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Echo-location is a broad approach to imaging and sensing that includes both man-made RADAR,
LIDAR, SONAR and also animal navigation. However, full 3D information based on echo-location
requires some form of scanning of the scene in order to provide the spatial location of the echo origin-
points. Without this spatial information, imaging objects in 3D is a very challenging task as the
inverse retrieval problem is strongly ill-posed. Here, we show that the temporal information encoded
in the return echoes that are reflected multiple times within a scene is sufficient to faithfully render
an image in 3D. Numerical modelling and an information theoretic perspective prove the concept
and provide insight into the role of the multipath information. We experimentally demonstrate the
concept by using both radio-frequency and acoustic waves for imaging individuals moving in a closed
environment.

Introduction. In nature, detecting and locating ob-
jects from reflected echoes is generally possible only if two
or more detectors are used. Animals such as bats or dol-
phins [1] and even humans [2] can emit pulses of sound to
sense the environment they navigate through and identify
objects. RADAR and LiDAR imaging systems operate
in a similar way, albeit with electromagnetic (EM) radia-
tion (radio waves and light, respectively): a series of EM
pulses are used to scan and probe the scene and, by mea-
suring the arrival time of the return echoes and correlat-
ing this with the direction from which they are detected,
they can form a 3D estimate of the scene [3, 4]. This
principle also holds for non-line-of-sight (NLOS) applica-
tions [5–8], where photon echoes of light, now scattered
from multiple surfaces along indirect paths, are analysed
with the goal of revealing the 3D shape and visual ap-
pearance of objects outside the direct line of sight. Al-
though NLOS is typically deployed with optical sources,
it has also been demonstrated with acoustic [9] and radio-
frequency (RF) sources [10].
Locating objects in space and forming an image in 3D
from their wave echoes using a single point detector with-
out any form of scanning is, computationally-speaking,
a strongly ill-posed problem and therefore considerably
more challenging. However, recent work has shown that
echoes contain a very rich structure in the time dimen-
sion that can be used to extract meaningful information
about the scene [11–13]. In these cases, further assump-
tions of the scene are required in order eliminate ambi-
guities arising from the fact that the echo is single-path,
i.e. the outgoing signal reflects only once from the scene
objects. This leads to ambiguity in the form of an equal-
distribution-probability for the echo origin point that is
spread over a spherical dome centred on the detector and
with a radius determined by the echo arrival time. The
additional assumptions referred to above can be intro-
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duced, for example, in the form of additional information
by means of a machine learning algorithm that exploits
the knowledge of static objects in the scene background
and a statistical knowledge of the objects that we want
to image [11, 13].
The paradigm investigated here is the extension of echo
detection to multipath trajectories of the return signal.
The idea of using multipath reflections for sensing inside
buildings, through walls or out of view, especially with
RF waves, has been a topic of extensive study during
the last decade [14–18]. However, these simple geomet-
ric approaches are typically limited to locating the posi-
tion of objects (and not imaging), e.g. of humans inside
known environments. Multipath sensing has also been
combined with Bayesian inference [19] and convolutional
neural networks [20] to localise sonic sources. In optical
time-of-flight (ToF) imaging, multipath interference, i.e.
the contribution from light following multiple paths onto
the same pixel, is problematic and has to be accounted
for to acquire accurate depth maps [21–24].
In this work we demonstrate that multipath temporal
echoes, i.e. echoes from waves that are reflected multi-
ple times from surfaces and objects within a scene, pro-
vide sufficient information to unambiguously reconstruct
a meaningful 3D image. We first present numerical sim-
ulations that show how a simple artificial neural network
can be trained to reconstruct a 3D scene. We then under-
line the importance of the multipath echoes, with a dom-
inant role played by the first few reflections and a grad-
ually decreasing importance of further bounces. These
findings are supported by an information theoretic anal-
ysis applied to the raw multipath data that is indepen-
dent of the image retrieval algorithm. We then show
two proof-of-principle experiments with GHz EM radio-
frequency (RF) and kHz acoustic waves, which can be
reflected multiple times by walls and objects. In both
cases, we are able to precisely retrieve 3D images of a
dynamic scene with a significant improvement beyond
what is achievable using single-path echoes.
3D imaging with multipath temporal echoes. Our
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approach is conceptually sketched in Fig. 1. A source
emits waves in the form of pulses that diverge with a
wide angle so as to flash-illuminate the whole scene. The
emitted pulses are then reflected by the room walls and
the objects inside it and, finally, are detected by a single-
pixel sensor with time-resolving capabilities. The timing
of successive pulses is arranged so as to not temporally
overlap with any returning echoes, i.e. each outgoing
pulse and detection of return echoes are completely sep-
arate events from the emission of a successive pulse. The
sensor collects and records the received energy over a
wide angle and provides this information in the form of a
temporal histogram. The process of pulsed waves bounc-
ing multiple times inside the room is fully deterministic:
with a complete knowledge of the distribution of objects
within the room, the room dimensions, and their reflec-
tivity, it is straightforward to predict the recorded tem-
poral histogram. However, solving the inverse process,
namely the reconstruction of the scene (including room
and objects) in 3D dimensions from just the temporal
histogram, is ill-posed: echoes arriving to the detector
at time td are compatible with objects placed not just
at a single point (as would be desired), but rather with
the whole surface of a spherical dome represented by the
equation (ctd)2/2 = x2 + y2 + z2 (where c is the speed of
the pulse). This ambiguity has been previously solved,
although only in part, by utilising the fact that a moving
object will obscure static background objects, therefore
removing them from return echo patterns [13].
In contrast, here we consider the more general case in
which background objects are not essential and instead
we focus on the role played by multipath echoes between
the object and the floor or any surrounding wall.
Numerical simulations. We first show numerical sim-
ulations based on Monte Carlo ray-tracing (see [25] for
full details). Our scene consists of a closed room with
walls, floor and ceiling that all have the same 100% reflec-
tivity [Fig. 1(a)]. Inside this room, a rectangular cuboid
is placed in different positions and the scene is imaged
in 3D with a ToF camera providing a 2D depth map,
see Fig. 1(c). We consider that an emitter emits probe
pulses in all directions within azimuth and elevation an-
gles θ and φ, both within [−67.5◦, 67.5◦]. The return echo
amplitudes, i.e. the number of returning rays per time
[Fig. 1(b)], are recorded in time at the detector that is
co-located with the emitter. Each scene is sampled with
10000 rays per object position, for 2000 objects positions.
This provides a data set of temporal trace-3D image pairs
that we use to train a convolutional deep neural network,
shaped such as to force information through a bottleneck
(see [25] for details) to extract features from data. We
then test the neural network with histograms that were
never used during training and render an estimate of the
scene in 3D. We repeat this analysis for an increasing
number of path events, starting from single-path until
10-path events, and we analyse the quality of the recon-
structions in terms of the mean-square error (MSE) be-
tween the ground truth and the retrieved images (see [25]
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FIG. 1. (a) 3D visualisation of our physical system: a rectan-
gular cuboid (yellow) moves within a room. Rays are emit-
ted within a pyramid-like volume and illuminate the scene.
Red arrows indicate examples of multipath reflections, which
eventually reach the detector (blue) that records their arrival
time. (b) An example of a recorded time histogram. (c)
Color-depth encoded 3D view of the scene. (d) Mean mean-
squared-error (MSE) with increasing multipath contributions,
calculated between the ground truth 3D scene and the neural
network reconstruction, averaged over 100 3D images. In-
sets show depth image reconstruction examples obtained for
1-path, 4-path, and 10-path events.

