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Abstract

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.

1 Introduction

History tells us that scientific progress is im-
perfect. Intellectual traditions and available
tooling can prejudice scientists against cer-
tain ideas and towards others (Kuhn, 1962).
This adds noise to the marketplace of ideas,
and often means there is inertia in recogniz-
ing promising directions of research. In the
field of artificial intelligence research, this es-
say posits that it is our tooling which has
played a disproportionate role in deciding
what ideas succeed (and which fail).

What follows is part position paper and part
historical review. This essay introduces the
term hardware lottery to describe when a
research idea wins because it is compatible
with available software and hardware and
not because the idea is superior to alter-
native research directions. We argue that
choices about software and hardware have
often played a decisive role in deciding the
winners and losers in early computer science
history.

These lessons are particularly salient as we
move into a new era of closer collabora-

tion between hardware, software and ma-
chine learning research communities. Af-
ter decades of treating hardware, software
and algorithms as separate choices, the cat-
alysts for closer collaboration include chang-
ing hardware economics (Hennessy, 2019), a
“bigger is better” race in the size of deep
learning architectures (Amodei et al., 2018;
Thompson et al., 2020b) and the dizzying re-
quirements of deploying machine learning to
edge devices (Warden & Situnayake, 2019).

Closer collaboration has centered on a wave
of new generation hardware that is "domain
specific" to optimize for commercial use cases
of deep neural networks (Jouppi et al., 2017;
Gupta & Tan, 2019; ARM, 2020; Lee &
Wang, 2018). While domain specialization
creates important efficiency gains for main-
stream research focused on deep neural net-
works, it arguably makes it more even more
costly to stray off of the beaten path of re-
search ideas. An increasingly fragmented
hardware landscape means that the gains
from progress in computing will be increas-
ingly uneven. While deep neural networks
have clear commercial use cases, there are
early warning signs that the path to the next
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Figure 1: Early computers such as the Mark I were single use and were not expected to be re-
purposed. While Mark I could be programmed to compute different calculations, it was essentially
a very powerful calculator and could not run the variety of programs that we expect of our modern
day machines.

breakthrough in AI may require an entirely
different combination of algorithm, hardware
and software.

This essay begins by acknowledging a cru-
cial paradox: machine learning researchers
mostly ignore hardware despite the role it
plays in determining what ideas succeed. In
Section 2 we ask what has incentivized the
development of software, hardware and ma-
chine learning research in isolation? Sec-
tion 3 considers the ramifications of this
siloed evolution with examples of early hard-
ware and software lotteries. Today the
hardware landscape is increasingly hetero-
geneous. This essay posits that the hard-
ware lottery has not gone away, and the
gap between the winners and losers will
grow increasingly larger. Sections 4-5 un-
pack these arguments and Section 6 con-
cludes with some thoughts on what it will
take to avoid future hardware lotteries.

2 Separate Tribes

It is not a bad description of man to describe
him as a tool making animal.

Charles Babbage, 1851

For the creators of the first computers the
program was the machine. Early machines
were single use and were not expected to
be re-purposed for a new task because of
both the cost of the electronics and a lack of
cross-purpose software. Charles Babbage’s

difference machine was intended solely to
compute polynomial functions (1817)(Col-
lier, 1991). Mark I was a programmable cal-
culator (1944)(Isaacson, 2014). Rosenblatt’s
perceptron machine computed a step-wise
single layer network (1958)(Van Der Mals-
burg, 1986). Even the Jacquard loom, which
is often thought of as one of the first pro-
grammable machines, in practice was so ex-
pensive to re-thread that it was typically
threaded once to support a pre-fixed set of
input fields (1804)(Posselt, 1888).

The specialization of these early computers
was out of necessity and not because com-
puter architects thought one-off customized
hardware was intrinsically better. However,
it is worth pointing out that our own intelli-
gence is both algorithm and machine. We do
not inhabit multiple brains over the course of
our lifetime. Instead, the notion of human in-
telligence is intrinsically associated with the
physical 1400g of brain tissue and the pat-
terns of connectivity between an estimated
85 billion neurons in your head (Sainani,
2017). When we talk about human intelli-
gence, the prototypical image that probably
surfaces as you read this is of a pink ridged
cartoon blob. It is impossible to think of our
cognitive intelligence without summoning up
an image of the hardware it runs on.

