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Abstract—Efficient sharing of system resources is critical to
obtaining high utilization and enforcing system-level performance
objectives on chip multiprocessors (CMPs). Although several
proposals that address the management of a single microarchitec-
tural resource have been published in the literature, coordinated
management of multiple interacting resources on CMPs remains
an open problem.

We propose a framework that manages multiple shared CMP
resources in a coordinated fashion to enforce higher-level perfor-
mance objectives. We formulate global resource allocation as a
machine learning problem. At runtime, our resource management
scheme monitors the execution of each application, and learns
a predictive model of system performance as a function of
allocation decisions. By learning each application’s performance
response to different resource distributions, our approach makes
it possible to anticipate the system-level performance impact
of allocation decisions at runtime with little runtime overhead.
As a result, it becomes possible to make reliable comparisons
among different points in a vast and dynamically changing
allocation space, allowing us to adapt our allocation decisions
as applications undergo phase changes.

Our evaluation concludes that a coordinated approach to
managing multiple interacting resources is key to delivering
high performance in multiprogrammed workloads, but this is
possible only if accompanied by efficient search mechanisms. We
also show that it is possible to build a single mechanism that
consistently delivers high performance under various important
performance metrics.

I. INTRODUCTION

As industry rides the transistor density growth in chip
multiprocessors (CMPs) by providing more and more proces-
sor cores, these will exert increasing levels of pressure on
shared system resources. Efficient resource sharing becomes
critical to obtaining high utilization and enforcing system-level
performance objectives on CMP platforms.

Unrestricted sharing of microarchitectural resources can
lead to destructive interference. Although several proposals
that address the management of a single microarchitectural
resource have been published in the literature, proposals to
manage multiple interacting resources effectively on CMPs
are much more scarce.

Consider, for example, the case of a CMP where the on-
chip L2 cache space, off-chip bandwidth, and the chip’s power
budget are shared among applications, and the usage of each
resource is regulated via an independent Quality of Service
(QoS) knob. It is easy to see that, if the allocation of a resource
changes, the application’s demands on the other resources
also change. For example, increasing an application’s allocated
cache space may cause its working set to fit in the cache,
and can dramatically reduce its off-chip bandwidth demand

(which could in turn be allocated to other applications with
higher demand). Similarly, increasing an application’s power
budget could cause it to run at a higher frequency, and to
demand more bandwidth. Hence, the optimal allocation of one
resource type depends in part on the allocated amounts of
other resources, requiring a coordinated resource management
scheme for optimal performance.

Figure 1 shows an example of performance loss due to unco-
ordinated resource management in a CMP incorporating three
QoS knobs for regulating the system’s shared cache, off-chip
bandwidth, and power budget. A four-application, desktop-
style multiprogrammed workload is executed on a quad-
core CMP with an associated DDR2-800 memory subsystem.
Performance is measured in terms of weighted speedup (ideal
weighted speedup here is 4, which corresponds to all four
applications executing as if they had all the resources to
themselves). Configurations that dynamically allocate one or
more of the resources in an uncoordinated fashion (Cache, BW,
Power, and combinations of them) are compared to a static,
fair-share allocation of the resources (Fair-Share), as well
as an unmanaged sharing scenario (Unmanaged), where all
resources are fully accessible by all applications at all times.
(Section IV gives the details of our experimental setup, the
resource allocation mechanisms borrowed from the literature,
and the target performance metrics.)
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Fig. 1. Weighted Speedup of different resource management schemes.

In this workload, unmanaged resource sharing delivers
considerable slowdowns, even when compared to a rigid,
static resource distribution among the cores (Fair-Share). By
introducing dynamic resource management, one would hope
to exceed the performance of Fair-Share. But the figure shows
that managing the resources in an uncoordinated fashion
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is still inferior to simple static partitioning, indicating that
resource interactions render individual adaptive management
policies largely ineffective. (Section V-A shows results for
other workloads. The trends are largely the same.)

In this paper, we address these limitations by proposing a
resource allocation framework that manages multiple shared
CMP resources in a coordinated fashion to enforce higher-
level performance objectives. We formulate global resource
allocation as a machine learning problem. At runtime, our
resource management scheme monitors the execution of each
application, and learns a predictive model of system per-
formance as a function of allocation decisions. By learning
each application’s performance response to different resource
distributions, our approach makes it possible to anticipate the
system-level performance impact of allocation decisions at
runtime. As a result, it becomes possible to make reliable
comparisons among different points in a vast and dynamically
changing allocation space, allowing us to adapt our allocation
decisions as applications undergo phase changes.

II. BACKGROUND
Software applications generally have different hardware re-

source requirements, and exhibit varying sensitivity to resource
allocation. Often times, this also applies to phases within
the same application. Extracting the highest performance out
of multiple applications that compete for shared hardware
resources on a CMP necessitates a mechanism by which such
shared resources are (periodically) partitioned in a productive
manner. Three critical resources in virtually any CMP design
are (a) shared cache(s), (b) the chip’s power budget, and (c)
off-chip memory bandwidth. Most existing work in architec-
tural support for managing these resources focuses only on one
resource; very few proposals attempt to address allocation of
several of these resources in a coordinated fashion. In this
section, we discuss some of that work.

A. Cache Partitioning
Liu et al. [14] propose a profile-based static partitioning

technique that tries to straddle shared and private L2 caching.
A hardware table records which L2 banks each core can
access. The goal is to maximize the overall throughput. They
show that, when sharing across threads is scarce, a mostly-
private configuration is preferable; otherwise, a mostly-shared
configuration tends to perform better.

Suh et al. [25] propose a dynamic partitioning technique that
distributes the L2 at the granularity of cache ways to improve
system throughput. Their allocation policy relies on a greedy
heuristic that assigns cache ways to the application that derives
the highest additional benefit from the assignment. Later,
Qureshi et al. [21] propose utility based cache partitioning
(UCP), which improves upon Suh et al. [25]’s allocation policy
by estimating the marginal utility of assigning additional cache
ways to an application more accurately. We also partition the
L2 cache at the granularity of cache ways, but use a global,
ML-based resource distribution framework to arrive at the
allocation decisions.

