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Abstract

Recurrent neural networks (RNNs) provide state-of-the-art performances in a
wide variety of tasks that require memory. These performances can often be
achieved thanks to gated recurrent cells such as gated recurrent units (GRU) and
long short-term memory (LSTM). Standard gated cells share a layer internal state
to store information at the network level, and long term memory is shaped by
network-wide recurrent connection weights. Biological neurons on the other hand
are capable of holding information at the cellular level for an arbitrary long amount
of time through a process called bistability. Through bistability, cells can stabilize
to different stable states depending on their own past state and inputs, which per-
mits the durable storing of past information in neuron state. In this work, we take
inspiration from biological neuron bistability to embed RNNs with long-lasting
memory at the cellular level. This leads to the introduction of a new bistable
biologically-inspired recurrent cell that is shown to strongly improves RNN per-
formance on time-series which require very long memory, despite using only cel-
lular connections (all recurrent connections are from neurons to themselves, i.e. a
neuron state is not influenced by the state of other neurons). Furthermore, equip-
ping this cell with recurrent neuromodulation permits to link them to standard
GRU cells, taking a step towards the biological plausibility of GRU.

1 Introduction

Recurrent neural networks (RNNs) have been widely used in the past years, providing excellent
performances on many problems requiring memory such as e.g. sequence to sequence modeling,
speech recognition, and neural translation. These achievements are often the result of the devel-
opment of the long short-term memory (LSTM [1]) and gated recurrent units (GRU [2]) recurrent
cells, which allow RNNs to capture time-dependencies over long horizons. Despite all the work an-
alyzing the performances of such cells [3], recurrent cells remain predominantly black-box models.
There has been some advance in understanding the dynamical properties of RNNs as a whole from a
non-linear control perspective ([4]), but little has been done in understanding the underlying system
of recurrent cells themselves. Rather, they have been built for their robust mathematical properties
when computing gradients with back-propagation through time (BPTT). Research on new recur-
rent cells is still ongoing and, building up on LSTM and GRU, recent works have proposed other
types of gated units ([5], [6], [7]). In addition, an empirical search over hundreds of different gated
architectures has been carried in [8].

In parallel, there has been an increased interest in assessing the biological plausibility of neural
networks. There has not only been a lot of interest in spiking neural networks ([9, 10, 11]), but
also in reconciling more traditional deep learning models with biological plausibility ([12, 13, 14]).
RNNs are a promising avenue for the latter ([15]) as they are known to provide great performances
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from a deep learning point of view while theoretically allowing a discrete dynamical simulation of
biological neurons.

RNNs combine simple cellular dynamics and a rich, highly recurrent network architecture. The
recurrent network architecture enables the encoding of complex memory patterns in the connection
weights. These memory patterns rely on global feedback interconnections of large neuronal popula-
tions. Such global feedback interconnections are difficult to tune, and can be a source of vanishing
or exploding gradient during training, which is a major drawback of RNNs. In biological networks,
a significant part of advanced computing is handled at the cellular level, mitigating the burden at the
network level. Each neuron type can switch between several complex firing patterns, which include
e.g. spiking, bursting, and bistability. In particular, bistability is the ability for a neuron to switch
between two stable outputs depending on input history. It is a form of cellular memory ([16]).

In this work, we propose a new biologically motivated bistable recurrent cell (BRC), which embeds
classical RNNs with local cellular memory rather than global network memory. More precisely,
BRCs are built such that their hidden recurrent state does not directly influence other neurons (i.e.
they are not recurrently connected to other cells). To make cellular bistability compatible with
the RNNs feedback architecture, a BRC is constructed by taking a feedback control perspective
on biological neuron excitability ([17]). This approach enables the design of biologically-inspired
cellular dynamics by exploiting the RNNs structure rather than through the addition of complex
mathematical functions.

To test the capacities of cellular memory, the bistable cells are first connected in a feedforward
manner, getting rid of the network memory coming from global recurrent connections. Despite hav-
ing only cellular temporal connections, we show that BRCs provide good performances on standard
benchmarks and surpass more standard ones such as LSTMs and GRUs on benchmarks with datasets
composed of extremely sparse time-series. Secondly, we show that the proposed bio-inspired recur-
rent cell can be made more comparable to a standard GRU by using a special kind of recurrent
neuromodulation. We call this neuromodulated bistable recurrent cell nBRC, standing for neuro-
modulated BRC. The comparison between nBRCs and GRUs provides food-for-thought and is a
step towards reconciling traditional gated recurrent units and biological plausibility.