Today, in contrast to the necessary special-
ization in the very early days of computing,
machine learning researchers tend to think
of hardware, software and algorithm as three
separate choices. This is largely due to a pe-
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Figure 2: Our own cognitive intelligence is inex-
tricably both hardware and algorithm. We do not
inhabit multiple brains over our lifetime.

riod in computer science history that radi-
cally changed the type of hardware that was
made and incentivized hardware, software
and machine learning research communities
to evolve in isolation.

2.1 The General Purpose Era

The general purpose computer era crystal-
lized in 1969, when an opinion piece by
a young engineer called Gordan Moore ap-
peared in Electronics magazine with the apt
title “Cramming more components onto cir-
cuit boards”(Moore, 1965). Moore predicted
you could double the amount of transistors
on an integrated circuit every two years.
Originally, the article and subsequent follow-
up was motivated by a simple desire – Moore
thought it would sell more chips. However,
the prediction held and motivated a remark-
able decline in the cost of transforming en-
ergy into information over the next 50 years.

Moore’s law combined with Dennard scal-
ing (Dennard et al., 1974) enabled a factor
of three magnitude increase in microproces-
sor performance between 1980-2010 (CHM,
2020). The predictable increases in compute
and memory every two years meant hard-
ware design became risk-averse. Even for
tasks which demanded higher performance,
the benefits of moving to specialized hard-
ware could be quickly eclipsed by the next
generation of general purpose hardware with
ever growing compute.

The emphasis shifted to universal proces-
sors which could solve a myriad of different
tasks. Why experiment on more specialized
hardware designs for an uncertain reward
when Moore’s law allowed chip makers to
lock in predictable profit margins? The few
attempts to deviate and produce specialized
supercomputers for research were financially
unsustainable and short lived (Asanovic,
2018; Taubes, 1995). A few very narrow
tasks like mastering chess were an exception
to this rule because the prestige and visibil-
ity of beating a human adversary attracted
corporate sponsorship (Moravec, 1998).

Treating the choice of hardware, software
and algorithm as independent has persisted
until recently. It is expensive to explore new
types of hardware, both in terms of time
and capital required. Producing a next gen-
eration chip typically costs $30-80 million
dollars and 2-3 years to develop (Feldman,
2019). These formidable barriers to entry
have produced a hardware research culture
that might feel odd or perhaps even slow
to the average machine learning researcher.
While the number of machine learning pub-
lications has grown exponentially in the last
30 years (Dean, 2020), the number of hard-
ware publications have maintained a fairly
even cadence (Singh et al., 2015). For a hard-
ware company, leakage of intellectual prop-
erty can make or break the survival of the
firm. This has led to a much more closely
guarded research culture.

In the absence of any lever with which
to influence hardware development, machine
learning researchers rationally began to treat
hardware as a sunk cost to work around
rather than something fluid that could be
shaped. However, just because we have ab-
stracted away hardware does not mean it
has ceased to exist. Early computer sci-
ence history tells us there are many hardware
lotteries where the choice of hardware and
software has determined which ideas succeed
(and which fail).

3 The Hardware Lottery

I suppose it is tempting, if the only tool you
have is a hammer, to treat everything as if it
were a nail.

Abraham Maslow, 1966.

The first sentence of Anna Karenina by Tol-
stoy reads “Happy families are all alike, every
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Figure 3: The analytical engine designed by Charles Babbage was never built in part because he
had difficulty fabricating parts with the correct precision. This image depicts the general plan of the
analytical machine in 1840.

unhappy family is unhappy in it’s own way.”
(Tolstoy & Bartlett, 2016). Tolstoy is saying
that it takes many different things for a mar-
riage to be happy – financial stability, chem-
istry, shared values, healthy offspring. How-
ever, it only takes one of these aspects to not
be present for a family to be unhappy. This
has been popularized as the Anna Karenina
principle – “a deficiency in any one of a num-
ber of factors dooms an endeavor to failure.”
(Moore, 2001).