Yeh and Reinman [27] distribute a NUCA L2 cache in a
CMP at the granularity of independent cache clusters. Their
goal is to provide quality-of-service (QoS) guarantees to each
core while maximizing overall system performance. Their
allocation policy statically assigns a portion of the cache to
each application to deliver QoS, and partitions the remain-
ing cache space to optimize aggregate system performance.

Kim et al. [12] propose a partitioning technique to equalize
the slowdowns of equal-priority applications at runtime, and
Iyer [11] proposes the CQoS framework to address QoS in
shared caches. Rafique et al. [22] propose a hardware-based
cache management mechanism that enables the OS to enforce
quotas on shared caches to provide performance differentiation
and fairness across applications.

B. Bandwidth Management
Rixner et al. [24] perform a design space study of various

DRAM scheduling policies, finding the FR-FCFS scheduling
policy to provide the best performance on average. Among all
DRAM commands that are ready to issue, FR-FCFS prioritizes
(1) ready commands over commands that are not ready, and (2)
older commands over younger ones. Later, Nesbit et al. [19]
demonstrate that FR-FCFS can lead to QoS and fairness prob-
lems if used in the context of multiprogrammed workloads,
and propose the Fair Queueing Memory Scheduler (FQMS) to
address these limitations. FQMS partitions a CMP’s available
off-chip DRAM bandwidth among applications by providing
an OS-specified minimum service guarantee to each thread.
Policies for allocating the off-chip bandwidth to meet system-
level performance objectives are not explored, and allocation
decisions are left to the OS. We use FQMS as a mechanism
to enforce the bandwidth allocation decisions made by our
framework.

Mutlu et al. [17] propose stall time fair memory scheduling
(STFM), a technique that provides QoS to applications sharing
the DRAM by equalizing the slowdowns that are observed
by equal-priority threads. Later, the same authors improve
upon STFM via batch scheduling [18], in which groups
of outstanding DRAM requests from a given thread form
the fundamental unit of scheduling. Neither of these works
addresses the dynamic partitioning of off-chip bandwidth, and
similar to FQMS, they leave allocation decisions to the OS.

C. Power Management
Isci et al. [10] propose global power management techniques

for throughput optimization, prioritization, and fairness in
CMPs. Their highest-performing allocation policy (maxBIPs)
optimizes throughput by estimating the performance impact of
per-core DVFS actions based on an analytical model. We also
rely on per-core DVFS to enforce power allocation decisions,
but perform the decision-making using our global allocation
framework.

D. Coordinated Management
Choi and Yeung [5] propose a coordinated resource allo-

cation scheme to distribute microarchitectural resources in an
SMT processor (issue queue, ROB, and register file) among
simultaneously executing applications, using hill-climbing to
decide on resource distributions. This is done without the aid
of any learning models, and thus search trials are measured in
execution as opposed to queried. Compared to our proposal,
this is likely to result in high overheads to navigate the
search space. Moreover, responding to changes in workload
demands takes time, since the search algorithm has to move
from the current allocation to a new local optimum over a
number of execution intervals. We port their scheme to our
CMP resource allocation framework, and present a detailed
performance comparison in our evaluation (Section V).

Vardhan et al. [26] propose a hierarchical resource man-
agement technique to minimize energy consumption in mobile



environments. The proposed scheme relies on profiling runs to
predict the resource usage of real-time multimedia workloads,
and uses this information to pick the lowest-energy system
configuration that can meet the workloads’ deadlines. In
contrast, our proposal relies on ANNs to learn a predictive
model of system performance at runtime, and does not require
profiling.

III. PROPOSED MECHANISM

Figure 2 shows an overview of our resource allocation
framework, which comprises per-application hardware per-
formance models, as well as a global resource manager.
Shared system resources are periodically redistributed between
applications at fixed decision-making intervals, allowing the
global manager to respond to dynamic changes in workload
behavior. Longer intervals amortize higher system reconfigu-
ration overheads and enable more sophisticated (but also more
costly) allocation algorithms, whereas shorter intervals permit
faster reaction time to dynamic changes.

At the end of every interval, the global manager searches the
space of possible resource allocations by repeatedly querying
the application performance models. To do this, the manager
presents each model a set of state attributes summarizing re-
cent program behavior, plus another set of attributes indicating
the allocated amount of each resource type. In turn, each
performance model responds with a performance prediction
for the next interval. The global manager then aggregates
these predictions into a system-level performance prediction
(e.g., by calculating the weighted speedup). This process
is repeated for a fixed number of query-response iterations
on different candidate resource distributions, after which the
global manager installs the configuration estimated to yield
the highest aggregate performance.

Successfully managing multiple interacting system re-
sources in a CMP environment presents several challenges.
The number of ways a system can be partitioned among
different applications grows exponentially with the number of
resources under control, leading to over one billion possible
system configurations in our quad-core setup with three inde-
pendent resources. Moreover, as a result of context switches
and application phase behavior, workloads can exert drastically
different demands on each resource at different points in time.
Hence, optimizing system performance requires us to quickly
determine high-performance points in a vast allocation space,
as well as anticipate and respond to dynamically changing
workload demands.
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Fig. 2. Interaction of the global resource manager with each of the
performance models (ANNs).

A. Predicting Performance
Comparing different allocation options requires the ability

to predict each application’s performance as a function of
the resources allocated to it. In this section, we describe our
performance prediction mechanism based on Artificial Neural
Networks (ANNs).1

1) Artificial Neural Networks
Artificial Neural Networks (ANNs) are machine learning

models that automatically learn to approximate a target func-
tion (application performance in our case) based on a set of
inputs. Figure 3 shows an example ANN consisting of 12
input units, four hidden units, and an output unit. In a fully-
connected feed-forward ANN, an input unit passes the data
presented to it to all hidden units via a set of weighted edges.
Hidden units operate on this data to generate the inputs to
the output unit, which in turn calculates ANN predictions.
Hidden and output units form their results by first taking a
weighted sum of their inputs2 based on edge weights, and
by passing this sum through a non-linear activation function
(Figure 4). Increasing the number of hidden units in an
ANN leads to better representational power and the ability
to model more complex functions, but increases the amount
of training data and time required to arrive at accurate models.
ANNs represent one of the most powerful machine learning
models for non-linear regression; their representational power
is high enough to model multi-dimensional functions involving
complex relationships among variables.