2 Recurrent neural networks and gated recurrent units

RNNs have been widely used to tackle many problems having a temporal structure. In such prob-
lems, the relevant information can only be captured by processing observations obtained during
multiple time-steps. More formally, a time-series can be defined as X = [x0, . . . ,xT ] with T ∈ N0

and xi ∈ Rn. To capture time-dependencies, RNNs maintain a recurrent hidden state whose update
depends on the previous hidden state and current observation of a time-series, making them dy-
namical systems and allowing them to handle arbitrarily long sequences of inputs. Mathematically,
RNNs maintain a hidden state ht = f(ht−1,xt; θ), where h0 is a constant and θ are the parameters
of the network. In its most standard form, an RNN updates its state as follows:

ht = g(Uxt +Wht−1) (1)

where g is a standard activation function such as a sigmoid or a hyperbolic tangent. However, RNNs
using Equation 1 as the update rule are known to be difficult to train on long sequences due to
vanishing (or, more rarely, exploding) gradient problems. To alleviate this problem, more complex
recurrent update rules have been proposed, such as LSTMs ([1]) and GRUs ([2]). These updates
allow recurrent networks to be trained on much longer sequences by using gating principles. By
way of illustration, the updates related to a gated recurrent unit are







zt = σ(Uzxt +Wzht−1)

rt = σ(Urxt +Wrht−1)

ht = zt ⊙ ht−1 + (1 − zt)⊙ tanh(Uhxt + rt ⊙Whht−1)

(2)

where z is the update gate (used to tune the update speed of the hidden state with respect to new
inputs) and r is the reset gate (used to reset parts of the memory).
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3 Neuronal bistability: a feedback viewpoint

Biological neurons are intrinsically dynamical systems that can exhibit a wide variety of firing pat-
terns. In this work, we focus on the control of bistability, which corresponds to the coexistence of
two stable states at the neuronal level. Bistable neurons can switch between their two stable states in
response to transient inputs ([16, 18]), endowing them with a kind of never-fading cellular memory
([16]).

Complex neuron firing patterns are often modeled by systems of ordinary differential equations
(ODEs). Translating ODEs into an artificial neural network algorithm often leads to mixed results
due to increased complexity and the difference in modeling language. Another approach to model
neuronal dynamics is to use a control systems viewpoint [17]. In this viewpoint, a neuron is modeled
as a set of simple building blocks connected using a multiscale feedback, or recurrent, interconnec-
tion pattern.

A neuronal feedback diagram focusing on one time-scale, which is sufficient for bistability, is illus-
trated in Figure 1A. The block 1/(Cs) accounts for membrane integration, C being the membrane
capacitance and s the complex frequency. The outputs from presynaptic neurons Vpre are combined
at the input level to create a synaptic current Isyn. Neuron-intrinsic dynamics are modeled by the
negative feedback interconnection of a nonlinear function Iint = f(Vpost), called the IV curve in
neurophysiology, which outputs an intrinsic current Iint that adds to Isyn to create the membrane
current Im. The slope of f(Vpost) determines the feedback gain, a positive slope leading to negative
feedback and a negative slope to positive feedback. Im is then integrated by the postsynaptic neuron
membrane to modify its output voltage Vpost.
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Figure 1: A. One timescale control diagram of a neuron. B. Plot of the function Iint = Vpost −
α tanh(Vpost) for two different values of α. Full dots correspond to stable states, empty dots to
unstable states.

The switch between monostability and bistability is achieved by shaping the nonlinear function
Iint = f(Vpost) (Figure 1B). The neuron is monostable when f(Vpost) is monotonic of positive
slope (Figure 1B, left). Its only stable state corresponds to the voltage at which Iint = 0 in the
absence of synaptic inputs (full dot). The neuron switch to bistability through the creation of a
local region of negative slope in f(Vpost) (Figure 1B, left). Its two stable states correspond to the
voltages at which Iint = 0 with positive slope (full dots), separated by an unstable state where
Iint = 0 with negative slope (empty dot). The local region of negative slope corresponds to a local
positive feedback where the membrane voltage is unstable.

