
OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Framework Architecture

Emmanuel Dean, Florian Bergner, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Project Description

1.1 Problem Statement

Biped and humanoid robots are complex systems composed by a large number of actu-
ated degrees of freedom and various sensors that provide the requirements for the complex
process of walking. Due to such complexity and number of components, in the past decades,
the community of humanoid robots has developed several robot architectures for different pur-
poses and applications. All these robot architectures, ranging from small-size hobby robots to
giant manned walking machines, share some anatomical similarities developed through years
of work in this field. Nevertheless, the task of coordinating the information generated by all
the sensors and actuators in humanoid robots poses a complex software problem which has
been approached with different paradigms. Consequently, a large variety of different software
frameworks has been created which, in most of the cases, are intrinsically connected to the
robot hardware that they were designed for. This hardware dependency makes it difficult to
develop software packages which can be reused by other teams. As a result, the robot develop-
ers must continuously re-implement essential software modules/components to comply with
the requirements and restrictions of their system, slowing down the progress of biped and hu-
manoid robotics. In particular, two of the most essential components required by this type of
robots are the balance and walking controllers.

1.2 Innovation

From the experiences of different researchers around the world [1], the need for a common
middleware for handling the resources (sensors and actuators) of biped and humanoid robots
is clear. In this context, ROS based software frameworks, such as ros_control [4], provide the

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

low-level hardware abstraction layer to read and write data to the sensors and actuators sepa-
rating the control development level from the hardware interfaces while keeping all the benefits
of the ROS middleware. However, for complex control architectures such as balance/walking
controllers, there are no general frameworks to provide all the required components. Even
though there are some packages available to build balance and walking controllers, such as
foot-step planners, kinematic and dynamic libraries, state estimators, etc., they use different
interfaces (even inside ROS) and it is not straightforward to implement walking controllers with
them. Therefore, there is a need for an open source balance/walking controller which states the
base for all the components required for balance and walking [3]. OpenWalker’s aim is to sat-
isfy the necessity of a framework for balance and walking controllers, and to easily adapt to any
biped robot architecture. OpenWalker will provide the tools for developers and contributors
to implement their own walking controllers without having to create the whole framework for
every robot they use. OpenWalker will reduce the implementation time for new controllers and
provide a clear implementation example to new researchers on the field of walking controllers.
OpenWalker will also reduce the training time for new hobbyists and researchers and provide a
common software structure to further develop different options for each component. Further-
more, OpenWalker can contribute to define a common framework to standarize controllers for
humanoid robots, allowing to compare different control techniques.

1.3 Background

Biped walking is a challenging control problem. Its difficulty lies in several factors such
as the inherently unstable dynamics of biped systems, the discrete time nature of footstep
generation, the high number of degrees of freedom of biped robots, and the inability of di-
rectly measuring the floating base state. Consequently, walking controllers are hybrid discrete-
continuous state machines which generate the motions for a stable gait while keeping the bal-
ance metrics under safe and feasible conditions [5]. Due to the complexity and the high num-
ber of degrees of freedom of biped and humanoid robots, a common strategy to generate walk-
ing motions is to consider simplified lower dimensional models for the robot. For example,
one popular and simple model is the linear inverted pendulum. In such a model, the robot
is considered as a concentrated mass attached to an inverted pendular beam which oscillates
from one footstep position to the next one. Then, considering these simplified dynamics, a
balance controller must provide the feedback law to bring the pendulum to an equilibrium
point while a walking controller must push the pendulum away from its equilibrium point to
transfer the mass to the equilibrium point of the next foot position. The coordinated push and
pull motion produces the required cadence of a stable gait [6, 7]. Different approaches have
been proposed to generate walking motion patterns using different simplified models. For ex-
ample, the telescopic compass approach in [8] where the robot is modelled as a compass with
telescopic legs or the divergent component of motion controller for the inverted pendulum
model in [9], or the inverted pendulum with full centroidal inertia in [10]. Even when there is
a large variety in approaches, most of the walking controllers based in simplified models share
common components and similar architectures. Walking controllers such as [8, 9, 10] can be
implemented in software architectures similar to the ones described in [11, 12]. They require
a component to estimate the Zero Moment Point (ZMP) from sensor data [2], another com-
ponent to estimate the position of the Centre of Mass (CoM), a component to compute the
forward kinematics, a component to compute inverse kinematics, a footstep planner module,
and a walking motion generation component (simplified model engine). These components
can be implemented in different manners but the inputs and outputs are common metrics in

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

the biped locomotion theory. Some examples of ROS implementations of these components
are: the ZMP-CoM components in the multi-contact-zmp packages [13], the footstep planner
and localization modules in humanid_navigation stack [14], and the kinematic and dynamic
libraries [15, 16]. There are also ROS-based robot-specific complete walking controllers pub-
lished such as the controller from [11] for the iCub robot and [17] for the HRP-4 robot. However,
these examples are either robot specific or based on advanced complex techniques and are not
straightforward to adapt for other robots.

1.4 Objectives

OpenWalker will aim to fulfil the need of a standard walking controller architecture pro-
viding the minimal components required to generate stable walking on any biped robot with
planar feet by adjusting a minimal set of parameters. Therefore, OpenWalker will provide the
required components to handle the most common biped robot architectures for different joint
interfaces (position velocity and effort) and to exploit the available sensors in common biped
robot architectures (IMU sensors and ankle force-torque sensors). The main objective of this
project is to provide a general open source control framework, which is easy to use, and well-
documented to simplify the implementation of walking and balancing controllers. In this way,
the main contribution of OpenWalker is the development of software tools, templates, and
modules.

1.5 Expected Outcome

OpenWalker will provide a set of open source packages to enable walking on common
biped robot architectures with minimum user input information such as the robot descrip-
tor URDF files and a minimal set of parameters such as desired hip height, foot sole reference
frames in the kinematic chain, and available sensors in the robot. All the components will be
kept as general as possible to give users the freedom to modify them with low effort in order
to test new balance and locomotion methods, reducing the implementation-test times. Open-
Walker will enable users to test their walking controllers in an increasing number of simulated
and real biped robots. The number of available robots will grow as other robot models are
implemented under the ros_control hardware interface.

1.6 Technical Approach

Figure 1.1 shows the general pipe-line of OpenWalker. The entire project will be based on
ros_control, and it will provide modules and templates for fast prototyping of balancing/walking
controller components. The modules developed in this project will be used mainly for control,
which requires real-time capabilities. Therefore, the modules and templates will be mainly
written in C++. However, when possible, python code, examples, and templates will be also
provided. The main components of OpenWalker are:

URDF Interface: This component extracts important information required for balancing and
walking control algorithms from standard URDF files. The component also allocates this in-
formation in easy-to-use data containers (C++ classes), which provide simple access functions,
allowing the transport of data in a self-contained form. Forward Kinematics component (FK):
This component will use information generated by and contained in the URDF interface class.
The main goal of this component is to abstract the complexity of standard Kinematic libraries,

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

F/T Sensors

CoM

Ow

Foot Steps

Ros Controller
(ros_control plugin)

b)

Walking/Balance

CoM

Balance
Hip, Legs

FK

a)

CP Offset

ZMP

WholeBody
Joint State

Fusion

IMU

H
a
rd

w
a
re

 R
es

o
u
rc

e
In

te
rf

a
ce

 L
a
y
er

h
a
rd

w
a
re

 i
n
te

rf
a
ce

::
R

o
b
o
tH

W

R
es

o
u
rc

e
In

te
rf

a
ce

Sensor
Fusion

Limp
Parameters

2

Footstep
Planner

Primitive
Generator

IMU

IK

URDF
Interface

1
URDF

1

1

3

2

2

Gain
Selector

3

1

Filter

Objective
(Goal)

4

4

3

2

3

3

3

Gains

OpenWalker Framework
2

6DOF
Floating

Base

Walking/
Balance
Task

2

1

Figure 1.1: OpenWalker Control Framework

e.g. KDL, and allow the user to focus on the required information and not on how this informa-
tion needs to be extracted. The information will be provided through homogenized interfaces
and data containers defined within the OpenWalker software architecture. Sensor Fusion com-
ponent: This component will deal with the problem of the floating-base state estimation. It will
provide tools to implement algorithms to fuse information from different sensors to compute
the floating-base state in real-time. This component will automatically extract the information
provided by the URDF files and user-defined gains to simplify this process.

Zero Moment Point (ZMP) component: This component will estimate the Zero Moment Point
of the supporting legs from Force-Torque sensor data. It will be also customizable to receive
feedback from other kinds of plantar sensors as in [18]. Center of Mass (CM) component: This
component will compute the CM of the robot using the current joint state and the mechani-
cal information provided in the URDF files of the robot. Capture Point (CP) component: This
component provides methods to compute the CP . The main algorithm to compute the CP is
described in [6]. This component will provide a user-interface to change the parameters in a
simple form.