Despite our preference to believe algorithms
succeed or fail in isolation, history tells us
that most computer science breakthroughs
follow the Anna Karenina principle. Suc-
cessful breakthroughs are often distinguished
from failures by benefiting from multiple cri-
teria aligning serendipitously. For AI re-
search, this often depends upon winning
what this essay terms the hardware lottery
— avoiding possible points of failure in down-
stream hardware and software choices.

An early example of a hardware lottery is the
analytical machine (1837). Charles Babbage
was a computer pioneer who designed a ma-
chine that (at least in theory) could be pro-
grammed to solve any type of computation.
His analytical engine was never built in part
because he had difficulty fabricating parts
with the correct precision (Kurzweil, 1990).
The electromagnetic technology to actually
build the theoretical foundations laid down

by Babbage only surfaced during WWII. In
the first part of the 20th century, electronic
vacuum tubes were heavily used for radio
communication and radar. During WWII,
these vacuum tubes were re-purposed to pro-
vide the compute power necessary to break
the German enigma code (Project, 2018).

As noted in the TV show Silicon Valley, often
“being too early is the same as being wrong.”
When Babbage passed away in 1871, there
was no continuous path between his ideas
and modern day computing. The concept of
a stored program, modifiable code, memory
and conditional branching were rediscovered
a century later because the right tools existed
to empirically show that the idea worked.

3.1 The Lost Decades

Perhaps the most salient example of the dam-
age caused by not winning the hardware lot-
tery is the delayed recognition of deep neural
networks as a promising direction of research.
Most of the algorithmic components to make
deep neural networks work had already been
in place for a few decades: backpropaga-
tion (invented in 1963 (K & Piske, 1963),
reinvented in 1976 (Linnainmaa, 1976), and
again in 1988 (Rumelhart et al., 1988)), deep
convolutional neural networks ((Fukushima
& Miyake, 1982), paired with backpropaga-
tion in 1989 (LeCun et al., 1989)). However,
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it was only three decades later that deep
neural networks were widely accepted as a
promising research direction.

This gap between algorithmic advances and
empirical success is in large part due to in-
compatible hardware. During the general
purpose computing era, hardware like CPUs
were heavily favored and widely available.
CPUs are very good at executing any set of
complex instructions but incur high memory
costs because of the need to cache interme-
diate results and process one instruction at
a time (Sato, 2018). This is known as the
von Neumann Bottleneck — the available
compute is restricted by “the lone channel
between the CPU and memory along which
data has to travel sequentially” (Time, 1985).

The von Neumann bottleneck was terribly ill-
suited to matrix multiplies, a core component
of deep neural network architectures. Thus,
training on CPUs quickly exhausted memory
bandwidth and it simply wasn’t possible to
train deep neural networks with multiple lay-
ers. The need for hardware that supported
tasks with lots of parallelism was pointed out
as far back as the early 1980s in a series
of essays titled “Parallel Models of Associa-
tive Memory” (Hinton & Anderson, 1989).
The essays argued persuasively that biolog-
ical evidence suggested massive parallelism
was needed to make deep neural network ap-
proaches work (Rumelhart et al., 1986).

In the late 1980/90s, the idea of specialized
hardware for neural networks had passed the
novelty stage (Misra & Saha, 2010; Lind-
sey & Lindblad, 1994; Dean, 1990). How-
ever, efforts remained fractured by lack of
shared software and the cost of hardware de-
velopment. Most of the attempts that were
actually operationalized like the Connection
Machine in 1985 (Taubes, 1995), Space in
1992 (Howe & Asanović, 1994), Ring Ar-
ray Processor in 1989 (Morgan et al., 1992)
and the Japanese 5th generation computer
project (Morgan, 1983) were designed to fa-
vor logic programming such as PROLOG and
LISP that were poorly suited to connection-
ist deep neural networks. Later iterations
such as HipNet-1 (Kingsbury et al., 1998),
and the Analog Neural Network Chip in 1991
(Sackinger et al., 1992) were promising but
short lived because of the intolerable cost
of iteration and the need for custom silicon.
Without a consumer market, there was sim-
ply not the critical mass of end users to be
financially viable.