In biological neurons, a local positive feedback is provided by regenerative gating, such as sodium
and calcium channel activation or potassium channel inactivation ([18, 19]). The switch from
monostability to bistability can therefore be controlled by tuning ion channel density. This prop-
erty can be emulated in electrical circuits by combining transconductance amplifiers to create the
function

Iint = Vpost − α tanh(Vpost), (3)

where the switch from monostability to bistability is controlled by a single parameter α ([20]). α
models the effect of sodium or calcium channel activation, which tunes the local slope of the func-
tion, hence the local gain of the feedback loop (Figure 1B). For α ∈]0, 1], which models a low
sodium or calcium channel density, the function is monotonic, leading to monostability (Figure 1B,
left). For α ∈]1,+∞[, which models a high sodium or calcium channel density, a region of negative
slope is created around Vpost = 0, and the neuron becomes bistable (Figure 1B, right). This bista-
bility leads to never-fading memory, as in the absence of significant input perturbation the system
will remain indefinitely in one of the two stable states depending on the input history.
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Neuronal bistability can therefore be modeled by a simple feedback system whose dynamics is tuned
by a single feedback parameter α. This parameter can switch between monostability and bistability
by tuning the shape of the feedback function f(Vpost), whereas neuron convergence dynamics is
controlled by a single feedforward parameter C. In biological neurons, both these parameters can
be modified dynamically by other neurons via a mechanism called neuromodulation, providing a
dynamic, controllable memory at the cellular level. The key challenge is to find an appropriate
mathematical representation of this mechanism to be efficiently used in artificial neural networks,
and, more particularly, in RNNs.

4 Cellular memory, bistability and neuromodulation in RNNs

The bistable recurrent cell (BRC) To model controllable bistability in RNNs, we start by draw-
ing two main comparisons between the feedback structure Figure 1A and the GRU equations (Equa-
tion 2). First, we note that the reset gate r has a role that is similar to the one played by the feedback
gain α in Equation 3. In GRU equations, r is the output of a sigmoid function, which implies
r ∈]0, 1[. These possible values for r correspond to negative feedback only, which does not allow
for bistability. The update gate z, on the other hand, has a role similar to that of the membrane capac-
itance C. Second, one can see through the matrix multiplications Wzht−1, Wrht−1 and Whht−1

that each cell uses the internal state of other neurons to compute its own state without going through
synaptic connections. In biological neurons, the intrinsic dynamics defined by Iint is constrained
to only depend on its own state Vpost, and the influence of other neurons comes only through the
synaptic compartment (Isyn), or through neuromodulation.

To enforce this cellular feedback constraint in GRU equations and to endow them with bistability,
we propose to update ht as follows:

ht = ct ⊙ ht−1 + (1− ct)⊙ tanh(Uxt + at ⊙ ht−1) (4)

where at = 1 + tanh(Uaxt +wa ⊙ ht−1) and ct = σ(Ucxt +wc ⊙ ht−1). at corresponds to the
feedback parameter α, with at ∈]0, 2[. ct corresponds to the update gate in GRU and plays the role
of the membrane capacitance C, determining the convergence dynamics of the neuron. We call this
updated cell the bistable recurrent cell (BRC).

The main differences between a BRC and a GRU are twofold. First, each neuron has its own internal
state ht that is not directly affected by the internal state of the other neurons. Indeed, due to the four
instances of ht−1 coming from Hadamard products, the only temporal connections existing in layers
of BRC are from neurons to themselves. This enforces the memory to be only cellular. Second, the
feedback parameter at is allowed to take a value in the range ]0, 2[ rather than ]0, 1[. This allows the
cell to switch between monostability (a ≤ 1) and bistability (a > 1) (Figure 2A,B). The proof of
this switch is provided in Appendix A.

