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Abstract—Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the
number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status
quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark,
we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this
task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g.
pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2)
dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and
analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic
generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis

for advancing it.

Index Terms—Generalized Zero-shot Learning, Transductive Learning, Image classification, Weakly-Supervised Learning

1 INTRODUCTION

Zero-shot learning aims to recognize objects whose instances may
not have been seen during training [1], [2], [3], [4], [5], [6]. The
number of new zero-shot learning methods proposed every year
has been increasing rapidly, i.e. the good aspects as our title
suggests. Although each new method has been shown to make
progress over the previous one, it is difficult to quantify this
progress without an established evaluation protocol, i.e. the bad
aspects. In fact, the quest for improving numbers has lead to even
flawed evaluation protocols, i.e. the ugly aspects. Therefore, in
this work, we propose to extensively evaluate a significant number
of recent zero-shot learning methods in depth on several small
to large-scale datasets using the same evaluation protocol both
in zero-shot, i.e. training and test classes are disjoint, and the
more realistic generalized zero-shot learning settings, i.e. training
classes are present at test time. Figure 1 presents an illustration of
zero-shot and generalized zero-shot learning tasks.

We benchmark and systematically evaluate zero-shot learning
w.r.t. three aspects, i.e. methods, datasets and evaluation protocol.
The crux of the matter for all zero-shot learning methods is to
associate observed and non observed classes through some form
of auxiliary information which encodes visually distinguishing
properties of objects. Different flavors of zero-shot learning meth-
ods that we evaluate in this work are linear [7], [8], [9], [10]
and nonlinear [1 1], [12] compatibility learning frameworks which
have dominated the zero-shot learning literature in the past few
years whereas an orthogonal direction is learning independent
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attribute [1] classifiers and finally others [13], [14], [15] propose
a hybrid model between independent classifier learning and com-
patibility learning frameworks which have demonstrated improved
results over the compatibility learning frameworks both for zero-
shot and generalized zero-shot learning settings.

We thoroughly evaluate the second aspect of zero-shot learn-
ing, by using multiple splits of several small, medium and large-
scale datasets [16], [17], [1], [18], [19]. Among these, the Animals
with Attributes (AWA1) dataset [I] introduced as a zero-shot
learning dataset with per-class attribute annotations, has been one
of the most widely used datasets for zero-shot learning. However,
as AWA1 images does not have the public copyright license, only
some image features, i.e. SIFT [20], DECAF [21], VGG19 [22] of
AWAL1 dataset is publicly available, rather than the raw images. On
the other hand, improving image features is a significant part of the
progress both for supervised learning and for zero-shot learning. In
fact, with the fast pace of deep learning, everyday new deep neural
network models improve the ImageNet classification performance
are being proposed. Without access to images, those new DNN
models can not be evaluated on AWAI1 dataset. Therefore, with
this work, we introduce the Animals with Attributes 2 (AWA2)
dataset that has roughly the same number of images all with public
licenses, exactly the same number of classes and attributes as the
AWAT1 dataset. We will make both ResNet [23] features of AWA2
images and the images themselves publicly available.

We propose a unified evaluation protocol to address the third
aspect of zero-shot learning which is one of the most important
ones. We emphasize the necessity of tuning hyperparameters of the
methods on a validation class split that is disjoint from training
classes as improving zero-shot learning performance via tuning
parameters on test classes violates the zero-shot assumption. We
argue that per-class averaged top-1 accuracy is an important
evaluation metric when the dataset is not well balanced with
respect to the number of images per class. We point out that
extracting image features via a pre-trained deep neural network
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Fig. 1: Zero-shot learning (ZSL) vs generalized zero-shot learning
(GZSL): At training time, for both cases the images and attributes
of the seen classes (J'") are available. At test time, in the ZSL
setting, the learned model is evaluated only on unseen classes
(V') whereas in GZSL setting, the search space contains both
training and test classes Q" U Y. To facilitate classification
without labels, both tasks use some form of side information,
e.g. attributes. The attributes are annotated per class, therefore
the labeling cost is significantly reduced.

(DNN) on a large dataset that contains zero-shot test classes also
violates the zero-shot learning idea as image feature extraction
is a part of the training procedure. Moreover, we argue that
demonstrating zero-shot performance on small-scale and coarse
grained datasets, i.e. aPY [18] is not conclusive. On the other
hand, with this work we emphasize that it is hard to obtain labeled
training data for fine-grained classes of rare objects recognizing
which requires expert opinion. Therefore, we argue that zero-shot
learning methods should be also evaluated on least populated or
rare classes. We recommend to abstract away from the restricted
nature of zero-shot evaluation and make the task more practical
by including training classes in the search space, i.e. generalized
zero-shot learning setting. Therefore, we argue that our work plays
an important role in advancing the zero-shot learning field by
analyzing the good and bad aspects of the zero-shot learning task
as well as proposing ways to eliminate the ugly ones.

2 RELATED WORK

Early works of zero-shot learning [1], [24], [15], [25], [26] make
use of the attributes within a two-stage approach to infer the label
of an image that belong to one of the unseen classes. In the
most general sense, the attributes of an input image are predicted
in the first stage, then its class label is inferred by searching
the class which attains the most similar set of attributes. For
instance, DAP [I] first estimates the posterior of each attribute
for an image by learning probabilistic attribute classifiers. It then
calculates the class posteriors and predicts the class label using
MAP estimate. Similarly, [24] first learns a probabilistic classifier
for each attribute. It then estimates the class posteriors through
random forest which is able to handle unreliable attributes. IAP [1]
first predicts the class posterior of seen classes, then the probability
of each class is used to calculate the attribute posteriors of an
image. The class posterior of seen classes is predicted by a
multi-class classifier. In addition, this two-stage approach have
been extended to the case when attributes are not available. For
example, following IAP [1], CONSE [15] first predicts seen class
posteriors, then it projects image feature into the Word2vec [27]
space by taking the convex combination of top 1" most possible
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seen classes. The two-stage models suffer from domain shift [28]
between the intermediate task and target task, e.g. although the
target task is to predict the class label, the intermediate task of
DAP is to learn attribute classifiers.

Recent advances in zero-shot learning directly learns a map-
ping from an image feature space to a semantic space. Among
those, SOC [29] maps the image features into the semantic space
and then searches the nearest class embedding vector. ALE [30]
learns a bilinear compatibility function between the image and the
attribute space using ranking loss. DeViSE [7] also learns a linear
mapping between image and semantic space using an efficient
ranking loss formulation, and it is evaluated on the large-scale
ImageNet dataset. SJE [9] optimizes the structural SVM loss to
learn the bilinear compatibility. On the other hand, ESZSL [10]
uses the square loss to learn the bilinear compatibility and explic-
itly regularizes the objective w.r.t Frobenius norm. The 5 ;-based
objective function of [31] suppresses the noise in the semantic
space. [32] embeds visual features into the attribute space, and
then learns a metric to improve the consistency of the semantic
embedding. Recently, SAE [33] proposed a semantic auto encoder
to regularize the model by enforcing the image feature projected
to the semantic space to be reconstructed.

Other zero-shot learning approaches learn non-linear multi-
modal embeddings. LatEm [ 1] extends the bilinear compatibility
model of SJE [9] to be a piecewise linear one by learning multiple
linear mappings with the selection of which being a latent variable.
CMT [12] uses a neural network with two hidden layers to learn a
non-linear projection from image feature space to word2vec [27]
space. Unlike other works which build their embedding on top
of fixed image features, [34] trains a deep convolutional neural
networks while learning a visual semantic embedding. Similarly,
[35] argues that the visual feature space is more discriminative
than the semantic space, thus it proposes an end-to-end deep
embedding model which maps semantic features into the visual
space. [36] proposes a simple model by projecting class semantic
representations into the visual feature space and performing near-
est neighbor classifiers among those projected representations. The
projection is learned through support vector regressor with visual
exemplars of seen classes, i.e. class centroid in the feature space.

