared
to body keypoint prediction. We believe 14K training an-
notations are not a sufficient number to train a robust foot
detector, considering that over 100K instances are used for
the body keypoint dataset. Rather than using the whole
batch with either only foot or body annotations, we also
tried using a mixed batch where samples from both datasets
(either COCO or COCO+foot) could be fed to the same
batch, maintaining the same probability ratio. However,
the network accuracy was slightly reduced. By mixing the
datasets with an unbalanced ratio, we effectively assign a
very small batch size for foot, hindering foot convergence.

Method AP AP50 AP75 APM APL

Body-only (5 PAF - 1 CM) 65.2 85.0 70.9 62.1 70.5
Body+foot (5 PAF - 1 CM) 65.3 85.2 71.3 62.2 70.7

TABLE 8: Self-comparison experiments for body on the
COCO validation set. Foot keypoints are predicted but
ignored for the evaluation.

In Table 8, we show that there is almost no accuracy
difference in the COCO test-dev set with respect to the same
network architecture trained only with body annotations.
We compared the model consisting of 5 PAF and 1 confi-
dence map stages, with a 95% probability of picking a batch
from the COCO body-only dataset, and 5% of choosing from
the body+foot dataset. There is no architecture difference
compared to the body-only model other than the increase in
the number of outputs to include the foot CM and PAFs.

5.6 Vehicle Pose Estimation
Our approach is not limited to human body or foot key-
points, but can be generalized to any keypoint annotation
task. To demonstrate this, we have run the same network
architecture for the task of vehicle keypoint detection [79].
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Fig. 14: Vehicle keypoint detection examples from the validation set. The keypoint locations are successfully estimated
under challenging scenarios, including overlapping between cars, cropped vehicles, and different scales.

(a) (c) (d) (e) (f)(b)

Fig. 15: Common failure cases: (a) rare pose or appearance, (b) missing or false parts detection, (c) overlapping parts, i.e.,
part detections shared by two persons, (d) wrong connection associating parts from two persons, (e-f): false positives on
statues or animals.

(a) (b) (c) (d) (e) (f) (g)
Fig. 16: Common foot failure cases: (a) foot or leg occluded by the body, (b) foot or leg occluded by another object, (c) foot
visible but leg occluded, (d) shoe and foot not aligned, (e): false negatives when foot visible but rest of the body occluded,
(f): soles of their feet are usually not detected (rare in training), (g): swap between right and left body parts.

Once again, we use mean average precision over 10 OKS
for the evaluation. The results are shown in Table 9. Both
the average precision and recall are higher than in the body
keypoint task, mainly because we are using a smaller and
simpler dataset. This initial dataset consists of image anno-
tations from 19 different cameras. We have used the first
18 camera frames as a training set, and the camera frames
from the last camera as a validation set. No variations in the
model architecture or training parameters have been made.
We show qualitative results in Fig. 14.

Method AP AR AP75 AR75

Vehicle keypoint detector 70.1 77.4 73.0 79.7

TABLE 9: Vehicle keypoint validation set.

5.7 Failure Case Analysis

We have analyzed the main cases where the current ap-
proach fails in the MPII, COCO, and COCO+foot validation
sets. Fig. 15 shows an overview of the main body failure
cases, while Fig. 16 shows the main foot failure cases Fig. 15a
refers to non typical poses and upside-down examples,
where the predictions usually fail. Increasing the rotation
augmentation visually seems to partially solve these issues,
but the global accuracy on the COCO validation set is

reduced by about 5%. A different alternative is to run
the network using different rotations and keep the poses
with the higher confidence. Body occlusion can also lead to
false negatives and high localization error. This problem is
inherited from the dataset annotations, in which occluded
keypoints are not included. In highly crowded images
where people are overlapping, the approach tends to merge
annotations from different people, while missing others, due
to the overlapping PAFs that make the greedy multi-person
parsing fail. Animals and statues also frequently lead to
false positive errors. This issue could be mitigated by adding
more negative examples during training to help the network
distinguish between humans and other humanoid figures.

6 CONCLUSION

Realtime multi-person 2D pose estimation is a critical com-
ponent in enabling machines to visually understand and
interpret humans and their interactions. In this paper, we
present an explicit nonparametric representation of the key-
point association that encodes both position and orienta-
tion of human limbs. Second, we design an architecture
that jointly learns part detection and association. Third, we
demonstrate that a greedy parsing algorithm is sufficient to
produce high-quality parses of body poses, and preserves
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efficiency regardless of the number of people. Fourth, we
prove that PAF refinement is far more important than
combined PAF and body part location refinement, leading
to a substantial increase in both runtime performance and
accuracy. Fifth, we show that combining body and foot
estimation into a single model boosts the accuracy of each
component individually and reduces the inference time of
running them sequentially. We have created a foot keypoint
dataset consisting of 15K foot keypoint instances, which
we will publicly release. Finally, we have open-sourced
this work as OpenPose [4], the first realtime system for
body, foot, hand, and facial keypoint detection. The library
is being widely used today for many research topics in-
volving human analysis, such as human re-identification,
retargeting, and Human-Computer Interaction. In addition,
OpenPose has been included in the OpenCV library [65].
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Fig. 17: Results containing viewpoint and appearance variation, occlusion, crowding, contact, and other common imaging
artifacts.