for further details). To avoid specificity of the training
by the deep neural network architecture, we re-train the
network 10 times for each path event, such that for every
training round we leave the starting weights of the neural
network random. This procedure guarantees a slightly
different image reconstruction every time the algorithm
is trained. Then, we average our reconstruction-quality
metrics over these 10 networks. Our results, summarised
in Fig. 1(d), show that the MSE decreases as the number
of multipath events is increased. In particular, we see
that the first 2-4 multipath echoes are the most impor-
tant and significantly improve scene reconstruction. This
can be seen clearly not only in the MSE but also in the
insets to Fig. 1(d) that show examples of a reconstruction
for 1, 4 and 10 path events. We clearly see that whilst for
single-path it is hard to distinguish the object position
due to blurring arising from the above mentioned am-
biguities, multipath information cures this problem and
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allows to clearly resolve the 3D scene (see [25] for further
examples). We quantify the gain in information when
including an increasing number of paths using the con-
cepts of Shannon entropy, mutual information and joint
entropy as derived in Information Theory [26–28]. The
Shannon entropy gives the expectation value of uncer-
tainty reduction when observing a variable X at values
xi, which occur with probability p(xi):

H(X) = −
N∑
i=1

p(xi) log2 p(xi). (1)

More specifically, we take a set of 2000 examples of indi-
vidual temporal histograms from the numerical model de-
scribed above, within which we identify histogram shapes
xi that occur with probability p(xi). We can then calcu-
late the joint entropy H(X,Y ) for single-path histograms
X and 2-path histograms Y :

H(X,Y ) = −
M∑
j=1

N∑
i=1

p(xi, yj) log2 p(xi, yj). (2)

where the joint distribution can be found using the
product rule for conditional probabilities p(xi, yi) =
p(yi|xi)p(xi). This can be extended to calculate the joint
entropy for data containing < n bounces and < (n + 1)
bounces. The mutual information, MI(X;Y ), then de-
scribes the information shared by the two random vari-
ables due to correlations within the data:

MI(X;Y ) = H(X) +H(Y )−H(X,Y ). (3)