Embedding both the image and semantic features into another
common intermediate space is another direction that zero-shot
learning approaches adapt. SSE[13] uses the mixture of seen class
proportions as the common space and argues that images belong
to the same class should have similar mixture pattern. JLSE[37]
maps visual features and semantic features into two separate latent
spaces, and measures their similarity by learning another bilinear
compatibility function. Furthermore, hybrid models [38], [39],
[14], [40] such as [39] jointly embeds multiple text representations
and multiple visual parts to ground attributes on different image
regions. SYNC [14] constructs the classifiers of unseen classes
by taking the linear combinations of base classifiers, which are
trained in a discriminative learning framework.

While most of zero-shot learning methods learn the cross-
modal mapping between the image and class embedding space
with discriminative losses, there are a few generative models [4 1],
[42], [43] that represent each class as a probability distribution.
GFZSL [41] models each class-conditional distribution as a Gaus-
sian and learns a regression function that maps a class embed-
ding into the latent space. GLaP [42] assumes that each class-
conditional distribution follows a Gaussian and generates virtual
instances of unseen classes from the learned distribution. [43]



learns a multimodal mapping where class and image embeddings
of categories are both represented by Gaussian distributions.

Apart from the inductive zero-shot learning set-up where the
model has no access to neither visual nor side-information of
unseen classes, transductive zero-shot learning approaches [44],
[45], [28], [46], [47], [48], [49] use visual or semantic information
of both seen and unseen classes without having access to the
label information. [44] combines DAP and graph-based label
propagation. [45] uses the idea of domain adaptation frameworks.
[28] proposes hypergraph label propagation which allows to use
multiple class embeddings. [46], [47], [48] use semi-supervised
learning based on max-margin framework.

In zero-shot learning, some form of side information is re-
quired to share information between classes so that the knowledge
learned from seen classes is transfered to unseen classes. One
popular form of side information is attributes, i.e. shared and
nameable visual properties of objects. However, attributes usually
require costly manual annotation. Thus, there has been a large
group of studies [50], [S1], [91, [11], [7], [52], [311, [34], [53],
[54] which exploit other auxiliary information that reduces this
annotation effort. [55] does not use side information however it
requires one-shot image of the novel class to perform nearest
neighbor search with the learned metric. SJE [9] evaluates four
different class embeddings including attributes, word2vec [27],
glove [56] and wordnet hierarchy [57]. On ImageNet, [3] leverages
the wordnet hierarchy. [52] leverages the rich information of de-
tailed visual descriptions obtained from novice users and improves
the performance of attributes obtained from experts. Recently, [58]
took a different approach and learned class embeddings using
human gaze tracks showing that human gaze is class-specific.

Zero-shot learning has been criticized for being a restrictive
set up as it comes with a strong assumption of the image used at
prediction time can only come from unseen classes. Therefore,
generalized zero-shot learning setting [59] has been proposed
to generalize the zero-shot learning task to the case where
both seen and unseen classes are used at test time. [60] argues
that although ImageNet classification challenge performance has
reached beyond human performance, we do not observe similar
behavior of the methods that compete at the detection challenge
which involves rejecting unknown objects while detecting the
position and label of a known object. [7] uses label embeddings to
operate on the generalized zero-shot learning setting whereas [61]
proposes to learn latent representations for images and classes
through coupled linear regression of factorized joint embeddings.
On the other hand, [62] introduces a new model layer to the deep
net which estimates the probability of an input being from an
unknown class and [12] proposes a novelty detection mechanism.

Although zero-shot vs generalized zero-shot learning evalua-
tion works exist [3], [63] in the literature, our work stands out
in multiple aspects. For instance, [3] operates on the ImageNet
1K by using 800 classes for training and 200 for test. One of the
most comprehensive works, [63] provides a comparison between
five methods evaluated on three datasets including ImageNet with
three standard splits and proposes a metric to evaluate generalized
zero-shot learning performance. On the other hand, we evaluate
ten zero-shot learning methods on five datasets with several splits
both for zero-shot and generalized zero-shot learning settings,
provide statistical significance and robustness tests, and present
other valuable insights that emerge from our benchmark. In this
sense, ours is the most extensive evaluation of zero-shot and
generalized zero-shot learning tasks in the literature.

3 EVALUATED METHODS

We start by formalizing the zero-shot learning task and then we
describe the zero-shot learning methods that we evaluate in this
work. Given a training set S = {(zn,yn),n = 1...N}, with
yn € V' belonging to training classes, the task is to learn f :
X — Y by minimizing the regularized empirical risk:

N
%ZL(yn,f(:vn;W)) +Q(W) (1)

where L(.) is the loss function and €2(.) is the regularization term.
Here, the mapping f : X — ) from input to output embeddings
is defined as:

f(z; W) = argmax F(z,y; W) )
yey
At test time, in zero-shot learning setting, the aim is to assign a test
image to an unseen class label, i.e. Y** C ) and in generalized
zero-shot learning setting, the test image can be assigned either
to seen or unseen classes, i.e. V"% C ) with the highest
compatibility score.

3.1 Learning Linear Compatibility

Attribute Label Embedding (ALE) [30], Deep Visual Seman-
tic Embedding (DEVISE) [7] and Structured Joint Embedding
(SJE) [9] use bi-linear compatibility function to associate visual
and auxiliary information:

F(z,y; W) = 60(z)" We(y) 3)

where 6(z) and ¢(y), i.e. image and class embeddings, both of
which are given. F'(.) is parameterized by the mapping W, that is
to be learned. Given an image, compatibility learning frameworks
predict the class which attains the maximum compatibility score
with the image.

Among the methods that are detailed below, ALE [30], DE-
VISE [7] and SJE [9] do early stopping to implicitly regular-
ize Stochastic Gradient Descent (SGD) while ESZSL [10] and
SAE [33] explicitly regularize the embedding model as detailed
below. In the following, we provide a unified formulation of these
five zero-shot learning methods.

DEVISE [7] uses pairwise ranking objective that is inspired from
unregularized ranking SVM [64]:

Z [AWYn,y) + F(zn, y; W) — F(zn, yn; W1 @)
yeYtr

where A(y,,y) is equal to 1 if y,, = y, otherwise 0. The objec-
tive function is convex and is optimized by Stochastic Gradient
Descent.

ALE [30] uses the weighted approximate ranking objective [65]
for zero-shot learning in the following way:

biaer
=) [(A(yn, y) + F(2n, ;W) = F (0, yn; W)y

yeytr TA(xnayn)
. (5)
where [, = > ; o; and T'A(zn,y,) 18 defined as:
Z L(E(@n, y; W) + Ayn, y) = F(@n, yns W) (6)
yeyt'r'

Following the heuristic in [66], [30] selects ; = 1/¢ which puts
a high emphasis on the top of the rank list.



SJE [9] gives the full weight to the top of the ranked list and is
inspired from the structured SVM [67]:

[ max (A(yn,y) + F(zn, y; W)) —

nax @, yn; W)l (D

The prediction can only be made after computing the score against
all the classifiers, i.e. so as to find the maximum violating class,
which makes SJE less efficient than DEVISE and ALE.

ESZSL [10] applies a square loss to the ranking formulation and
adds the following implicit regularization term to the unregular-
ized risk minimization formulation:

VW o)II* + Allo)" W + s W ®)

where v, A, 5 are regularization parameters. The first two terms
bound the Euclidean norm of projected attributes in the feature
space and projected image feature in the attribute space respec-
tively. The advantage of this approach is that the objective function
is convex and has a closed form solution.

SAE [33] also learns the linear projection from image embedding
space to class embedding space, but it further constrains that
the projection must be able to reconstruct the original image
embedding. Similar to the linear auto-encoder, SAE optimizes the
following objective:

min [|6(z) = W o()|I* + A[Wo(z) — 6",  ©)
where ) is a hyperparameter to be tuned. The optimization prob-
lem can be transformed such that Bartels-Stewart algorithm [68]

is able to solve it efficiently.

3.2 Learning Nonlinear Compatibility

Latent Embeddings (LATEM) [11] and Cross Modal Transfer
(CMT) [12] encode an additional non-linearity component to
linear compatibility learning framework.

LATEM [11] constructs a piece-wise linear compatibility:

F(a,y; Wi) = max 0(x)" Wi (y) (10)
where every W; models a different visual characteristic of the data
and the selection of which matrix to use to do the mapping is a
latent variable and K is a hyperparameter to be tuned. LATEM
uses the ranking loss formulated in Equation 4 and Stochastic
Gradient Descent as the optimizer.