Figure 4: The connection machine was one of
the few examples of hardware that deviated from
general purpose cpus in the 1980s/90s. Think-
ing Machines ultimately went bankrupt after the
inital funding from DARPA dried up.

It would take a hardware fluke in the early
2000s, a full four decades after the first pa-
per about backpropagation was published,
for the insight about massive parallelism to
be operationalized in a useful way for connec-
tionist deep neural networks. Many inven-
tions are re-purposed for means unintended
by their designers. Edison’s phonograph was
never intended to play music. He envisioned
it as preserving the last words of dying peo-
ple or teaching spelling. In fact, he was dis-
appointed by its use playing popular music
as he thought this was too “base” an applica-
tion of his invention (Diamond et al., 1999).
In a similar vein, deep neural networks only
began to work when an existing technology
was unexpectedly re-purposed.

A graphical processing unit (GPU) was origi-
nally introduced in the 1970s as a specialized
accelerator for video games and for develop-
ing graphics for movies and animation. In
the 2000s, like Edison’s phonograph, GPUs
were re-purposed for an entirely unimag-
ined use case – to train deep neural net-
works (Chellapilla et al., 2006; Oh & Jung,
2004; Claudiu Ciresan et al., 2010; Fata-
halian et al., 2004; Payne et al., 2005). GPUs
had one critical advantage over CPUs - they
were far better at parallelizing a set of sim-
ple decomposable instructions such as matrix
multiples (Brodtkorb et al., 2013; Dettmers,
2020). This higher number of floating oper-
ation points per second (FLOPS) combined
with clever distribution of training between
GPUs unblocked the training of deeper net-
works. The number of layers in a network
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turned out to be the key. Performance on Im-
ageNet jumped with ever deeper networks in
2011 (Ciresan et al., 2011), 2012 (Krizhevsky
et al., 2012) and 2015 (Szegedy et al., 2015b).
A striking example of this jump in efficiency
is a comparison of the now famous 2012
Google paper which used 16,000 CPU cores
to classify cats (Le et al., 2012) to a paper
published a mere year later that solved the
same task with only two CPU cores and four
GPUs (Coates et al., 2013).

Figure 5: Byte magazine cover, August 1979,
volume 4. LISP was the dominant language
for artificial intelligence research through the
1990’s. LISP was particularly well suited to han-
dling logic expressions, which were a core com-
ponent of reasoning and expert systems.

3.2 Software Lotteries

Software also plays a role in deciding which
research ideas win and lose. Prolog and LISP
were two languages heavily favored until the
mid-90’s in the AI community. For most
of this period, students of AI were expected
to actively master one or both of these lan-
guages (Lucas & van der Gaag, 1991). LISP
and Prolog were particularly well suited to
handling logic expressions, which were a core
component of reasoning and expert systems.

For researchers who wanted to work on con-
nectionist ideas like deep neural networks
there was not a clearly suited language of
choice until the emergence of Matlab in 1992
(Demuth & Beale, 1993). Implementing con-

nectionist networks in LISP or Prolog was
cumbersome and most researchers worked in
low level languages like c++ (Touretzky &
Waibel, 1995). It was only in the 2000’s that
there started to be a more healthy ecosys-
tem around software developed for deep neu-
ral network approaches with the emergence
of LUSH (Lecun & Bottou, 2002) and subse-
quently TORCH (Collobert et al., 2002).

Where there is a loser, there is also a winner.
From the 1960s through the mid 80s, most
mainstream research was focused on sym-
bolic approaches to AI (Haugeland, 1985).
Unlike deep neural networks where learning
an adequate representation is delegated to
the model itself, symbolic approaches aimed
to build up a knowledge base and use de-
cision rules to replicate how humans would
approach a problem. This was often codi-
fied as a sequence of logic what-if statements
that were well suited to LISP and PROLOG.
The widespread and sustained popularity of
symbolic approaches to AI cannot easily be
seen as independent of how readily it fit into
existing programming and hardware frame-
works.