We rearrange Eq. (12) to find the additional uncorre-
lated information, UI, in the multipath data Y , i.e.
the mutual information MI(X;Y ) subtracted from the
total information, H(Y ). In other words, the addi-
tional information that is gained by including photons
from a second or multiple reflections/paths is given by
UI(X;Y ) = H(X,Y )−H(X).
Figure 2(a) shows UI(X − 1;X) in log scale for increas-

ing number of reflections/paths. As can be seen, signifi-
cant additional (uncorrelated) information is gained from
the 2nd and 3rd reflections but becomes negligible after
4 reflections. Remarkably, in this configuration UI for
a 2-path signal is larger than the information contained
in the direct 1-path (standard LIDAR, single reflection)
signal. An intuitive insight into understanding this gain
in information from multipath data is shown in Fig. 2(b):
the 3D dimensional rendering of a scene, as would be ob-
served by a camera placed at the detection point, appears
very similar to what would be observed in a room of mir-
rors. The first reflection (in black) provides only direct
line-of-sight information of the object; the first 4 reflec-
tions (in red) show different effective viewpoints (side-
view and back-view) that would otherwise be inaccessi-
ble and therefore increase the information; all successive
reflections (in light blue) are replicas of the first 4 reflec-
tions and do not contain additional useful information.
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FIG. 2. (a) The gain in information when including photons
in the temporal data which have experienced an increasing
number of reflections within the scene. (b) A simulation of
a multipath scene as would be viewed by a camera. The
various reflections show different viewpoints of the mannequin
therefore intuitively explaining why multipath echoes contain
additional information but also why beyond the 4th bounce,
there is little or no gain of information (see text for details).

That said, we underline that in real life scenarios, the
noisy-channel coding theorem [26] indicates that adding
redundant replicas of information in the form of higher
order paths, could still lead to preservation of informa-
tion that is lost due e.g. to measurement noise.
Experiments. We show the validity of our approach

with experiments using two different sources of waves,
namely GHz radio-frequency (RF) and kHz-frequency
acoustic pulses. The experimental set-up in both cases
is identical to Fig. 1(a), where the emitter/detector is
an RF-antenna or a speaker and microphone, for the RF
and acoustic experiments, respectively.
For the experiments with RF waves, we use a transceiver
module (TI-AWR1642), which operates in the frequency
modulated continuous wave regime [29], with a range res-
olution and maximal unambiguous range of 4.4 cm and
9 m respectively. The transceiver probes the scene with
an angular aperture of 20◦ in the vertical plane and 180◦

in the horizontal plane (-3 dB FWHM). An analog-to-
digital converter samples the signal with 120 ns temporal
resolution and 133 Hz rate.
The experiments were conducted with a human individ-
ual walking around in a room with approximate dimen-
sions of 3× 4× 2.5 m3. The echo recordings from the RF
antenna are acquired in parallel to 3D (ground truth) im-
ages via a ToF camera (Basler), which provides 80 × 60
pixel color-encoded depth images.
For the acoustic measurements, we replace the RF an-
tenna with a PC speaker (Logitech Z333 system, consist-
ing of 2 speakers + 1 subwoofer) and a PC microphone
(integrated in a Logitech C270 webcam). The speak-
ers emit a pulsed wave with centre frequency of 5 kHz
(λ ≈ 6.7 cm) and a bandwidth of 1 kHz, with duration of
50 ms and repetition rate ≈ 10 Hz. The microphone, co-
located with the speakers, records the returning echoes
for 100 ms at a sampling rate of 192 kHz. The data is
Fourier filtered so as to select only signals at (5±0.5) kHz.
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FIG. 3. (a) RF and (b) acoustic results. The top rows of (a) and (b) show the time histograms that are truncated at increasing
times, therefore including an increasing number of multipath echoes. The last plot of first rows show the quality of the image
reconstructions in terms of mean-squared error (MSE) compared to the ground truth for a set of 100 scenes, for increasing
multipath events. The second row in (a) and (b) shows the corresponding images retrieved with the deep neural network, and
the ToF camera ground truth image.

The ToF 3D camera used to train the deep learning al-
gorithm was an Intel Realsense D435 capturing 64 × 64
color-encoded depth images. The room used for this ex-
periment had dimensions 7× 6× 2.5 m3).
For both the RF and acoustic measurements, we use the
pairs of ground truth ToF images and RF (or acoustic)
echo temporal traces to train a deep learning algorithm
based on convolutional layers followed by a Rectified Lin-
ear Unit activation function (see [25] for details). We use
9000 and 5000 pairs of data for training the neural net-
works for RF and acoustic data respectively, after which,
full 3D images can be retrieved from a single (previously
unseen) RF (or acoustic) temporal trace.
Figures 3(a) and (b) show the results for the RF and
acoustic cases, respectively (see also [25] for videos). To
explore the role of multipath events, we trained and
tested our neural network with successively increased
temporal extension of the time histograms: truncation
of the data at short times corresponds to single path
data, calculated as the ToF to the farthest wall in the
room. We increase the truncation time (indicated in the
figures) by evaluating the longest ToF value for 2-path
and 3-path events in the room so as to include 2 and 3
bounces, thus gradually increasing the information from
higher order path contributions. The retrieved 3D scenes
[second row in Figs. 3(a) and (b)] show that networks
trained solely on 1-path events [first column of Figs. 3(a)