CMT [12] first maps images into a semantic space of words, i.e.
class names, where a neural network with tanh nonlinearity learns
the mapping:

Yo o) -

yeEYIT x€X,

W, tanh(Ws.0(z)||? (11)

where (W7, W3) are weights of the two layer neural network.
This is followed by a novelty detection mechanism that assigns
images to unseen or seen classes. The novelty is detected either
via thresholds learned using the embedded images of the seen
classes or the outlier probabilities are obtained in an unsupervised
way. As zero-shot learning assumes that test images are only from
unseen classes, in our experiments when we refer to CMT, that
means we do not use the novelty detection component. On the
other hand, we name the CMT with novelty detection as CMT#*
when we apply it to the generalized zero-shot learning setting.

3.3 Learning Intermediate Attribute Classifiers

Although Direct Attribute Prediction (DAP) [1] and Indirect At-
tribute Prediction (IAP) [1] have been shown to perform poorly
compared to compatibility learning frameworks [30], we include
them to our evaluation for being historically the most widely used
methods in the literature.

DAP [1] learns probabilistic attribute classifiers and makes a class
prediction by combining scores of the learned attribute classifiers.
A novel image is assigned to one of the unknown classes using:

p(an|r)

f(z) = argmax H pa . (12)
c o plag,)
with M being the total number of attributes, a’, is the m-th

attribute of class ¢, p(aé,|x) is the attribute probability given
image x which is obtained from the attribute classifiers whereas
p(al,) is the attribute prior estimated by the empirical mean of
attributes over training classes. We train binary classifiers with
logistic regression that gives probability scores of attributes with

respect to training classes.

IAP [1] indirectly estimates attributes probabilities of an image by
first predicting the probabilities of each training class, then multi-
plying the class attribute matrix. Once the attributes probabilities
are obtained by the following equation:

Zp am|yk

where K is the number of training classes, p(a,|yx) is the
predefined class attribute and p(y|x) is training class posterior
from multi-class classifier, the Equation 12 is used to predict the
class label for which we train a multi-class classifier on training
classes with logistic regression.

13)

plaml|z) = (yx|®),

3.4 Hybrid Models

Semantic Similarity Embedding (SSE) [13], Convex Combination
of Semantic Embeddings (CONSE) [15] and Synthesized Classi-
fiers (SYNC) [14] express images and semantic class embeddings
as a mixture of seen class proportions, hence we group them as
hybrid models.

SSE [13] leverages similar class relationships both in image and
semantic embedding space. An image is labeled with:

argmax 7(0(x)) T (d(yy)) (14)
uel

where 7,1 are mappings of class and image embeddings into a

common space defined by the mixture of seen classes proportions.

Specifically, ¥ is learned by sparse coding and 7 is by class

dependent transformation.

CONSE [15] learns the probability of a training image belonging
to a training class:

f(z,t) = argmax py,-(y|x) (15)

yeytr
where y denotes the most likely training label (f=1) for image

2. Combination of semantic embeddings (s) is used to assign an
unknown image to an unseen class:

7 Zptr

(z,1)|x).

s(f(z,1)) (16)



where Z = Y p(f(,)|z), f(x,t) denotes the t*" most
likely label for image x and 7" controls the maximum number of
semantic embedding vectors.

SYNC [14] learns a mapping between the semantic class embed-
ding space and a model space. In the model space, training classes
and a set of phantom classes form a weighted bipartite graph. The
objective is to minimize distortion error:

R
min ||w, — SerUp 2. 17)
i e = 3 servr [
Semantic and model spaces are aligned by embedding classifiers
of real classes (w.) and classifiers of phantom classes (v,.) in
the weighted graph (s..). The classifiers for novel classes are
constructed by linearly combining classifiers of phantom classes.

GFZSL [41] proposes a generative framework for zero-shot learn-
ing by modeling each class-conditional distribution as a multi-
variate Gaussian with mean vector p and diagonal covariance
matrix o. While the parameters of seen classes can be estimated
by MLE, that of unseen classes are computed by learning the
following two regression functions:

ty = fu(@(y)) and oy = fo((y)) (18)

with an image z, its class is predicted by searching the class with
the maximum probability, i.e. argmax, p(z|oy, ).

3.5 Transductive Zero-Shot Learning Setting

In zero-shot learning, transductive setting [69], [70] implies that
unlabeled images from unseen classes are available during train-
ing. Using unlabeled images are expected to improve performance
as they possibly contain useful latent information of unseen
classes. Here, we mainly focus on two state-of-the-art transductive
approaches[4 1], [71] and show how to extend ALE [30] into the
transductive learning setting.

GFZSL-tran [41] uses an Expectation-Maximization (EM) based
procedure that alternates between inferring the labels of unlabeled
examples of unseen classes and using the inferred labels to update
the parameter estimates of unseen class distributions. Since the
class-conditional distribution is assumed to be Gaussian, this pro-
cedure is equivalent to repeatedly estimating a Gaussian Mixture
Model (GMM) with the unlabeled data from unseen classes and
use the inferred class labels to re-estimate the GMM.

DSRL [71] proposes to simultaneously learn image features with
non-negative matrix factorization and align them with their corre-
sponding class attributes. This step gives us an initial prediction
score matrix Sy in which each row is one instance and indicates
the prediction scores for all unseen classes. To improve the
prediction score matrix by transductive learning, a graph-based
label propagation algorithm is applied. Specifically, a KNN graph
is constructed with the projected instances of unseen classes in the
class embedding space,

My — { exp(—“5250) if i € KNN(j) or j € KNN()
0 otherwise
19
where KNN(z) denotes the k-nearest neighbor of ¢-th instance
and d(x;,x;) measures the Euclidean distance between x; and
2. Given the affinity matrix M, a normalized Laplacian matrix

L can be computed as L = Q Y/2MQ /2 where Q is a

5

diagonal matrix with Q;; = >_; M;;. Finally, the standard label
propagation [72] gives the closed-form solution:

S=(I—-aL)™" xSy (20)

where o € [0, 1] is a regularization trade-off parameter and S is
the score matrix. The class label of an instance is predicted by
searching the class with the highest score, i.e. argmax, Siy.

ALE-tran Any compatibility learning method that explicitly
learns cross-modal mapping from image feature space to class
embedding space can be extended to transductive setting fol-
lowing the label propagation procedure of DSRL [71]. Taking
the ALE [30] as an example, after learning the linear mapping
W, instances of unseen classes can be projected into the class
embedding space and a score matrix Sy can be computed similarly.

4 DATASETS

Among the most widely used datasets for zero-shot learning,
we select two coarse-grained, one small (aPY [18]) and one
medium-scale (AWA1 [1]), and two fine-grained, both medium-
scale, datasets (SUN [16], CUB [17]) with attributes and one
large-scale dataset (ImageNet [19]) without. Here, we consider
between 10K and 1M images, and, between 100 and 1K classes
as medium-scale. Details of dataset statistics in terms of the
number of images, classes, attributes for the attribute datasets are
in Table 1. Furthermore, we introduce our Animals With Attributes
2 (AWA?2) dataset and position it with respect to existing datasets.

4.1 Attribute Datasets

Attribute Pascal and Yahoo (aPY) [18] is a small-scale coarse-
grained dataset with 64 attributes. Among the total number of 32
classes, 20 Pascal classes are used for training (we randomly select
5 for validation) and 12 Yahoo classes are used for testing. The
original Animals with Attributes (AWA1) [1] is a coarse-grained
dataset that is medium-scale in terms of the number of images,
i.e. 30,475 and small-scale in terms of number of classes, i.e. 50
classes. [1] introduces a standard zero-shot split with 40 classes
for training (we randomly select 13 classes for validation) and
10 classes for testing. AWAT1 has 85 attributes. Caltech-UCSD-
Birds 200-2011 (CUB) [17] is a fine-grained and medium scale
dataset with respect to both number of images and number of
classes, i.e. 11,788 images from 200 different types of birds
annotated with 312 attributes. [30] introduces the first zero-shot
split of CUB with 150 training (50 validation classes) and 50
test classes. SUN [16] is a fine-grained and medium-scale dataset
with respect to both number of images and number of classes, i.e.
SUN contains 14340 images coming from 717 types of scenes
annotated with 102 attributes. Following [1] we use 645 classes
of SUN for training (we randomly select 65 classes for validation)
and 72 classes for testing.