4 The Persistence of the Hardware
Lottery

Today, there is renewed interest in joint col-
laboration between hardware, software and
machine learning communities. We are ex-
periencing a second pendulum swing back to
specialized hardware. The catalysts include
changing hardware economics prompted by
the end of Moore’s law and the breakdown
of Dennard scaling (Hennessy, 2019), a “big-
ger is better” race in the number of model
parameters that has gripped the field of ma-
chine learning (Amodei et al., 2018), spi-
ralling energy costs (Horowitz, 2014; Strubell
et al., 2019) and the dizzying requirements of
deploying machine learning to edge devices
(Warden & Situnayake, 2019).

The end of Moore’s law means we are not
guaranteed more compute, hardware will
have to earn it. To improve efficiency, there
is a shift from task agnostic hardware like
CPUs to domain specialized hardware that
tailor the design to make certain tasks more
efficient. The first examples of domain spe-
cialized hardware released over the last few
years – TPUs (Jouppi et al., 2017), edge-
TPUs (Gupta & Tan, 2019), Arm Cortex-
M55 (ARM, 2020), Facebook’s big sur (Lee
& Wang, 2018) – optimize explicitly for
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costly operations common to deep neural
networks like matrix multiplies.

Closer collaboration between hardware and
research communities will undoubtedly con-
tinue to make the training and deployment of
deep neural networks more efficient. For ex-
ample, unstructured pruning (Hooker et al.,
2019; Gale et al., 2019; Evci et al., 2019)
and weight specific quantization (Zhen et al.,
2019) are very successful compression tech-
niques in deep neural networks but are in-
compatible with current hardware and com-
pilation kernels.

While these compression techniques are cur-
rently not supported, many clever hardware
architects are currently thinking about how
to solve for this. It is a reasonable predic-
tion that the next few generations of chips or
specialized kernels will correct for hardware
biases against these techniques (Wang et al.,
2018; Sun et al., 2020). Some of the first de-
signs to facilitate sparsity have already hit
the market (Krashinsky et al., 2020). In par-
allel, there is interesting research developing
specialized software kernels to support un-
structured sparsity (Elsen et al., 2020; Gale
et al., 2020; Gray et al., 2017).

In many ways, hardware is catching up to
the present state of machine learning re-
search. Hardware is only economically viable
if the lifetime of the use case lasts more than
three years (Dean, 2020). Betting on ideas
which have longevity is a key consideration
for hardware developers. Thus, co-design ef-
fort has focused almost entirely on optimiz-
ing an older generation of models with known
commercial use cases. For example, matrix
multiplies are a safe target to optimize for
because they are here to stay — anchored
by the widespread use and adoption of deep
neural networks in production systems. Al-
lowing for unstructured sparsity and weight
specific quantization are also safe targets be-
cause there is wide consensus that these will
enable higher levels of compression.

There is still a separate question of whether
hardware innovation is versatile enough to
unlock or keep pace with entirely new ma-
chine learning research directions. It is dif-
ficult to answer this question because data
points here are limited – it is hard to model
the counterfactual of would this idea succeed
given different hardware. However, despite
the inherent challenge of this task, there is al-
ready compelling evidence that domain spe-
cialized hardware makes it more costly for

research ideas that stray outside of the main-
stream to succeed.

In 2019, a paper was published called “Ma-
chine learning is stuck in a rut.” (Barham
& Isard, 2019). The authors consider the
difficulty of training a new type of com-
puter vision architecture called capsule net-
works (Sabour et al., 2017) on domain spe-
cialized hardware. Capsule networks include
novel components like squashing operations
and routing by agreement. These architec-
ture choices aimed to solve for key deficien-
cies in convolutional neural networks (lack
of rotational invariance and spatial hierarchy
understanding) but strayed from the typical
architecture of neural networks. As a re-
sult, while capsule networks operations can
be implemented reasonably well on CPUs,
performance falls off a cliff on accelerators
like GPUs and TPUs which have been overly
optimized for matrix multiplies.

