
Evolving a Rebol-Inspired Language for a 
Synthetic Mind: A Framework Analysis 
and Strategic Directions 
I. Introduction 
A. Project Overview and Goals 

The endeavor to create a synthetic "mind and soul" represents a significant ambition at the 
intersection of artificial intelligence, cognitive science, and programming language design. 
The core strategy involves leveraging a Large Language Model (LLM) as the foundational 
cognitive architecture. Central to this architecture is the development of a custom, 
Rebol-inspired programming language. This language is envisioned not merely as an 
implementation detail but as a fundamental component of the synthetic entity's cognitive 
processes, facilitating symbolic manipulation, knowledge representation, and the definition of 
its operational semantics. Key goals for this language include features such as AI-integrated 
error handling, robust support for Domain-Specific Languages (DSLs) to model cognitive 
functions, and seamless database integration for persistent memory and knowledge. 
B. Report Objectives 

This report aims to provide a comprehensive analysis and strategic advice concerning the 
evolution of this Rebol-inspired language. The objectives are: 

1. To assess the conceptual coherence of using a Rebol-like language in conjunction with 
an LLM-based cognitive architecture. 

2. To propose a minimal yet viable feature set for the language, enabling rapid prototyping 
and early-stage development, akin to Rebol's relationship with a core functional subset 
like Scheme. 

3. To explore and synthesize research on related topics relevant to the project's broader 
aims, including tag-based file systems, integrated computing environments, and 
specific AI technologies. 

4. To offer feedback and refinements on the proposed implementation plan for the 
language, specifically concerning the parser, core data structures (word/value, block), 
and the evaluation mechanism (eval/do) in the D programming language. 

C. Methodology 

The analysis presented herein is based on a review of the project's foundational posts, goals, 
and the specific technical considerations outlined. This is augmented by an examination of 
research materials covering Rebol, related programming languages (Lisp, Scheme, Tcl, Rye, 
Wren, Io), advanced AI concepts (SDRs, RAG architectures, LLM augmentation frameworks), 



operating system design philosophies (Plan 9, BeOS/Haiku, WonderOS), and advanced error 
handling techniques. The synthesis of these diverse sources informs the recommendations for 
the language's design, implementation, and future evolution. 

II. Conceptual Coherence and Language Philosophy 
A. Rebol's Philosophy as a Foundation 

Rebol's design philosophy offers a compelling foundation for a language intended to underpin 
a synthetic mind. Rebol, standing for Relative Expression Based Object Language, was 
conceived as more than just a programming language; it is also a language for representing 
data and metadata, providing a consistent architecture for computation, storage, and 
information exchange.1 Its emphasis on being lightweight, employing relative expressions 
through "dialects," and its ability to seamlessly handle diverse datatypes make it particularly 
suitable for complex systems that require flexibility and expressive power without excessive 
complexity.1 

For a project aiming to construct a "mind and soul," a language that inherently treats code 
and data uniformly, as Rebol does, is highly advantageous. Cognitive structures, memories, 
beliefs, and even processes can be represented naturally within the language's own 
structures (primarily blocks). Rebol's design rebels against the notion that software must be 
large and complex, a principle that aligns well with the challenge of modeling the intricacies of 
cognition without succumbing to unmanageable system bloat.1 The language's capacity for 
symbolic processing and its foundation in denotational semantics provide a robust framework 
for defining the operational logic of a synthetic intellect. 
B. "LLM as Cognitive Architecture" and Language Symbiosis 

The paradigm of an "LLM as cognitive architecture" posits the LLM as the seat of semantic 
understanding, generative capabilities, and perhaps even emergent reasoning. However, 
LLMs, while powerful, often lack the structured, symbolic processing capabilities inherent in 
classical AI and traditional programming. A custom, Rebol-inspired language can bridge this 
gap, serving as the crucial symbolic manipulation layer. In this symbiotic relationship, the 
language defines the formal structures, data types, and control flows—the "grammar" of 
thought—while the LLM provides the rich semantic interpretation, pattern recognition, and 
content generation. 
This language can thus become the connective tissue for the LLM's cognitive functions. It 
provides a formal system through which the LLM's "thoughts" or intermediate processing 
states can be explicitly represented, manipulated, and inspected. This is critical for 
debugging, understanding, and guiding the behavior of the synthetic mind. If the LLM 
generates a plan, that plan can be instantiated as a code block in the custom language. If the 
mind needs to reason about its beliefs, those beliefs can be structured data within the 
language. This structured approach offers a degree of precision and control that is difficult to 
achieve by interacting with an LLM through natural language prompts alone. The language 
provides the scaffolding upon which the LLM's more fluid capabilities can be organized and 



directed. 
C. Homoiconicity: Rebol vs. Lisp 

Homoiconicity, where a program's code can be manipulated as data using the language itself, 
is a hallmark of both Lisp and Rebol.2 Lisp achieves this primarily through S-expressions 
(nested lists), which represent both code and data structures.2 Rebol, similarly, uses blocks 
(``) as its fundamental composite values, capable of holding sequences of other values, 
including words, literals, and other blocks, thereby representing both code and data 
structures.2 

This property is profoundly significant for a project aiming to create an evolving "mind and 
soul." Homoiconicity facilitates powerful metaprogramming capabilities. The synthetic mind, 
through its own language, could inspect, analyze, transform, and even generate its own 
"mental programs" or cognitive strategies. If a learning process identifies a more efficient way 
to solve a problem, this new strategy can be encoded as a block of code and integrated into 
the mind's operational repertoire. DSLs, crucial for specialized cognitive functions, become 
easier to define and manipulate when the language treats their definitions as data. 
The ability for the language to serve as a medium for the "soul's" self-representation and 
evolution is a direct consequence of homoiconicity. The mind's "source code"—its core 
beliefs, operational principles, and even its ethical framework—can be represented within the 
language itself. This allows for introspection (the mind examining its own structure) and 
self-modification (the mind adapting and evolving its structure over time). This is a far more 
integrated and dynamic approach than having a fixed codebase that is externally modified. 
The language becomes a living part of the entity it defines. 
D. Dialecting for Cognitive Functions 

Rebol's concept of "dialects" is arguably its most potent feature for creating extensible and 
expressive systems. A dialect is a sub-language, or a domain-specific language (DSL), 
designed for a particular purpose and typically interpreted by a specific function that 
processes a Rebol block in a custom way. This mechanism allows for the creation of highly 
specialized notations for different tasks without altering the core language syntax. For 
example, Rebol uses dialects for GUI layout (VID), drawing, and parsing.3 

In the context of a synthetic mind, dialects offer a powerful paradigm for defining "cognitive 
primitives" or specialized languages for various mental functions. One could envision: 

● A planning-dialect to express goals, actions, and conditional execution paths. 
● A belief-dialect for representing knowledge, certainty levels, and sources of information. 
● An emotion-dialect to model affective states, triggers, and responses. 
● A learning-dialect to define rules for adaptation and knowledge acquisition. 

Each of_these_ DSLs would be represented as a block in the custom Rebol-inspired language, 
processed by a dedicated interpreter function written in D (the host language for the 
interpreter). This approach makes the cognitive architecture highly modular and extensible. 
New cognitive capabilities can be added by defining new dialects, and existing ones can be 
refined without disrupting other parts of the system. The LLM itself could even participate in 



the design or evolution of these dialects, perhaps by generating dialect specifications or 
suggesting improvements based on its understanding of the cognitive task at hand. This 
makes the system not only programmable but also "meta-programmable" at the level of its 
cognitive functions. 

III. Minimal Language Core for Rapid Prototyping 
(Rebol's Scheme) 
To facilitate rapid prototyping, the initial version of the custom Rebol-inspired language 
should focus on a minimal yet expressive core, analogous to how Scheme represents a 
minimalist Lisp. This core should capture the essence of Rebol's "code as data" philosophy 
and its block-based structure. 
A. Core Datatypes 

While Rebol boasts a rich set of over 40 datatypes 4, a minimal viable prototype can start with 
a more constrained set. The absolute essentials for a Rebol-like foundation are: 

● block!: The cornerstone datatype, representing ordered sequences of other values. 
Blocks are used for code, lists, and general data structures.5 Their ability to contain any 
other datatype, including other blocks, is fundamental. 