Animals with Attributes2 (AWA2) Dataset. One disadvantage
of AWAL dataset is that the images are not publicly available. As
having highly descriptive image features is an important compo-
nent for zero-shot learning, in order to enable vision research on
the objects of the AWA1 dataset, we introduce the Animals with
Attributes2 (AWA?2) dataset. Following [1], we collect 37,322
images for the 50 classes of AWAI dataset from public web
sources, i.e. Flickr, Wikipedia, etc., making sure that all images
of AWA?2 have free-use and redistribution licenses and they do not
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Fig. 2: Comparing AWAI [1] and our AWA?2 in terms of number
of images (Left) and t-SNE embedding of the image features
(the embedding is learned on AWA1 and AWA?2 simultaneously,
therefore the figures are comparable). AWA2 follows a similar
distribution as AWA1 and it contains more examples.

overlap with images of the original Animal with Attributes dataset.
The AWA?2 dataset uses the same 50 animal classes as AWAI1
dataset, similarly the 85 binary and continuous class attributes
are common. In total, AWA2 has 37,322 images compared to
30,475 images of AWAL. On average, each class includes 746
images where the least populated class, i.e. mole, has 100 and the
most populated class, i.e. horse has 1645 examples. Some example
images from polar bear, zebra, otter and tiger classes along with
sample attributes from our AWA2 dataset are shown in Figure 1.
In Figure 2, we provide some statistics on the AWA?2 dataset
in comparison with the AWA1 dataset in terms of the number of
images and also the distribution of the image features. Compared
to AWAI1, our proposed AWA?2 dataset contains more images,
e.g. horse and dolphin among the test classes, antelope and cow
among the training classes. Moreover, the t-SNE embedding of
these test classes with more training data, e.g. horse, dolphin, seal
etc. shows that AWA?2 leads to slightly more visible clusters of
ResNet features. The images, their labels and ResNet features of
our AWA? are publicly available in http://cvml.ist.ac.at/ AwA2.

4.2 Large-Scale ImageNet

We also evaluate the performance of methods on the large scale
ImageNet [19] which contains a total of 14 million images from
21K classes, each one labeled with one label, and the classes are
hierarchically related as ImageNet follows the WordNet [57].
ImageNet is a natural fit for zero-shot and generalized zero-
shot learning as there is a large class imbalance problem. More-
over, ImageNet is diverse in terms of granularity, i.e. it contains
a collection of fine-grained datasets, e.g. different vehicle types,
as well as coarse-grained datasets. The highest populated class
contains 3,047 images whereas there are many classes that con-
tains only a single image. A balanced subset of ImageNet with 1K
classes containing about 1000 images each is used to train CNNs.
Previous works [3] proposed to split the balanced subset of
1K classes into 800 training and 200 test classes. In this work,
from the total of 21K classes, we use 1K classes for training
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(among which we use 200 classes for validation) and the test split
is either all the remaining 20K classes or a subset of it, e.g. we
determine these subsets based on the hierarchical distance between
classes and the population of classes. The details of these splits are
provided in the following section.

5 EVALUATION PROTOCOL

In this section, we provide several components of previously used
and our proposed ZSL and GZSL evaluation protocols, e.g. image
and class encodings, dataset splits and the evaluation criteria'.

5.1 Image and Class Embedding

We extract image features, namely image embeddings, from the
entire image for SUN, CUB, AWAI, our AWA2 and ImageNet,
with no image pre-processing. For aPY, following the original
publication in [18], we crop the images from bounding boxes.
Our image embeddings are 2048-dim top-layer pooling units of
the 101-layered ResNet [23] as we found that it performs better
than 1, 024-dim top-layer pooling units of GoogleNet [73]. We
use the original ResNet-101 that is pre-trained on ImageNet with
1K classes, i.e. the balanced subset, and we do not fine-tune it for
any of the mentioned datasets. In addition to the ResNet features,
we re-evaluate all methods with their published image features.

In zero-shot learning, class embeddings are as important as
image features. As class embeddings, for aPY, AWAl, AWA2,
CUB and SUN, we use the per-class attributes between values
0 and 1 that are provided with the datasets as binary attributes
have been shown [30] to be weaker than continuous attributes. For
ImageNet as attributes of 21K classes are not available, we use
Word2Vec [27] trained on Wikipedia provided by [14]. Note that
an evaluation of class embeddings is out of the scope of this paper.
We refer the reader to [9] for more details on the topic.

5.2 Dataset Splits

Zero-shot learning assumes disjoint training and test classes.
Hence, as deep neural network (DNN) training for image feature
extraction is actually a part of model training, the dataset used
to train DNNS, e.g. ImageNet, should not include any of the test
classes. However, we notice from the standard splits (SS) of aPY
and AWAL1 datasets that 7 aPY test classes out of 12 (monkey,
wolf, zebra, mug, building, bag, carriage), 6 AWAL test classes
out of 10 (chimpanzee, giant panda, leopard, persian cat, pig,
hippopotamus), are among the 1K classes of ImageNet, i.e. are
used to pre-train ResNet. On the other hand, the mostly widely
used splits, i.e. we term them as standard splits (SS), for SUN
from [1] and CUB from [8] shows us that 1 CUB test class out of
50 (Indigo Bunting), and 6 SUN test classes out of 72 (restaurant,
supermarket, planetarium, tent, market, bridge), are also among
the 1K classes of ImageNet.

We noticed that the accuracy for all methods on those overlap-
ping test classes are higher than others. Therefore, we propose new
dataset splits, i.e. proposed splits (PS), insuring that none of the
test classes appear in ImageNet 1K, i.e. used to train the ResNet
model. We present the differences between the standard splits (SS)
and the proposed splits (PS) in Table 1. While in SS and PS no
image from test classes is present at training time, at test time our
PS includes images from training classes. We designed the PS this

1. Our benchmark is in: http://www.mpi-inf.mpg.de/zsl-benchmark


http://cvml.ist.ac.at/AwA2
http://www.mpi-inf.mpg.de/zsl-benchmark

Number of Images

Number of Classes At Training Time At Evaluation Time

SS PS SS PS
Dataset Size Granularity  Att y yir yts | Total yir yts yir yts  ytr - yts yir yts
SUN [16] medium fine 102 717 580+ 65 72 14340 12900 0 10320 0 0 1440 2580 1440
CUB [17] medium fine 312 200 100 + 50 50 11788 8855 0 7057 0 0 2933 1764 2967
AWAL [1] medium coarse 85 50 27+ 13 10 30475 24295 0 19832 0 0 6180 4958 5685
AWA2 medium coarse 85 50 27 + 13 10 37322 30337 0 23527 0 0 6985 5882 7913
aPY [18] small coarse 64 32 15+5 12 15339 12695 0 5932 0 0 2644 1483 7924

TABLE 1: Statistics for SUN [16], CUB [17], AWAL [1], proposed AWA?2, aPY [18] in terms of size, granularity, number of attributes,

number of classes in )" and )**, number of images at training and test time for standard split (SS) and our proposed splits (PS).

way as evaluating accuracy on both training and test classes is
crucial to show the generalization of the methods.

For SUN, CUB, AWAL1, aPY, and our proposed AWA?2 dataset,
for measuring the significance of the results, we propose 3 differ-
ent splits of 580, 100, 27, 15 and 27 training classes respectively
while keeping 72, 50, 10, 12 and 10 test classes the same. It is
important to perform hyperparameter search on a disjoint set of
validation set of 65, 50, 13, 5 and 13 classes respectively. We
keep the number of classes the same for SS and PS, however we
choose different classes while making sure that the test classes do
not overlap with the 1K training classes of ImageNet.