Whether or not you agree that capsule net-
works are the future of computer vision, the
authors say something interesting about the
difficulty of trying to train a new type of im-
age classification architecture on domain spe-
cialized hardware. Hardware design has pri-
oritized delivering on commercial use cases,
while built-in flexibility to accommodate the
next generation of research ideas remains a
distant secondary consideration.

While specialization makes deep neural net-
works more efficient, it also makes it far
more costly to stray from accepted build-
ing blocks. It prompts the question of how
much researchers will implicitly overfit to
ideas that operationalize well on available
hardware rather than take a risk on ideas
that are not currently feasible? What are
the failures we still don’t have the hardware
and software to see as a success?

5 The Likelyhood of Future
Hardware Lotteries

What we have before us are some breathtaking
opportunities disguised as insoluble problems.

John Gardner, 1965.

It is an ongoing, open debate within the ma-
chine learning community about how much
future algorithms will differ from models like
deep neural networks (Sutton, 2019; Welling,
2019). The risk you attach to depending on
domain specialized hardware is tied to your
position on this debate. Betting heavily on
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specialized hardware makes sense if you think
that future breakthroughs depend upon pair-
ing deep neural networks with ever increasing
amounts of data and computation.

Several major research labs are making this
bet, engaging in a “bigger is better” race in
the number of model parameters and col-
lecting ever more expansive datasets. How-
ever, it is unclear whether this is sustainable.
An algorithms scalability is often thought of
as the performance gradient relative to the
available resources. Given more resources,
how does performance increase?

For many subfields, we are now in a regime
where the rate of return for additional pa-
rameters is decreasing (Thompson et al.,
2020a; Brown et al., 2020). For example,
while the parameters almost double between
Inception V3 (Szegedy et al., 2016)and In-
ception V4 architectures (Szegedy et al.,
2015a) (from 21.8 to 41.1 million parame-
ters), accuracy on ImageNet differs by less
than 2% between the two networks (78.8 vs
80 %) (Kornblith et al., 2018). The cost of
throwing additional parameters at a problem
is becoming painfully obvious. The training
of GPT-3 alone is estimated to exceed $12
million dollars (Wiggers, 2020).

Perhaps more troubling is how far away
we are from the type of intelligence hu-
mans demonstrate. Human brains despite
their complexity remain extremely energy ef-
ficient. Our brain has over 85 billion neurons
but runs on the energy equivalent of an elec-
tric shaver (Sainani, 2017). While deep neu-
ral networks may be scalable, it may be pro-
hibitively expensive to do so in a regime of
comparable intelligence to humans. An apt
metaphor is that we appear to be trying to
build a ladder to the moon.

Biological examples of intelligence differ from
deep neural networks in enough ways to sug-
gest it is a risky bet to say that deep neural
networks are the only way forward. While
algorithms like deep neural networks rely on
global updates in order to learn a useful rep-
resentation, our brains do not. Our own
intelligence relies on decentralized local up-
dates which surface a global signal in ways
that are still not well understood (Lillicrap
& Santoro, 2019; Marblestone et al., 2016;
Bi & Poo, 1998).

In addition, our brains are able to learn effi-
cient representations from far fewer labelled
examples than deep neural networks (Zador,
2019). For typical deep learning models the

Figure 6: Human latency for certain tasks sug-
gests we have specialized pathways for different
stimuli. For example, it is easy for a human to
walk and talk at the same time. However, it is far
more cognitively taxing to attempt to read and
talk.

entire model is activated for every example
which leads to a quadratic blow-up in train-
ing cost. In contrast, evidence suggests that
the brain does not perform a full forward
and backward pass for all inputs. Instead,
the brain simulates what inputs are expected
against incoming sensory data. Based upon
the certainty of the match, the brain sim-
ply infills. What we see is largely virtual re-
ality computed from memory (Eagleman &
Sejnowski, 2000; Bubic et al., 2010; Heeger,
2017).