It is important to note that the parameters at and ct are dynamic. at and ct are neuromodulated by
the previous layer, that is, their value depends on the output of other neurons. Tests were carried
with a and c as parameters learned by stochastic gradient descent, which resulted in lack of rep-
resentational power, leading to the need for neuromodulation. This neuromodulation scheme was
the most evident as it maintains the cellular memory constraint and leads to the most similar update
rule with respect to standard recurrent cells (Equation 2). However, as will be discussed later, other
neuromodulation schemes can be thought of.

Likewise, from a neuroscience perspective, at could well be greater than 2. Limiting the range of
at to ]0, 2[ was made for numerical stability and for symmetry between the range of bistable and
monostable neurons. We argue that this is not an issue as, for a value of at greater than 1.5, the
dynamics of the neurons become very similar (as suggested in Figure 2A).

Figure 2C shows the dynamics of a BRC with respect to at and ct. For at < 1, the cell exhibits
a classical monostable behavior, relaxing to the 0 stable state in the absence of inputs (blue curves
in Figure 2C). On the other hand, a bistable behavior can be observed for at > 1: the cells can
either stabilize on an upper stable state or a lower stable state depending on past inputs (red curves
in Figure 2C). Since these upper and lower stable states do not correspond to an ht which is equal
to 0, they can be associated with cellular memory that never fades over time. Furthermore, Figure 2
also illustrates that neuron convergence dynamics depend on the value of c.

4



h
t

a
t

A C

0 21

0

-1

1

Stable state
Unstable state

h
t

t

t

t

h
t

Ux
t

-1

1
c

t
=0.2

c
t
=0.7

a
t
=0.7 a

t
=1.5

B

h
t

h
t

a
t
=0.7 a

t
=1.5

h
t
-F(h

t 
)

0 0

0

-1

1

0

0

0

h
t
-F(h

t 
)

0

Figure 2: A. Bifurcation diagram of Equation 4 for Uxt = 0. B. Plots of the function ht − F (ht)
for two values of at, where F (ht) = ctht +(1− ct) tanh(atht) is the right hand side of Equation 4
with xt = 0. Full dots correspond to stable states, empty dots to unstable states. C. Response of
BRC to an input time-series for different values of at and ct.

The recurrently neuromodulated bistable recurrent cell (nBRC) To further improve the per-
formance of BRC, one can relax the cellular memory constraint. By creating a dependency of at
and ct on the output of other neurons of the layer, one can build a kind of recurrent layer-wise
neuromodulation. We refer to this modified version of a BRC as an nBRC, standing for recurrently
neuromodulated BRC. The update rule for the nBRC is the same as for BRC, and follows Equation 4.
The difference comes in the computation of at and ct, which are neuromodulated as follows:

{

at = 1 + tanh(Uaxt +Waht−1)

ct = σ(Ucxt +Wcht−1)
(5)

The update rule of nBRCs being that of BRCs (Equation 4), bistable properties are maintained and
hence the possibility of a cellular memory that does not fade over time. However, the new recurrent
neuromodulation scheme adds a type of network memory on top of the cellular memory. This recur-
rent neuromodulation scheme brings the update rule even closer to standard GRU. This is highlighted
when comparing Equation 2 and Equation 4 with parameters neuromodulated following Equation 5.
We stress that, as opposed to GRUs, bistability is still ensured through at belonging to ]0, 2[. A
relaxed cellular memory constraint is also ensured, as each neuron past state ht−1 only directly
influences its own current state and not the state of other neurons of the layer (Hadamard product
on the ht update in Equation 4). This is important for numerical stability as the introduction of a
cellular positive feedback for bistability leads to global instability if the update is computed using
other neurons states directly (as it is done in the classical GRU update, see the matrix multiplication
Whht−1 in Equation 2).

Finally, let us note that to be consistent with the biological model presented in Section 3, Equation 5
should be interpreted as a way to represent a neuromodulation mechanism of a neuron by those
from its own layer and the layer that precedes. Hence, the possible analogy between gates z and r in
GRUs and neuromodulation. In this respect, studying the introduction of new types of gates based
on more biological plausible neuromodulation architectures would certainly be interesting.