and (b)] struggle to provide a sharp 3D image as there are
many possible scenes that correspond to the same single-
path time histogram. Increasing the number of multipath
events provides an increasingly improved reconstruction.
This improvement can be quantified by calculating the
MSE between the retrieved image and the ground truth,
averaged over 865 and 500 different measurements, for
RF and acoustics respectively. The MSE in Figs. 3(a)
and (b) (far-right graph), decreases monotonically with
increasing multipath contributions, in good agreement
with our modelling and experimentally shows the sig-
nificant 3D imaging capability achieved with multipath
temporal echoes.
Conclusions. In summary, we have shown that mul-

tipath temporal echoes and deep learning can be used to
provide full 3D images of a scene. Applications of these
ideas might be found in imaging in closed environments
so as to enable efficient generation of multipath echoes,
for example with healthcare applications for homes and
hospitals of the future. Interesting developments might
include the generalisation to dynamic background scenar-
ios or to open-air scenes. More in general, multipath echo
imaging offers interesting opportunities, considering that
RF antennas can also be extremely compact (and are
currently present in cell phones) and that the acoustic
results were obtained with standard computer speakers
and microphones, thus effectively transforming everyday
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household items into full 3D imaging systems.
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I. SUPPLEMENTARY INFORMATION

This section contains supplementary material informa-
tion for the main document. The section is organised as
follows: in subsection I A we demonstrate through a sim-
ple mathematical model that it is possible to locate the
position of an object from the multipath temporal echo.
In subsection I B we describe the physical model that we
use to validate our approach, while full details on the
numerical simulations can be found in subsection I C. In
Subsection I D we describe the deep neural network used
for image retrieval and give details of the training. Sub-
section I E is devoted to describe the metrics used to
analyse our approach. Finally, subsection II provides full
details on the calculations we used to estimate the infor-
mation carried by multipath echoes. All related figures
are shown at the end of the document. The associated
supplementary videos can be found in this link.

A. Localisation with multipath temporal echoes

We discuss first the following question: is it possible
to estimate the position of an object by just looking at
the wave echoes recorded with a time-resolving single-
point sensor? Using two or more sensors would make the
problem trivial by simply using triangulation and direct
reflections (first echo) from the object [30]. However, re-
stricting the problem to a single detector paired with un-
structured illumination makes the problem ill-posed. We
will show that this problem can be solved provided that
we have access not just to the first echo from the object
but also to secondary echoes originating from multiple
bounces between the object and the room walls. Let us
consider the simplest possible scenario in 2D, as depicted
in Fig. 4.

The emitter and the detector are both located at the
origin of coordinates, for simplicity. The scene is flash-
illuminated with pulsed waves emitted within an equilat-
eral triangle (translucent red), while we assume a point
detector receives any wave incident at any angle and re-
trieves time-of-flight (ToF) information with a temporal
resolution given by the a temporal impulse response func-
tion (IRF) that we can also control. We consider a scene
only consisting of a mirror-like wall (perfect reflection)
and a point-like scatterer at position (x0, y0) (i.e. we re-
strict to the 2D case), acting as our object of interest.
Also for simplicity, we assume that the distance from the
wall to the detector xw is known. The scatterer (depicted
with a green circle) is isotropic, i.e. it reflects waves in
all directions within a circle. Our aim is to determine
the position of the scatterer (x0, y0) from the wave echo
(temporal information) without ambiguity by using as
many bounces as needed.

By bounces we mean reflection events which a pulse
wave suffers upon propagation. For instance, first wave
echoes bounce only once and return to the detector. This
is the case of direct reflections from the scatterer, shown

with green arrows in Fig. 4. Waves can also bounce first
on the scatterer, then on the wall, and then return to
the sensor; this would be a 2-path case, shown with blue
arrows in Fig. 4. 3-path wave echoes correspond to waves
that reflect first on the object, then on the wall, return
to the object, and from there to the detector (shown
with red arrows in Fig. 4). As we assume specular re-
flection from the wall, these three cases described above
are geometrically the only possible ones (apart from rep-
etitions of object-wall reflections) where the waves will
be reflected back to the detector, resulting in a time his-
togram similar to the one in Fig. 4. Note that the peaks
on the time histogram have decreased amplitude for an
increasing number of reflections because of non-perfect
reflectivity (R < 1), as well as some finite width deter-
mined by the IRF of the detection system. 1-path events
are necessarily the ones with smaller time-of-flight and
therefore they will correspond to the peak at t0. With
simple geometry, we then obtain that:

2
√
x20 + y20 = ct0, (4)

which indicates that there are an infinite number of po-
sitions placed on a circle (depicted with green dashes in
Fig. 4) where the object can be. 2-path events, corre-
sponding to t1 on the time histogram, provide further
insight on the objects’ position:√
x20 + y20 +

√
(xw − x0)2 + (y1 − y0)2+

√
x2w + y21 = ct1,

(5)
at the cost of introducing a new unknown, y1, that does
not allow us to place the object on the circle described by
Eq. (4). Looking at the information that the 3-path event
(corresponding to t2) provides, we obtain the following
identity:

2
√
x20 + y20 + 2|x0 − xw| = ct2, (6)

which can be used together with Eq. (4) to locate the
object. Eq. (5), corresponds to a new circle (red dashes)
intersecting with the point on the wall at (xw, y0) and
compatible with the distance |x0−xw| and the measure-
ment t2. The origin of this circle coincides with the co-
ordinates of the object. Therefore, by placing the ori-
gin of this new circle (or solving the system of equations
given by Eqs. (4) and (6)) on the green circle described
by Eq. (4) allows obtaining (x0, y0), which demonstrates
that the scatterer position can be unequivocally deter-
mined with a single detector by simply using multipath
time echoes up to 3 bounces, under some assumptions.

B. Physical model of our numerical simulations

We use numerical simulations based on a physics-
inspired model to test the validity of this multipath echo-
based imaging approach, see Fig. 5 and Supplementary
Video 1.



7

Our scene consists of a closed room, which is a hollow
rectangular cuboid, i.e. with X,Y, Z dimensions that
are not necessarily equal. The room has uniform walls,
ergo they interact with the waves all in the same way.
Inside this room, we place an object (a smaller rectan-
gular cuboid) that can move freely via translation along
the floor-plane. We also consider an emitter of pulsed
waves and a planar time-resolving single-pixel detector.
We consider that the probe pulse is emitted in all di-
rections within azimuth and elevation angles θ and φ,
respectively. In other words, we assume that the probe
pulse can be decomposed spatially as the sum of a high
number of individual pulsed plane-waves with a k-vector
angle within [−θ, θ] and [−φ, φ]. Each of these pulsed
waves travel within the scene at a fixed speed, c, and are
reflected by the room walls and the object.

Eventually, the waves hit the single-pixel detector,
which acts like a stop-watch and provides the arrival time
of the pulses. The probe pulses are emitted at a specific
rate, η, which determines when the single-pixel detector
timer is reset to zero: only echo waves returned within a
time 1/η contribute to the time histogram. Non-perfect
reflectivity losses in walls and objects can be introduced
via a reflectivity factor R that provides the probability
of the wave to be reflected, such that after N bounces,
the probability that the wave has not been absorbed is
(1 − R)N . Although reflectivity can also depend on the
angle of incidence of the wave with respect to the surface,
we have not included this in our simulations.

Therefore, in practice the reflectivity of the materi-
als at each wave regime limits the maximum number of
bounces that the waves suffer before being absorbed. We
also consider the diffusion of waves when they hit the
scene walls and objects via a specularity factor, s, that
accounts for the scattering solid angle at which waves can
be reflected. Mirror-like surfaces have a scattering angle
of 0 rad (s = 1), while so-called Lambertian surfaces
have a scattering angle of π rad (s = 0). Surfaces be-
tween these two extreme cases are considered as glossy.
Optical waves have s � 1, while GHz electromagnetic
(e.g. RADAR) and kHz acoustic waves (both mm-wave)
have typically s <∼ 1, especially for the cases considered
here, where the probe pulse wavelengths are much smaller
than the dimensions of the objects [31–33]. Therefore,
our physical model only distinguishes between waves at
different regimes (e.g. optical, radio, or acoustic) via the
reflectivity and specularity factors.

C. Simulations

Here we describe the numerical simulations and results
we obtained based on the physical model, for a room with
dimensions 4 m×7 m×7 m, with smooth, mirror-like walls
of reflectivity R = 1 and specularity s = 1. In the room,
we place a point-source emitter of probe pulses placed
at (0.5,−1, 0.5) emitting waves within azimuthal and el-
evation angles φ and θ, both within [−67.5◦, 67.5◦], at a

pulse repetition rate η = 10 MHz. Next to the emitter,
we placed a flat detector with dimensions 1 m×1 m in the
Y Z plane. In this room, we place a rectangular cuboid
object with dimensions 1 m× 1 m× 5 m, with reflectivity
R = 1 and specularity s = 1, which moves in the room
by being translated in the XY plane such that its bottom
is at Z = 0.