Humans have highly optimized and specific
pathways developed in our biological hard-
ware for different tasks (Von Neumann et al.,
2000; Marcus et al., 2014; Kennedy, 2000).
For example, it is easy for a human to walk
and talk at the same time. However, it is
far more cognitively taxing to attempt to
read and talk (Stroop, 1935). This suggests
the way a network is organized and our in-
ductive biases is as important as the overall
size of the network (Herculano-Houzel et al.,
2014; Battaglia et al., 2018; Spelke & Kin-
zler, 2007). Our brains are able to fine-tune
and retain skills across our lifetime (Benna
& Fusi, 2016; Bremner et al., 2013; Stein
et al., 2004; Tani & Press, 2016; Gallistel &
King, 2009; Tulving, 2002; Barnett & Ceci,
2002). In contrast, deep neural networks that
are trained upon new data often evidence
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catastrophic forgetting, where performance
deteriorates on the original task because the
new information interferes with previously
learned behavior (Mcclelland et al., 1995;
McCloskey & Cohen, 1989; Parisi et al.,
2018).

The point of these examples is not to con-
vince you that deep neural networks are not
the way forward. But, rather that there
are clearly other models of intelligence which
suggest it may not be the only way. It is
possible that the next breakthrough will re-
quire a fundamentally different way of mod-
elling the world with a different combination
of hardware, software and algorithm. We
may very well be in the midst of a present
day hardware lottery.

6 The Way Forward

Any machine coding system should be judged
quite largely from the point of view of how
easy it is for the operator to obtain results.

John Mauchly, 1973.

Scientific progress occurs when there is a con-
fluence of factors which allows the scientist
to overcome the "stickyness" of the exist-
ing paradigm. The speed at which paradigm
shifts have happened in AI research have
been disproportionately determined by the
degree of alignment between hardware, soft-
ware and algorithm. Thus, any attempt
to avoid hardware lotteries must be con-
cerned with making it cheaper and less time-
consuming to explore different hardware-
software-algorithm combinations.

This is easier said than done. Expanding the
search space of possible hardware-software-
algorithm combinations is a formidable goal.
It is expensive to explore new types of hard-
ware, both in terms of time and capital re-
quired. Producing a next generation chip
typically costs $30-80 million dollars and
takes 2-3 years to develop (Feldman, 2019).
The fixed costs alone of building a man-
ufacturing plant are enormous; estimated
at $7 billion dollars in 2017 (Thompson &
Spanuth, 2018).

Experiments using reinforcement learning to
optimize chip placement may help decrease
cost (Mirhoseini et al., 2020). There is also
renewed interest in re-configurable hardware
such as field program gate array (FPGAs)
(Hauck & DeHon, 2007) and coarse-grained
reconfigurable arrays (CGRAs) (Prabhakar

et al., 2017). These devices allow the chip
logic to be re-configured to avoid being
locked into a single use case. However, the
trade-off for flexibility is far higher FLOPS
and the need for tailored software develop-
ment. Coding even simple algorithms on FP-
GAs remains very painful and time consum-
ing (Shalf, 2020).

In the short to medium term hardware de-
velopment is likely to remain expensive.
The cost of producing hardware is impor-
tant because it determines the amount of
risk and experimentation hardware develop-
ers are willing to tolerate. Investment in
hardware tailored to deep neural networks is
assured because neural networks are a cor-
nerstone of enough commercial use cases.
The widespread profitability of deep learn-
ing has spurred a healthy ecosystem of hard-
ware startups that aim to further accelerate
deep neural networks (Metz, 2018) and has
encouraged large companies to develop cus-
tom hardware in-house (Falsafi et al., 2017;
Jouppi et al., 2017; Lee & Wang, 2018).

The bottleneck will continue to be fund-
ing hardware for use cases that are not
immediately commercially viable. These
more risky directions include biological hard-
ware (Tan et al., 2007; Macía & Sole,
2014; Kriegman et al., 2020), analog hard-
ware with in-memory computation (Ambro-
gio et al., 2018), neuromorphic computing
(Davies, 2019), optical computing (Lin et al.,
2018), and quantum computing based ap-
proaches (Cross et al., 2019). There are also
high risk efforts to explore the development
of transistors using new materials (Colwell,
2013; Nikonov & Young, 2013).