● word!: Symbols used for variables, function names, and keywords within dialects.5 It's 
crucial to support different functional types of words early on, even if their full 
semantics are built out incrementally: 

○ word (normal word, for variable lookup or function call) 
○ set-word! (e.g., my-var:) for assignment. 
○ lit-word! (e.g., 'my-symbol) to represent the word itself as a symbol without 

evaluation. 
○ get-word! (e.g., :my-var) to fetch the value of a variable (though this can 

sometimes be syntactic sugar over normal word evaluation depending on the 
exact evaluation model chosen). 

● string!: For textual data, GUI elements, and communication with the LLM. 
● integer! and decimal!: For numerical computations. 
● logic!: Boolean values (true, false) for conditional logic.4 

Other Rebol datatypes like char!, date!, time!, tuple!, file!, url!, tag!, email!, money!, pair!, issue!, 
and binary! 4 can be added progressively as the need arises. The initial focus should be on 
block! and the various word! types, as these are most critical for establishing the language's 
Rebol-like character, its "code as data" nature, and its dialecting capabilities. Without them, 
the language would lose its fundamental Rebol essence. 
B. Evaluation Model: do and reduce 

The evaluation model should be simple and predictable, adhering to Rebol's principles: 
● do function: The primary mechanism for evaluating a block!. It processes the 

expressions within the block and typically returns the result of the last evaluated 



expression.6 Blocks themselves are data and are not evaluated unless explicitly passed 
to do or a function that internally uses do (like if or loop).6 

● reduce function: Evaluates each expression within a block and returns a new block 
containing all the results.6 This is essential for constructing blocks of evaluated values. 

● No Operator Precedence: Rebol famously eschews complex operator precedence 
rules. Evaluation within a block proceeds strictly from left to right.5 For example, 2 + 3 * 
10 evaluates to 50. 

● Parentheses for Grouping: To control the order of evaluation, parentheses () can be 
used. Expressions within parentheses are evaluated first, and their result is then used in 
the surrounding expression.5 Note that in Rebol, paren! is a distinct datatype that forces 
immediate evaluation of its contents.4 For a minimal start, simple grouping behavior 
might suffice before implementing paren! as a full datatype. 

C. Functions: Definition and Application 

A simple mechanism for defining and applying functions is essential: 
● Function Definition: A native function (e.g., func or function) should allow the creation 

of user-defined functions. A common Rebol pattern is my-func: func 
[spec-block][body-block], where spec-block defines arguments and local variables, 
and body-block contains the code to be executed. 

● Function Application: Functions are called by placing the function name (a word!) 
followed by its arguments: my-func arg1 arg2. 

● Blocks as Arguments: The ability to pass unevaluated blocks as arguments to 
functions is critical for creating dialects and control structures.7 The function itself then 
decides how and when to evaluate these blocks. 

D. Words and Scoping 

● Word Characteristics: Words should be case-insensitive, as in Rebol.5 They can 
contain hyphens and other special characters as defined by Rebol's rules.5 

● Assignment: Basic assignment is achieved using set-word!: my-variable: 123. 
● Scoping Model: For a rapid prototype, implementing a simple lexical scoping 

mechanism is advisable. This involves managing a stack of contexts (environments), 
where variables are looked up by searching from the current context outwards. While 
Rebol features a more complex "definitional scoping" model where symbols can carry 
invisible bindings established at load/parse time 8, this adds significant complexity to 
initial implementation. Lexical scoping is a well-understood and more straightforward 
starting point, with definitional scoping being a potential future refinement. 

E. Minimal Native Functions 

A small set of built-in functions, implemented in D, will be necessary to make the language 
usable: 

● Core Evaluators: do, reduce. 



● Control Flow: if (evaluates a condition and then one of two blocks), loop (repeats a 
block a number of times) or a more general while. 

● Output/Introspection: print (to display values), probe (to inspect values, similar to 
Rebol's probe). 

● Function Definition: func (or function). 
● Variable Setting: set (often implicit via set-word!, but an explicit set function can be 

useful). 
● Series/Block Operations: first, next (or second, third, etc., or a general pick), append, 

copy (Rebol's copy is important as values are not copied by default on assignment). 
● Type Checking: Predicates like block?, word?, string?, integer?, etc. 

Drawing inspiration from Scheme's minimalism 9, the initial set of native functions should be 
kept as small as possible, focusing on those that enable the core evaluation loop and basic 
data manipulation. Many other functions can then be defined within the language itself once 
this core is established. 

IV. Implementation Plan Feedback (Parser, Structs, 
Eval in D) 
The proposed implementation plan—parser, word/value struct, block struct, and eval/do in 
D—is a sound approach for building the Rebol-inspired language. 
A. Parser Design 

The parser is the first crucial component, transforming raw text input into the language's 
internal data structures. 

1. Lexer/Tokenizer: 
○ The lexer's primary responsibility is to break the input stream into a sequence of 

tokens. Each token should represent a fundamental Rebol datatype or a structural 
element. 

○ It must recognize Rebol's diverse literal forms for numbers (integer, decimal), 
strings (double-quoted and brace-delimited), times, dates, tuples, files (%file), 
URLs, tags (<tag>), email addresses, issues (#issue), binary data (#{...}), and 
characters (#"c").4 

○ Words, including their variants (word:, 'word, :word), and special characters that 
form operators or delimiters ([ ] ( ) { } : ; /) must also be identified.5 

○ Whitespace (spaces, tabs, newlines) generally acts as a separator but is 
significant in some contexts (e.g., ending a word). Comments (typically semicolon 
to end-of-line in Rebol) should be discarded. 

2. Parser: 
○ Given Rebol's relatively simple, regular syntax (primarily sequences of values 

within blocks), a recursive descent parser is often a suitable and straightforward 
choice. 

○ The parser will consume tokens from the lexer and construct an internal 



representation of the program. This could be an Abstract Syntax Tree (AST), but 
for Rebol-like languages, it's often more direct to build a sequence of "value" 
structures, typically a main block representing the script. 

○ The parser must correctly handle nested structures, particularly blocks within 
blocks. 

○ While Rebol itself has a powerful PARSE dialect for defining grammars 3, this is a 
feature of Rebol used for general parsing tasks within Rebol programs. For 
implementing the language itself from scratch in D, a traditional parser (like 
recursive descent) is needed for the initial bootstrapping of the language. The 
principles of rule-based series processing found in PARSE might offer inspiration 
for the parser's internal logic, but PARSE itself is not the tool to parse the base 
language. 

B. Core Data Structures: Word/Value and Block Structs in D 

These D structures will represent the language's data at runtime. 
1. Value Struct: 

○ This will be a cornerstone struct, likely implemented as a discriminated union in 
D. It needs to represent every possible datatype in the language. 

○ It should contain a type field (an enum: TYPE_WORD, TYPE_BLOCK, 
TYPE_INTEGER, TYPE_STRING, TYPE_FUNCTION, etc.) and a union (data) holding 
the actual D representation of the value (e.g., long for integers, double for 
decimals, string for D strings, Block* for blocks, WordData* or an ID for words). 

2. Word/Symbol Representation: 
○ Words (symbols) in the language need to be interned. This means each unique 

word string maps to a single, canonical representation (e.g., a unique integer ID or 
a pointer to a shared string object). Interning is crucial for efficient comparison 
(words can be compared by ID/pointer instead of string comparison) and memory 
usage. 

○ A global symbol table (hash map) will manage the mapping from strings to their 
interned representations. 

○ The Value struct for a word! datatype would store this interned ID or pointer. 
Different word types (e.g., set-word!, lit-word!) might be distinguished by the type 
field in the Value struct or by additional flags within a WordData struct if words 
carry more information. 

3. Block Struct: 
○ A block! is fundamentally an ordered sequence of Value structs. In D, this can be 

implemented using std.container.array.Array!Value or a custom dynamic array 
structure. 

○ It should support efficient appending of new values, iteration, and potentially 
random access (though many Rebol series operations are sequential). 

○ A significant consideration, if aiming for close Rebol compatibility, is that 
composite values (like blocks) assigned to variables are typically not copied by 
default; a specific copy function is required to create a distinct duplicate. This 



implies that the Block struct might need to manage shared data or implement 
copy-on-write semantics if blocks are passed around and modified, to avoid 
unintended side effects. For an initial prototype, deep copying on assignment or 
modification might be simpler, deferring advanced sharing mechanisms. 

C. eval/do Implementation in D 

The eval (or do) function is the heart of the interpreter. 
1. Core Loop: 

○ The main eval function will take a pointer to a Block struct (or a representation of 
a block) as input. 