. . . 

. . . 
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Fig. 3. Example of a feed-forward, fully-connected ANN with one hidden
layer.

We propose to model each application’s performance as
a function of its allocated resources and recent behavior,
and use an ensemble of ANNs to learn an approximation
of this function (Figure 5). Input values summarizing past
program behavior and indicating allocated resource amounts
are presented at the input units, and performance predictions
are obtained from the output units. The final performance
prediction is formed by averaging the predictions of all ANNs
in the ensemble, a technique that often increases accuracy over
a single network, and allows us to assign confidence levels to
ANN predictions.

1We also experimented with simple linear regression and locally weighted
regression, finding both of them to yield higher error rates in predictions
compared to ANNs.

2One of the input units, called the “bias unit”, is hardwired to one.
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Fig. 4. Single Node of an ANN.

Each network takes as input the amount of L2 cache
space, off-chip bandwidth, and power budget allocated to its
application. In addition, networks are given nine attributes
describing recent program behavior and current L2-cache state.
These nine attributes are the number of (1) read hits, (2) read
misses, (3) write hits, and (4) write misses in the L1 d-Cache
over the last 20K instructions; the number of (5) read hits,
(6) read misses, (7) write hits, and (8) write misses in the L1
d-Cache over the last 1.5M instructions; and (9) the fraction
of cache ways allocated the modeled application that are dirty.

The first four attributes are intended to capture the pro-
gram’s phase behavior in the recent past, whereas the next
four attributes summarize program behavior over a longer time
frame. Summarizing program execution at multiple granular-
ities allows us to make accurate predictions for applications
whose behaviors change at different speeds. Using L1 d-Cache
metrics as inputs allows us to track the application’s demands
on the memory system without relying on metrics that are
affected by resource allocation decisions. The ninth attribute
is intended to capture the amount of write-back traffic that the
application may generate; an application typically generates
more write-back traffic if it is allocated a larger number of
dirty cache blocks.

2) Building the Models
To make accurate predictions, an ANN’s edge weights need

to be adjusted to reflect the functional relationship between
inputs (Section III-A1) and application performance. Edge
weights are trained by performing successive passes over
training examples. During training, each training example is
presented at the input units, predictions are obtained from the
output units, and the difference between actual and predicted
performance is accumulated in a squared error term. After one
full pass through the training set, the network’s weights are
updated based on their current values and error. This process
is repeated until the weights start to converge and the ANN
starts to predict the training examples accurately.

One important problem that comes up when training an
ANN is overfitting: if trained for long enough, an ANN
can end up memorizing outliers in sample data, yielding an
approximation with excellent accuracy on training examples,
yet poor performance on new samples drawn from the same
distribution. A common way of preventing overfitting is to
hold aside part of the data as a test set to obtain an unbiased
estimate of the ANN’s accuracy, and to stop training when
the accuracy on these unbiased samples stops improving. Of
course, holding aside portions of the training set for error
estimation reduces the number of samples used for training,
and can itself degrade model accuracy.

A common way of circumventing this limitation is cross-
validation, a mechanism that permits the use of all available

data for training while also reducing the risk of overfitting.
In cross validation, the data set is divided into N equal-sized
folds, and an ensemble consisting of N ANN models is built.
Each ANN in the ensemble is trained on N-1 folds and tested
on the remaining fold, and the test fold for each ANN differs
from the other models. Once training is complete, application
performance is predicted by averaging the predictions of all
ANNs in the ensemble. As a result, all of the data is used for
both training and testing purposes, and at the same time, none
of the models is simultaneously tested and trained on the same
data. In our evaluation, we use four-fold cross validation .

3) Dealing with Prediction Error
Inevitably, the ANNs will not always be able to predict

code behavior with sufficient accuracy. Blindly supplying
such predictions to the global resource manager is likely to
lead to poor allocation decisions. (Preliminary experiments
indeed showed that blind predictions were very damaging to
our framework’s performance.) Instead, if these cases were
identified and flagged properly, the global manager could make
more selective use of the information available, potentially
leading to better allocation decisions, and thus performance.

Naturally, calculating prediction error is not possible with-
out the actual performance values, which are unavailable at the
time predictions are made. Instead, we employ a mechanism
based on local variance to estimate the prediction error.
Specifically, we estimate the error of each application’s ANN
ensemble as a function of the coefficient of variance (CoV),
or ratio of standard deviation to the mean, of the predictions
by each ANN in the ensemble. To determine the correlation
between prediction error and CoV, we proceed as follows: We
pick one quad-app workload for each of the 15 applications
considered. We run the workload until the application under
study has committed 800 million instructions (the specific
resource allocation during this phase is irrelevant). Then we
randomly distribute the three target resources, run for 500,000
cycles, collect one sample point, and repeat for a total of 300
sample points (150 million cycles). After that, we train our
ensemble of ANNs using four 50-point folds, setting aside
100 sample points for testing. Then, we use the (trained)
ANN ensemble to predict the performance in each of the 100
test points, and calculate the prediction error relative to the
measured performance at that sample point, as well as the
CoV (which does not depend on the actual error). Finally, we
plot the CoV-error pairs, sorted by error.

Fig. 6 shows plots for four applications, representative of the
plots for all 15 applications considered (Section IV). The plots
show a strong linear relationship between prediction error and
CoV in all cases. This is good news, because it means that
we can in fact use CoV as a good estimation of the prediction
error.

Empirically, we determine that a 9% prediction error cut-off
point is a good trade-off. Notice, however, that because the lin-
ear coefficients vary across applications, calibration is needed
in each case to determine which CoV value corresponds to
that 9% prediction error cut-off point. In our experiments,
we empirically observe that calibrating once per application,
as described above, is sufficient in our framework to guide
resource allocation throughout the execution of the workload
and deliver significant gains (Section V).
B. Searching for the Optimal Resource Allocation

Finding a resource allocation to optimize a system-level
performance metric requires us to search the allocation space
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Fig. 6. Prediction error as a function of CoV on four applications.

to identify the optimal distribution. Ideally, we would like to
conduct this search exhaustively on all possible combinations
of resource allocations. In practice, however, even a quad-
core allocation scenario with three resources can result in over
one billion system configurations, rendering exhaustive search
intractable. An alternative approach is to use a heuristic search
algorithm to navigate a relatively small portion of the search
space, and to install the allocation with the highest estimated
performance found during this process. In this section, we
explain how we conduct this search via a modified version of
stochastic hill climbing.