Lessons from previous hardware lotteries
suggest that investment must be sustained
and come from both private and public fund-
ing programs. There is a slow awakening of
public interest in providing such dedicated
resources, such as the 2018 DARPA Elec-
tronics Resurgence Initiative which has com-
mitted to 1.5 billion dollars in funding for mi-
croelectronic technology research (DARPA,
2018). China has also announced a 47 bil-
lion dollar fund to support semiconductor re-
search (Kubota, 2018). However, even in-
vestment of this magnitude may still be woe-
fully inadequate, as hardware based on new
materials requires long lead times of 10-20
years and public investment is currently far
below industry levels of R&D (Shalf, 2020).

9



Figure 7: Byte magazine cover, March 1979,
volume 4. Hardware design remains risk adverse
due to the large amount of capital and time re-
quired to fabricate each new generation of hard-
ware.

6.1 A Software Revolution

An interim goal should be to provide bet-
ter feedback loops to researchers about how
our algorithms interact with the hardware
we do have. Machine learning researchers
do not spend much time talking about how
hardware chooses which ideas succeed and
which fail. This is primarily because it is
hard to quantify the cost of being concerned.
At present, there are no easy and cheap to
use interfaces to benchmark algorithm per-
formance against multiple types of hardware
at once. There are frustrating differences in
the subset of software operations supported
on different types of hardware which prevent
the portability of algorithms across hardware
types (Hotel et al., 2014). Software kernels
are often overly optimized for a specific type
of hardware which causes large discrepencies
in efficiency when used with different hard-
ware (Hennessy, 2019).

These challenges are compounded by an ever
more formidable and heterogeneous hard-
ware landscape (Reddi et al., 2020; Fursin
et al., 2016). As the hardware landscape be-
comes increasingly fragmented and special-
ized, fast and efficient code will require ever
more niche and specialized skills to write
(Lee et al., 2011). This means that there will
be increasingly uneven gains from progress in

computer science research. While some types
of hardware will benefit from a healthy soft-
ware ecosystem, progress on other languages
will be sporadic and often stymied by a lack
of critical end users (Thompson & Spanuth,
2018; Leiserson et al., 2020).

One way to mitigate this need for specialized
software expertise is to focus on the devel-
opment of domain-specific languages which
cater to a narrow domain. While you give
up expressive power, domain-specific lan-
guages permit greater portability across dif-
ferent types of hardware. It allows develop-
ers to focus on the intent of the code with-
out worrying about implementation details.
(Olukotun, 2014; Mernik et al., 2005; Cong
et al., 2011). Another promising direction
is automatically auto-tuning the algorithmic
parameters of a program based upon the
downstream choice of hardware. This facili-
tates easier deployment by tailoring the pro-
gram to achieve good performance and load
balancing on a variety of hardware (Don-
garra et al., 2018; Clint Whaley et al., 2001;
Asanović et al., 2006; Ansel et al., 2014).

The difficulty of both these approaches is
that if successful, this further abstracts hu-
mans from the details of the implementation.
In parallel, we need better profiling tools to
allow researchers to have a more informed
opinion about how hardware and software
should evolve. Ideally, software could even
surface recommendations about what type of
hardware to use given the configuration of an
algorithm. Registering what differs from our
expectations remains a key catalyst in driv-
ing new scientific discoveries.

Software needs to do more work, but it is
also well positioned to do so. We have
neglected efficient software throughout the
era of Moore’s law, trusting that predictable
gains in compute would compensate for inef-
ficiencies in the software stack. This means
there are many low hanging fruit as we be-
gin to optimize for more efficient code (Larus,
2009; Xu et al., 2010).

7 Conclusion
George Gilder, an American investor, de-
scribed the computer chip as “inscribing
worlds on grains of sand” (Gilder, 2000).
The performance of an algorithm is funda-
mentally intertwined with the hardware and
software it runs on. This essay proposes
the term hardware lottery to describe how
these downstream choices determine whether

10



a research idea succeeds or fails. Today the
hardware landscape is increasingly heteroge-
neous. This essay posits that the hardware
lottery has not gone away, and the gap be-
tween the winners and losers will grow in-
creasingly larger. In order to avoid future
hardware lotteries, we need to make it easier
to quantify the opportunity cost of settling
for the hardware and software we have.
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