Footstep Planner component: This module is an external module, which means it will not
be implemented as a ros_control plugin. However, it will be implemented as a standard ros
node. This module will use the limb parameters, gains, and the target goal for the robot (all this
information is defined by the user) to generate a discrete sequence of footsteps. This sequence
will be the reference (desired) foot poses needed for the controllers. The main concept of this
module is to abstract the complexity of the footstep design and provide standard and ready
to use footstep planners. This module is mainly focused on the lower limbs of the humanoid
robot.

Primitive Generator component: This is one of the most important components of this frame-
work since it generates adequate footstep motions (in continuous space) that take into account
the desired discrete foot poses and the current state of the robot. Even when this module is

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

4

OpenWalker Project

mainly focused on the lower-limbs, it will also provide standard upper-limbs sequences used
commonly in the literature, e.g. standard swinging arms based on the gait frequency.

Balance component: In the same form as the last module, this component is paramount for
the whole framework. This module uses the reference trajectories of the hip and legs computed
by the primitive generation component and includes the forces acting on the robot. In this
manner, this component will handle the problem of providing dynamically consistent joint hip
and legs reaction motions to guarantee a stable walking pattern rejecting disturbances from
external and internal forces. This component will also use the information provided by the
user to simplify the parameterization of the balancer.

Inverse Kinematic (IK) component: This component will provide standard IK solvers with
especial emphasis on the methods which are more suitable for bipedal walking. The main goal
is to provide ready-to-use IK applications which are robust and real-time ready. This compo-
nent will abstract the complexity of the implementation of state-of-the-art IK solvers included
in standard IK libraries.

Whole-Body Joint State component: This component will receive the upper and lower joint
trajectories and will include the system constraints to generate adequate joint commanded tra-
jectories. This is an important step since the joint positions commanded to the robot should
also take into account the hardware limitations to guarantee that the joint motions are realiz-
able.

Resource Interface component: Where the ros_control framework provides a low-level ab-
straction layer for the hardware, this component provides a high-level abstraction. This inter-
face component handles the information exchange between ros_control and the OpenWalker
modules using the data containers defined of our framework. In this manner, the informa-
tion exchange between component is homogenized and synchronized. Furthermore, the re-
source interface simplifies the maintenance of the OpenWalker component since changes in
ros_control only affect the resource interface module, and end-users who want to use the Open-
Walker without ros_control can optionally develop custom interfaces for more complex be-
haviours as [19].

The OpenWalker framework will be fully integrated in the ROS ecosystem and it will be val-
idated in different humanoid robot platforms, e.g. REEM-C (PAL), TALOS (PAL), BIOLOID
(Robotis), etc. During these tests, a comprehensive documentation will be generated to allow
both experts and non-experts to develop their own examples and modules. The documentation
will include an extensive list of examples that range from simple tutorials to more advanced
applications. The OpenWalker framework, documentation, and tutorials will be released in the
ROS repositories, making them freely available to the whole community.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

5

OpenWalker Project

2 Framework Architecture

For the design the Framework architecture we extensively refined our general overview of
the control framework introduced in Figure 1.1 towards a system of inter-connected modules.
These modules encapsulate implementable/programmable functional blocks and we describe
in the following the behavior, the employed methods, the inputs and outputs, and the depen-
dencies of each module.

Furthermore, we defined the nomenclature and conventions we employ during the devel-
opment of the framework to ensure consistency and homogeneous code generation through-
out the whole project. The design of the core components of the framework which include type
classes to enforce strong type coding, and abstract interface classes to separate the interfaces
(inputs/outputs/actions) of the modules from their implementation.

The overview of the framework with all modules and their connections can be found in
Figure 2. Table 2 summarizes the most important type classes and Table 2.2 provides an overview
of the base classes derived from types of the Eigen math library and the default parameteriza-
tion of the employed template classes.

This document is followed by the description of the naming conventions and the module
descriptions.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

6

OpenWalker Project

C
O

M
Z

M
P

F
K

C
om

T
G

D
C

M
P

S
M

L
as

t F
oo

ts
te

p

F
S

P
M

F
S

M

in
it

ia
l

fo
ot

 s
te

p

U
S

E
R

C
ur

re
nt

 s
te

p

le
ng

=
ho

ri
zo

n

F
T

G
M S
in

gl
e

S
up

po
rt

R
R

M

In
te

rf
ac

e
to

R
ob

ot

Z
M

P
M

F
il

te
r

IM
P

L

F
T

C
oM

M

C
oM

_r
ea

l M
od

el
 B

as
ed

F
il

te
r

e.
g.

 K
F

C
P

C
oM

_c
m

d

C
oM

M

M
od

el
 B

as
ed

F
il

te
r

e.
g.

 K
F

C
P

B
M

C
oM

T
G

M

F
C

M

V
ir

tu
al

M
S

D

C
M

D
G

E
N

M
IK

M

U
R

D
F

O
pt

im
iz

at
io

n
P

ar
am

et
er

s

K
D

L
/

R
B

D
L

/
K

IN
D

R

F
K

M
E

xt
 L

ib
U

R
D

F

K
in

em
at

ic
P

ar
am

et
er

s
*

Jo
in

ts
*

L
in

ksst
at

ic

*b
as

e
li

nk
*L

F
 li

nk
*R

F
 li

nk
st

ri
ng

s

E
E

F
K

_c
m

d

F
K

M
E

xt
 L

ib

S
ta

ti
c

P
ar

am
et

er
s

U
R

D
F

K
in

em
at

ic
P

ar
am

et
er

s
*

Jo
in

ts
*

L
in

ksst
at

ic

*b
as

e
li

nk
*L

F
 li

nk
*R

F
 li

nk
st

ri
ng

s

E
E

F
K

_r
ea

l

S
ta

ti
c

P
ar

am
et

er
s

R
B

D
L

K
D

L
K

IN
D

R

R
B

D
L

K
D

L

S
te

p
 0

S
te

p
 1

S
te

p
 3

S
te

p
 2

S
te

p
 4

S
te

p
 5

S
te

p
 6

F
ig

u
re

2.
1:

O
ve

ra
ll

ov
er

vi
ew

o
ft

h
e

O
p

en
W

al
ke

r
Fr

am
ew

o
rk

A
rc

h
it

ec
tu

re
.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

7

OpenWalker Project

Sy
m

b
o

l
N

am
e

C
la

ss
N

am
e

Ty
p

ed
ef

B
as

e
C

la
ss

q
∈R

D
O

F
Jo

in
tP

o
si

ti
o

n
Jo

in
tP

os
it

io
n

JP
os

Ve
ct

or
Do

f

q̇
∈R

D
O

F
Jo

in
tV

el
o

ci
ty

Jo
in

tV
el

oc
it

y
JV

el
Ve

ct
or

Do
f

q̈
∈R

D
O

F
Jo

in
tA

cc
el

er
at

io
n

Jo
in

tA
cc

el
er

at
io

n
JA

cc
Ve

ct
or

Do
f

τ
q
∈R

D
O

F
Jo

in
tE

ff
o

rt
Jo

in
tE

ff
or

t
JT

or
qu

e
Ve

ct
or

Do
f

x
∈R

3
Li

n
ea

r
Po

si
ti

o
n

Li
ne

ar
Po

si
ti

on
LP

os
Ve

ct
or

3

x
∈R

3
Li

n
ea

r
Ve

lo
ci

ty
Li

ne
ar

Ve
lo

ci
ty

LV
el

Ve
ct

or
3

ẍ
∈R

3
Li

n
ea

r
A

cc
el

er
at

io
n

Li
ne

ar
Ac

ce
le

ra
ti

on
LA

cc
Ve

ct
or

3

Q
∈H

A
n

gu
la

r
Po

si
ti

o
n

An
gu

la
rP

os
it

io
n

AP
os

Qu
at

er
ni

on

ω
∈R

3
A

n
gu

la
r

Ve
lo

ci
ty

An
gu

la
rV

el
oc

it
y

AV
el

Ve
ct

or
3

α
=
ω̇
∈R

3
A

n
gu

la
r

A
cc

el
er

at
io

n
An

gu
la

rA
cc

el
er

at
io

n
AA

cc
Ve

ct
or

3

X
=

[x
,Q

]∈
R

7
C

ar
te

si
an

P
o

si
ti

o
n

Ca
rt

es
ia

nP
os

it
io

n
CP

os
Ve

ct
or

7

Ẋ
=

[ẋ
,ω

]∈
R

6
C

ar
te

si
an

Ve
lo

ci
ty

Ca
rt

es
ia

nV
el

oc
it

y
CV

el
Ve

ct
or

6

Ẍ
=

[ẍ
,α

]∈
R

6
C

ar
te

si
an

A
cc

el
er

at
io

n
Ca

rt
es

ia
nA

cc
el

er
at

io
n

CA
cc

Ve
ct

or
6

T
∈R

4×
4

H
o

m
o

ge
n

eo
u

s
Tr

an
sf

o
rm

at
io

n
Ho

mo
ge

ne
ou

sT
ra

ns
fo

rm
at

io
n

HT
f

Tr
an

sf
or

m3

f∈
R

3
Fo

rc
e

Fo
rc

e
Fo

rc
e

Ve
ct

or
3

µ
∈R

3
M

o
m

en
t

Mo
me

nt
Mo

me
nt

Ve
ct

or
3

W
=

[f,
µ

] ∈R
6

W
re

n
ch

Wr
en

ch
Wr

en
ch

Ve
ct

or
6

F
T
=

W
=

[f,
µ

] ∈R
6

Fo
rc

e
To

rq
u

e
Se

n
so

r
Fo

rc
eT

or
qu

eS
en

so
r

FT
Se

ns
or

Wr
en

ch

IM
U
=

[ẍ
,Q

,ω
]