○ It will iterate through the Value structs contained within this block, one by one. 
2. Evaluation Logic per Value Type: 

○ Literals (integers, strings, etc.): These values evaluate to themselves. The 
function simply returns a copy or a reference to the literal value. 

○ word!: 
■ The word is looked up in the current context (environment or symbol table). 
■ If it's bound to a variable, the variable's Value is returned. 
■ If it's bound to a function (native or user-defined), this signals a function 

call. The evaluator prepares to gather arguments and execute the function. 
■ If unbound, it's typically an error, unless it's a lit-word! (which returns the 

word symbol itself). 
○ set-word! (e.g., my-var:): 

■ The evaluator expects the next Value in the block to be the expression 
whose result will be assigned. 

■ This next expression is evaluated. 
■ The resulting Value is then bound to the word! (stripped of its colon) in the 

current context. 
○ Function Calls: 

■ If a word! resolves to a function, the evaluator collects the required number 
of subsequent Values from the block as arguments. 

■ Argument Evaluation: For most functions, these argument expressions are 
themselves evaluated before being passed to the function. Special forms 
(like if, or func itself) may quote some of their arguments (i.e., receive them 
unevaluated as blocks or words). 

■ Native Functions: If the function is a native one (implemented as a D 
function), the D function is called with the (evaluated) D representations of 
the arguments. The D function returns a Value struct, which becomes the 
result of the expression. 

■ User-Defined Functions: If it's a user-defined function (represented as a 
Value of TYPE_FUNCTION, likely containing a specification block for 
parameters and a body block): 

1. A new context (scope/frame) is created, linked to the function's 
definition context (for lexical scoping). 



2. The evaluated argument Values are bound to the parameter names 
(words) within this new context. 

3. The eval function is then called recursively on the function's body 
Block. The result of this recursive call is the result of the function call. 

3. Context Management: 
○ A mechanism for managing contexts (also known as environments or scopes) is 

essential. A context maps word identifiers (interned IDs) to their Value structs. 
○ For lexical scoping, a stack of contexts is typically used. When a function is called, 

a new context frame is pushed onto the stack. When a word is looked up, the 
stack is searched from the top (current context) downwards. 

○ Rebol's "definitional scoping," where symbols can carry invisible bindings that 
dictate their lookup 8, is an advanced feature. It implies that bindings are resolved 
or annotated more statically, perhaps during parsing or loading, and these binding 
annotations are carried with the code blocks. Implementing this faithfully from the 
start is complex. 

○ For a D-based prototype aiming for quick development, starting with a more 
traditional lexical scoping model using a stack of context frames (e.g., hash 
maps from word ID to Value) for eval/do is a pragmatic approach. This is a 
well-understood mechanism and easier to implement and debug. Once this 
foundational lexical scoping is robust, the more nuanced Rebol-specific binding 
model can be investigated as a significant enhancement. This staging makes the 
"prototyped quickly" goal more attainable while still providing a path towards 
greater Rebol fidelity. 

This structured approach to implementation, starting with a simpler lexical model and clearly 
defined data structures, should provide a solid base for the custom language. 

V. Evolving the Language: Advanced Features for 
Cognitive Functionality 
Beyond the core language, specific advanced features are crucial for realizing the "mind and 
soul" aspiration, particularly those that integrate AI capabilities directly into the language's 
fabric. 
A. AI-Integrated Error Handling 

Traditional error handling often stops at displaying a message and stack trace. For a synthetic 
mind, errors are learning opportunities. AI-integrated error handling can transform runtime 
failures into rich diagnostic and recovery processes. 

● Concept: When an error occurs, the language runtime should not just halt or throw a 
simple exception. Instead, it should: 

1. Capture extensive context: the error type, message, the specific code 
block/expression that failed, the current call stack, and the state of relevant 
variables. 



2. Pass this rich contextual information to the integrated LLM. 
3. The LLM can then analyze this context to provide: 

■ Natural language explanations of why the error likely occurred, beyond a 
simple type mismatch. 

■ Suggestions for code modifications to fix the error. 
■ Hypotheses about incorrect assumptions or flawed logic leading to the 

error. 
■ Potentially, alternative code paths or strategies to achieve the intended 

goal. 
● Resumable Exceptions: This is a key mechanism for enabling sophisticated AI-driven 

recovery. Inspired by systems like Smalltalk 13 and the Common Lisp Condition System 15, 
an error signals a "condition" rather than immediately unwinding the stack. This allows 
handlers—which could include or consult the LLM—to decide on a course of action: 

○ Resume: Continue execution from the point of error, possibly with a corrected 
value or modified state provided by a handler or the LLM. Smalltalk's #resume: is 
notable for not unwinding the stack.13 

○ Retry: Re-attempt the failed operation. This might occur after the LLM suggests a 
change to the environment or input that could lead to success. Smalltalk's 
#retryUsing: allows restarting with a modified block.13 

○ Restart: Transfer control to a predefined, named "restart point" higher up in the 
call stack. Common Lisp's invoke-restart is a powerful example.17 The LLM could 
analyze the situation and suggest which available restart is most appropriate. 

○ Propagate/Decline: If no handler can resolve the issue, the error can be 
propagated further up the stack, or a handler can explicitly decline to handle it. 

● Comparison with Other Systems: 
○ Objective-C's NSException (for programmer errors) and NSError (for 

runtime/recoverable errors) offer a useful distinction.18 An AI-integrated system 
might leverage such a distinction to prioritize LLM intervention for certain error 
classes. 

○ The Io programming language uses a more conventional try/catch mechanism 
with an Exception object that can be raised.20 For AI integration, the richness of 
the Exception object and the ability of the catch block to communicate with an 
LLM would be paramount. Resumability is not a standard feature in such systems. 

● Justified Programming and Reason Parameters: The concept of "Justified 
Programming — Reason Parameters That Answer ‘Why’" 24, while not fully elaborated in 
the provided materials, hints at a paradigm where computational actions are associated 
with explicit justifications or reasons. If the custom language were to incorporate such a 
feature—perhaps through metadata annotations on code blocks, special comment 
forms, or even a dedicated dialect for "justified execution"—the AI-integrated error 
handling could become significantly more powerful. When an error occurs, the LLM 
would receive not only the state of the program but also the stated intentions or 
reasons behind the sequence of operations that led to the failure. This would enable the 



LLM to perform a more "cognitive" diagnosis, assessing whether the error stemmed 
from a faulty mechanical step, a flawed premise in the reasoning, or an incorrect 
justification for an action. For instance, the LLM might respond: "The operation to 
access memory location X failed. This operation was justified by the reason 'retrieve 
sensory input Y'. However, sensory input Y was marked as unreliable due to reason Z. 
Perhaps a different justification or a data validation step is needed before proceeding." 
Resumable exceptions could then allow the LLM to suggest alternative actions based on 
revised reasons or justifications, leading to a more adaptive and intelligent recovery 
process. This moves beyond simple error correction to a deeper understanding of intent 
and failure within the synthetic mind. 

B. Domain-Specific Languages (DSLs) for Cognitive Modules 

Rebol's dialecting capability is its most significant strength for creating DSLs.3 A dialect is a 
"sub-language used for a specific purpose", typically a Rebol block interpreted in a 
specialized way by a function. This is ideal for defining the building blocks of a synthetic mind. 

● Application to Cognitive Modules: 
○ Planning DSL: plan do-sub-plan [sub-action "C"]]] 
○ Belief/Knowledge Representation DSL: belief "water is wet" type fact certainty 

0.99 source "direct_experience:touch" 
○ Emotional Modeling DSL: emotion fear intensity 0.7 trigger [event "loud_noise"] 

response [action "seek_shelter"] 
○ Learning Rule DSL: learn when] then 

● Implementation: Each DSL would be a block in the custom Rebol-like language. This 
block is then passed to a dedicated D function (the dialect's interpreter) that parses 
and executes the DSL's specific semantics. The LLM could play a role in designing these 
DSLs, translating high-level cognitive concepts into formal dialect structures, or even 
evolving the dialects over time. Rebol's PARSE dialect itself is an example of such a 
powerful, embedded DSL for parsing 3; similar specialized dialects can be created for 
various cognitive functions. The key is that these DSLs leverage the language's 
fundamental datatypes (block!, word!, string!, etc.) and its "code as data" nature, 
making them seamlessly integrable into the overall system. The flexibility of functions 
accepting blocks as parameters is fundamental to this approach.7 

C. Database Integration 

A synthetic mind requires robust mechanisms for persistent storage of its knowledge, 
memories, learned behaviors, and the evolving state of its "soul." 