ImageNet provides possibilities of constructing several zero-
shot evaluation splits. Following [14], our first two standard splits
consider all the classes that are 2-hops and 3-hops away from
the original 1K classes according to the ImageNet label hierarchy,
corresponding to 1509 and 7678 classes. This split measures the
generalization ability of the models with respect to the hierar-
chical and semantic similarity between classes. As discussed in
the previous section, another characteristic of ImageNet is the
imbalanced sample size. Therefore, our proposed split considers
500, 1K and 5K most populated classes among the remaining 21K
classes of ImageNet with approximately 1756, 1624 and 1335
images per class on average. Similarly, we consider 500, 1K and
5K least-populated classes in ImageNet which correspond to most
fine-grained subsets of ImageNet with approximately 1, 3 and 51
images per class on average. We measure the generalization of
methods to the entire ImageNet data distribution by considering
a final split of all the remaining approximately 20K classes of
ImageNet with at least 1 image per-class, i.e. approximately 631
images per class on average.

5.3 Evaluation Criteria

Single label image classification accuracy has been measured with
Top-1 accuracy, i.e. the prediction is accurate when the predicted
class is the correct one. If the accuracy is averaged for all images,
high performance on densely populated classes is encouraged.
However, we are interested in having high performance also on
sparsely populated classes. Therefore, we average the correct
predictions independently for each class before dividing their
cumulative sum w.r.t the number of classes, i.e. we measure
average per-class top-1 accuracy in the following way:

Il

D

c=1

1 # correct predictions in ¢

g

In the generalized zero-shot learning setting, the search space at
evaluation time is not restricted to only test classes '), but
includes also the training classes V'™, hence this setting is more
practical. As with our proposed split at test time we have access

accy = 21

# samples in ¢

SUN CUB AWAL1 aPY
Model R O R (0] R (0] R [0
DAP [1] 221 222 — — 414 414 19.1 19.1
SSE [13] 83.0 82.5 442 304 649 76.3 45.7 46.2
LATEM [11] — 45.1 455 712 719 — —
SJE [9] — - 50.1 50.1 67.2 66.7 — -
ESZSL [10] 64.3 65.8 — — 48.0 49.3 143 15.1
SYNC [14] 62.8 62.8 53.4 534 69.7 69.7 — -
SAE [33] — - - -  84.7 84.7 - —
GFZSL [41] 86.5 86.5 56.6 56.5 80.4 80.8 — —
GFZSL-tran [41] 87.0 87.0 63.8 63.7 949 943 — -
DSRL [71] 86.0 85.4 57.6 57.1 87.7 87.2 47.8 51.3

TABLE 2: Reproducing zero-shot results with methods that have a
public implementation: O = Original results, R = Reproduced us-
ing provided image features and code. We measure top-1 accuracy
in %. —: image features are not provided in the original paper for
this dataset. Top: ZSL, Bottom: transductive ZSL.

to some images from training classes, after having computed the
average per-class top-1 accuracy on training and test classes, we
compute the harmonic mean of training and test accuracies:

2 % accytr * acCyts

(22)
accytr + accyrs

where accy:~ and accyrs represent the accuracy of images from
seen ("), and images from unseen ()**) classes respectively. We
choose harmonic mean as our evaluation criteria and not arithmetic
mean because in arithmetic mean if the seen class accuracy is
much higher, it effects the overall results significantly. Instead,
our aim is high accuracy on both seen and unseen classes.

6 EXPERIMENTS

We first provide ZSL results on the attribute datasets SUN, CUB,
AWA1, AWA2 and aPY and then on the large-scale ImageNet
dataset. Finally, we present results for the GZSL setting.

6.1 Zero-Shot Learning Experiments

On attribute datasets, i.e. SUN, CUB, AWA1, AWA2, and aPY, we
first reproduce the results of each method using their evaluation
protocol, then provide a unified evaluation protocol using the same
train/val/test class splits, followed by our proposed train/val/test
class splits on SUN, CUB, AWAI1, aPY and AWA2. We also
evaluate the robustness of the methods to parameter tuning and
visualize the ranking of different methods. Finally, we evaluate
the methods on the large-scale ImageNet dataset.

Comparing State-of-The-Art Models. For sanity-check, we re-
evaluate methods [1], [13], [11], [9], [10], [14] and [33] using
publicly available features and code from the original publica-
tion on SUN, CUB, AWAI and aPY (CMT [12] evaluates on



SUN CUB AWAL1 AWA2 aPY

Method SS PS SS PS SS PS SS PS SS PS

DAP [1] 389 399 375 40.0 57.1 44.1 58.7  46.1 35.2 338
IAP [1] 174 194 | 271 24.0 | 481 359 | 469 359 224  36.6
CONSE [15] 442  38.8 36.7 34.3 63.6 45.6 679 445 259 269
CMT [12] 41.9 399 373 346 58.9  39.5 66.3 379 26.9 280
SSE [13] 54.5 51.5 | 43.7 439 68.8  60.1 67.5 61.0 | 31.1  34.0
LATEM [11]  56.9 55.3 | 494 493 74.8  55.1 68.7 55.8 | 34.5 35.2
ALE [30] 59.1 58.1 53.2 549 786  59.9 80.3 625 | 309 39.7
DEVISE [7] 57.5  56.5 53.2 520 729  54.2 68.6 59.7 | 354 39.8
SJE [9] 57.1 53.7 | 55.3 53.9 76.7  65.6 69.5 619 | 32.0 329
ESZSL [10] 57.3 545 55.1 53.9 74.7  58.2 75.6 58.6 | 344 383
SYNC [14] 59.1 56.3 54.1 55.6 | 722 54.0 71.2  46.6 | 39.7 239
SAE [33] 424 40.3 334 333 | 80.6 53.0 | 80.7 54.1 8.3 8.3

GFZSL [41] 629 606 | 53.0 49.3 80.5 683 | 793 63.8 | 51.3 384

TABLE 3: Zero-shot learning results on SUN, CUB, AWA1, AWA2 and aPY using SS = Standard Split, PS = Proposed Split with

ResNet features. The results report top-1 accuracy in %.
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Fig. 3: Robustness of 10 methods evaluated on SUN, CUB, AWAL, aPY using 3 validation set splits (results are on the same test split).
Top: original split, Bottom: proposed split (Image embeddings = ResNet). We measure top-1 accuracy in %.

CIFAR dataset.). We observe from the results in Table 2 that our
reproduced results of DAP[1], SYNC [14], GFZSL [41], GFZSL-
tran [41], DSRL [71] and SAE [33] are nearly identical to the
reported number in their original publications. For LATEM [11],
we obtain slightly different results which can be explained by the
non-convexity and thus the sensibility to initialization. Similarly
for SJE [9] random sampling in SGD might lead to slightly differ-
ent results. ESZSL [10] has some variance because its algorithm
randomly picks a validation set during each run, which leads
to different hyperparameters. Notable observations on SSE [13]
results are as follows. The published code has hard-coded hyperpa-
rameters operational on aPY, i.e. number of iterations, number of
data points to train SVM, and one regularizer parameter v which
lead to inferior results than the ones reported here, therefore we
set these parameters on validation sets. On SUN, SSE uses 10
classes (instead of 72) and our results with validated parameters
got an improvement of 0.5% that may be due to random sampling
of training images. On AWA1, our reproduced result being 64.9%
is significantly lower than the reported result (76.3%). However,
we could not reach the reported result even by tuning parameters
on the test set (73.8%).

In addition to [1], [13], [111, [9], [101, [14], [12], [33], we
re-implement [15], [7], [30] based on the original publications.
We use train, validation, test splits as provided in Table 1 and
report results in Table 3 with deep ResNet features. DAP [1]
uses hand-crafted image features and thus reproduced results with

those features are significantly lower than the results with deep
features (22.1% vs 38.9%). When we investigate the results
in detail, we noticed two irregularities with reported results on
SUN. First, SSE [13] and ESZSL [10] report results on a test
split with 10 classes whereas the standard split of SUN contains
72 test classes (74.5% vs 54.5% with SSE [13] and 64.3% vs
57.3% with ESZSL [10]). Second, after careful examination and
correspondence with the authors of SYNC [14], we detected that
SUN features were extracted with a MIT Places [74] pre-trained
model. As the MIT Places dataset intersects with both training and
test classes of SUN, it is expected to lead to significantly better
results than ImageNet pre-trained models (62.8% vs 59.1%). In
addition, while SAE [33] reported 84.7% on AWAI, we obtain
only 80.7% on the standard split. This could be explained by two
differences. First, we measure per-class accuracy but SAE [33
reports per-image accuracy which is typically higher when the
dataset is class-imbalanced, e.g. AWAL. Indeed, their reported
accuracy decreases to 82.0% if per-class accuracy is applied.
Second, we confirmed with the authors of SAE [33] that they
improved GoogleNet [75] by adding Batch Normalization and
averaging 5 randomly cropped images to obtain better image
features. Therefore, as expected, improving visual features lead
to improved results in zero-shot learning.