In
er

ti
al

M
ea

su
re

m
en

tU
n

it
Se

n
so

r
Im

uS
en

so
r

Im
uS

en
so

r
[L

Ac
c,

AP
os

,
AV

el
]

p
∈R

3
Z

er
o

M
o

m
en

tP
o

in
t(

Z
M

P
)

Ze
ro

Mo
me

nt
Po

in
t

Zm
p

Li
ne

ar
Po

si
ti

on

ṗ
∈R

3
Z

M
P

Ve
lo

ci
ty

Ze
ro

Mo
me

nt
Po

in
tP

Zm
pP

Li
ne

ar
Ve

lo
ci

ty

p̈
∈R

3
Z

M
P

A
cc

el
er

at
io

n
Ze

ro
Mo

me
nt

Po
in

tP
P

Zm
pP

P
Li

ne
ar

Ac
ce

le
ra

ti
on

ζ
∈R

3
D

iv
er

ge
n

tC
o

m
p

o
n

en
to

fM
o

ti
o

n
(D

C
M

)
Di

ve
rg

en
tC

om
po

ne
nt

Of
Mo

ti
on

Dc
m

Li
ne

ar
Po

si
ti

on

ζ̇
∈R

3
D

C
M

Ve
lo

ci
ty

Di
ve

rg
en

tC
om

po
ne

nt
Of

Mo
ti

on
P

Dc
mP

P
Li

ne
ar

Ve
lo

ci
ty

ζ̈
∈R

3
D

C
M

A
cc

el
er

at
io

n
Di

ve
rg

en
tC

om
po

ne
nt

Of
Mo

ti
on

PP
Dc

mP
P

Li
ne

ar
Ac

ce
le

ra
ti

on

r i
∈R

3
V

ir
tu

al
R

ep
el

le
n

tP
o

in
t(

V
R

P
)

Vi
rt

ua
lR

ep
el

le
nt

Po
in

t
Vr

p
Li

ne
ar

Po
si

ti
on

ζ
i
∈R

3
D

C
M

w
ay

p
o

in
t(

D
C

M
W

P
)

Dc
mW

ay
Po

in
t

Dc
mW

p
Li

ne
ar

Po
si

ti
on

ζ
D

S,
in

i,
i
∈R

3
In

it
ia

ld
o

u
b

le
su

p
p

o
rt

w
ay

p
o

in
tf

o
r

th
e

D
C

M
Dc

mD
ou

bl
eS

up
po

rt
In

it
ia

lW
ay

Po
in

t
Dc

mD
sI

Wp
Li

ne
ar

Po
si

ti
on

ζ
D

S,
fi

n
al

,i
∈R

3
F

in
al

d
o

u
b

le
su

p
p

o
rt

w
ay

p
o

in
tf

o
r

th
e

D
C

M
Dc

mD
ou

bl
eS

up
po

rt
Fi

na
lW

ay
Po

in
t

Dc
mD

sF
Wp

Li
ne

ar
Po

si
ti

on

ζ̇
D

S,
in

i,
i
∈R

3
Ve

lo
ci

ty
o

ft
h

e
in

it
ia

ld
o

u
b

le
su

p
p

o
rt

w
ay

p
o

in
tf

o
r

th
e

D
C

M
Dc

mD
ou

bl
eS

up
po

rt
In

it
ia

lW
ay

Po
in

tP
Dc

mD
sI

Wp
P

Li
ne

ar
Ve

lo
ci

ty

ζ̇
D

S,
fi

n
al

,i
∈R

3
Ve

lo
ci

ty
o

ft
h

e
fi

n
al

d
o

u
b

le
su

p
p

o
rt

w
ay

p
o

in
tf

o
r

th
e

D
C

M
Dc

mD
ou

bl
eS

up
po

rt
Fi

na
lW

ay
Po

in
tP

Dc
mD

sF
Wp

P
Li

ne
ar

Ve
lo

ci
ty

D
C

M
P

S
=

[r i
,ζ

i,
ζ

D
S,

in
i,

i,ζ
D

S,
fi

n
al

,i
,
ζ̇

D
S,

in
i,

i
ζ̇

D
S,

fi
n

al
,i

] D
C

M
Po

in
tS

et
Dc

mP
oi

nt
Se

t
Dc

mP
s

[V
rp

,
Dc

mW
p,

Dc
mD

sI
Wp

,
Dc

mD
sF

Wp
,

Dc
mD

sI
Wp

P,
Dc

mD
sF

Wp
P]

X
F

S,
i
∈R

7
Fo

o
tS

te
p

C
ar

te
si

an
Po

si
ti

o
n

Fo
ot

St
ep

Ca
rt

es
ia

nP
os

it
io

n
Fs

CP
os

Ca
rt

es
ia

nP
os

it
io

n

l i
∈ {

L,
R

}
Le

g
Id

en
ti

fi
er

(L
ef

t/
R

ig
h

tl
eg

)
Fo

ot
St

ep
Le

gI
de

nt
if

ie
r

Fs
LI

d
Le

gI
de

nt
if

ie
r

s i
∈ {

0,
1 }

Fo
o

tS
te

p
E

n
d

Fl
ag

Fo
ot

St
ep

En
dF

la
g

Fs
En

dF
bo

ol

n
i
∈R

+ 0
Fo

o
tS

te
p

N
u

m
b

er
Fo

ot
St

ep
Nu

mb
er

Fs
Nu

m
un

si
gn

ed
in

t

F
S
=

[X
F

S,
i,l

i,
s i

,n
i]

Fo
o

tS
te

p
Fo

ot
St

ep
Fs

[F
SC

Po
s,

Fs
LI

d,
Fs

En
dF

,
Fs

Nu
m]

Ta
b

le
2.

1:
O

ve
rv

ie
w

o
ft

yp
e

cl
as

se
s

u
se

d
in

th
e

O
p

en
W

al
ke

r
p

ro
je

ct
.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

8

OpenWalker Project

Base Class Eigen Template Class Default Template Parameters

VectorDof Eigen::Matrix<Scalar, Dof, 1>
Scalar = double

Dof = Eigen::Dynamic

Vector3 Eigen::Matrix<Scalar, 3, 1> Scalar = double
Vector6 Eigen::Matrix<Scalar, 6, 1> Scalar = double
Vector7 Eigen::Matrix<Scalar, 7, 1> Scalar = double
Transform3 Eigen::Transform<Scalar, 3, Eigen::Affine> Scalar = double

Quaternion Eigen::QuaternionBase<Eigen::QuaternionRef<Derived> >
Derived = Eigen::Matrix<Scalar,4,1>

Scalar = double

Table 2.2: Overview of base classes derived from types of the Eigen math library and the default
parameterization of the employed template classes

References

[1] Natale, L., Asfour, T., Kanehiro, F., and Vahrenkamp, N. (Eds.). (2018). Software Architec-
tures for Humanoid Robotics. Frontiers Media SA.

[2] Kajita, S., Hirukawa, H., Harada, K., and Yokoi, K. (2014). Introduction to humanoid
robotics (Vol. 101). Springer Berlin Heidelberg.

[3] Grizzle, J. W., Chevallereau, C., Sinnet, R. W., and Ames, A. D. (2014). Models, feedback
control, and open problems of 3D bipedal robotic walking. Automatica, 50(8), 1955-1988.

[4] Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V., Tsouroukdissian, A. R., Bohren,
J., ... and Perdomo, E. F. (2017). ros_control: A generic and simple control framework for
ROS. The Journal of Open Source Software, 2(20), 456-456.

[5] Miyakoshi, S., and Cheng, G. (2003). Utilizing Physical Relationships for Biped Walking
Control: a preliminary study in identifying key essential properties for the two support
phases. In Proc. of Int. Conf. on Climbing and Walking Robots (pp. 543-550).

[6] Morimoto, J., Endo, G., Nakanishi, J., Hyon, S., Cheng, G., Bentivegna, D., and Atkeson, C.
G. (2006, May). Modulation of simple sinusoidal patterns by a coupled oscillator model
for biped walking. In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. (pp. 1579-1584). IEEE.

[7] Endo, G., Nakanishi, J., Morimoto, J., and Cheng, G. (2005, April). Experimental studies
of a neural oscillator for biped locomotion with QRIO. In Proceedings of the 2005 IEEE
international conference on robotics and automation (pp. 596-602). IEEE.