● Rebol's Approach: Rebol itself can manage structured data within blocks, which can be 
serialized to files. For more complex or large-scale persistence, it can interface with 
external database systems. The "REBOL Official Guide" mentions the development of a 
"distributed database management system and consumer database dialect" as an 
illustrative example of Rebol's capabilities in this area.29 

● Integration Strategies: 



○ Native-like Persistence: Design dialects for querying and manipulating data 
stored in large, Rebol-like block structures. These blocks can be persisted as files 
or in a specialized block-oriented database. This leverages the language's 
inherent data structuring capabilities. 

○ External Database Connectivity: Provide native functions or a dialect to 
connect to standard database systems (SQL, NoSQL, graph databases). The LLM 
could assist by generating queries in the target database's native language (e.g., 
SQL) based on higher-level requests formulated in the custom language. 

● Relevant Technologies for Cognitive Persistence: 
○ Triadic Memory: This system, designed for storing and retrieving ordered triples 

of Sparse Distributed Representations (SDRs) (X, Y, Z), is highly relevant.30 It 
allows for associative recall (e.g., given X and Y, find Z), which is powerful for 
semantic relationships, analogies, and pattern completion. The custom language 
could feature a dialect for interacting with a Triadic Memory, with commands like 
store-triple sdrX sdrY sdrZ and query-triple sdrX sdrY?. 

○ mem0: A persistent memory layer specifically designed for LLMs and AI agents, 
offering multi-level memory (User, Session, Agent state).33 The custom language 
could serve as the interface for the synthetic mind to manage its own 
experiences, learned preferences, and interaction histories using a system like 
mem0. 

These advanced language features, particularly AI-integrated error handling and DSLs for 
cognitive functions, combined with robust database integration, will be pivotal in transforming 
the custom language from a mere programming tool into an active component of the 
synthetic mind's cognitive processes. 

VI. Supporting Ecosystem: Integrated Environments 
and Knowledge Representation 
The language for the synthetic mind will operate within a broader ecosystem of data 
management and interaction. Concepts from advanced file systems and integrated computing 
environments can provide valuable inspiration. 
A. Tag-Based File Systems and Semantic Organization 

Traditional hierarchical file systems often impose rigid structures. A more flexible approach, 
suitable for the dynamic and interconnected nature of knowledge in a mind, is offered by 
tag-based systems. 

● Core Concept: As proposed by Nayuki, files are treated as immutable sequences of 
bytes, each identified by a content hash (e.g., SHA-256).34 Metadata, including 
descriptive tags, are stored as separate, linkable objects rather than being embedded in 
the file or dictated by a directory path. Tags can range from simple strings to complex, 
structured objects representing relationships or semantic categories.34 

● Relevance to Project: The synthetic mind will generate, process, and retrieve vast 



quantities of information—memories, sensory data, learned concepts, internal states. A 
tag-based organization, managed through the custom Rebol-like language, could 
provide a highly adaptable and powerful way to structure this "knowledge base." 

○ The content of a "file" (a hash-identified data blob) could be a raw memory trace, 
a processed sensory input stream, or a serialized cognitive model. 

○ Tags, represented as word!s, string!s, or even block!s in the custom language, 
could denote concepts, emotions, temporal information, causal links, sources, or 
any other relevant metadata associated with the data blob. 

● Practical Examples: The BeOS File System (BFS), and its successor in Haiku, 
demonstrated early capabilities in this direction with extensive metadata support, 
indexing, and querying features that allowed files to be treated almost like records in a 
database.35 Files in BFS possess attributes like mimetypes that can be queried, offering 
a richer organization than simple filenames and paths. 

● Implementation within the Custom Language: The language could incorporate 
built-in functions or a dedicated dialect for creating data blobs, generating their 
hashes, and then creating, associating, querying, and managing tags linked to these 
blobs. The actual storage could be a content-addressable system. 

● Language-Defined Schemas for Tagged Data: Nayuki's proposal highlights the 
eventual need for data schemas to manage complex tags and enable more 
sophisticated, relational database-like queries.34 Rebol's dialects are, in essence, 
schemas for interpreting blocks of data. This suggests a powerful synergy: the custom 
Rebol-inspired language itself could be used to define the "schemas" for both the tags 
and the data blobs they describe. A "tag schema" could be a Rebol-like block that 
specifies the expected structure and datatypes for a complex tag (e.g., a tag 
representing a causal relationship might require fields for cause, effect, and 
certainty-level). The language's own parsing and validation capabilities (even if 
custom-implemented, inspired by Rebol's PARSE) could then be used to ensure that 
tagged data structures adhere to these schemas. This approach would create a 
self-describing, internally consistent knowledge base, verifiable by the language itself. 
The LLM could also participate by helping to generate, understand, or evolve these 
schemas based on the semantic content it processes. Therefore, the language should 
be designed with features that facilitate the definition and validation of data schemas, 
perhaps through a specific schema-dialect. 

B. Integrated Computing Environments (ICEs) 

The concept of an ICE, where all system components are deeply interconnected through 
common protocols and data representations, offers a model for how the synthetic mind might 
operate. 

● Plan 9 from Bell Labs: This operating system exemplified the philosophy of "everything 
is a file," where all system resources (files, devices, network connections, processes) 
are accessible through a unified file system interface via the 9P protocol.39 Per-process 
namespaces allowed users to customize their view of these resources, fostering a highly 



integrated and adaptable environment.40 

● WonderOS / Itemized OS: Alexander Obenauer's research explores an "itemized" user 
environment where "items"—granular pieces of information or functionality—are the 
fundamental units, distinct from the applications that render them or the services that 
supply them.41 This aims for greater fluidity, interoperability, and operator modifiability. 
OLLOS, an experimental instance, organizes all items on a unified timeline.44 

● XXIIVV / Uxn: This project by Rekka & Devine represents a "clean-slate computing 
stack" featuring the Uxn virtual machine, a minimal bytecode instruction set, and a 
self-hosted ecosystem of tools written in Uxntal (Uxn's assembly language).45 It 
prioritizes portability, resilience against software obsolescence, and simplicity, allowing 
the entire environment to be understood and maintained by a single individual. 

● Relevance to the Synthetic Mind: The synthetic mind itself can be conceptualized as 
a specialized, self-contained ICE. The custom Rebol-inspired language would serve as 
its "shell," its primary interaction modality, and the language for its internal "programs." 
The dialects defined within this language would function as its "tools" and 
"applications." The tag-based knowledge system would be its "file system." 

● The Synthetic Mind as a Self-Hosted, Evolvable ICE: Drawing from the principles of 
Uxn (self-containment, minimalism) 45, WonderOS (operator modifiability, itemization) 42, 
and Plan 9 (unified resource access) 40, the synthetic mind, powered by its Rebol-like 
language, could evolve into a self-hosted system. The language interpreter acts as the 
"kernel." Its dialects are the system utilities and cognitive applications. Crucially, 
leveraging the "code as data" nature of the language (homoiconicity), the mind could 
use its LLM-driven analytical capabilities to inspect, debug, modify, and extend its own 
components—its dialects, its core functions, its knowledge schemas—at runtime. This 
mirrors the dynamic, live-coding environments of Lisp Machines or Smalltalk systems, 
where the system is perpetually malleable by its user (or in this case, by the "mind" 
itself). This aligns directly with the aspiration of creating an evolving "mind and soul." 
The language is not merely a tool for the mind; it becomes an integral, modifiable part 
of the mind's own operating environment and cognitive architecture. Therefore, 
designing the language and its interpreter with robust introspection and 
self-modification capabilities from the outset is a strategic imperative. Consideration 
should be given to how new dialects or even core language functions could be defined, 
validated, and integrated dynamically by the synthetic entity itself. 

C. Interfacing with Advanced AI Concepts 

The custom language must be able to effectively interface with and orchestrate various 
advanced AI components and theories. 

● Sparse Distributed Representations (SDRs) and Triadic Memory: 
○ SDRs are high-dimensional binary vectors, mostly sparse (few active bits), where 

semantic meaning is encoded in the pattern of active bits. They are well-suited for 
representing concepts and measuring semantic similarity through overlap.46 

○ Triadic Memory, as described by Peter Overmann, stores and associatively 



retrieves triples of SDRs (X, Y, Z).30 This is highly valuable for representing and 
querying relational knowledge. 