Promoting Our Proposed Splits (PS). We propose new dataset
splits (see details in section 4) ensuring that test classes of any of



the datasets do not overlap with the ImageNet1K used to pre-train
ResNet. As training ResNet is a part of the training procedure,
including test classes in the dataset used for pre-training ResNet
would violate the zero-shot learning conditions. We compare the
results obtained with our proposed split (PS) with previously
published standard split (SS) results in Table 3.

Our first observation is that the results on the PS are signifi-
cantly lower than the SS for AWA1 and AWAZ2. This is expected
as most of the test classes of AWA1 and AWA?2 in SS overlaps
with ImageNet 1K. On the other hand, for fine-grained datasets
CUB and SUN, the results are not significantly effected as the
overlap in that case was not as significant. Our second observation
regarding the method ranking is as follows. On SS, SYNC [14] is
the best performing method on SUN (59.1%) and aPY (39.7%)
datasets whereas SJE [9] performs the best on CUB (55.3%)
and SAE [33] performs the best on AWA1 (80.6%) and AWA2
(80.7%) dataset. On PS, ALE [30] performs the best on SUN
(58.1%) and AWA2 (62.5%), SYNC [14] on CUB (55.6%),
SJE [9] on AWA1 (65.6%) and DEVISE [7] on aPY (39.8%).
ALE, SJE and DEVISE all use max-margin bi-linear compatibility
learning framework which seem to perform better than others.
It is also worth to note that SYNC and SAE perform well
on SS, i.e. SYNC is the best performing model for SUN and
aPY whereas SAE is for AWAL and AWA2 on SS, while they
perform significantly lower in PS which indicates that they do not
generalize well in zero-shot learning task.

Evaluating Robustness. We evaluate robustness of 13 methods,
fe. [11, [13], [11], [91, [1O], [14], [12], (151, [7], [30], [33],
[41], to hyperparameters by setting them on 3 different validation
splits while keeping the test split intact. We report results on SS
(Figure 3, top) and PS (Figure 3, bottom) for SUN, CUB, AWALI,
AWA?2 and aPY datasets. On SUN and CUB, the results are stable
across methods and across dataset splits. This is expected as these
datasets both have a balanced number of images across classes
and they are fine-grained datasets. Therefore, the validation splits
are similar. On the other hand, aPY being a small and coarse-
grained dataset has several issues. First, many of the test classes of
aPY are included in ImageNet1K. Second, it is not well balanced,
i.e. different validation class splits contain significantly different
number of images. Third, the class embeddings are far from each
other, i.e. objects are semantically different, therefore different
validation splits learn a different mapping between images and
classes. On AWAT1 and AWA2, on SS, the DEVISE method seems
to show the largest variance. This might be due to the fact that
AWA1 and AWA?2 datasets are also coarse-grained and test classes
overlap with ImageNet training classes. Indeed, AWA2 being
slightly more balanced than AWA1, in the proposed split it does
not lead to such a high variance for DEVISE.

Visualizing Method Ranking. We first evaluate the 13 methods
using three different validation splits as in the previous experi-
ment. We then rank them based on their per-class top-1 accuracy
using the non-parametric Friedman test [76], which does not
assume a distribution on performance but rather uses algorithm
ranking. Each entry of the rank matrix on Figure 4 indicates the
number of times the method is ranked at the first to thirteenth rank.
We then compute the mean rank of each method and order them
based on the mean rank across datasets.

Our general observation is that the highest ranked method on
both splits is GFZSL, the second highest ranked method on the
standard split (SS) is SYNC while it drops to the seventh rank

Rank

12345678 910111213 12345678 910111213
GFzsL[2.6] I3 3 3 GFZSL [2.8] 11 4
SYNC[39] 114313111 ALE[31] (12 2 1 2
ALE [4.5] 10604 1 12 DEVISE[39] |1 16124 1 1
DEVISE[48] |1 1 3 18] 13 SJE[4.6] |1 35 312
ESZSL[50] |21 31422 ESZSL[5.4] |1 5N 7 [ 1
SE[B2(12 2 [Bl3 1 SSE[57]| 2132 1[8l1
LATEM [5.9] 3418 1 LATEM [5.9] 1 552 11
SAE [7.5] |42 3 33 SYNC[69] |21 21 el 12
SSE [8.2] 2Bl3 1 2 DAP [9.4] 22344
CONSE [10.1] 5406 SAE [10.6] 1812 1@\
DAP [10.2] 11 3118 CMT [10.7] zﬂn.
CMT [10.3] 1 1 [élel 1 CONSE [10.8] 1382
IAP [12.8] 3 IAP [11.3] 21

Fig. 4: Ranking 12 models by setting parameters on three vali-
dation splits on the standard (SS, left) and proposed (PS, right)
setting. Element (4, j) indicates number of times model ¢ ranks at
jth over all 4 x 3 observations. Models are ordered by their mean
rank (displayed in brackets).

Training Set : Test Set

Method AWA1:AWA1 AWAIL:AWA2 AWA2:AWA2 AWA2:AWAL
DAP [1] 44.1 44.2 46.1 46.2
IAP [1] 35.9 36.1 35.9 35.3
CONSE [15] 45.6 46.5 44.5 43.7
CMT [12] 39.5 40.7 37.9 37.7
SSE [13] 60.1 61.6 61.0 59.8
LATEM [11] 55.1 55.4 55.8 53.5
ALE [30] 59.9 59.9 62.5 60.9
DEVISE [7] 54.2 55.2 59.7 57.7
SJE [9] 65.6 65.5 61.9 62.0
ESZSL [10] 58.2 58.5 58.6 59.9
SYNC [14] 54.0 53.7 46.6 46.9
SAE [33] 53.0 52.4 54.1 53.1

TABLE 4: Cross-dataset evaluation over AWAI and AWA2 in
zero-shot learning setting on the Proposed Splits: Left of the colon
indicates the training set and right of the colon indicates the test
set, e.g2. AWA1:AWA?2 means that the model is trained on the train
set of AWAI and evaluated on the test set of AWA2. We measure
top-1 accuracy in %.

on the proposed split (PS). On the other hand, ALE ranks the
second on the SS and the first on the PS. We reinforce our initial
observation from numerical results and conclude that GFZSL and
ALE seems to be the method that is the most robust in zero-shot
learning setting for attribute datasets. These results also indicate
the importance of choosing zero-shot splits carefully. On the PS,
the two of three highest ranked methods are compatibility learning
methods, i.e. ALE and DEVISE whereas the three lowest ranked
methods are attribute classifier learning or hybrid methods, i.e.
IAP, CMT and CONSE. Therefore, max-margin compatibility
learning methods lead to consistently better results in the zero-
shot learning task compared to learning independent classifiers.
Finally, visualizing the method ranking in this way provides a
visually interpretable way of how models compare across datasets.