[8] Miyakoshi, S., and Cheng, G. (2004, October). Examining human walking characteristics
with a telescopic compass-like biped walker model. In 2004 IEEE International Confer-
ence on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583) (Vol. 2, pp. 1538-1543).
IEEE.

[9] Englsberger, J., Ott, C., Roa, M. A., Albu-Schäffer, A., and Hirzinger, G. (2011, September).
Bipedal walking control based on capture point dynamics. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 4420-4427). IEEE.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

9

OpenWalker Project

[10] Lee, S. H., and Goswami, A. (2007, April). Reaction mass pendulum (RMP): An explicit
model for centroidal angular momentum of humanoid robots. In Proceedings 2007 IEEE
International Conference on Robotics and Automation (pp. 4667-4672). IEEE.

[11] Choi, Y., Kim, D., Oh, Y., and You, B. J. (2007). Posture/walking control for humanoid robot
based on kinematic resolution of com jacobian with embedded motion. IEEE Transactions
on Robotics, 23(6), 1285-1293.

[12] Park, I. W., Kim, J. Y., and Oh, J. H. (2006, December). Online biped walking pattern gen-
eration for humanoid robot khr-3 (kaist humanoid robot-3: Hubo). In 2006 6th IEEE-RAS
International Conference on Humanoid Robots (pp. 398-403). IEEE.

[13] Caron, S., Pham, Q. C., and Nakamura, Y. (2017). Zmp support areas for multicontact mo-
bility under frictional constraints. IEEE Transactions on Robotics, 33(1), 67-80.

[14] Hornung, A., Dornbush, A., Likhachev, M., and Bennewitz, M. (2012, November). Anytime
search-based footstep planning with suboptimality bounds. In 2012 12th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids 2012) (pp. 674-679). IEEE.

[15] Felis, M. L. (2017). RBDL: an efficient rigid-body dynamics library using recursive algo-
rithms. Autonomous Robots, 41(2), 495-511.

[16] Smits, R., Bruyninckx, H., and Aertbeliën, E. (2011). Kdl: Kinematics and dynamics library.

[17] Caron, S., Kheddar, A., and Tempier, O. (2018). Stair climbing stabilization of the HRP-4
humanoid robot using whole-body admittance control. arXiv preprint arXiv:1809.07073.

[18] Guadarrama-Olvera, J. R., Bergner, F., Dean, E., and Cheng, G. (2018, November). Enhanc-
ing Biped Locomotion on Unknown Terrain Using Tactile Feedback. In 2018 IEEE-RAS
18th International Conference on Humanoid Robots (Humanoids) (pp. 1-9). IEEE.

[19] Dean-Leon, E., Guadarrama-Olvera, J. R., Bergner, F., Dean, E., and Cheng, G. (2019, Feb).
Whole-Body Active Compliance Control for Humanoid Robots with Robot Skin. Accepted
for 2019 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

10

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Naming Conventions

Emmanuel Dean, Florian Bergner, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 General description.

1.1 General coding rules

1.1.1 Formating

1. Blocks are intended by 2 spaces

2. Braces are opened and closed in their own lines

1.1.2 Naming

1. ROS packages are under_scored e.g. "my_package"

2. ROS topics/Services are under_scored e.g. "my_topic"

3. Files are under_scored e.g. "my_class.cpp"

4. Libraries are under_scored e.g. "my_class.cpp"

5. Classes are CamelCase e.g. "MyClass"

6. Functions are camelCased e.g. "myFunction()"

7. Variables are under_scored e.g. "my_var"

8. Member Variables are under_scored with a trailing underscore e.g. "my_member_var_"

9. Global Variables are under_scored with a leading g_ added e.g. "g_my_global_var_"

10. Namespaces are under_scored e.g. "my_namespace"

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

1.1.3 OW specific Naming

1. Code readability has higher priority than briefness.

2. Variable names for math expressions must follow the naming convention in Table 1.1,
where "Op" is the acronym for "Operator" and "Qual" for "Qualifier".

3. The proposed notation is case sensitive.

4. Operator order must follow table 1.2.

5. Qualifier notation must follow table 1.3.

Table 1.1: General naming convension for math notation.

Name Math Code

Scalar nameOp
Qual, index name<Op><Qual>< _>< [index]>

Vector Base
Op1

name
Op2

Qual, index name<Op1><Op2><Qual>< _frame>< _base>< _>< [index]>

Matrix
Op1

Name
Op2

Qual, index Name<Op1><Op2><Qual>< _>< [index]>

Homogeneous
Transformation

Frame
Base TnameOp

Qual, index Tname<Op><Qual>< _frame>< _base>< _>< [index]>

Table 1.2: Coding notation and order for operators.

Priority Name Math Code

1 Derivative •̇ P

2 Inverse •−1 or •† I

3 Transposed •> T

2 Variable glosary.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

Table 1.3: Coding notation for qualifiers.

Name Abbreviation Code Description

Reference ref Ref Reference value from abstract simplified model.

Desired d D Desired quantity to be tracked by controller.

Real real Real Real quantity from sensor data.

Commanded cmd Cmd Value commanded to the actuators.

Math Code Name
q q Joint state

qreal qReal Real joint state

qcmd qCmd Commanded joint state

WxFd
XD_f_w Desired position of f wrt w

WẋFd
XDP_f_w Desired velocity of f wrt w

WẍFd
XDPP_f_w Desired acceleration of f wrt w

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Foot Step Planner (FSPM)

Rogelio Guadarrama-Olvera, Emmanuel Dean, Florian Bergner,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

Last Footstep

FSPM
FSM

initial
foot step

USER

Current step

Figure 1.1: Foot Step Planner module: This module generates a set of footsteps from user ve-
locity commands and adapts them according to the real footstep execution data.

The footstep planner generates a number of steps ahead proposing feasible footholds de-
fined by the robot’s kinematic parameters. The plan is generated from velocity commands de-
fined by the user. The footstep planner also updates the plan when the step execution differs
from the original plan. This could happen when the terrain conditions move the foot land-
ing motion to a different location. Then the modified location is used to re-plan the following
steps.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

2 Module Connections

2.1 Inputs

Symbol Name Type Description

vc ∈R6 Velocity Command CartesianVelocity Velocity command for the x−y plane including rotation
ω. The OpenWalker framework uses this module input to
compute a feasible set of future footholds which enforce
the walking execution to follow the velocity command.

FS Last Footstep FootStep The end position of the last executed footstep. The
OpenWalker framework uses this module input to adjust
the plan of footsteps according to the actual execution of
them.

2.2 Outputs

Symbol Name Type Description

{FSi} Footstep List FootStepList A list containing the planned footsteps.

2.3 Inter-Connections

This module can receive the input from any publisher of geometry_msgs/Twist mes-
sages, for example the teleop_tools packages. The Last Footstep is received from the Foot
Trajectory Generator (FTG).

The output will provide the reference way-points for the DCM planner and the Foot Tra-
jectory Generator (FTG).

2.4 Common Methods

There are several algorithmic methods for footstep planning using different sensors and
map information. Some examples are the obstacle avoiding planner used in the humanoid
robot ASIMO [1], the dynamic programming approach in [2], or the LIDAR based ROS packages
footstep_planner and visir_footstep_planner.

References

[1] Chestnutt, Joel, et al. "Footstep planning for the honda asimo humanoid." Proceedings of
the 2005 IEEE international conference on robotics and automation. IEEE, 2005.

[2] Kuffner, James J., et al. "Footstep planning among obstacles for biped robots." Proceedings
2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding
the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180). Vol. 1.
IEEE, 2001.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Real Robot (RRM)

Florian Bergner, Emmanuel Dean, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

RRM

Interface
to

Robot

Figure 1.1: Real Robot module: This module implements the interface to the real robot.

The Real Robot module (RRM) implements the interface to the real robot. This module
acquires all the available information provided by the sensors of the real robot and sends com-
mands to the actuators of the robot. The RRM abstracts robot specific procedures for reading its

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

sensors and write commands to its actuators. Commands and sensor information are provided
in the data types of the OpenWalker project and interfaces structure and control the access to
the information. The module manages the access to the robot’s sensors and actuators and ho-
mogenizes the exchanged information. As a result, all modules of the OpenWalker project can
access different robots in the same way using the same data types. The common access eases
development and maintenance.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

qc ∈RDOF Commanded Joint Position JointPosition This vector contains the next commanded joint positions
for all the joints of the robot. The OpenWalker frame-
work uses this module input to send position commands
to the position controlled real robot.

2.2 Outputs

Symbol Name Type Description

ẍimu ∈R3 IMU Linear Acceleration LinearAcceleration This vector contains the linear acceleration measured by the Iner-
tial Measurement Unit (IMU) sensor of the robot. The OpenWalker
framework can use this module output for model based state esti-
mations.

Qimu ∈R4 IMU Angular Position AngularPosition This vector contains the angular position in quaternion measured
by the Inertial Measurement Unit (IMU) sensor of the robot. The
OpenWalker framework can use this module output for model
based state estimations.