5 Analysis of BRC and nBRC performance

To demonstrate the performances of BRCs and nBRCs with respect to standard GRUs and LSTMs,
we tackle three problems. The first is a one-dimensional toy problem, the second is a two-
dimensional denoising problem and the third is the sequential MNIST problem. The supervised
setting used is the same for all three benchmarks. The network is presented with a time-series and
is asked to output a prediction (regression for the first two benchmarks and classification for the
third) after having received the last element of the time-series xT . We show that the introduction
of bistability in recurrent cells is especially useful for datasets in which only sparse time-series are
available. In this section, we also take a look at the dynamics inside the BRC neurons in the context
of the denoising benchmark and show that bistability is heavily used by the neural network.

5



T BRC nBRC GRU LSTM

5 0.0157± 0.0124 0.0028± 0.0023 0.0019± 0.0011 0.0016± 0.0009
50 0.0142± 0.0081 0.0009± 0.0006 0.0004± 0.0003 0.9919± 0.0012
100 0.0046± 0.0002 0.0006± 0.0001 0.0097± 0.006 1.0354± 0.0416
300 0.0013± 0.0008 0.0007± 0.0002 0.6743± 0.4761 0.9989± 0.0170
600 0.1581± 0.1574 0.0005± 0.0001 0.9934± 0.0182 0.9989± 0.0162

Table 1: Mean square error on test set after 30000 gradient descent iterations of different architec-
tures on the copy first input benchmark. Results are shown for different values of T .

Figure 3: Evolution of the average mean-square error (± standard deviation) over three runs on the
copy input benchmark for GRU and BRC and for different values of T .

5.1 Results

For the first two problems, training sets comprise 45000 samples and performances are evaluated on
test sets generated with 50000 samples. For the MNIST benchmark, the standard train and test sets
are used. All averages and standard deviations reported were computed over three different seeds.
We found that there were very little variations in between runs, and thus believe that three runs are
enough to capture the performance of the different architectures. For benchmark 1, networks are
composed of two recurrent layers of 100 neurons each whereas for benchmark 2 and 3, networks
are composed of four recurrent layers of 100 neurons each. Different recurrent cells are always
tested on similar networks (i.e. same number of layers/neurons). We used the tensorflow ([21])
implementation of GRUs and LSTMs. Finally, the ADAM optimizer with a learning rate of 1e−3 is
used for training all networks, with a mini-batch size of 100. The source code for carrying out the
experiments is available at https://github.com/nvecoven/BRC.

Copy first input benchmark In this benchmark, the network is presented with a one-dimensional
time-series of T time-steps where xt ∼ N (0, 1), ∀t ∈ T . After receiving xT , the network output
value should approximate x0, a task that is well suited for capturing their capacity to learn long
temporal dependencies if T is large. Note that this benchmark also requires the ability to filter
irrelevant signals as, after time-step 0, the networks are continuously presented with noisy inputs that
they must learn to ignore. The mean square error on the test set is shown for different values of T in
Table 1. For smaller values of T , all recurrent cells achieve similar performances. The advantage of
using bistable recurrent cells appears when T becomes large (Figure 3). Indeed, when T is equal to
600, only networks made of bistable cells are capable of outperforming random guessing threshold
(which would be equal to 1 in this setting 1).

Denoising benchmark The copy input benchmark is interesting as a means to highlight the mem-
orisation capacity of the recurrent neural network, but it does not tackle its ability to successfully
exploit complex relationships between different elements of the input signal to predict the out-
put. In the denoising benchmark, the network is presented with a two-dimensional time-series of
T time-steps. Five different time-steps t1, . . . , t5 are sampled uniformly in {0, . . . , T − N} with

1As x0 is sampled from a normal distribution N (0, 1), guessing 0 would lead to the lowest error which
would on average be equal to the standard deviation.
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N BRC nBRC GRU LSTM

0 0.0014± 0.0001 0.0006± 0.0001 0.0001± 0.0001 0.0003± 0.0002
200 0.0032± 0.0015 0.0013± 0.0006 1.0571± 0.0452 0.9878± 0.0052

Table 2: Mean square error on test set after 30000 gradient descent iterations of different architec-
tures on the denoising benchmark. Results are shown with and without constraint on the location
of relevant inputs. Relevant inputs cannot appear in the N last time-steps, that is xt[1] = −1, ∀t >
(T −N). In this experiment, results were obtained with T = 400.