○ Language Interface: The custom language could natively support an SDR 
datatype and provide functions or a dialect for operations like store-triple sdrX 
sdrY sdrZ and query-triple sdrX sdrY?variableZ, allowing the mind to directly 
manipulate and query this powerful associative memory. 

● Retrieval Augmented Generation (RAG) Architectures: RAG systems enhance LLM 
responses by retrieving relevant information from external knowledge sources and 
providing it as context. 

○ PathRAG: Retrieves key relational paths from a knowledge graph to structure 
prompts.50 The custom language could represent these paths as structured data 
(e.g., blocks of words and links) and use them in constructing prompts for its 
internal LLM. 

○ HippoRAG: Inspired by human long-term memory, this framework integrates 
knowledge across documents using knowledge graphs and Personalized 
PageRank.51 The language could manage interactions with HippoRAG's indexing 
and retrieval mechanisms, perhaps through a specialized dialect. 

○ Generative FrameNet: Dynamically generates task-specific semantic frames for 
information retrieval.53 The custom language could use a dialect to define, invoke, 
or even help construct these frames to guide the LLM's information access. 

● LLM Augmentation Frameworks: These frameworks provide patterns for improving 
LLM reasoning, tool use, and safety. 

○ Language Hooks: A modular framework where small, conditional programs 
("hooks") trigger based on generated text to augment LLM reasoning, decoupling 
tool usage from the model and prompt.54 The custom Rebol-like language is a 
natural fit to be the language in which these hooks are written, or to define their 
trigger conditions and actions. 

○ CoRE (LLM as Interpreter): This system proposes using an LLM to interpret and 
execute natural language instructions, pseudo-code, or flow programs.57 The 
Rebol-inspired language, with its clear block structure and dialecting capabilities, 
could serve as a more structured and powerful form of "pseudo-code" or "flow 
programming language" for the CoRE LLM-interpreter. 

○ CaMeL (Capabilities for Machine Learning): A defense against prompt injection 
that uses a dual-LLM architecture (Privileged and Quarantined) and a 
capability-based execution layer with policy checks.60 The Privileged LLM 
generates plans (e.g., in pseudo-Python) that are then executed. The custom 
Rebol-like language could be used to define these plans or the security policies 
that CaMeL enforces. 

● Persistent Memory Systems for LLMs: Systems like mem0 provide an intelligent, 
multi-level memory layer for AI agents, enabling them to remember user preferences 
and learn over time.33 The custom language would be the natural interface for the 
synthetic mind to interact with such a memory system, storing its "experiences," learned 



associations, and evolving self-model. 
● Dialects as Facades for Complex AI Subsystems: Many of these advanced AI systems 

(Triadic Memory, RAGs, LLM augmentation frameworks) possess their own complex 
APIs, data formats, or operational models. Instead of exposing this complexity directly 
to the core logic of the synthetic mind or requiring the LLM to master each idiosyncratic 
interface, the Rebol-inspired language can leverage its dialecting capability. Specialized 
"facade dialects" can be created for each major AI subsystem. For example: 

○ A triadic-memory-dialect could offer simple commands like remember (A 
relates-to B as C) or what-follows (A relates-to B). 

○ A knowledge-retrieval-dialect could provide high-level queries like 
find-supporting-evidence-for [belief-block] using-rag-hipporag. 

○ A secure-action-dialect could wrap interactions with a CaMeL-like framework. 
This approach encapsulates the interaction logic with each subsystem, promoting 
modularity within the synthetic mind's architecture. It allows underlying AI 
components to be updated, reconfigured, or even replaced with alternatives 
without requiring extensive rewrites of the mind's core "cognitive programs." The 
dialects provide stable, semantically appropriate interfaces tailored to the mind's 
needs. 

D. Table: Relevance of Supporting Technologies to Project Goals 

To systematically illustrate how these diverse research areas can contribute to the project, the 
following table summarizes their relevance and potential integration points: 
 
Technology/Concept Brief Description Relevance to 

'Mind/Soul' Project 
Potential Integration 
via Custom Language 

Tag-Based File 
Systems (e.g., 
Nayuki's model 34, 
BFS/Haiku 35) 

Files as immutable, 
hash-identified blobs; 
metadata and 
relationships as 
external, linkable tags. 
Queryable attributes. 

Flexible, semantic 
organization of vast 
internal knowledge, 
memories, sensory 
data, and learned 
concepts. 

Dialect for 
creating/managing 
data blobs and tags. 
Language-defined 
schemas for tag 
structures and data 
validation. Native 
functions for querying 
the tagged knowledge 
base. 

Integrated 
Computing 
Environments (ICEs) 
(e.g., Plan 9 40, 
WonderOS 42, Uxn 45) 

Unified access to all 
resources; 
customizable 
namespaces; 
self-contained, 
modifiable systems. 

Provides a model for 
the synthetic mind as a 
self-hosted, evolvable 
system where all its 
components are 
managed and modified 
through its own 

The language itself 
forms the core of the 
ICE. Introspection and 
metaprogramming 
features allow the 
"mind" to modify its 
own language 



language. constructs, dialects, 
and tools. 

Sparse Distributed 
Representations 
(SDRs) 46 

High-dimensional, 
sparse binary vectors 
where meaning is 
encoded in active bits; 
good for semantic 
similarity. 

Biologically inspired 
representation for 
concepts, percepts, 
and internal states, 
enabling robust 
pattern matching and 
similarity assessment. 

Native SDR datatype. 
Functions for SDR 
creation (encoding), 
comparison (overlap, 
distance), and 
manipulation (union, 
intersection). 

Triadic Memory 30 Associative memory 
for storing and 
recalling (X,Y,Z) triples 
of SDRs. 

Foundation for 
semantic memory, 
allowing storage and 
retrieval of 
relationships, 
analogies, and 
sequences. 

Dialect for store-triple, 
query-triple (e.g., 
recall Z given X, Y), and 
other associative 
memory operations. 

Retrieval Augmented 
Generation (RAG) 
Architectures 
(PathRAG 50, 
HippoRAG 51, 
Generative FrameNet 
53) 

Enhancing LLM 
responses by retrieving 
and incorporating 
information from 
external knowledge 
sources. 

Grounding the LLM's 
outputs in factual data, 
enabling more 
accurate and 
contextually relevant 
reasoning and 
communication for the 
synthetic mind. 

Dialects to define 
queries for different 
RAG systems, to 
structure retrieved 
information (e.g., 
relational paths, 
semantic frames), and 
to integrate this 
information into LLM 
prompts. 

LLM Augmentation 
Frameworks 
(Language Hooks 55, 
CoRE 58, CaMeL 61) 

Architectural patterns 
for improving LLM 
reasoning, tool use, 
safety, and modularity. 

Providing structured 
ways to extend the 
LLM's capabilities, 
manage its interactions 
with tools/environment, 
and enforce 
safety/policy 
constraints. 

The custom language 
can serve as the 
scripting/programming 
layer for hooks, the 
structured input for 
CoRE-like interpreters, 
or the plan/policy 
definition language for 
CaMeL-like systems. 
Dialects can abstract 
these frameworks. 

Persistent Memory 
for LLMs (e.g., mem0 
33) 

Specialized memory 
layers for AI agents to 
retain experiences, 
preferences, and state 
over time. 

Enabling the synthetic 
mind to learn from past 
interactions, maintain a 
consistent persona 
("soul"), and adapt its 

Dialect or native 
functions for storing 
and retrieving 
information from the 
persistent memory 



behavior. system, managing 
different memory 
stores (e.g., episodic, 
semantic, procedural). 

This integrated approach, where the custom language serves as the central nervous system 
connecting these diverse technologies, is key to realizing a coherent and evolvable synthetic 
mind. 

VII. Conclusion and Strategic Roadmap 
The development of a Rebol-inspired language for a synthetic mind and soul is a multifaceted 
challenge that blends innovative language design with cutting-edge AI research. The analysis 
indicates a high degree of conceptual coherence between the chosen language paradigm 
and the project's ambitious goals. 
A. Summary of Key Recommendations 

1. Embrace Rebol's Philosophy: Leverage Rebol's strengths in "code as data," rich 
datatypes, and dialecting as the core philosophy. This provides the flexibility needed for 
representing and manipulating cognitive structures. 

2. Minimal Core First: For rapid prototyping, focus on a minimal language core: block!, 
word! (and variants), essential literals, do/reduce evaluation, basic function 
definition/application with lexical scoping. 