Results on Our Proposed AWA2. We introduce AWA2 which has
the same classes and attributes as AWA1, but contains different
images each coming with a public copyright license. In order
to show that AWAI1 and AWA2 images are not the same but
similar in nature, we compare the zero-shot learning results on
AWAL1 and AWA?2 in Table. 3. Under the Standard Splits (SS),
SAE [33] is the best performing method on both AWA1 (80.6%)
and AWA?2 (80.7%). Similarly, for most of the methods, the results
on AWAT1 are close to those on AWA?2, for instance, DAP obtains
57.1% on AWA1 and 58.7% on AWA?2, SSE obtains 68.8% on
AWAI1 and 67.5% AWAZ2, etc. The results under the Proposed
Splits (PS) are also consistent across AWA1 and AWA2. For 8
out of 12 methods, the performance difference between AWAI1
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Hierarchy Most Populated Least Populated All
Method 2H 3H 500 1K 5K 500 1K 5K 20K
CONSE [15]  7.63  2.18 12.33 8.31 3.22 | 353 269 1.05 | 0.95
CMT [12] 2.88 0.67 5.10 3.04 1.04 | 1.87 1.08 0.33 | 0.29
LATEM [I1] 5.45  1.32 10.81 6.63 1.90 | 453 274 0.76 | 0.50
ALE [30] 5.38  1.32 10.40 6.77 2.00 | 427 285 0.79 | 0.50
DEVISE [7] 525 1.29 10.36 6.68 1.94 | 423 286 0.78 | 0.49
SJE [9] 5.31 1.33 9.88 6.53 199 | 493 293 0.78 | 0.52
ESZSL [10] 6.35  1.51 11.91 7.69 2.34 | 450 323 094 | 0.62
SYNC [14] 9.26 229 | 1583 10.75 342 | 583 3.52 1.26 | 0.96
SAE [33] 4.89 1.26 9.96 6.57 2.09 | 250 217 0.72 | 0.56
GFZSL [41] 1.45 —— 2.01 1.35 —— 140 111 0.13 ——

TABLE 5: ImageNet with different splits: 2/3 H = classes with 2/3 hops away from the )" of ImageNet1K, 500/1K/5K most populated
classes, 500/1K/5K least populated classes, All = The remaining 20K categories of ImageNet ()/**). We measure top-1 accuracy in %.
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Fig. 5: Zero-Shot Learning experiments on Imagenet, measuring Top-1, Top-5 and Top-10 accuracy. 2/3 H = classes with 2/3 hops away
from ImageNetIK training classes (J'"), M500/M1K/M5K denote 500, 1K and 5K most populated classes, L500/L1K/L5K denote
500, 1K and 5K least populated classes, All = The remaining 20K categories of ImageNet.

and AWA?2 is within 2%. On the other hand, the same consistency
is not observed for DEVISE [7], SJE [9] and SYNC [14]. For
instance, SIE [9] obtains 65.6% on AWA1 and 61.9% on AWA2.
After careful examination, we noticed that SJE [9] selects different
hyperparameters for AWA1 and AWA?2, which results in different
performance on those two datasets. In our opinion, this does not
indicate a possible dataset artifact, however shows that zero-shot
learning is sensitive to parameter setting.

Commonly, a model is trained and evaluated on the same
dataset. Across dataset experiments are not easy as different
datasets do not share the same attributes. However, AWA1 and
AWA? share both classes and attributes. In order to verify that
AWA?2 is a good replacement for AWA1, we conduct across-
dataset evaluation for 12 methods, i.e. [1], [13], [11], [9], [10],
[14], [12], [15], [7], [30], [33]. In particular, with our Proposed
Splits (PS), we train one model on the training set of AWAT1 and
evaluate it on the test set of AWA?2 in the zero-shot learning setting,
and vice versa. From Table. 4, we observe that all the models
trained on AWA1 generalize well to AWA?2 and vice versa.

In addition, we notice that the cross-dataset result is dependent
on the training set. For instance, for all the methods, if we
fix training set to be from AWAI, the results on the test set
of AWA1 and AWA2 are close. To verify this hypothesis, we
performed a paired t-test which determines if the mean difference
between paired results is significantly higher than zero. To that
end, we take the 24 pairs of results whose test sets are the same,
i.e. the results obtained with 12 methods on AWA1:AWA2 and
AWA2:AWA?2 (2nd and 3rd column) as well as the results obtained
with 12 methods on AWAI1:AWA1 and AWA2:AWA1 (1st and

4th column). The paired t-test rejects the null hypothesis with p-
value= 0.007, indicating that the results are significantly different
if the test set is the same but the training set is different. As a
conclusion, the training set is an important indicator of the final
result and the two datasets, i.e. AWA1 and AWA?2 are sufficiently
similar. Therefore, our cross-dataset experimental results indicate
that AWA2 is a good replacement for AWAL.

Zero-Shot Learning Results on ImageNet. ImageNet scales the
methods to a truly large-scale setting, thus these experiments
provide further insights on how to tackle the zero-shot learning
problem from the practical point of view. Here, we evaluate 10
methods, i.e. [11], [9], [10], [14], [12], [15], [7], [20], [33], [41].
We exclude DAP and IAP as attributes are not available for all
ImageNet classes as well as SSE [13] due to scalability issues
of the public implementation of the method. Table 5 shows that
the best performing method is SYNC [14] which may either
indicate that it performs well in large-scale setting or it can learn
under uncertainty due to usage of Word2Vec instead of attributes.
Another possibility is Word2Vec may be tuned for SYNC as it
is provided by the same authors. However, we refrain to make
a strong claim as this would requires a full evaluation on class
embeddings which is out of the scope of this paper. On the
other hand, GFZSL [41] which is the best performing model for
attribute datasets perform poorly on ImageNet which may indicate
that generative models require a strong class embedding space
such as attributes to perform well on ZSL task. Note that due to
the computational issues, we were not able to obtain results for
GFZSL for 3H, M5K, L5K and All 20K classes.

More detailed observations are as follows. The second highest
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SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DAP [1] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
TIAP [1] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4
CONSE [15] 6.8 399 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
CMT [12] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8
CMT* [12] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 109 742 19.0
SSE [13] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4
LATEM [11] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2
ALE [30] 21.8 33.1 26.3 | 23.7 62.8 344 | 16.8 76.1 275 14.0 81.8 23.9 4.6 73.7 8.7
DEVISE [7] 16.9 27.4 20.9 | 23.8 53.0 32.8 13.4 68.7 22.4 17.1 747 27.8 4.9 76.9 9.2
SJE [9] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9
ESZSL [10] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
SYNC [14] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
SAE [33] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9
GFZSL [41] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

TABLE 6: Generalized Zero-Shot Learning on Proposed Split (PS) measuring ts = Top-1 accuracy on )**, tr=Top-1 accuracy on J*",
H = harmonic mean (CMT*: CMT with novelty detection). We measure top-1 accuracy in %.

performing method is ESZSL [10] which is one of the linear
embedding models that have an implicit regularization mecha-
nism, which seems to be more effective than early stopping as
an explicit regularizer. A general observation from the results of
all the methods is that in the most populated classes, the results
are higher than the least populated classes which indicates that
zero-shot learning on fine-grained ImageNet subsets is a more
difficult task. Moreover, we conclude that the nature of the test
set, e.g. type of the classes being tested, is more important than
the number of classes. Therefore, the selection of the test set is
an important aspect of zero-shot learning on large-scale datasets.
Furthermore, for all methods we consistently observe a large drop
in accuracy between 1K and 5K most populated classes which is
expected as 5K contains ~ 6.6M images, making the problem
much more difficult than 1K (= 1624 images). It is worth to
note that, measuring per-image accuracy in this case would lead
to higher results if the labels of the highly populated class samples
are predicted correctly. Finally, the largest test set, i.e. All 20K,
the results are poor for all methods which indicates the difficulty
of this problem where there is a large room for improvement.

Several models in the literature evaluate Top-5 and Top-10 as
well as Top-1 accuracy on ImageNet. Top-5 and Top-10 accuracy
in this case is reasonable as an image usually contains multiple
objects however by construction it is associated with a single
label in ImageNet. Hence, we provide a comparison of the same
9 models according to all these three criteria in Figure 5. We
observe that SYNC [14] performs significantly better than other
methods when the number of images is higher, e.g. 2H, M500,
M1K, whereas the gap reduces when the number of images and the
number of classes increase, e.g. 3H, L5K and All. In fact, when for
All, all the methods perform similarly and poorly which indicates
that there is a large room for improvement in this task. In fact, this
observation carries on for all three accuracy measures. For Top-5
(middle) and Top-10 (right) accuracy although the numbers are as
expected in general higher, the winning model remains as SYNC,
significantly for 2H, M500 and M1K whereas the difference is
smaller with 3H, L5SH, L1K. On the other hand, all methods
perform similarly when all 20K classes are tested.