BRC nBRC GRU LSTM
0.0010± 0.0001 0.0001± 0.0001 0.0373± 0.00371 0.3323± 0.4635

Table 3: Mean square error on test set after 30000 gradient descent iterations of different architec-
tures on the modified copy input benchmark.

N ∈ {0, . . . , T − 5} and are communicated to the network through the first dimension of the time-
series by setting xt[1] = 0 if t ∈ [t1, . . . , t5], xt[1] = 1 if t = T and xt[1] = −1 otherwise.

Note that this dimension is also used to notify the network that the end of the time-series is reached
(and thus, that the network should output its prediction). The second dimension is a data-stream,
generated as for the copy first input benchmark, that is xt[2] ∼ N (0, 1), ∀t ∈ T . At time-step T ,
the network is asked to output [xt1 [2], . . . ,xt5 [2]]. The mean squared error is averaged over the 5

values. That is, the error on the prediction is equal to
∑5

i=1

(xti
[2]−O[i])2

5 with O the output of the
neural network. Note that the parameter N controls the length of the forgetting period as it forces the
relevant inputs to be in the first T −N time-steps. This ensures that tx < T −N, ∀x ∈ {1, . . . , 5}.

As one can see in Table 2 (generated with T = 200 and two different values of N ), for N = 200,
GRUs and LSTMs are unable to exceed random guessing (mean square error of 1) whereas BRC and
nBRC performances are virtually unimpacted. Also, Table 2 provides a very important observation.
GRUs and LSTMs are, in fact, able to learn long-term dependencies, as they achieve extremely
good performances when N = 0. In fact, all the samples generated when N = 200 could also be
generated when N = 0, meaning that with the right parameters, the GRUs and LSTMs network
could achieve good predictive performances on such samples. However, our results show that GRUs
and LSTMs are unable to learn those parameters when the datasets are only composed of such
samples. That is, GRUs and LSTMs need training datasets with some samples for which the memory
required is quite short to learn efficiently, and allow for learning the samples for which the temporal
structure is longer. Bistable cells on the other hand are not susceptible to this caveat.

To further highlight this behavior, we design another benchmark that is a variant of the copy input
benchmark. In this benchmark, the network is presented with a one-dimensional time-series of
length T = 600 where xt = 0, ∀t ∈ T \t1 and xt1 ∼ N (0, 1), with t1 chosen uniformly in
{0, . . . , 599}. The network is tasked to output xt1 . Table 3 shows that, using this training scenario,
GRUs are capable of achieving a low MSE (around 0.04) on the test set used for the original copy
input benchmark in which all the T = 600. This was not the case in Table 1 (MSE around 1.0
for T = 600), when trained on a datasets for which all the samples require a 600 time-step-long
dependency. On the other hand, the performance of BRC and nBRC peaked in this scenario.

Sequential MNIST In this benchmark, the network is presented with the MNIST images, shown
pixel by pixel as a time-series. MNIST images are made of 1024 pixels (32 by 32), showing that BRC
and nBRC can learn dynamics over thousands of time-steps. Similar to both previous benchmarks,
we add nblack time-steps of black pixels at the end of the time-series to add a forgetting period.
Results are shown in Table 4 for two values of nblack, and are consistent with what has been observed
in both previous benchmarks.

5.2 Analysis of BRC dynamic behavior

Until now, we have looked at the learning performances of bistable recurrent cells. It is however
interesting to take a deeper look at the dynamics of such cells to understand whether or not bistability

7



nblack BRC nBRC GRU LSTM

0 0.9697± 0.0020 0.9601± 0.0032 0.9880± 0.0014 0.9651± 0.0023
300 0.9760± 0.0015 0.9608± 0.0109 0.1081± 0.0053 0.1124± 0.0013

Table 4: Accuracy on MNIST test set after 30000 gradient descent iterations on different architec-
tures on the MNIST benchmark. Images are fed to the recurrent network pixel by pixel. Results are
shown for MNIST images with nblack black pixels appended to the image.
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Figure 4: Representation of the BRC parameters, per layer, of a recurrent neural network (with
4 layers of 100 neurons each), when shown a time-series of the denoising benchmark (T = 400,
N = 0). Layer numbering increases as layers get deeper (i.e. layer i corresponds to the ith layer
of the network). The 5 time-steps at which a relevant input is shown to the model are clearly
distinguishable by the behaviour of those measures alone.