1) Search Methodology

One important challenge that the global resource manager
faces when searching the allocation space is the confidence
level of the ANN models for a particular allocation query.
A naive way of organizing the search would be to blindly
query the ANN models for a fixed number of iterations, dis-
carding any queries involving an application with a high error

estimate (section III-A3). Unfortunately, error rates for dif-
ferent applications are largely independent, and consequently,
the probability of making one low-confidence prediction (or
more) for a given interval increases exponentially with the
degree of multiprogramming. For instance, for a quad-core
workload where each application has low error rates on 90%
of the points in the allocation space, this blind approach
would discard roughly one third of all trials during search.
Moreover, in cases where the performance of one application
in the workload is consistently predicted with high error rates,
resource distribution among the remaining three applications
would become infeasible.

To address these limitations, we focus the attention of
our search algorithm on specific subregions of the global
allocation space. Each subregion restricts resource allocation
optimization to a subset of the applications, and systematically
gives the other applications their fair share. This results in a
total of eleven possible subregions.3

At the beginning of each interval, the global resource
manager queries the ANN models to obtain each application’s
baseline, fair-share performance. If the baseline performance
prediction is estimated to be inaccurate for an application
(high CoV), that application is automatically assigned its fair
share, and subregions where this application is eligible to
participate in global resource allocation are deemed illegal for
the next interval. Next, the total number of trials that can be
afforded during search are partitioned equally among all legal
subregions, and the algorithm searches each subregion for the
corresponding number of trials. In our evaluation, we find a
total of 2,000 trials to produce the best tradeoff between search
performance and overhead.

At each step of the search, the global manager tries a
random resource allocation within the current subregion with
a small probability ε. Otherwise, the global manager suc-
cessively calculates performance for every neighbor of the
highest-performing point found so far. This is accomplished by
querying all relevant ANNs, and aggregating their predictions
in a single, system-level performance metric. If the perfor-
mance prediction for any of the applications participating in

3Notice that the subregions are not disjoint; for example, if we define E
and N to mean Eligible and Not Eligible for tuning of resources, respectively,
it is immediate that NNNN ⊆ NNEE, NNNN ⊆ NEEN, and NNEE ∪ NEEN
⊆ NEEE.



global resource allocation yields a high error estimate, the
point gets discarded and the search moves on to the next
point. As soon as a point with higher estimated performance is
found, the search shifts to the neighbors of this new estimated
optimum. After the search terminates, the allocation with the
highest estimated performance among all evaluated points is
installed for the next interval.

2) Sampling Training Data
Sampling representative training data is essential to cap-

turing program behavior and training accurate models. While
ANNs generally perform well on program phases they have
been trained on, execution of previously unobserved code
regions not represented in the training set can render the
ANNs obsolete. To avert such situations, the models need to
be periodically re-trained on fresh training samples at runtime.

We sample points by distributing resources uniformly ran-
domly over the allocation space, recording system configura-
tions and performance results as training instances. In steady
state, we keep a training set consisting of 300 points at all
times. When a new point is sampled, one of the existing points
is removed from the training set via random replacement. As a
result, the training set contains points spread across a relatively
long period of time, while always retaining the property that
newer samples have a higher probability of inclusion in the
training set than older ones.

Minimizing noise by reducing performance fluctuations due
to cross-application interference can improve the quality of
sampled points and dramatically improve model accuracy. One
potential source of noise with our baseline QoS knobs is the
Fair Queueing Memory Controller, which allows applications
to temporarily exceed their allocated quota and use otherwise
unutilized, excess system bandwidth. While this improves
system throughput, it also makes an application’s performance
dependent on other applications’ resource allocations and
demands, which are unobservable to the application’s ANN
model. We address this problem by adding a sampling mode
to the Fair Queueing DRAM scheduler. When in this mode, an
application is prevented from exceeding its quota and utilizing
excess system bandwidth.4 While this inevitably results in
lower performance during sampling intervals, it significantly
improves the quality of the sampled points and results in
higher accuracy.

Distributing resources randomly, as well as operating the
memory controller in sampling mode, can lead to perfor-
mance degradation when collecting training data. To minimize
overhead, it is important to avoid excessive sampling. In our
evaluation, we have empirically determined that sampling a
new training instance on every fifth interval yields a good
tradeoff between sampling overhead and model accuracy.

C. Hardware Implementation
We now describe the on-chip hardware implementation of

our proposal. Recall that each of the four applications is
modeled using four ANNs, for a total of 16. Each ANN takes
12 inputs, which are fed to four hidden units, which in turn
feed a single output unit. (Recall also that each ANN edge has
an assigned weight.) We derived area and power estimations
for the ANNs (described later in this section), and concluded
that implementing all 16 ANNs on silicon was wasteful and,

4This is accomplished by preventing the issue of requests until their virtual
finish time matches the global clock in the Fair Queueing Memory Controller.

using reasonable delay assumptions, probably unnecessary.
Instead, we propose to implement a single hardware ANN,
and multiplex edge weights on the fly to achieve 16 “virtual”
ANNs. We now explain the hardware setup for searching and
training.
Search. In our ANN implementation, each hidden (output)
unit works as follows: 12 (4) inputs are pairwise multiplied
with as many edge weights (52 multipliers total).5 The results
are then added together, and the sum is used to index a 50-
entry-table-based quantized sigmoid function. Notice that both
multiplication and addition can be pipelined easily, which
allows us to supply a new set of inputs every cycle. To evaluate
a query point in the hill-climbing algorithm, we feed the
16 virtual ANNs back to back, setting inputs and selecting
weights appropriately in each cycle. Since we cannot compute
the prediction until all 16 points have fully gone through, we
choose to begin processing the next query point right away.6
As a result, our hardware manages to complete an ANN query
every cycle, or an entire query point in 16 cycles. Once all
16 virtual ANNs have responded, the global resource allocator
computes the performance prediction, and then applies a hill-
climbing step.
Training. Training the (virtual) ANNs requires some addi-
tional hardware, since it not only involves the querying but
also updating the ANN edge weights through backpropagation.
Fortunately, the update procedure can leverage the ANN’s
existing 16-bit fixed-point multipliers. The backpropagation
hardware needs two parameters for training the neural nets: (1)
learning rate and (2) momentum. These can either be fixed at
design time or programmable by the OS. Our experiments with
different learning rate and momentum pairs show that these
parameters are robust–any reasonably chosen pair of values
work well across most applications.