ωimu ∈R3 IMU Angular Velocity AngularVelocity This vector contains the angular velocity in quaternion measured
by the Inertial Measurement Unit (IMU) sensor of the robot. The
OpenWalker framework can use this module output for model
based state estimations.

LFT = LW ∈R6 FT Left Foot Wrench ForceTorqueSensor This vector contains the wrench measured by the force torque sen-
sor in the left foot of the robot. The OpenWalker framework can
use this module output for the Zero-Moment-Point estimation.

RFT = RW ∈R6 FT Right Foot Wrench ForceTorqueSensor This vector contains the wrench measured by the force torque sen-
sor in the right foot of the robot. The OpenWalker framework can
use this module output for the Zero-Moment-Point estimation.

q ∈RDOF Real Robot Joint Positions JointPosition This vector contains the real joint positions of the robot. The
OpenWalker framework uses this module output to compute the
forward kinematics of the real robot.

q̇ ∈RDOF Real Robot Joint Velocities JointVelocity This vector contains the real joint velocities of the robot. The
OpenWalker framework uses this module output to compute the
forward kinematics of the real robot.

q̈ ∈RDOF Real Robot Joint Accelerations JointAcceleration This vector contains the real joint accelerations of the robot. The
OpenWalker framework uses this module output to compute the
forward kinematics of the real robot.

τq ∈RDOF Real Robot Joint Torques JointEffort This vector contains the real joint torques of the robot. The Open-
Walker framework can use this module output to monitor the joint
torques of the real robot.

qc ∈RDOF Commanded Robot Joint Positions JointPosition This vector contains the currently commanded joint positions of
the robot. The OpenWalker framework uses this module output to
compute the forward kinematics of the commanded robot.

q̇c ∈RDOF Commanded Robot Joint Velocities JointVelocity This vector contains the currently commanded joint velocities of
the robot. The OpenWalker framework uses this module output to
compute the forward kinematics of the commanded robot.

q̈c ∈RDOF Commanded Robot Joint Accelerations JointAcceleration This vector contains the currently commanded joint accelerations
of the robot. These are numerically computed by deriving qc. The
OpenWalker framework uses this module output to compute the
forward kinematics of the commanded robot.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

2.3 Inter-Connections

The RRM is connected to the two forward kinematics modules (FKMs) and provides the
real and commanded joint positions, velocities, and acceleration to these modules. The real
and commanded FKM need this information to compute/update the forward kinematics. The
RRM also provides the IMU measurements to the Center-of-Mass module (CoMM), the Zero-
Moment-Point module (ZMPM), and the Balancer module (BM) to provide additional infor-
mation for state estimators. Additionally the RRM provides the FT sensor measurements to the
ZMPM which filters the measurements. These filtered FT sensor measurements are then used
by the ZMPM itself and provided to other modules.

2.4 Common Methods

This module is a pure interface module and thus does not need any mathematical, physi-
cal, or robotical models to compute its outputs. The main tasks of the RRM module are access
management, type conversions, and structuring of information.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Forward Kinematics (FKM)

Florian Bergner, Emmanuel Dean, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

FKM
Ext Lib

Static Parameters

URDF

Kinematic
Parameters

* Joints
* Links

static

*base link
*LF link
*RF link

strings

EE

FK_real

RBDL
KDL

Leg Poses
FKM

Ext Lib
URDF

Kinematic
Parameters

* Joints
* Links

static

*base link
*LF link
*RF link

strings

EE

FK_cmd

Static Parameters

RBDL
KDL

KINDR

Leg Poses

These are
numeric

deivatives
generated by

RRM

Figure 1.1: Forward Kinematics module: This module implements the forward kinematics for
the robot.

The Forward Kinematics module (FKM) computes the forward kinematics of the robot.
The OpenWalker framework employs two FKMs, one for computing the forward kinematics for
the real robot, and one for the commanded robot. The forward kinematics maps the joint posi-
tion space into the Cartesian space, i.e. for a given set of joint positions, the forward kinematics
computes the Carthesian position (linear position and angular position) of a given end-effector.
The forward kinematics of the real robot uses the robot’s joint sensor measurements (q, q̇, and
q̈) as input to compute the Carthesian positions of end-effectors of the real robot. Correspond-
ingly, the forward kinematics of the commanded robot uses the commanded joint positions
(qc, q̇c, and q̈c) to compute the Carthesian positions of end-effectors of the commanded robot.
The OpenWalker framework uses the real and commanded Carthesian end-effector positions
to compute offsets which the frameworks uses to compensate the error between where it com-
manded the end-effectors and where they actually are.

Since the rigid multi body system (MBS) of the robot is the same for the real and the com-
manded robot the OpenWalker framework needs to realize only one FKM, which is then im-

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

plemented and connected once to the real joint positions and once to the commanded joint
positions.

The OpenWalker framework requires the Carthesian position, velocities, and accelerations
of three end-effectors, namely the left and right foot, and the center-of-mass (CoM) of the
whole robot, with respect to the world. The FKM implementations provide this information
to other modules of the OpenWalker project.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

q ∈RDOF Real Robot Joint Positions JointPosition This vector contains the real joint positions of the robot.
The OpenWalker framework uses this module input to
compute the forward kinematics of the real robot.

q̇ ∈RDOF Real Robot Joint Velocities JointVelocity This vector contains the real joint velocities of the robot.
The OpenWalker framework uses this module input to
compute the forward kinematics of the real robot.

q̈ ∈RDOF Real Robot Joint Accelerations JointAcceleration This vector contains the real joint accelerations of the
robot. The OpenWalker framework uses this module in-
put to compute the forward kinematics of the real robot.

qc ∈RDOF Commanded Robot Joint Positions JointPosition This vector contains the currently commanded joint po-
sitions of the robot. The OpenWalker framework uses
this module input to compute the forward kinematics of
the commanded robot.

q̇c ∈RDOF Commanded Robot Joint Velocities JointVelocity This vector contains the currently commanded joint ve-
locities of the robot. The OpenWalker framework uses
this module input to compute the forward kinematics of
the commanded robot.

q̈c ∈RDOF Commanded Robot Joint Accelerations JointAcceleration This vector contains the currently commanded joint ac-
celerations of the robot. The OpenWalker framework
uses this module input to compute the forward kinemat-
ics of the commanded robot.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

2.2 Outputs

FK of the Real Robot

Symbol Name Type Description

L
WT ∈R4×4 Left Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the left foot coordinate frame L to the world coordinate frame
W.

R
WT ∈R4×4 Right Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the right foot coordinate frame R to the world coordinate frame
W.

M
WT ∈R4×4 CoM Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the CoM coordinate frame M to the world coordinate frame W.

WẊL ∈R6 Left Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the left
foot L with respect to the world coordinate frame W.

WẊR ∈R6 Right Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the right
foot R with respect to the world coordinate frame W.

WẊM ∈R6 CoM Velocity CartesianVelocity This vector contains the linear and angular velocities of the CoM
with respect to the world coordinate frame W.

WẌL ∈R6 Left Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the left
foot L with respect to the world coordinate frame W.

WẌR ∈R6 Right Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the
right foot R with respect to the world coordinate frame W.

WẌM ∈R6 CoM Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the
CoM with respect to the world coordinate frame W.

FK of the Commanded Robot

Symbol Name Type Description
Lc
WT ∈R4×4 Left Commanded Foot Coordinate

Frame
HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the left commanded foot coordinate frame L to the world coor-
dinate frame W.

Rc
W T ∈R4×4 Right Commanded Foot Coordinate

Frame
HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the right commanded foot coordinate frame R to the world co-
ordinate frame W.

Mc
W T ∈R4×4 CoM Commanded Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the CoM commanded coordinate frame M to the world coordi-
nate frame W.

WẊLc
∈R6 Left Commanded Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the left

commanded foot L with respect to the world coordinate frame W.

WẊRc
∈R6 Right Commanded Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the com-

manded right foot R with respect to the world coordinate frame W.

WẊMc
∈R6 CoM Commanded Velocity CartesianVelocity This vector contains the linear and angular velocities of the com-

manded CoM with respect to the world coordinate frame W.

WẌLc
∈R6 Left Commanded Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded left foot L with respect to the world coordinate frame
W.

WẌRc
∈R6 Right Commanded Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded right foot R with respect to the world coordinate
frame W.

WẌMc
∈R6 CoM Commanded Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded CoM with respect to the world coordinate frame W.

2.3 Inter-Connections

The inputs of the FKMs are connected to the outputs of the Real Robot Module (RRM)
which provides the joint positions, velocities, and accelerations of the real and the commanded
robot. The outputs of FKMs (real and commanded) are connected to modules that require
the Cartesian positions, velocities, and accelerations of the left/right foot and the CoM end-
effectors with respect to the world. The real FKM is connected to

• the Zero-Moment-Point Module (ZMPM),

• the Center-of-Mass Module (CoMM) for the real robot, and

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

• the Foot Compliance Model Module (FCMM).

The commanded FKM is connected to

• the Center-of-Mass Module (CoMM) for the commanded robot, and

• the Foot Trajectory Generator Module (FTGM).