is used by the network. To this end, we pick a random time-series from the denoising benchmark and
analyse some properties of at and ct. Figure 4 shows the proportion of bistable cells per layer and
the average value of et per layer. The dynamics of the parameters show that they are well used by
the network, and three main observations owe to be made. First, as relevant inputs are shown to the
network, the proportion of bistable neurons tends to increase in layers 2 and 3, effectively storing
information and thus confirming the interest of introducing bistability for long-term memory. As
more information needs to be stored, the network leverages the power of bistability by increasing
the number of bistable neurons. Second, as relevant inputs are shown to the network, the average
value ct tends to increase in layer 3, effectively making the network less and less sensitive to new
inputs. Third, one can observe a transition regime when a relevant input is shown. Indeed, there is a
high decrease in the average value of ct, effectively making the network extremely sensitive to the
current input, which allows for its efficient memorization.

6 Conclusion

In this paper, we introduced two new important concepts from the biological brain into recurrent
neural networks: cellular memory and bistability. This lead to the development of a new cell, called
the Bistable Recurrent Cell (BRC) that proved to be very efficient on several datasets requiring long-
term memory and on which the performances of classical recurrent cells such as GRUs and LSTMS
were limited.

Furthermore, by relaxing the cellular memory constraint and using a special rule for recurrent neu-
romodulation, we were able to create a neuromodulated bistable recurrent cell (nBRC) which is very
similar to a standard GRU. This is of great interest and provides insights on how gates in GRUs and
LSTMs, among others, could in fact be linked to what is neuromodulation in biological brains. As
future work, it would be of interest to study some more complex and biologically plausible neuro-
modulation schemes and see what types of new, gated architectures could emerge from them.

Acknowledgements

Nicolas Vecoven gratefully acknowledges the financial support of the Belgian FRIA.

8



References

[1] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997;9(8):1735–
1780.

[2] Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:14091259. 2014;.

[3] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling; 2014.

[4] Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in high-dimensional
recurrent neural networks. Neural computation. 2013;25(3):626–649.

[5] Zhou GB, Wu J, Zhang CL, Zhou ZH. Minimal gated unit for recurrent neural networks.
International Journal of Automation and Computing. 2016;13(3):226–234.

[6] Dey R, Salemt FM. Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE;
2017. p. 1597–1600.

[7] Jing L, Gulcehre C, Peurifoy J, Shen Y, Tegmark M, Soljacic M, et al. Gated orthogonal
recurrent units: On learning to forget. Neural computation. 2019;31(4):765–783.

[8] Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network archi-
tectures. In: International conference on machine learning; 2015. p. 2342–2350.

[9] Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. Deep learning in spiking
neural networks. Neural Networks. 2019;111:47–63.

[10] Pfeiffer M, Pfeil T. Deep learning with spiking neurons: opportunities and challenges. Fron-
tiers in neuroscience. 2018;12:774.

[11] Bellec G, Salaj D, Subramoney A, Legenstein R, Maass W. Long short-term memory and
learning-to-learn in networks of spiking neurons. In: Advances in Neural Information Pro-
cessing Systems; 2018. p. 787–797.

[12] Bengio Y, Lee DH, Bornschein J, Mesnard T, Lin Z. Towards biologically plausible deep
learning. arXiv preprint arXiv:150204156. 2015;.

[13] Miconi T. Biologically plausible learning in recurrent neural networks reproduces neural dy-
namics observed during cognitive tasks. Elife. 2017;6:e20899.

[14] Bellec G, Scherr F, Hajek E, Salaj D, Legenstein R, Maass W. Biologically inspired alter-
natives to backpropagation through time for learning in recurrent neural nets. arXiv preprint
arXiv:190109049. 2019;.

[15] Barak O. Recurrent neural networks as versatile tools of neuroscience research. Current
opinion in neurobiology. 2017;46:1–6.

[16] Marder E, Abbott L, Turrigiano GG, Liu Z, Golowasch J. Memory from the dynamics of intrin-
sic membrane currents. Proceedings of the national academy of sciences. 1996;93(24):13481–
13486.