6.2 Generalized Zero-Shot Learning Results

In real world applications, image classification systems do not
have access to whether a novel image belongs to a seen or unseen
class in advance. Hence, generalized zero-shot learning is inter-
esting from a practical point of view. Here, we use same models

trained on ZSL setting on our proposed splits (PS). We evaluate
performance on both Y™ and J** (using held-out images).

As shown in Table 6, generalized zero-shot learning results
are significantly lower than zero-shot learning results. This is due
to the fact that training classes are included in the search space
which act as distractors for the images that come from test classes,
e.g. most of the images that are being evaluated. An interesting
observation is that compatibility learning frameworks, e.g. ALE,
DEVISE, SJE, perform well on test classes. However, methods
that learn independent attribute or object classifiers, e.g. DAP and
CONSE, perform well on training classes. Due to this discrepancy,
we evaluate the harmonic mean which takes a weighted average
of training and test class accuracy as shown in Equation 17. The
harmonic mean measure ranks ALE as the best performing method
on SUN, CUB and AWA1 datasets whereas on our AWA?2 dataset
DEVISE performs the best and on aPY dataset CMT* performs
the best. Note that CMT* has an integrated novelty detection
phase for which the method receives another supervision signal
determining if the image belongs to a training or a test class.
Similar to the ImageNet results, GFZSL [41] performs poorly on
GZSL setting.

As for the generalized zero-shot learning setting on ImageNet,
we report results measured on unseen classes as no images are
reserved from seen classes on Figure 6. Our first observation is
that there is no winner model in all cases, the results diverge
for different splits and different accuracy measures. For instance,
when the performance is measured with Top-1 accuracy, in general
the best performing model seems to be DEVISE, ALE and SJE
which are all linear compatibility learning models. On the other
hand, for Top-5 accuracy different models take the lead in different
splits, e.g. CONSE works the best for 3H and M5K indicating
that it performs better when the number of images that come
from unseen classes is larger. Whereas SJE and ESZSL works
better for 2H, M500, L5H settings. Finally, for Top-10 accuracy,
the best performing model overall is ESZSL which is the model
that learns a linear compatibility with an explicit regularization
scheme. Finally, for Top-1, Top-5 and Top-10 results we observe
the same trend for when all the unseen classes are included in the
test set, i.e. the models perform similarly however CONSE slightly
stands out for Top-5 and Top-10 accuracy plots.

In summary, generalized zero-shot learning setting provides
one more level of detail on the performance of zero-shot learning
methods. Our take-home message is that the accuracy of training
classes is as important as the accuracy of test classes in real world
scenarios. Therefore, methods should be designed in a way that
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Fig. 7: Ranking 13 models on the proposed split (PS) in general-
ized zero-shot learning setting. Top-Left: Top-1 accuracy (T1) is
measured on unseen classes (ts), Top-Right: T1 is measured on
seen classes (tr), Bottom: T1 is measured on Harmonic mean (H).

they are able to predict labels well both in train and test classes.

Visualizing Method Ranking. Similar to the analysis in the
previous section that was conducted for zero-shot learning setting,
we rank the 13 methods, i.e. [1], [12], [11], [9], [10], [14], [12],
[15], [7], [30], [33], [41], based on their results obtained on SUN,
CUB, AWA1, AWA2 and aPY. The performance is measured on
seen classes, unseen classes and the Harmonic mean of the two.
The rank matrix of test classes, i.e. Figure 7 top left, shows
that highest ranked methods,i.e. ALE, DEVISE, SJE, although
overall the absolute accuracy numbers are lower (Table 6). Note
that in Figure 4 GFZSL ranked highest which shows that GFZSL
is not as strong for GZSL task. The rank matrix of the harmonic
mean shows the same trend. However, the rank matrix of training
classes, i.e. Figure 7 top right, shows that models that learn
intermediate attribute classifiers perform well for the images that
come from training classes. However, these models typically do
not lead to a high accuracy for the images that belong to unseen
classes as shown in Table 6. This eventually makes the harmonic
mean, i.e. the overall accuracy on both training and test classes,
lower. These results clearly suggest that one should not only
optimize for test class accuracy but also for training class accuracy

while evaluating generalized zero-shot learning.

Our final observation from Figure 7 is that CMT#* is better
than CMT in all cases which supports the argument that a simple
novelty detection scheme helps to improve results. However, it is
important to note that the proposed novelty detection mechanism
uses more supervision than classic zero-shot learning models.
Although the label of test classes is not used, whether the sample
comes from a seen or unseen class is an additional supervision.

6.3 Transductive (Generalized) Zero-Shot Learning

In contrast to previous zero-shot learning approaches that learn
only with data from training classes, transductive approaches use
unlabaled images from test classes. In this section, we evaluate
three state-of-the-art transductive ZSL approaches, i.e. DSRL [71],
GFZSL-tran [41], and ALE-tran [30]. Similar to the previous
section, we evaluate those approaches on our proposed splits in
both zero-shot learning where test time search space is composed
of only unseen classes and generalized zero-shot learning where
it contains both seen and unseen classes. The performance is per-
class averaged top-1 accuracy.

Our transductive learning results are presented in Figure 8.
We observe that in ZSL setting, transductive learning leads to ac-
curacy improvement, e.g. ALE-tran and GFZSL-tran outperforms
ALE and GFZSL respectively in almost all cases. In particular,
on AWA?2, GFZSL-tran achieves 78.6%, significantly improving
GFZSL (63.8%). On APY, ALE-tran obtains 45.5% and signif-
icantly improves ALE (37.1%) as well. Moreover, GFZSL-tran
outperforms ALE-tran and DSRL on SUN, AWA1 and AWA2.
However, ALE-tran performs the best on CUB and APY. In GZSL
setting we observe a different trend, i.e. transductive learning does
not improve results for ALE in any of the datasets. Although,
on AWA1 and AWA2 GFZSL results improve significantly for
the transductive learning setting, on other datasets GFZSL model
performs poorly both in inductive and in transductive settings.

7 CONCLUSION

In this work, we evaluated a significant number of state-of-the-art
zero-shot learning methods, i.e. [1], [13], [11], [9], [10], [14], [12],
[15], [71, [30], [33], [41], [71], on several datasets, i.e. SUN, CUB,
AWAL1, AWA2, aPY and ImageNet, within a unified evaluation
protocol both in zero-shot and generalized zero-shot settings.

Our evaluation showed that generative models and compatibil-
ity learning frameworks have an edge over learning independent
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object or attribute classifiers and also over other hybrid mod-
els for the classic zero-shot learning setting. We observed that
unlabeled data of unseen classes can further improve the zero-
shot learning results, thus it is not fair to compare transductive
learning approaches with inductive ones. We discovered that some
standard zero-shot dataset splits may treat feature learning disjoint
from the training stage as several test classes are included in the
ImageNet1K dataset that is used to train the deep neural networks
that act as feature extractor. Therefore, we proposed new dataset
splits making sure that none of the test classes in none of the
datasets belong to ImageNet1K. Moreover, disjoint training and
validation class split is a necessary component of parameter tuning
in zero-shot learning setting.

In addition, we introduced a new Animal with Attributes
(AWA?2) dataset. AWA?2 inherits the same 50 classes and attributes
annotations from the original Animal with Attributes (AWAI)
dataset, but consists of different 37,322 images with publicly
available redistribution license. Our experimental results showed
that the 12 methods that we evaluated perform similarly on AWA2
and AWA1. Moreover, our statistical consistency test indicated that
AWAL1 and AWA?2 are compatible with each other.

Finally, including training classes in the search space while
evaluating the methods, i.e. generalized zero-shot learning, pro-
vides an interesting playground for future research. Although the
generalized zero-shot learning accuracy obtained with 13 models
compared to their zero-shot learning accuracy is significantly
lower, the relative performance comparison of different models
remain the same. Having noticed that some models perform well
when the test set is composed only of seen classes, while some
others perform well when the test set is composed of only of
unseen classes, we proposed the Harmonic mean of seen and
unseen class accuracy as a unified measure for performance in
GZSL setting. The Harmonic mean encourages the models to
perform well on both seen and unseen class samples, which is
closer to a real world setting. In summary, our work extensively
evaluated the good and bad aspects of zero-shot learning while
sanitizing the ugly ones.
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