The ZMPM module uses L
WT, R

WT, M
WT, and WẊM in combination with information of the

foot FT sensors and the IMU to compute the linear position, and velocity, of the Zero-Moment-
Point (ZMP). The CoMMs (real and commanded) fuse M

WT and WẊM with IMU information in
a model based filter to estimate the Cartesian position and velocity of the CoM and the linear
position and velocity of the capture point (CP). The FCMM requires L

WT, R
WT, WẊL, and WẊR

compute the homogeneous transformation for the offset of the feet coordinate frames. The
FTGM requires Lc

WT and Rc
W T to compute the reference Cartesian positions, velocities, and accel-

erations of the feet.

2.4 Common Methods

This module uses kinematic parameters such as joint properties (location, type), and link
properties (location, length) to build up a rigid multi body system (MBS) that represents the
kinematic model of the robot. The MBS is a tree of links and joints where the joints connect
links. Relative spatial transformations between links and joints describe the spatial relation be-
tween parent and child links. Then the transformation of all coordinate frames within the MBS
can be computed with respect to a reference coordinate frame by traveling along the branches
of the tree and chaining up relative transformations between parent and child links. This re-
cursive method of computing the transformations of link coordinate frames with respect to a
reference coordinate frame has in contrast to the symbolic code generation method the ad-
vantage that existing models can be extended and more easily analyzed [1]. Furthermore, the
recursive method does not require the complex generation of code from symbolic expressions.

References

[1] Martin L. Felis, RBDL: An efficient rigid-body dynamics library using recursive algorithms,
Autonomous Robots 41 (2): 495–511, 2017.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

4

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Zero Moment Point (ZMPM)

Emmanuel Dean, Florian Bergner, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

ZMPM

Filter

IMPL

FT

FT

Figure 1.1: Zero Moment Point module: This module implements the local zmp estimation for
each leg and the combined legs Wp, Lp, and Rp, respectively.

The Zero Moment Point module (ZMPM) estimates the local Zero Moment Points (ZMP)
for each foot and the global ZMP for both feet, Wp, Lp, and Rp, respectively. The ZMP is an im-
portant concept for dynamics and control of legged locomotion, e.g., for humanoid robots. It
specifies the point where the dynamic reaction forces at the contact of the foot with the ground
does not produce any moment in the horizontal direction, i.e. the point where the total of
horizontal inertia and gravity forces are in equilibrium. This module requires kinematic in-
formation of the feet, dynamic information of the Center of Mass (CoM), and ground reaction

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

forces, which can be obtained with Force/Torque (FT) sensors, for example, mounted on the
feet. The ZMP calculation can be extended using IMU sensors as well. The information ob-
tained from the ZMP analysis is extremely important for balance, which is the highest priority
task for legged robots. This module also filters the signals of the FT sensors, which are used by
other components of the OpenWalker framework.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

L
WT ∈R4×4 Left Foot Pose HomogeneousTransformation This matrix represents the pose of the left foot with re-

spect to the world coordinate frame (wcf).
R
WT ∈R4×4 Right Foot Pose HomogeneousTransformation This matrix represents the pose of the right foot with re-

spect to the world coordinate frame (wcf).
M
WT ∈R4×4 Real Robot CoM Pose HomogeneousTransformation This matrix represents the pose of the real CoM with re-

spect to the world coordinate frame (wcf).

WẋM ∈R6 Real Robot CoM Velocities CartesianVelocity This vector contains the real CoM velocities of the robot.

LFT ∈R6 Left Foot FT ForceTorqueSensor This vector contains the signals of the force/torque sen-
sor mounted on the left foot.

RFT ∈R6 Right Foot FT ForceTorqueSensor This vector contains the signals of the force/torque sen-
sor mounted on the right foot.

IMU ∈R10 IMU information ImuSensor This vector contains the IMU sensor information which
includes Cartesian acceleration, angular position (in
Quaternions), and angular velocity of the hip/torso.

2.2 Outputs

Symbol Name Type Description

LFTf ∈R6 Filtered Left Foot FT ForceTorqueSensor This vector contains the signals of the filtered force/torque sensor
mounted on the left foot.

RFTf ∈R6 Filtered Right Foot FT ForceTorqueSensor This vector contains the signals of the filtered force/torque sensor
mounted on the right foot.

Wp ∈R3 Zero Moment Point ZeroMomentPoint This vector represents the combined zero moment point with re-
spect to the world coordinate frame.

Wṗ ∈R3 Zero Moment Velocity ZeroMomentPointP This vector represents the time derivative of the combined zero
moment point with respect to the world coordinate frame.

Wp̈ ∈R3 Zero Moment Acceleration ZeroMomentPointPP This vector represents the 2nd time derivative of the combined
zero moment point with respect to the world coordinate frame.

Lp ∈R3 Left Foot Zero Moment Point ZeroMomentPoint This vector represents the zero moment point with respect to the
left foot coordinate frame.

Lṗ ∈R3 Left Foot Zero Moment Velocity ZeroMomentPointP This vector represents the time derivative of the zero moment
point with respect to the left foot coordinate frame.

Lp̈ ∈R3 Left Foot Zero Moment Acceleration ZeroMomentPointPP This vector represents the 2nd time derivative of the zero moment
point with respect to the left foot coordinate frame.

Rp ∈R3 Right Foot Zero Moment Point ZeroMomentPoint This vector represents the zero moment point with respect to the
right foot coordinate frame.

Rṗ ∈R3 Right Foot Zero Moment Velocity ZeroMomentPointP This vector represents the time derivative of the zero moment
point with respect to the right foot coordinate frame.

Rp̈ ∈R3 Right Foot Zero Moment Acceleration ZeroMomentPointPP This vector represents the 2nd time derivative of the zero moment
point with respect to the right foot coordinate frame.

2.3 Inter-Connections

The inputs of the ZMPM come from different sources. The RRM provides the FT sensors
information and the IMU sensor information, LFT, RFT, IMU, respectively. The poses of the

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

feet and the CoM with respect to the world coordinate frame
(

L
WT, R

WT, M
WT

)
as well as the CoM

velocity (WẋM) are provided by the FKM, using the real robot joint states
(
q, q̇, q̈

)
.

This ZMPM provides the information of the combined zmp
(

Wp
)

and its time-derivative(
Wṗ

)
for the balancer (BM), and the filtered FT sensor signals

(
LFTf, LFTf

)
to compute the com-

pliance of the feet in the FCM.

2.4 Common Methods

2.4.1 ZMP

The standard method to compute the ZMP is based directly on the FT sensor information
of each foot [1].

First, the ZMP of each foot should be calculated:

Fpx =
−Fµy − Ffx dF

Ffz
(2.1)

Fpy =
−Fµx − Ffy dF

Ffz
(2.2)

Fp =
[

Fpx, Fpy, 0
]>

(2.3)

where F = {L, R}, FFT = [
Ff, Fµ

]
, and dF is the FT sensor offset of the foot F.

The ZMP of both feet is combined and represented with respect to the world coordinate
frame. To this aim, first, we project each ZMP to the world coordinate frame (wcf) using the
orientation of each feet w.r.t the wcf, F

WR ∈ SO(3), which is obtained from the feet pose F
WT ∈

R4×4.

WpF = F
WR Fp (2.4)

Finally, each projected ZMP,
(

WpF

)
with F = {L, R}, is combined to produce the global ZMP

w.r.t the wcf.

Wpx =
WpR,x WfR,z +WpL,x WfL,z

WfL,z +WfR,z

(2.5)

Wpy =
WpR,y WfR,z +WpL,y WfL,z

WfL,z +WfR,z

(2.6)

2.4.2 2nd Order Filtering

To filter the FT sensor signals, we can use a second order filter, for example, Butterworth
filter [2]. This filter can be computed as:

xf,k = b0 xk +b1 xk−1 +b2 xk−2 −a1 xf,k−1 −a2 xf,k−2 (2.7)

where ai and bj are the filter coefficients that depend on the cutoff frequency fc as:

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

b0 =
T 2 w2

c

d
(2.8)

b1 =
T 2 2 w2

c 0

d
(2.9)

b2 =
T 2 w2

c

d
(2.10)

a0 = 1.0 (2.11)

a1 =
T 2 2 w2

c −8

d
(2.12)

a2 =
T 2 w2

c −2
p

2T wc +4

d
(2.13)

References

[1] Englsberger, Johannes, et al. Three-dimensional bipedal walking control based on diver-
gent component of motion, IEEE Transactions on Robotics, pp. 355-368, 2015.

[2] George Ellis. Filters in Control Systems, Chapter of Control System Design Guide (Fourth
Edition), pp. 165-183, 2012.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

4

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Center of Mass (CoMM)

Emmanuel Dean, Florian Bergner, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

CoMM

CoM_real

Model Based
Filter

e.g. KF

CP

CoM_cmd

CoMM

Model Based
Filter

e.g. KF

CP

CP
"Capture Point"

Figure 1.1: Center of Mass module: This module implements the center of mass estimation for
the lower body of the robot, and computes the Capture point (CP) Wζ.