[17] Drion G, O’Leary T, Dethier J, Franci A, Sepulchre R. Neuronal behaviors: A control per-
spective. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE; 2015. p.
1923–1944.

[18] Drion G, O’Leary T, Marder E. Ion channel degeneracy enables robust and tunable neuronal
firing rates. Proceedings of the National Academy of Sciences. 2015;112(38):E5361–E5370.

[19] Franci A, Drion G, Seutin V, Sepulchre R. A balance equation determines a switch in neuronal
excitability. PLoS computational biology. 2013;9(5).

[20] Ribar L, Sepulchre R. Neuromodulation of neuromorphic circuits. IEEE Transactions on
Circuits and Systems I: Regular Papers. 2019;66(8):3028–3040.

[21] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems; 2015. Software available from tensorflow.org.
Available from: http://tensorflow.org/.

[22] Golubitsky M, Schaeffer DG. Singularities and groups in bifurcation theory. vol. 1. Springer
Science & Business Media; 2012.

9

http://tensorflow.org/


A Proof of bistability for BRC and nBRC for at > 1

Theorem A.1. The system defined by the equation

ht = cht−1 + (1− c) tanh(Uxt + aht−1) = F (ht−1) (6)

with c ∈ [0, 1] is monostable for a ∈ [0, 1[ and bistable for a > 1 in some finite range of Uxt

centered around xt = 0.

Proof. We can show that the system undergoes a supercritical pitchfork bifurcation at the equilib-
rium point (x0, h0) = (0, 0) for a = apf = 1 by verifying the conditions

G(h0)
∣

∣

apf
= dG(ht)

dht

∣

∣

h0,apf
= d2G(ht)

dh2

t

∣

∣

h0,apf
= dG(ht)

da

∣

∣

h0,apf
= 0 (7)

d3G(ht)
dh3

t

∣

∣

h0,apf
> 0, d

2G(ht)
dhtda

∣

∣

h0,apf
< 0 (8)

where G(ht) = ht − F (ht) ([22]). This gives

G(h0)
∣

∣

apf
= (1− c)(h0 − tanh(apfh0)) = 0, (9)

dG(ht)

dht

∣

∣

∣

∣

h0,apf

= (1− c)(apf (tanh
2(apfh0)− 1) + 1) = (1 − c)(1− apf ) = 0, (10)

d2G(ht)

dh2
t

∣

∣

∣

∣

h0,apf

= (1− c)2a2pf tanh(apfh0)(1 − tanh2(apfh0)) = 0, (11)

dG(ht)

da

∣

∣

∣

∣

h0,apf

= (1− c)h0(tanh(apfh0)
2 − 1) = 0, (12)

d3G(ht)

dh3
t

∣

∣

∣

∣

h0,apf

= (1− c) ∗ (2a3(tanh2(apfh0)− 1)2 + 4a3pf tanh
2(apfh0)(tanh

2(apfh0)− 1))

= 2(1− c) > 0, (13)

d2G(ht)

dhtda

∣

∣

∣

∣

h0,apf

= (1− c)((tanh2(apfh0)− 1) + 2apfh0 tanh(apfh0)(1− tanh2(apfh0)))

= c− 1 < 0. (14)

The stability of (x0, h0) for a 6= 1 can be assessed by studying the linearized system

ht =
dF (ht)

dht

∣

∣

∣

∣

h0

ht−1. (15)

The equilibrium point is stable if dF (ht)/dht ∈ [0, 1[, singular if dF (ht)/dht = 1, and unstable if
dF (ht)/dht ∈]1,+∞[. We have

dF (ht)

dht

∣

∣

∣

∣

h0

= c+ (1− c)a(1 − tanh2(ath0)) (16)

= c+ (1− c)a, (17)

which shows that (x0, h0) is stable for a ∈ [0, 1[ and unstable for a > 1.

It follows that for a < 1, the system has a unique stable equilibrium point at (x0, h0), whose unique-
ness is verified by the monotonicity of G(ht) (dG(ht)/dht > 0∀ht).

For a > 1, the point (x0, h0) is unstable, and there exist two stable points (x0,±h1) whose basins
of attraction are defined by ht ∈]−∞, h0[ for −h1 and ht ∈]h0,+∞[ for h1.
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