1) Area, Power, and Delay Figures
Area. The dominant circuit in the ANN hardware itself is the
16-bit fixed-point multipliers. Hickmann et al. [8] implement
a 64-bit fixed-point multiplier, and estimates the total area
(including the fixed-point multiplier, round logic, left shift,
datapath and the interconnects) to be 0.65mm2 at 110nm
CMOS technology. We apply linear scaling down to 16 bits
and 65nm, which yields an area of 0.057 mm2 for one of the
ANN’s multipliers. Since hidden and output units comprise
52 multipliers , the total area devoted to this function (which
dominates the ANN) adds up to 2.964 mm2, or about 1.5%
of a 200 mm2 chip.

Our proposal also requires storage for the edge weights of
all 16 virtual ANNs (224 16-bit numbers per weight set). Since
there are three weight sets (one for the trained ANNs, one
for the ANNs under construction, and a third set for the best
weights found so far for early stopping), the total number of
weights is 672, or about 1.3KB worth of storage. Outside the
ANN, the global resource manager requires storage for 300
sample points in steady state. Each point contains 12 16-bit

5The bias unit does not require multiplication as it is hardcoded to one.
6Notice how this is roughly equivalent to inspecting two neighboring points

simultaneously in the hill-climbing algorithm, which deviates slightly from its
original behavior. This incurs a small probability that the first of the two points
yield a more profitable resource allocation than the current one, in which case
the hill-climbing algorithm moves immediately to it and “wastes” the second
query point. In practice, this probability is small per se, and even smaller when
stochasticity is factored in. Consequently, in our simulation infrastructure, we
do not model this subtlety.



inputs and 1 16-bit output (IPC), thus requiring about 7.6KB
of storage for all 300 sample points.

When adding the multiplier and storage overheads, together
with the ANN’s adders and sigmoid storage, as well as the
global resource manager’s other circuitry (e.g., four fixed-
point dividers to calculate weighted speedups), the total area
overhead of our proposal is probably on the order of 3% of
the chip’s area.
Power. To approximate the power consumption by the fixed-
point multiplier circuits in the ANN hardware, we assume the
power density of IBM Power6’s FPU [6], which at 100%
utilization and nominal voltage and frequency values (1.1
V and 4 GHz) is 0.56 W/mm2. In our ANN hardware, the
aggregate power consumption of all fixed-point multipliers at
full utilization and nominal voltage and frequency works out
to be about 1.7 W. In our experiments, we assume the power
consumption of our proposed hardware to be 3 W. Specifically,
the power budget for all configurations except ours is 60 W,
whereas ours is limited to 57W.

The power consumption of the cores and the shared L2
cache can be monitored by isolating the Vdd lines feeding each
of the cores and the shared cache, and monitoring the current
draw. The power dissipation of the L2 can be distributed
among cores by using a set of hit and miss counters (one
per core) to track each core’s usage, and by charging each
core the appropriate fraction of the total L2 cache power.
Delay. Our goal is to be able to process 2,000 query points
during one stochastic hill-climbing search cycle while staying
within 5% of an interval (i.e., stay within 25,000 cycles).7
As it turns out, this is a comfortable margin in our hardware
setup for any set of reasonable delays. Specifically, in our
experimental setup, we assume the following basic delays: In
the ANN, four cycles for a 16-bit fixed-point multiplication; 3
cycles to add up to thirteen8 16-bit numbers using a Wallace
tree; and one cycle to access the table-based sigmoid function.

2) Scalability of the Hardware Mechanism
Notice that, in our proposal, the number of (virtual) ANNs

is proportional to the number of applications running on the
CMP, and not the number of cores in the CMP. We conjecture
that number of applications (whether sequential or parallel)
running on a CMP is likely to increase at a significantly slower
rate than the increase in the number of cores (which would
tend to follow Moore’s law). Since our proposed mechanism
targets desktop/workstation environments, we do not believe
the scalability of our proposal is a concern in the near future.

D. OS Interface
Our proposal requires a small number of modifications to

the OS kernel to enable ANN models to survive across context
switches. Making an ANN model persistent in this way can
greatly improve model accuracy, by eliminating the need to
train a new (and initially inaccurate) model each time an
application is dispatched. To accomplish this, we simply make
both the training set and the ANN weight values part of the
process state.

While our ML-based runtime resource allocation mech-
anism can optimize for a variety of different performance

7Recall that execution does not stop while the stochastic hill-climbing
search is taking place. This requires the search to be relatively fast, so that
the winning configuration can be installed and exploited in a timely manner.

8The weight associated to the bias unit is also included in the addition.

targets, system-level optimization goals are ultimately deter-
mined by the OS. At runtime, the OS communicates the
desired objective function to our hardware resource manager
by annotating a control register. In the case of weighted
metrics, it is also possible for the OS to set static weights for
each application based on priorities. Finally, the OS can deliver
minimum service guarantees to an application by statically
allocating a portion of the resources to that application. In
our experiments, every application is statically allocated a
minimum of one L2 cache way, 1/8 of the available DRAM
bandwidth, and a 5 W power budget.