We control the number of allowed reflections per emit-
ted pulse, which allows us to study the quality of the
retrieved images for some set number of reflections. Ev-
ery time histogram is obtained by emitting 10,000 pulsed
plane waves per object position, following the physical
model described above, and measuring the time-of-flight
of the waves that return to the sensor. In order to speed
up our simulations, we cropped out any pulses whose
round trip time of flight would have been longer than the
time between 2 pulses, or 100 ns - in practice this meant
ignoring some portion of waves that reflected 8 or more
times, as these histograms natively contained photons
with > 100 ns arrival times.

To generate a simulated 3D image, we scanned the
room from the camera position [0.5,−1, 0.5] over azimuth
θ within [−60◦, 100◦] and elevation φ within [−80◦, 80◦].
The asymmetry in the azimuthal angle was designed to
rotate the field of view towards the bulk of the room,
away from the leftside wall, for a better perspective.

D. Image retrieval algorithm

In order to solve the inverse problem of providing an
estimate of the scene from the time histogram generated
by the waves echoes, we use a deep neural network algo-
rithm.

First, we assemble a database of temporal histogram -
depth image pairs, which form the inputs and labels of
our supervised training scheme, using the numerical sim-
ulation described above. We created 2000 data pairs for
training, and 100 for testing, per maximum number of
scattering events. As we simulated single- to 10-path
event scenarios, this gave a total of 20,000 and 1000
input-label pairs respectively. We set aside our testing
data for later, to evaluate the neural networks.

In the second phase, the training data pairs are used to
train the network. For each of the maximum-scattering-
event-number scenarios, we trained separate networks on
the corresponding data pairs, albeit with the same archi-
tecture. The neural network architecture, sketched in
Fig. 8, is fully convolutional. It has an hourglass shape
such as to force information through a bottleneck, which
promotes the network to compress the input into some
compact representation. For our downsampling blocks
(DB), we have a series of convolutional layers with ker-
nel size 7, strides = 2 and each convolutional layer is
followed by a Rectified Linear Unit (ReLU) activation
function. Between the bottleneck and the output layer,
there are a series of up-sampling blocks (UB), which con-
sist of 2-D up-sampling layers, 2-D convolutional layers
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with kernel size 5 × 5 and strides = (1,1), and a ReLU
activation function.

We trained our neural networks using conventional ma-
chine learning methods, namely loss back-propagation
via mini-batch gradient descent, implemented on a batch
size of 100 using adaptive moment estimation (Adam
[34]). Our loss function was pixelwise mean-squared-
error (MSE) - see Eq.7. In order to prevent overtraining,
we first validated the number of epochs for which to train
the neural networks on 200 histogram-image pairs. In
this way, we ascertained that the ideal number of training
epochs increased as the maximum number of scattering
events, from 110 epochs for single scattering event data to
350 for up-to-10 scattering event data. Simultaneously,
the total training time of a single network increased, from
40 to 130 seconds respectively.

As stated in the main paper, for the RF and acous-
tic experiments we trained our neural networks on 9000
and 5000 temporal histogram-3D image pairs, and tested
them on 865 and 500 respectively. For these datasets, we
implemented slightly different architectures compared to
our simulated neural networks: we maintained the same
form of up- and downsampling blocks, but each block had
a different in- and output shape, and a different number
of features. For the RF neural network, the input size
(i.e. the number of bins in the temporal histogram) was
256, and the output size was 60 × 80 while the acoustic
neural network was fed with inputs of size 9600, and 3D
images of 64 × 64 pixels. For both the RF and acous-
tic neural networks, the number of features started at
64, increasing to 256 by the bottleneck, and then kept
at 256 until the final layer. The increase in the number
of convolutional features was chosen because the experi-
mental scenes had a lot more variation than the simulated
scenes (variety of objects, of various shapes and a range
of reflectivities and specularities, uneven walls, etc.), and
the corresponding histograms and images consequently
showed more variability. Therefore the neural networks
were designed to be able to correlate a greater number
of input and output features. Otherwise, our training
procedure was kept the same as for the simulated data,
i.e. we used the same batch-size, loss, gradient descent
optimizer, hardware, software, etc.

In the final phase of our approach and only after the
deep learning algorithms are trained, we fed the latter
with a single time histogram with the wave echo record-
ing from the testing dataset, which provided a 3D image
estimate of the scene.

In Fig. 6 we visualise the influence of the number of
path events in our temporal echoes on the image retrieval,
for one particular case from our test dataset (ground
truth presented on the top image). As can be seen from
the first and third columns, allowing waves to bounce
more than once populates the time histogram in the hori-
zontal axis, which increases its information content. This
has a direct impact on the image reconstruction: the
more bounces are considered, the closer the retrieved and
ground truth images are. See Supplementary Video 2 for

reconstructions from our full test dataset. In general, it
can be appreciated that 1-path events lead to ghosting
in the reconstructed image, because of the degeneracy
problem outlined in Eq. (4). Adding more path events
clearly allows a better image reconstruction of the scene,
especially when the object is placed at the sides of the
image.