The Center of Mass module (CoMM) estimates the state of the Center of Mass (CoM) of the
lower body of the robot using a model-based estimator, e.g. Kalman Filter [2]. This estimator
uses as an input the Cartesian position and velocity of the CoM obtained from the joint sates

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

and the dynamic library (KDL/RBDL/KINDR), fused with the information from an IMU. The
OpenWalker framework employs two CoMMs, one for computing the CoM of the real robot,
and one for the commanded robot. The joint states of both robots can differ depending on the
conditions of the environment.

The second task of this module is the real-time computation of the Divergent Compo-
nent of Motion (DCM), also known as Capture Point (CP)[3]. The DCM is a major concept that
has been applied to walking and running pattern generation. This CP most be computed for
both the real and the commanded robot models. The CoM calculation of the real robot uses
the Homogeneous transformation of the CoM w.r.t the world coordinate frame (wcf), M

WT, the
Cartesian velocity of the CoM, WẋM, and the IMU information1. Correspondingly, the CoM of

the commanded robot uses the commanded CoM position and velocity, Mc
W T and WẋMc

, respec-
tively. The OpenWalker framework uses the real and commanded CoM state in the Balancer
(BM) to produce adequate hip offsets to keep the balance of the robot.

Since the rigid multi body system (MBS) of the robot is the same for the real and the com-
manded robot the OpenWalker framework needs to realize only one CoMM, which is then im-
plemented and connected to the real Cartesian state, and to the commanded Cartesian state.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

M
WT ∈R4×4 Real Robot CoM Pose HomogeneousTransformation This matrix represents the pose of the real CoM with re-

spect to the world coordinate frame (wcf).

WẋM ∈R6 Real Robot CoM Velocities CartesianVelocity This vector contains the real CoM velocities of the robot.

IMU ∈R10 IMU information ImuSensor This vector contains the IMU sensor information which
includes Cartesian acceleration, angular position (in
Quaternions), and angular velocity of the hip/torso.

Mc
W T ∈R4×4 Commanded Robot CoM Pose HomogeneousTransformation This matrix represents the pose of the commanded CoM

with respect to the world coordinate frame (wcf).

WẋMc
∈R6 Commanded Robot CoM Velocities CartesianVelocity This vector contains the commanded CoM velocities of

the robot.

IMU ∈R10 IMU information ImuSensor This vector contains the IMU sensor information which
includes Cartesian acceleration, angular position (in
Quaternions), and angular velocity of the hip/torso.

2.2 Outputs

CoM of the Real Robot

Symbol Name Type Description

WXM,f ∈R6 Real robot filtered CoM pose CartesianPosition This vector represents the filtered pose (position and orientation)
of the real CoM.

WẊM,f ∈R6 Real robot filtered CoM velocity CartesianVelocity This vector represents the filtered Cartesian velocity (linear and
angular) of the real CoM.

Wζ ∈R3 Real robot 3D Capture Point DivergentComponentOfMotion This vector represents the DCM position of the real robot.

Wζ̇ ∈R3 Real robot 3D Capture Point velocity DivergentComponentOfMotionP This vector represents the DCM velocity of the real robot.

1Usually the IMU sensor is located either in the hip or the torso of the robot.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

CoM of the Commanded Robot

Symbol Name Type Description

WXMc, f ∈R6 Commanded Robot filtered CoM pose CartesianPosition This vector represents the filtered pose (position and orientation)
of the commanded CoM.

WẊMc, f ∈R6 Commanded Robot filtered CoM ve-
locity

CartesianVelocity This vector represents the filtered Cartesian velocity (linear and
angular) of the commanded CoM.

Wζc ∈R3 Commanded robot 3D Capture Point DivergentComponentOfMotion This vector represents the DCM position of the commanded robot.

Wζ̇c ∈R3 Commanded robot 3D Capture Point
velocity

DivergentComponentOfMotionP This vector represents the DCM velocity of the commanded robot.

2.3 Inter-Connections

The inputs of the CoMM are connected to the outputs of the Forward Kinematic Model
(FKM) which provides the pose and velocity of the CoM of the real and commanded robot. The
CoMM input also is connected to the Real Robot Module (RRM) which provides a hardware in-
terface for the IMU sensor. The outputs of CoMM (real and commanded) are directly connected
to the Balancer module (BM).

2.4 Common Methods

The two main tasks of this module is the CoM state estimation and the computation of the
DCM.

2.4.1 CoM Estimation

The general description of the state estimation is defined by [2]. This can be summarized
as: Prediction of the state estimate:

X̂k|k−1 = Fk X̂k|k−1 + Bk uk (2.1)

Prediction of the estimate covariance:

Pk|k−1 = Fk Pk−1|k−1 F>
k + Qk (2.2)

Innovation of the residual:
ỹk = zk − Hkx̂k|k−1 (2.3)

Innovation of the covariance:
Sk = Hk Pk|k−1 H>

k + Rk (2.4)

Optimal Kalman gain:
Kk = Pk|k−1 H>

k S−1
k (2.5)

update the state estimate
x̂k|k = x̂k|k−1 +Kk ỹk (2.6)

update of covariance:
Pk|k = (I−Kk Hk) Pk|k−1 (2.7)

with the updated residual as:
ỹk|k = zk −Hk x̂k|k (2.8)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

2.4.2 DCM

The CP is a characteristic point of the linear inverted pendulum model. It was designed
to address a question of push recovery: where should the robot step (instantaneously) to elim-
inate linear momentum mṗG and come (asymptotically) to a stop (See Fig. 1.1)? The general
equation to compute the DCM is given by:

Wζ = WxM −b WẋM (2.9)

where Wζ = W

[
ζx, ζy, ζz

]>
is the DCM, WxM = W

[
x, y, z

]> and WẋM = W
[
ẋ, ẏ , ż

]> are the CoM

position and velocity and b > 0 is the time-constant of the DCM dynamics [3].

References

[1] Martin L. Felis, RBDL: An efficient rigid-body dynamics library using recursive algorithms,
Autonomous Robots 41 (2): 495–511, 2017.

[2] R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transaction
of the ASME–Journal of Basic Engineering, pp. 35-45, March 1960.

[3] Englsberger, Johannes, et al. Three-dimensional bipedal walking control based on diver-
gent component of motion, Ieee transactions on robotics, pp. 355-368, 2015.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

4

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: DCM Planner (DCMPSM)

Rogelio Guadarrama-Olvera, Emmanuel Dean, Florian Bergner,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

DCMPSM
leng=horizon

Figure 1.1: DCM Planner module: This module generates a set of way points for the Divergent
Component of Motion (also known as Capture Point) controller, from the planned
footsteps.

This module receives the planned feasible footsteps and computes the way points for the
Divergent Component of Motion (DCM) dynamics for a stable walking motion. These points
describe the transitions between one footstep to the next for the DCM which define an attrac-
tor point for the Center of Mass dynamics using the Linear Inverted Pendulum Model. These
points also include the initial and final point of the double support phase used to smooth dis-
continuities on the DCM trajectory.

The computed DCM points for the i -th step (DCMPSi) are the Virtual Repellent Point
ri ∈ R3, the step Capture Point ζi ∈ R3, the initial Capture Point for the double support phase

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

ζDS,ini, i ∈ R3, the final Capture Point for the double support phase ζDS,final, i ∈ R3, the initial

Capture Point velocity for the double support phase ζ̇DS,ini, i ∈R3, the final Capture Point veloc-

ity for the double support phase ζ̇DS,final, i ∈R3.
This module must update the planned way points every time that the footstep plan is

changed. However, the computation of these points is not very demanding for a reduced num-
ber of steps ahead. The algorithms to compute DCM way points require a minimum plan of 4
steps ahead of the current executed step.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

{FSi} Footstep List FootStepList A list containing the planned footsteps, where

FSi =
[

XFS, i, li, si, ni

]
with XFS, i =

[
xFS, i, QFS, i

]

2.2 Outputs

Symbol Name Type Description

{DCMPSi} DCM Point Set List DCMPointSet A list containing the DCM way points needed to execute
the planned footsteps, where

DCMPSi =
[

ri, ζi, ζDS,ini, i, ζDS,final, i, ζ̇DS,ini, i, ζ̇DS,final, i

]

2.3 Inter-Connections

This module receives the list of planned footsteps from the Footstep Planner (FSP) mod-
ule. This port is shared with the Foot Trajectory Generator (FTG) module. The output of the
DCMP module is connected to the CoM Trajectory Generator module.