IV. EXPERIMENTAL SETUP

A. Metrics
We evaluate the efficacy and versatility of our proposal

using four different optimization targets: (1) sum of IPCs;9 (2)
weighted speedup; (3) harmonic mean of normalized IPCs; and
(4) weighted sum of IPCs. We now describe these metrics and
the rationale behind them; in the discussion, IPCShared

i and
IPCAlone

i denote application i’s IPC when it is running with
other applications, and when it is running alone, respectively:

Sum of IPCs. Aggregate system throughput is a relevant
optimization target for a number of computing environments
(e.g., web servers, databases). For cases where the workloads
are homogeneous and/or the latency is largely irrelevant,
optimizing the sum of IPCs maximizes system performance:∑

i

IPC Shared
i

Weighted speedup. In other environments, such as desktop-
style computing platforms, workloads often include latency
sensitive applications. In such cases, targeting aggregate IPC
improvement can cause unwanted degradation in some appli-
cations’ performance, for example by speeding up inherently
high-IPC programs. Instead, the weighted speedup metric
aims to measure the overall reduction in execution time, by
normalizing each application’s performance to its inherent IPC
value, which is obtained when the program runs alone:∑

i

IPC Shared
i

IPCAlone
i

Harmonic mean of normalized IPCs. This metric strives
to strike a balance between system-throughput and fair-
ness [15].

n∑
i

IPCAlone
i

IPCShared
i

Weighted sum of IPCs. Finally, in cases where the OS can
specify a set of priorities for each application in the workload
mix, these priorities can be used to weigh the contribution
of each application to an overall performance metric. Note
that weighted speedup is a special case of this more general
optimization goal, where the individual weights are determined
by the applications’ inherent IPC figures. In our evaluation,
we pick a case where the OS assign weights one through
four to the applications running on cores zero through three,
respectively.

9The IPCs are measured according to a nominal frequency (4GHz) regard-
less of the actual frequency of each core at each point in time.



∑
i

(
weight i · IPC Shared

i

)
B. Architecture

We evaluate our proposal using simulation models of quad-
core CMPs with a DDR2-800 memory subsystem. The mi-
croarchitectural parameters of our baseline CMP are loosely
based on Intel’s Core2Quad chips, and the parameters of
the DRAM subsystem are obtained from Micron’s data
sheets [16]. Tables I and II list the parameters of the modeled
cores and memory system, respectively. Our experiments are
based on a heavily modified version of the SESC [23] simu-
lator, augmented for dynamic and leakage power calculation
similar to [13].

We use Wattch [2] to model dynamic power consumption,
and employ a methodology that accounts for the exponential
dependence of leakage on temperature when calculating static
power. To do this, we first perform a renormalization of power
values [13] across Wattch and HotSpot [9]. Next, we use
HotSpot to populate a table recording average temperature
as a function of average power consumption.10 At runtime,
we recalculate temperature at the end of every interval by
consulting this table with the last interval’s average power
figure. The resulting temperature estimate is in turn used to
approximate the ratio of static to dynamic power for the next
interval [4].11

Our baseline CMP system includes three independent knobs
for regulating the sharing of the on-chip cache space, memory
bandwidth, and the chip’s power budget. We distribute a 60 W
power budget among four applications via per-core DVFS. We
estimate the power overhead of our proposal to be less than 3
W (Section III-C1), and conservatively deduct 3 W from our
global power budget when running with the ANNs.

We partition the L2 cache space at the granularity of cache
ways [21]. We statically allocate one way of our 4MB, 16-way
L2 cache to each application, and distribute the remaining 12
cache ways in response to changing workload demands.

Finally, we use Nesbit et al.’s hardware support to provide
performance isolation at the memory controller [20]. The
distribution of the off-chip bandwidth is modulated by chang-
ing the service share of each application at the fair-queuing
memory controller. At any point in time, each application is
statically allocated 800MB/s of off-chip DRAM bandwidth,
and the remaining 3.2GB/s is distributed based on dynamic
changes.

C. Workload Construction

We experiment with nine quad-core multiprogrammed
workloads, incorporating applications from the SPEC 2000 [7]
and NAS [1] suites. We use reference input set for the SPEC
applications and C, W, W, W, C problem sizes for Cg, Mg,
Lu, Sp and Ep, respectively. We classify applications into
three categories based on their workload behavior. CPU-
bound applications can fit their working set into the minimum
possible allocated cache space, and are thus insensitive to

10This is accomplished by running 10 SPEC benchmarks at different voltage
and frequency values, periodically measuring the average power consumption
over 500K-cycle intervals, and using curve fitting to interpolate among the
resulting data points.

11Early experiments revealed negligible difference between this and using
HotSpot at runtime to calculate temperature.

changes in their cache or off-chip bandwidth shares. Memory-
bound applications have working sets that are larger than the
maximum possible cache allocation, and consequently do not
benefit significantly from increases in allocated cache space.
Finally, cache sensitive applications’ working sets are larger
than the minimum L2 cache allocation, but smaller than the
full cache capacity; these workloads’ pressure on the off-
chip interface depends on their cache and power allocations
at any point in time. Table III shows a classification of the
applications used in our evaluation. To construct the work-
loads, we pick applications randomly from the pool of already
classified applications. For example, in one workload, CG
represents the memory-bound application, whereas in another
workload MG represents the same class of applications. Due
to the limitations of our simulation infrastructure there are
not any multiple instances of the same application within the
same workload. In the plots, we denote each application in a
workload with a single letter (Table III).
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Fig. 7. Weighted speedup of fair-share vs. unmanaged resource allocation
for 46 representative quad-application workloads.

We construct a total of 46 workloads, comprising all possi-
ble combinations of application types based on the classifica-
tion above. We then measure the performance potential of each
workload, by calculating the weighted speedup when running
with a static, fair-share allocation of resources. Figure 7 shows
the weighted speedups for the 46 workloads considered, in
decreasing magnitude. Finally, we pick the nine workloads
with the highest potential, and use them in our evaluation.

During simulation, we fast-forward each application by
800 million instructions, and warm-up the ANNs and other
micro-architectural structures for another 200 million.12 We
then start our timing measurements, and continue recording
each application’s performance until it hits its 1.2 billion
committed-instruction count. When an application reaches this
point in its execution, we stop measuring its performance,
but nevertheless continue executing and engaging it in global
resource allocation, to ensure that it continues to exert pressure
on the resources shared with other applications in the workload
mix.