Training was performed in Python 3.7.9 using Tensor-
Flow 2.1.0 [35] and Keras [36], on an NVIDIA GeForce
RTX 2080 Ti GPU.

E. Performance metrics

Our reconstruction-quality metrics of choice are the
pixelwise mean-squared-error (MSE) between recon-
struction and ground truth, and the intersection over
union (IOU) of the foregrounds of the reconstruction and
ground truth. Formally, for reconstruction image R and
ground truth image G, both of dimensions M ×N , con-
taining pixel values Rij andGij respectively, we can write
MSE as:

MSE =
1

N ×M

M∑
i=1

N∑
j=1

(Rij −Gij)
2 (7)

Having a low mean squared error means that on aver-
age, the depth value predicted at a random pixel value
matches the true depth value well.

Intersection over union is a less common metric, which
focuses on how well the shapes of the foreground ob-
jects are reconstructed, and is invariant to changes in
the relative size of the foreground object within the field
of view. To calculate IOU, we take a background mask,
and compare our ground truth and prediction images to
this mask; with this comparison, we binarise the ground
truth and prediction images into foreground (variable)
and background (static) pixels. This is shown in Fig. 9,
in the bottom-right in greyscale. Their intersection, then,
is simply the area of overlap, while the union is the com-
bined area of all non-background regions.

We can write this mathematically as follows: for back-
ground mask pixels Mij , we binarise our reconstruction

pixels Rij and ground truth pixels Gij to obtain R̃ij and

G̃ij , where i and j are in used the same notation as in
Eq. (7), as such:

R̃ij =

{
1 (Mij −Rij) ≥ κr
0 (Mij −Rij) < κr

G̃ij =

{
1 (Mij −Gij) ≥ κg
0 (Mij −Gij) < κg,

(8)

where r and g are the maximum pixel-wise differences
between the mask and the reconstruction, and the mask
and ground truth, respectively. The threshold κ was set
at 0.5, 0.2 and 0.2 for the synthetic, RF and acoustic data
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respectively, as these values were found to consistently
give visually good binarisation. Then, IOU is:

IOU =

∑80
i=1

∑80
j=1(R̃ijG̃ij)∑80

i=1

∑80
j=1 max{R̃ij , ˜Gij}

. (9)

A large intersection over union means the neural net-
work reconstructs the foreground object largely at the
same position as where it was in the ground truth image.

In Fig. 7 we compare the evolution of MSE and IOU as
a function of the maximum number of scattering events,
for our 100 testing 3D image-neural net reconstruction
pairs. As stated in the main text, we trained 10 neu-
ral networks for each of the maximum scattering event
scenarios, and averaged over the MSE and IOU obtained
from the predictions of these 10 ANN copies on the test
set. This was done to minimise the specificity of our pre-
dictions, and correspondingly, our performance metrics,
on the starting configurations of our ANNs.

Clearly, adding more bounces enhances the ability of
the algorithm to retrieve images, which demonstrates the
advantage of using waves that are not absorbed after
the first bounce for such an imaging scheme. MSE, the
loss metric of our neural network, improves up until 8
scattering events, and IOU up until 10. Neither MSE
nor IOU improve homogeneously, however the local min-
ima/maxima are probably attributed to the inherent ran-
domness of our simulator as opposed to actual local max-
ima in the amount of information in the histograms.

II. INFORMATION THEORY ANALYSIS

To quantify the gain in information when including
an increasing number of bounces, we use the principle
of Shannon entropy, joint entropy and mutual informa-
tion derived from information theory [26–28]. Informa-
tion is formally defined as the number of bits required
to describe a reduction in uncertainty when observing
a random variable X on a set X at a value x ∈ X
that occurs with probability p(x). This can be calcu-
lated by − log2 p(x) and is commonly referred to as self-
information or Shannon information. Furthermore, the
expectation value of uncertainty reduction when observ-
ing variable X is known as the Shannon entropy:

H(X) = −
N∑
i=1

p(xi) log2 p(xi). (10)

We first quantify the information of temporal data con-
taining a signal due to a single bounce. In this context,
we define the time of arrival of a photon as a random
variable and neglect the variable number of counts at
a given time-bin to simplify the calculation. Given 2000
examples of single bounce histograms from the stochastic
model described above, we find identical temporal traces
within the data; let us call the set of all unique traces
X̃ . We then re-assign these traces to a new variable X̃,

which can assume an integer label x̃ ∈ X̃ . After normal-
ising the distribution of X̃ to a probability mass function,
we then calculate entropy H(X̃) by Eq. (10). To assess
what additional information is gained by including pho-
tons from a second bounce in the temporal-trace, we use
the joint entropy H(X̃, Ỹ ) of the distribution of identical

temporal-data for a single bounce X̃, and the equivalent
distribution for data containing up to two bounces Ỹ .
The joint entropy is simply the Shannon entropy for a
joint distribution of X̃ and Ỹ on X̃ and Ỹ respectively,
and describes the expected uncertainty reduction when
observing (x̃, ỹ) where x̃ ∈ X̃ and ỹ ∈ Ỹ. For context,
the uncertainty reduction of observing a given tempo-
ral trace containing photons from one bounce can be in-
creased when also considering the data from the second
bounce. We find the joint probability distribution by the
relation p(x̃, ỹ) = p(ỹ|x̃)p(x̃) and use this to calculate
joint entropy by:

H(X̃, Ỹ ) = −
M∑
j=1

N∑
i=1

p(x̃i, ỹj) log2 p(x̃i, ỹj). (11)

We then repeat the Joint Entropy calculation to compare
the data containing < n bounces and < (n+ 1) bounces,
and present the gain in uncorrelated information when
including photons from additional bounces using the def-
inition of mutual information MI(X̃; Ỹ ) which describes
the information shared by two random variables due to
correlation:

MI(X̃; Ỹ ) = H(X̃) +H(Ỹ )−H(X̃, Ỹ ) (12)

We rearrange Eq. (12) to find the additional uncorrelated

information in Ỹ , i.e. the mutual information MI(X̃; Ỹ )

subtracted from the total information in Ỹ or equiva-
lently, H(X̃, Ỹ ) − H(X̃). This gain in uncorrelated in-

formation UI(X̃; Ỹ ) increases as photons which have ex-
perienced an increasing number of bounces are included
in the data as shown in Fig. 2(a) of the main document.
Clearly, there is a dramatic increase in information when
including photons which have experienced two bounces
compared with only a single bounce, however photons
experiencing five bounces or more show no increase in
information content for this data set. It is expected that
any information about the 3D scene given by the knowl-
edge of the number of counts at a given time-bin may
further contribute the reconstructed image quality.

The neural network algorithm used to reconstruct the
3D images can leverage both the time of arrival and the
number of counts which may account for improvement of
reconstructions when given data with photons experienc-
ing five or more photons. If we consider the 3D image
to be an input from an information theory point of view
and the histogram to be the output, we hypothesise that
adding more bounces beyond the actual Shannon entropy
increases the redundancy of the transmitted data i.e. is
similar to a better encoding scheme. This reduces the
probability of a bit error when propagating down a noisy
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channel, in this case the stochastic sampling and discreti-
sation performed at the radar/microphone. This hypoth-
esis can be illustrated with the mirror room image from
Fig. 2(b) in the main document: adding more bounces
creates replicas of existing mirror images. These repli-

cas do not add more information in a lossless/noiseless
environment, but when the environment is sampled in a
noisy way, the added redundancy can help in localising
and identifying the object.
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FIG. 4. Locating an object with time data and multipath echoes. By having some information about the environment where
the object is located at, for instance the arrangement of a wall with respect to the emitter/detector, one can identify the object’s
coordinates with a simple set of equations and measurements of the arrival time of the pulsed waves that follow paths with 1,
2, and 3 bounces (presented in the form of a time histogram here). See text for further details.

(a) Physical system

(b) Temporal histogram (c) 3D image

FIG. 5. Physical system for our model for the 3D numerical simulations. (a) 3D visualisation of our physical system: a
rectangular cuboid (blue) moves within a room. Pulsed waves are emitted at a random angle within a azimuth and elevation
’within [67.5◦, 67.5◦]′. The read line shows one example of the multipath reflections of a pulse, which eventually reaches the
detector (red rectangle) that records its arrival time. (b) Collecting a high number of pulses allows creating a time histogram.
(c) Colour-depth encoded 3D view of the scene.
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FIG. 6. Image reconstruction with different multipath events. We show the time histograms obtained for 1-... 10-path events
and corresponding depth-images obtained with the image retrieval algorithm. The ground truth depth-image is shown on the
top.

FIG. 7. Mean mean-squared-error (MSE) and intersection over union (IOU) obtained from our 10 model replicas, each averaged
over 100 histogram-3D image pairs, with increasing number of maximum scattering events.
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FIG. 8. Deep neural network layout and operation. The input time histogram is passed through a series of downsampling
blocks (DB), consisting each of them of a convolutional layer followed by a Rectified Linear Unit (ReLU) activation function.
After 4 DB, we use a series of up-sampling blocks (UB), which consist of 2-D up-sampling layers, 2-D convolutional layers, and
a ReLU activation function, being a depth-in-color encoded 3D image the output of the network.

FIG. 9. Visualisation of the meaning of the metric intersection over union. In the top left, we have a poor reconstruction, in
the top right, its corresponding ground truth. We compare R and R to the mask shown in the bottom left, to identify the
foreground regions. These regions, denoted as R̃ = 1 and G̃ = 1, are shown in light and dark grey respectively. Then, their
intersection is the area of the region shown in black on the bottom right, and the union is the combined area of everything that
is not white. Finally, the IOU is found according to Eq. (9).
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