3. Strategic D Implementation: Implement the parser, core data structures (Value, 
Block), and eval/do loop in D. Start with lexical scoping for simplicity, with Rebol's 
definitional scoping as a future enhancement. 

4. AI-Integrated Error Handling: Design error handling with resumable exceptions 
(inspired by Smalltalk/Lisp) to allow LLM-driven diagnosis and recovery. Explore "reason 
parameters" to provide deeper context to the LLM. 

5. DSLs for Cognition: Utilize dialects extensively to define specialized languages for 
cognitive functions like planning, belief representation, and learning. 

6. Robust Persistence: Integrate with database solutions, particularly exploring concepts 
like Triadic Memory for associative knowledge and systems like mem0 for LLM state 
persistence. 

7. Ecosystem Integration: Draw inspiration from tag-based file systems (for knowledge 
organization) and integrated computing environments (for the mind's operational 
model). Use dialects as facades to interface with complex AI subsystems. 

8. Self-Evolution: Design the language with introspection and metaprogramming 
capabilities from the outset to enable the synthetic mind to evolve its own cognitive 
software. 

9. Ethical Encoding: Consider using the language itself (e.g., through dedicated dialects 
or data structures) to encode and enforce ethical principles and behavioral constraints. 

B. Phased Approach to Language Development and Integration 



A phased development approach is recommended to manage complexity and achieve 
incremental progress: 

● Phase 1: Core Language Prototype (MVP) 
○ Implement the minimal datatypes (block!, word!, string!, integer!, logic!). 
○ Implement do and reduce with left-to-right evaluation. 
○ Implement basic function definition (func) and application. 
○ Establish simple lexical scoping. 
○ Implement a handful of essential native functions (if, loop, print, set, first, copy). 
○ Build a basic parser and eval loop in D. 
○ Goal: A working interpreter for a tiny, Scheme-like subset of the language. 

● Phase 2: Essential Rebol-isms and Datatype Expansion 
○ Add more Rebol datatypes as needed (e.g., decimal!, char!, path!, refinement!). 
○ Refine word types and their evaluation (set-word!, get-word!, lit-word!). 
○ Implement a broader set of Rebol-standard native functions. 
○ Improve the parser to handle more complex Rebol syntax. 
○ Goal: A language that feels distinctly Rebol-like and can execute more complex 

scripts. 
● Phase 3: Initial LLM Integration & Basic DSLs 

○ Develop the FFI (Foreign Function Interface) in D to allow the language to call out 
to the LLM and receive responses. 

○ Create a simple dialect for LLM interaction (e.g., ask-llm [prompt-block]). 
○ Develop one or two foundational DSLs for core cognitive tasks (e.g., a command 

execution dialect, a simple goal-setting dialect). 
○ Goal: Demonstrate the language orchestrating basic LLM-driven behavior. 

● Phase 4: Advanced Features & Ecosystem Interfaces 
○ Implement AI-integrated error handling with resumable exceptions and LLM 

consultation. 
○ Develop more complex DSLs for planning, knowledge representation, and 

learning. 
○ Integrate with chosen database/persistence solutions (e.g., Triadic Memory, 

mem0, tag-based storage). 
○ Build dialect facades for interacting with external AI systems (e.g., RAG 

frameworks). 
○ Goal: A language that actively supports complex cognitive processes and 

manages its knowledge ecosystem. 
● Phase 5: Self-Evolution Capabilities and Refinement 

○ Introduce robust introspection features (e.g., examining function bodies, 
contexts). 

○ Enable runtime modification of language constructs (e.g., defining new native 
functions or modifying dialects programmatically by the "mind" itself). 

○ Explore and potentially implement Rebol's definitional scoping model if deemed 
beneficial. 

○ Focus on performance optimization and robustness of the interpreter. 



○ Implement mechanisms for encoding and enforcing ethical constraints via the 
language. 

○ Goal: A language that can support a truly adaptive and evolving synthetic mind, 
capable of self-improvement and operating within defined ethical boundaries. 

C. Considerations for Future Evolution Towards the "Mind and Soul" 
Aspiration 

The journey towards a synthetic "mind and soul" is long and fraught with profound questions. 
The language designed for it will be more than just code; it will be the very medium of its 
existence and evolution. 

● Introspection and Self-Modification: The ultimate success of the language in this 
context hinges on its ability to allow the synthetic mind to understand and alter its own 
"mental software." This requires deep introspection capabilities (examining its own 
code, data structures, and execution states) and safe, controlled mechanisms for 
self-modification. 

● Ethical Framework Encoding: The concept of a "soul" invariably brings ethical 
considerations to the forefront. A significant potential of this custom language lies in its 
ability to serve as a formal medium for encoding and enforcing ethical principles or core 
behavioral constraints. Rather than relying solely on the often opaque and sometimes 
unpredictable nature of LLM alignment through prompting or fine-tuning, core ethical 
rules could be expressed as immutable data structures or specialized dialects within the 
language. For example, any action plan generated by the LLM (and represented as a 
code block) might be required to pass through an "ethics-check-dialect" before 
execution. This dialect would evaluate the plan against the encoded ethical rules. The 
language's structure itself can enforce that certain critical operations must be validated 
by these ethical DSLs. This approach offers a more transparent, inspectable, and 
potentially verifiable way to build safety and alignment into the synthetic mind, making 
ethical reasoning a first-class, structural component of its cognitive architecture. 

● Long-Term Vision: The language should not be seen as a static entity but as one that 
co-evolves with the synthetic mind's cognitive capabilities. As the "mind" learns and 
develops, it may identify limitations in its own language or discover needs for new 
expressive forms. The capacity for self-modification should, ideally, extend to evolving 
the language itself. 

By strategically combining the practical expressiveness of Rebol with advanced AI integration 
and a clear-sighted development roadmap, this project can make significant strides towards 
its ambitious and fascinating goals. The language is not just a tool for building the mind; it is 
an integral part of what the mind will become. 

Works cited 

1. What is REBOL?, accessed May 31, 2025, https://www.rebol.com/what-rebol.html 
2. Homoiconicity - Wikipedia, accessed May 31, 2025, 

https://en.wikipedia.org/wiki/Homoiconicity 

https://www.rebol.com/what-rebol.html
https://en.wikipedia.org/wiki/Homoiconicity


3. philosophy : Why Rebol, Red, and the Parse dialect are Cool, accessed May 31, 
2025, http://blog.hostilefork.com/why-rebol-red-parse-cool/ 

4. REBOL Datatypes - Random Geekery, accessed May 31, 2025, 
https://randomgeekery.org/post/2004/12/rebol-datatypes/ 

5. Chapter 3 - Quick Tour - REBOL Language, accessed May 31, 2025, 
https://www.rebol.com/docs/core23/rebolcore-3.html 

6. Chapter 4 - Expressions - REBOL Language, accessed May 31, 2025, 
https://www.rebol.com/docs/core23/rebolcore-4.html 

7. philosophy : The Central Newbie Question about Rebol/Red, accessed May 31, 
2025, http://blog.hostilefork.com/arity-of-rebol-red-functions/ 

8. rebol : Rebol vs. Lisp Macros - HostileFork Blog, accessed May 31, 2025, 
http://blog.hostilefork.com/rebol-vs-lisp-macros/ 

9. What are the minimal set of primitives a Lisp implementation can be built on, one 
complete enough even though it may be slow? - Reddit, accessed May 31, 2025, 
https://www.reddit.com/r/lisp/comments/18zpzlw/what_are_the_minimal_set_of_p
rimitives_a_lisp/ 

10. A Scheme Primer - Spritely Institute, accessed May 31, 2025, 
https://files.spritely.institute/papers/scheme-primer.html 

11. Scheme (programming language) - Wikipedia, accessed May 31, 2025, 
https://en.wikipedia.org/wiki/Scheme_(programming_language) 

12. files.spritely.institute, accessed May 31, 2025, 
https://files.spritely.institute/papers/scheme-primer.pdf 

13. GNU Smalltalk User's Guide: Handling exceptions, accessed May 31, 2025, 
https://www.gnu.org/software/smalltalk/manual/html_node/Handling-exceptions.h
tml 

14. Smalltalk/X Programmers guide - Exception Handling, accessed May 31, 2025, 
https://live.exept.de/doc/online/english/programming/exceptions.html 

15. Exploring the Condition System of Common Lisp - YouTube, accessed May 31, 
2025, https://www.youtube.com/watch?v=tT4cPB4Ap5k 