12Because applications in a workload will generally exhibit different IPCs,
high-IPC applications end up waiting at the 1-billion instruction mark for the
slower ones. Notice that this may result in lower data noise for the slower
applications, which are collecting samples to train their ANNs, potentially
resulting in models that are artificially accurate. We carefully measured the
error reduction in the ANN models due to this simulation approach, and
determined it to be under 2%.



TABLE I
CORE PARAMETERS

Processor Parameters
Frequency 0.9 GHz - 4.0 GHz (32

levels with 0.1 GHz increments)
Voltage 0.8 V at 0.9 GHz -

1.1 V at 4.0 GHz
Number of cores 4

Fetch/issue/commit width 4/4/4
Int/FP/Ld/St/Br Units 2/2/2/2/2

Int/FP Multipliers 2/2
Int/FP issue queue size 32/32 entries

ROB (reorder buffer) entries 96
Int/FP registers 80 / 80

Ld/St queue entries 24/24
Max. unresolved br. 24
Br. mispred. penalty 9 cycles min.

Br. predictor Alpha 21264 (tournament)
RAS entries 32

BTB size 1024 entries, direct-mapped
iL1/dL1 size 32 kB

iL1/dL1 block size 32B/32B
iL1/dL1 round-trip latency 2/3 cycles (uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 16/16

iL1/dL1 associativity direct-mapped/4-way
Memory Disambiguation Perfect

Coherence protocol MESI
Consistency model Release consistency

D. Configurations
We make performance comparisons against several previ-

ously proposed resource allocation schemes. We start with the
simplest possible design, and progressively add higher levels
of control on the sharing of system resources:
Unmanaged. This scheme leaves all shared resources un-
managed. Applications are free to access all of the on-chip
L2-cache space, as well as the available off-chip bandwidth,
and the chip’s power budget. Naturally, this scheme does not
provide any level of performance isolation, and cannot adapt
to different metrics or workloads.
Isolated Cache Management (Cache). This scheme imple-
ments utility-based cache partitioning as proposed by Qureshi
and Patt [21], while leaving the off-chip bandwidth and power

TABLE II
PARAMETERS OF THE SHARED L2 AND DRAM SUBSYSTEM

Shared L2 Cache Subsystem
Shared L2 Cache 4MB, 64B block, 16-way
L2 MSHR entries 64

L2 round-trip latency 32 cycles (uncontended)
Write buffer 64 entries

DDR2-800 SDRAM Subsystem [16]
Transaction Queue 64 entries

Peak Data Rate 6.4GB/s
DRAM bus frequency 400 MHz
Number of Channels 1

Number of Ranks 1
Number of Banks 4 per DRAM chip
Row Buffer Size 2KB

tRCD 5 DRAM cycles
tCL 5 DRAM cycles
tWL 4 DRAM cycles
tCCD 4 DRAM cycles
tWTR 3 DRAM cycles
tWR 6 DRAM cycles
tRTP 3 DRAM cycles
tRP 5 DRAM cycles

tRRD 3 DRAM cycles
tRAS 18 DRAM cycles
tRC 22 DRAM cycles

Burst Length 8

TABLE III
SIMULATED APPLICATIONS AND THEIR RESOURCE SENSITIVITY (P, C AND M STAND

FOR PROCESSOR BOUND, CACHE SENSITIVE AND MEMORY BOUND,
RESPECTIVELY)

Workload Resource Sensitivity
Lu-Mgrid-Ammp-Parser (LDAP) C-C-C-C

Vpr-Art-Mcf-Ep (VRFE) P-C-P-P
Mesa-Art-Mg-Twolf (MRGT) P-C-M-C

Ep-Art-Swim-Mg (ERWG) P-C-P-M
Wupwise-Art-Mcf-Mg (URFG) P-C-P-M

Sp-Swim-Twolf-Cg (SWTC) C-P-C-M
Mg-Art-Mcf-Cg (GRFC) M-C-P-M

Twolf-Mg-Cg-Mgrid (TGCD) C-M-M-C
Art-Cg-Lu-Sp (RCLS) C-M-C-C

unmanaged. The goal is to distribute L2 cache ways to
minimize the aggregate cache miss rate. While it provides a
level of performance isolation along one of the dimensions,
this mechanism still runs the danger of interference along the
remaining two resources. Since the target optimization metric
is not based on performance (but cache misses), this scheme is
unable to tailor its allocation decisions to a particular metric.
Isolated Power Management (Power). This scheme imple-
ments the global power distribution policy proposed in [10]
via per-core DVFS. The L2 cache and the off-chip bandwidth
are left unmanaged, and interference is thus still possible.
Isolated Bandwidth Management (BW). This scheme im-
plements the FQMS policy proposed by Nesbit et al. [19] to
distribute the available off-chip bandwidth. The L2 cache and
power are left unmanaged, and can thus result in interference.
The off-chip bandwidth is partitioned equally among the four
cores at all times.
Uncoordinated Cache and Power Management
(Cache+Power). This scheme combines the isolated cache
and power management schemes by using the corresponding
performance isolation and allocation policies. Bandwidth is
left unmanaged, and the two resources under control are
managed in an uncoordinated fashion.
Uncoordinated Cache and Bandwidth Management
(Cache+BW). This scheme combines the isolated cache and
bandwidth management schemes while leaving power unman-
aged. Interference is possible through the sharing of power,
and the two resources under control are allocated without any
coordination using their corresponding, proposed management
mechanisms.
Uncoordinated Power and Bandwidth Management
(Power+BW). Here, the isolated power and bandwidth man-
agement schemes are combined in an uncoordinated manner.
Interference can occur through the L2 cache.
Uncoordinated Cache, Power, and Bandwidth Manage-
ment (Cache+Power+BW). This policy merges all of the
individual resource management schemes using their proposed
control mechanisms, but does not provide any coordination
among the individual knobs. As a result, while performance
isolation is achieved, the allocation decisions tend to be sub-
optimal.
Continuous Stochastic Hill-Climbing (Coordinated-HC).
This scheme tries to port a coordinanated resource allocation
mechanism previously proposed in the context of SMT proces-
sors [5] to our CMP resource allocation problem. The original
proposal aims to distribute microarchitectural resources in an
SMT processor (issue queue, ROB, and register file) among
simultaneously executing applications, using hill-climbing to



decide on resource distributions. This is done without the aid
of any learning models, and thus search trials are measured in
execution as opposed to queried. Compared to our proposal,
this is likely to result in high overheads to navigate the search
space. Moreover, responding to changes in workload demands
takes time, since the search algorithm has to move from the
current allocation to a new local optimum over a number of
execution intervals. To cut down on the cost of the search,
the proposed mechanism restricts its search to allocating all
resources proportionately to each other. This makes sense in
the context of resources whose demands tend to grow in
proportion (e.g, register file and ROB entries), but in the
context of our paper this may not be the case, and thus we also
experimented with a variation of this algorithm that, like our
proposal, does not impose a proportionate allocation across
resources (at the expense of incurring longer searches). A
third difference with our proposed mechanism is that their hill-
climbing search is greedy (as opposed to stochastic). In our
evaluation, we also conducted experiments using the two allo-
cation variants described above and stochastic hill-climbing.
In the end, the combination of non-proportional resource
allocation and stochastic hill-climbing was systematically the
best; thus, we report this configuration in our evaluation.
Fair-Share. This policy, to which we normalize all our results,
divides each resource in equal shares across all applications.
Our Proposal (Coordinated-ANN). This is our ANN-based
proposal, where the ANN-based models of the applications’
IPC response to resource allocation are used to guide a
stochastic hill-climbing search.

V. EVALUATION

A. Performance Results

The first plot in Figure 8 shows the weighted speedup
of each quad-workload, normalized to the Fair-Share config-
uration. In general, most configurations with uncoordinated
management of resources yield performance inferior to plain
Fair-Share. Surprisingly, in some instances, the uncoordinated
combination of two or three resource management policies
results in performance degradation with respect to applying
only one of those policies. This puts into evidence the fact that
not only are the effects of multiple, uncoordinated resource
management policies not additive, they can actually incur
destructive interference.

Indeed, Coordinated-HC generally outperforms its unco-
ordinated counterpart Cache+Power+BW; however, it is still
inferior to Fair-Share in all cases. There are two main reasons
for this: (1) While the scheme provides coordinated alloca-
tion, performing the search through direct execution leads to
considerable overhead. (2) As the shape of the search space
changes in response to application phases, Coordinated-HC
needs to traverse a potentially expensive trajectory through the
allocation space, moving from one local optimum to the next
over a sequence of intervals. In cases where the new optimum
is separated from the old one by a significant number of points,
one of the applications may undergo a phase change before
the algorithm gets a chance to converge to the new optimum.

In contrast, by estimating the shape of the allocation space
in advance, and by navigating the space via queries that are
essentially overhead-free, Coordinated-ANN can cope with
both the exponential size and the dynamic nature of the global
resource allocation problem, outperforming significantly both

Coordinated-HC and Fair-Share. Specifically, Coordinated-
ANN (our proposal) delivers 14% average speedup over Fair-
Share, and is consistently the best resource management
scheme across all nine workloads.

These trends also carry over to the optimization of other
performance targets. The second to fourth plots in Figure 8
show the harmonic mean of normalized IPCs, the sum of
IPCs, and the weighted sum of IPCs metrics across the nine
workloads, respectively. Similarly to the case of weighted
speedup, performance isolation and coordinated management
are critical to delivering high performance. Across all four
metrics, Coordinated-ANN is the best-performing resource
management scheme in every workload, whereas all other
management schemes significantly underperform in one or
more of the metrics.

Overall, these results suggest that a coordinated approach
to multiple resource management is key to delivering high
performance in multiprogrammed workloads. But this is pos-
sible only if accompanied by efficient search mechanisms
such as our Coordinated-ANN proposal. The results also
show that it is possible to build a single mechanism that
consistently delivers high performance under various important
performance metrics.

B. Sensitivity to Confidence Threshold

Figures 9 and 10 show the effect of the CoV threshold on
the weighted speedup and harmonic mean of IPCs metrics,
respectively. Setting the CoV threshold to zero causes the con-
fidence estimation mechanism to preclude resource allocation,
and to effectively default to a fair-share configuration. As the
threshold is increased, the global resource manager becomes
less and less conservative in its allocation decisions, relying
more on ANN predictions to manage resources. The optimal
performance for both metrics is attained at a threshold of 9%
in virtually every workload. As expected, higher threshold
values lead to misguided allocation decisions, and thus lower
performance.
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Fig. 9. Sensitivity of weighted speedup to confidence threshold. Results are
normalized to Fair-Share.
C. Confidence Estimation Mechanism

Figure 11 shows the fraction of the total execution time
where the confidence estimation mechanism permits ANN
predictions to guide resource allocation optimization for each
application. The percentage of time an application engages
in resource allocation varies depending on the other appli-
cations executing with it, indicating that resource isolation
among applications is imperfect. On average, cache sensitive
and memory-bound applications engage in optimized resource
allocation more frequently than processor-bound applications.
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Results are normalized to Fair-Share in all cases.
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VI. CONCLUSIONS

We have proposed a resource allocation framework that
manages multiple shared CMP resources in a coordinated
fashion to enforce higher-level performance objectives, by for-
mulating the global resource allocation as a machine learning
(ML) problem. By learning each application’s performance re-
sponse to different resource distributions, our approach makes
it possible to anticipate the system-level performance impact of
allocation decisions at runtime. As a result, it becomes possible
to make reliable comparisons among different points in a
large and dynamically changing allocation space at runtime,
allowing us to adapt our allocation decisions as applications
undergo phase changes.

Our evaluation using quad-application workloads on simu-
lation models of four-core CMP configurations shows signifi-
cant, across-the-board gains for our proposed mechanism vs. a
number of uncoordinated resource management schemes pre-
viously proposed, consistently over four different performance
metrics.

We conclude that a coordinated approach to multiple re-
source management is key to delivering high performance
in multiprogrammed workloads, but this is possible only if
accompanied by efficient search mechanisms.
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