16. Common Lisp - The Tutorial - Fast, Fun and Practical (with CLOG) - Reddit, 
accessed May 31, 2025, 
https://www.reddit.com/r/lisp/comments/196lain/common_lisp_the_tutorial_fast_f
un_and_practical/ 

17. 9.1 Condition System Concepts | Common Lisp (New) Language ..., accessed May 
31, 2025, 
https://lisp-docs.github.io/cl-language-reference/chap-9/j-b-condition-system-c
oncepts 

18. Exception handling in Objective-C | GeeksforGeeks, accessed May 31, 2025, 
https://www.geeksforgeeks.org/exception-handling-in-objective-c/ 

19. Error Handling in Objective-C | GeeksforGeeks, accessed May 31, 2025, 
https://www.geeksforgeeks.org/error-handling-in-objective-c/ 

20. Exception handling - Wikipedia, accessed May 31, 2025, 
https://en.wikipedia.org/wiki/Exception_handling 

21. General Exception and Error Handling Best Practices for Compiled Languages : 
r/ProgrammingLanguages - Reddit, accessed May 31, 2025, 

http://blog.hostilefork.com/why-rebol-red-parse-cool/
https://randomgeekery.org/post/2004/12/rebol-datatypes/
https://www.rebol.com/docs/core23/rebolcore-3.html
https://www.rebol.com/docs/core23/rebolcore-4.html
http://blog.hostilefork.com/arity-of-rebol-red-functions/
http://blog.hostilefork.com/rebol-vs-lisp-macros/
https://www.reddit.com/r/lisp/comments/18zpzlw/what_are_the_minimal_set_of_primitives_a_lisp/
https://www.reddit.com/r/lisp/comments/18zpzlw/what_are_the_minimal_set_of_primitives_a_lisp/
https://files.spritely.institute/papers/scheme-primer.html
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://files.spritely.institute/papers/scheme-primer.pdf
https://www.gnu.org/software/smalltalk/manual/html_node/Handling-exceptions.html
https://www.gnu.org/software/smalltalk/manual/html_node/Handling-exceptions.html
https://live.exept.de/doc/online/english/programming/exceptions.html
https://www.youtube.com/watch?v=tT4cPB4Ap5k
https://www.reddit.com/r/lisp/comments/196lain/common_lisp_the_tutorial_fast_fun_and_practical/
https://www.reddit.com/r/lisp/comments/196lain/common_lisp_the_tutorial_fast_fun_and_practical/
https://lisp-docs.github.io/cl-language-reference/chap-9/j-b-condition-system-concepts
https://lisp-docs.github.io/cl-language-reference/chap-9/j-b-condition-system-concepts
https://www.geeksforgeeks.org/exception-handling-in-objective-c/
https://www.geeksforgeeks.org/error-handling-in-objective-c/
https://en.wikipedia.org/wiki/Exception_handling


https://www.reddit.com/r/ProgrammingLanguages/comments/1izfbi7/general_exc
eption_and_error_handling_best/ 

22. io tutorial, accessed May 31, 2025, https://iolanguage.org/tutorial.html 
23. io reference, accessed May 31, 2025, https://iolanguage.org/reference/ 
24. Justified Programming — Reason Parameters That Answer “Why ..., accessed May 

31, 2025, https://youtu.be/OrQ9swvm_VA 
25. Justifying a Software Development Project - Ambysoft Inc., accessed May 31, 

2025, https://ambysoft.com/essays/projectjustification.html 
26. How do you justify more code being written by following clean code practices?, 

accessed May 31, 2025, 
https://softwareengineering.stackexchange.com/questions/388802/how-do-you-j
ustify-more-code-being-written-by-following-clean-code-practices 

27. Justified Programming — Reason Parameters That Answer “Why”, by bisqwit - 
Reddit, accessed May 31, 2025, 
https://www.reddit.com/r/programming/comments/6swde7/justified_programmin
g_reason_parameters_that/ 

28. Obfuscated C programs: Introduction - YouTube, accessed May 31, 2025, 
https://m.youtube.com/watch?v=rwOI1biZeD8&pp=ygULI2NvbnRlc3RlbmM%3D 

29. REBOL: The Official Guide (Book/CD Package): Goldman, Elan, Blanton, John - 
Amazon.com, accessed May 31, 2025, 
https://www.amazon.com/REBOL-Official-Guide-Book-Package/dp/007212279X 

30. PeterOvermann/TriadicMemory: Cognitive Computing with ... - GitHub, accessed 
May 31, 2025, https://github.com/PeterOvermann/TriadicMemory 

31. Triadic Memory — A Fundamental Algorithm for Cognitive ..., accessed May 31, 
2025, 
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-c
ognitive-computing/9763 

32. Triadic Memory — A Fundamental Algorithm for Cognitive Computing - #8 by 
cezar_t - Related Papers - HTM Forum, accessed May 31, 2025, 
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-c
ognitive-computing/9763/8 

33. mem0ai/mem0: Memory for AI Agents; SOTA in AI Agent ... - GitHub, accessed 
May 31, 2025, https://github.com/mem0ai/mem0 

34. Designing better file organization around tags, not hierarchies, accessed May 31, 
2025, 
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-
hierarchies 

35. Be File System - Wikipedia, accessed May 31, 2025, 
https://en.wikipedia.org/wiki/Be_File_System 

36. Metadata/database filesystem - OS - Haiku Community, accessed May 31, 2025, 
https://discuss.haiku-os.org/t/metadata-database-filesystem/2445 

37. Semantic file system - Wikipedia, accessed May 31, 2025, 
https://en.wikipedia.org/wiki/Semantic_file_system 

38. Migration to Package Management - Haiku OS, accessed May 31, 2025, 
https://www.haiku-os.org/docs/develop/packages/Migration.html 

https://www.reddit.com/r/ProgrammingLanguages/comments/1izfbi7/general_exception_and_error_handling_best/
https://www.reddit.com/r/ProgrammingLanguages/comments/1izfbi7/general_exception_and_error_handling_best/
https://iolanguage.org/tutorial.html
https://iolanguage.org/reference/
https://youtu.be/OrQ9swvm_VA
https://ambysoft.com/essays/projectjustification.html
https://softwareengineering.stackexchange.com/questions/388802/how-do-you-justify-more-code-being-written-by-following-clean-code-practices
https://softwareengineering.stackexchange.com/questions/388802/how-do-you-justify-more-code-being-written-by-following-clean-code-practices
https://www.reddit.com/r/programming/comments/6swde7/justified_programming_reason_parameters_that/
https://www.reddit.com/r/programming/comments/6swde7/justified_programming_reason_parameters_that/
https://m.youtube.com/watch?v=rwOI1biZeD8&pp=ygULI2NvbnRlc3RlbmM%3D
https://www.amazon.com/REBOL-Official-Guide-Book-Package/dp/007212279X
https://github.com/PeterOvermann/TriadicMemory
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-cognitive-computing/9763
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-cognitive-computing/9763
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-cognitive-computing/9763/8
https://discourse.numenta.org/t/triadic-memory-a-fundamental-algorithm-for-cognitive-computing/9763/8
https://github.com/mem0ai/mem0
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies
https://www.nayuki.io/page/designing-better-file-organization-around-tags-not-hierarchies
https://en.wikipedia.org/wiki/Be_File_System
https://discuss.haiku-os.org/t/metadata-database-filesystem/2445
https://en.wikipedia.org/wiki/Semantic_file_system
https://www.haiku-os.org/docs/develop/packages/Migration.html


39. Plan 9: Not (Only) A Better UNIX | PPT - SlideShare, accessed May 31, 2025, 
https://www.slideshare.net/slideshow/plan-9-not-only-a-better-unix/15381711 

40. css.csail.mit.edu, accessed May 31, 2025, 
https://css.csail.mit.edu/6.824/2014/papers/plan9.pdf 

41. Alexander Obenauer, accessed May 31, 2025, https://alexanderobenauer.com/ 
42. WonderOS, accessed May 31, 2025, https://wonderos.org/ 
43. Future (desktop) operating systems — a collection of inspirations - the stream, 

accessed May 31, 2025, https://stream.thesephist.com/updates/1640102564 
44. OLLOS - Alexander Obenauer, accessed May 31, 2025, 

https://alexanderobenauer.com/ollos/ 
45. XXIIVV — devlog, accessed May 31, 2025, https://wiki.xxiivv.com/site/devlog.html 
46. Sparse Distributed Representations - Numenta, accessed May 31, 2025, 

https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-
SDR.pdf 

47. HTM School | Numenta, accessed May 31, 2025, 
https://www.numenta.com/resources/htm/htmschool/ 

48. Encoders - Numenta, accessed May 31, 2025, 
https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-
Encoders.pdf 

49. Sparse Distributed Representations - Sean's Blog, accessed May 31, 2025, 
https://seanpedersen.github.io/posts/sparse-distributed-representations 

50. arxiv.org, accessed May 31, 2025, https://arxiv.org/pdf/2502.14902 
51. OSU-NLP-Group/HippoRAG: [NeurIPS'24] HippoRAG is a ... - GitHub, accessed 

May 31, 2025, https://github.com/OSU-NLP-Group/HippoRAG 
52. [2502.14802] From RAG to Memory: Non-Parametric Continual Learning for Large 

Language Models - arXiv, accessed May 31, 2025, https://arxiv.org/abs/2502.14802 
53. aclanthology.org, accessed May 31, 2025, 

https://aclanthology.org/2025.neusymbridge-1.11.pdf 
54. accessed December 31, 1969, https://arxiv.org/pdf/2412.05967v1 
55. arxiv.org, accessed May 31, 2025, https://arxiv.org/html/2412.05967v1 
56. [Papierüberprüfung] Language hooks: a modular framework for augmenting LLM 

reasoning that decouples tool usage from the model and its prompt - Moonlight | 
AI Colleague for Research Papers, accessed May 31, 2025, 
https://www.themoonlight.io/de/review/language-hooks-a-modular-framework-f
or-augmenting-llm-reasoning-that-decouples-tool-usage-from-the-model-and-
its-prompt 

57. accessed December 31, 1969, https://arxiv.org/pdf/2405.06907v1 
58. arxiv.org, accessed May 31, 2025, https://arxiv.org/html/2405.06907v1 
59. arXiv:2502.14345v1 [cs.AI] 20 Feb 2025, accessed May 31, 2025, 

https://arxiv.org/pdf/2502.14345? 
60. CaMeL offers a promising new direction for mitigating prompt ..., accessed May 

31, 2025, https://simonwillison.net/2025/Apr/11/camel/ 
61. Operationalizing CaMeL: Strengthening LLM Defenses for Enterprise Deployment 

- arXiv, accessed May 31, 2025, https://arxiv.org/html/2505.22852v1 
62. arxiv.org, accessed May 31, 2025, https://arxiv.org/pdf/2503.18813 

https://www.slideshare.net/slideshow/plan-9-not-only-a-better-unix/15381711
https://css.csail.mit.edu/6.824/2014/papers/plan9.pdf
https://alexanderobenauer.com/
https://wonderos.org/
https://stream.thesephist.com/updates/1640102564
https://alexanderobenauer.com/ollos/
https://wiki.xxiivv.com/site/devlog.html
https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://www.numenta.com/resources/htm/htmschool/
https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-Encoders.pdf
https://www.numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-Encoders.pdf
https://seanpedersen.github.io/posts/sparse-distributed-representations
https://arxiv.org/pdf/2502.14902
https://github.com/OSU-NLP-Group/HippoRAG
https://arxiv.org/abs/2502.14802
https://aclanthology.org/2025.neusymbridge-1.11.pdf
https://arxiv.org/pdf/2412.05967v1
https://arxiv.org/html/2412.05967v1
https://www.themoonlight.io/de/review/language-hooks-a-modular-framework-for-augmenting-llm-reasoning-that-decouples-tool-usage-from-the-model-and-its-prompt
https://www.themoonlight.io/de/review/language-hooks-a-modular-framework-for-augmenting-llm-reasoning-that-decouples-tool-usage-from-the-model-and-its-prompt
https://www.themoonlight.io/de/review/language-hooks-a-modular-framework-for-augmenting-llm-reasoning-that-decouples-tool-usage-from-the-model-and-its-prompt
https://arxiv.org/pdf/2405.06907v1
https://arxiv.org/html/2405.06907v1
https://arxiv.org/pdf/2502.14345
https://simonwillison.net/2025/Apr/11/camel/
https://arxiv.org/html/2505.22852v1
https://arxiv.org/pdf/2503.18813


63. www.arxiv.org, accessed May 31, 2025, https://www.arxiv.org/pdf/2505.22852 
64. Defeating Prompt Injections by Design - ResearchGate, accessed May 31, 2025, 

https://www.researchgate.net/publication/390176637_Defeating_Prompt_Injectio
ns_by_Design/fulltext/67e374dc72f7f37c3e8e75df/Defeating-Prompt-Injections-b
y-Design.pdf?origin=scientificContributions 

65. [2502.11896] CAMEL: Continuous Action Masking Enabled by Large Language 
Models for Reinforcement Learning - arXiv, accessed May 31, 2025, 
https://arxiv.org/abs/2502.11896 

66. Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language 
Models, accessed May 31, 2025, https://arxiv.org/html/2504.04717v1 

67. Abstract - Nicholas Carlini, accessed May 31, 2025, 
https://nicholas.carlini.com/writing/2019/advex_papers_with_abstracts.txt 

68. [2505.22852] Operationalizing CaMeL: Strengthening LLM Defenses for 
Enterprise Deployment - arXiv, accessed May 31, 2025, 
http://arxiv.org/abs/2505.22852 

69. [2503.18813] Defeating Prompt Injections by Design - arXiv, accessed May 31, 
2025, https://arxiv.org/abs/2503.18813 

70. Defeating Prompt Injections by Design - arXiv, accessed May 31, 2025, 
https://arxiv.org/pdf/2503.18813? 

https://www.arxiv.org/pdf/2505.22852
https://www.researchgate.net/publication/390176637_Defeating_Prompt_Injections_by_Design/fulltext/67e374dc72f7f37c3e8e75df/Defeating-Prompt-Injections-by-Design.pdf?origin=scientificContributions
https://www.researchgate.net/publication/390176637_Defeating_Prompt_Injections_by_Design/fulltext/67e374dc72f7f37c3e8e75df/Defeating-Prompt-Injections-by-Design.pdf?origin=scientificContributions
https://www.researchgate.net/publication/390176637_Defeating_Prompt_Injections_by_Design/fulltext/67e374dc72f7f37c3e8e75df/Defeating-Prompt-Injections-by-Design.pdf?origin=scientificContributions
https://arxiv.org/abs/2502.11896
https://arxiv.org/html/2504.04717v1
https://nicholas.carlini.com/writing/2019/advex_papers_with_abstracts.txt
http://arxiv.org/abs/2505.22852
https://arxiv.org/abs/2503.18813
https://arxiv.org/pdf/2503.18813

	Evolving a Rebol-Inspired Language for a Synthetic Mind: A Framework Analysis and Strategic Directions 
	I. Introduction 
	A. Project Overview and Goals 
	B. Report Objectives 
	C. Methodology 

	II. Conceptual Coherence and Language Philosophy 
	A. Rebol's Philosophy as a Foundation 
	B. "LLM as Cognitive Architecture" and Language Symbiosis 
	C. Homoiconicity: Rebol vs. Lisp 
	D. Dialecting for Cognitive Functions 

	III. Minimal Language Core for Rapid Prototyping (Rebol's Scheme) 
	A. Core Datatypes 
	B. Evaluation Model: do and reduce 
	C. Functions: Definition and Application 
	D. Words and Scoping 
	E. Minimal Native Functions 

	IV. Implementation Plan Feedback (Parser, Structs, Eval in D) 
	A. Parser Design 
	B. Core Data Structures: Word/Value and Block Structs in D 
	C. eval/do Implementation in D 

	V. Evolving the Language: Advanced Features for Cognitive Functionality 
	A. AI-Integrated Error Handling 
	B. Domain-Specific Languages (DSLs) for Cognitive Modules 
	C. Database Integration 

	VI. Supporting Ecosystem: Integrated Environments and Knowledge Representation 
	A. Tag-Based File Systems and Semantic Organization 
	B. Integrated Computing Environments (ICEs) 
	C. Interfacing with Advanced AI Concepts 
	D. Table: Relevance of Supporting Technologies to Project Goals 

	VII. Conclusion and Strategic Roadmap 
	A. Summary of Key Recommendations 
	B. Phased Approach to Language Development and Integration 
	C. Considerations for Future Evolution Towards the "Mind and Soul" Aspiration 
	Works cited 