2.4 Common Methods

There are different ways of generating stable walking motions. The most simple method
considers an instantaneous double support phase and instantaneous foot transitions [1]. The
process starts with a set of n foot locations from the footstep plan. Then, for the i -th foot
location xFS, i, a virtual repellent point is defined as

ri = xFS, i +
[
0 0 zM

]>
(2.1)

where zM is the defined height for the CoM. Then, the i -th way point for the DCM can be
computed as

ζi = ri+1 +e−ωtstep
(
ζi+1 − ri+1

)
(2.2)

ζ̇i = −ω tstep e−ωtstep
(
ζi+1 − ri+1

)
(2.3)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

where ω =
√

g
zM

is the natural frequency of the LIPM and tstep is the step time defined in

the walking parameters.
The minor index in the left side of (2.3) than in the right side means that these points

must be computed from the last footstep in the plan to the current step. This also requires that
ζn = r n (the last planned step).

The instantaneous foot transitions result in discontinuous DCM trajectories which pro-
duce high tangential ground reaction forces on the standing foot. This condition is prone to
foot skidding. To reduce these effects, one strategy to smooth the DCM trajectories is to intro-
duce a continuous transition in a double support phase [3]. To achieve this, an initial and final
way point for the double supporting phase must be computed as

ζDS,ini, i = ri−1 +e−0.5ωtDS
[
ζi − ri−1

]
(2.4)

ζ̇DS,ini, i = −ω tstep e−0.5ωtDS
[
ζi − ri−1

]
(2.5)

ζDS,final, i = ri +e0.5ωtDS
[
ζi − ri

]
(2.6)

ζ̇DS,final, i = −ω tstep e0.5ωtDS
[
ζi − ri

]
(2.7)

where tDS is the double support time defined in the walking parameters. A generalization
of these methods for uneven terrain is described in [3].

References

[1] Englsberger, Johannes, et al. "Bipedal walking control based on capture point dynamics."
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011.

[2] Romualdi, Giulio, et al. "A benchmarking of DCM based architectures for position and
velocity controlled walking of humanoid robots." 2018 IEEE-RAS 18th International Con-
ference on Humanoid Robots (Humanoids). IEEE, 2018.

[3] Englsberger, Johannes, et al. "Three-dimensional bipedal walking control based on diver-
gent component of motion." Ieee transactions on robotics 31.2 (2015): 355-368.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Foot Trajectory Generator
(FTGM)

Simon Armleder, Emmanuel Dean, Florian Bergner,
Rogelio Guadarrama-Olvera, and Gordon Cheng

February 14, 2020

1 Module Description

FTGM

Single Support

samples

steady state

trajectory
samples

Figure 1.1: Foot Trajectory Generator: This module generates reference trajectories for the
single-support phase.

The Foot Trajectory Generator module (FTG) constructs minimum jerk trajectories for the
feet. These foot trajectories are then tracked by a controller during the single-support phase of
the gait cycle. Generating smooth continuous trajectories is achieved by interpolating between
the current foot pose and the next support foot pose.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

2 Module Connections

2.1 Inputs

Symbol Name Type Description
Lc
WT ∈R4×4 Left Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the left foot ankle coordinate frame L to the world coordinate
frame W.

Rc
W T ∈R4×4 Right Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the right foot ankle coordinate frame R to the world coordinate
frame W.

FSlast Next Footstep FootStep The end position of the next footstep that gets executed.

2.2 Outputs

Symbol Name Type Description

WXLr
∈R7 Left Foot Pose CartesianPosition This vector contains the linear and angular reference position of

the left foot ankle L with respect to the world coordinate frame W.

WXRr
∈R7 Right Foot Pose CartesianPosition This vector contains the linear and angular reference position of

the right foot ankle R with respect to the world coordinate frame
W.

WẊLr
∈R6 Left Foot Velocity CartesianVelocity This vector contains the linear and angular reference velocities of

the left foot ankle L with respect to the world coordinate frame W.

WẊRr
∈R6 Right Foot Velocity CartesianVelocity This vector contains the linear and angular reference velocities of

the right foot ankle L with respect to the world coordinate frame
W.

WẌLr
∈R6 Left Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the left

foot ankle L with respect to the world coordinate frame W.

WẌRr
∈R6 Right Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

right foot ankle R with respect to the world coordinate frame W.

2.3 Inter-Connections

The first input of the FTG is connected to the output of the Foot Step Planner (FSP) which
provides information about the next foot step to be executed. The second input of the FTG
is connected to the Forward Kinematics Module (FKM). This connections provides the current
pose of the left and right foot ankle with respect to the world coordinate frame.

The outputs of the FTG contain the interpolated feet trajectories tracked during the single-
support phase. This includes the reference foot ankle position, velocity and acceleration. The
FTG output is connected to the Foot Compliant Module (FKM) and Command Generator (CG).

2.4 Common Methods

Several algorithms exist to construct minimal jerk foot trajectories. Traditionally, foot tra-
jectories are generated by polynomial interpolation with start and end boundary conditions of
zero velocities and accelerations.
When there are various foot constrains such as ground conditions or obstacles, the order of
these polynomials is too high and may oscillate. This problem can be avoided by utilizing cu-
bic spline interpolation [1]. With this method foot trajectories are constructed of piecewise
third-order polynomials which pass though a set of control points at chosen velocities. An ad-
vantage of spline trajectories is that intermediate control points can be easily shifted to deal
with various obstacles during the stepping motion.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

References

[1] Verrelst, Bjorn and Stasse, Olivier and Yokoi, Kazuhito and Vanderborght, Bram, Dynam-
ically stepping over obstacles by the humanoid robot HRP-2. 6th IEEE-RAS International
Conference on Humanoid Robots, 2006.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: CoM Trajectory Generator
(CoMTGM)

Rogelio Guadarrama-Olvera, Emmanuel Dean, Florian Bergner,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

CoMTGM

Figure 1.1: CoM Trajectory Generator module: This module generates a smooth reference tra-
jectory for the center of mass by resolving the Divergent Component of Motion
Dynamics.

This module receives the planned set of Divergent Component of Motion (DCM) way
points and interpolates a smooth trajectory for both the DCM and the Center of Mass (CoM).
The trajectories are generated following the DCM dynamics of the Linear Inverted Pendulum
Model (LIPM). This module shifts the current way point to the next every time a step is fin-
ished, keeping the transition from one to the other continuous and smooth. The DCM moves

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

between the Virtual Repellent Points (VRP) and the CoM follows it with the natural dynamics
of the LIPM. While the CoM is a point in space, a common practice to consider whole-body
angular momentum is to consider a virtual rigid body at the CoM with the same orientation of
the base link (commonly the hip or the torso).

The computed trajectories are the reference Zero Moment Point with respect to the world

Wpr ∈R3, the reference DCM and its derivative with respect to the world Wζr, Wζ̇r ∈R3, the ref-
erence CoM position and the orientation of the virtual link as an homogeneous transformation
with respect to the world Mr

W T ∈R4×4, the velocity of the virtual link WẊMr
∈R6.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

{DCMPSi} DCP Point Set List DCMPointSetList A list containing the DCM way points needed to execute
the planned footsteps.

2.2 Outputs

Symbol Name Type Description

Wpr ∈R3 Reference ZMP ZeroMomentPoint Reference trajectory for the ZMP.

Wζr ∈R3 Reference DCM Position DivergentComponentOfMotion Reference trajectory for the DCM.

Wζ̇r ∈R3 Reference DCM Velocity DivergentComponentOfMotionP Derivative of the reference trajectory for the DCM.
Mr
W T ∈R4×4 Reference CoM Position HomogeneousTransformation Reference trajectory for the CoM. This includes both po-

sition and orientation of a virtual link located at the CoM
with the same oriantation of the base link.

WẊMr
∈R6 Reference CoM Velocity CartesianVelocity Derivative of the reference trajectory for the CoM. This

includes both linear and angular velocities of the base
link.

2.3 Inter-Connections

This module receives the list of planned DCM waypoints from the DCM planner module.
The outputs of this module is connected to the Balancer Module and the Command Generator
Module. The balance module uses all the outputs while the Command Generator module uses
only Mr

W T.

2.4 Common Methods

The dynamics of the LIPM are described by

ẍ =ω2 (
x−p

)
(2.1)

where x ∈R3 is the position of the CoM and ẍ ∈R3 its second derivative, p ∈R3 is the posi-

tion of the ZMP, and ω=
√

g

z
is the pendulum parameter which define its natural frequency.

The DCM is the result of a change of variable of the LIPM equation which is defined as

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

ζ = x+ ẋ

ω
(2.2)

ζ̇ = ẋ+ ẍ

ω
(2.3)

with this representation, the equations 2.1 and 2.3 can be combined as

ẋ = −ω (x−ζ) (2.4)

ζ̇ = ω
(
ζ−p

)
(2.5)

From (2.4) it is clear that the CoM follows the DCM in a first order stable dynamic system.
However the dynamics of the DCM (2.5) are unstable. Nevertheless, these dynamics can be
used to generate a stable reference trajectory for walking the i -th step by solving (2.5) for a
constant p = ri.

Wζr = ri +e
ω

(
t−tstep

) (
ζi − ri

)
(2.6)

where ri is the i -th Virtual Repellent Point (VRP) and ζi is the i -th DCM point from the
way points planned by the DCMP module.

Finally, (2.4) can be numerically solved using (2.6) as

WxMr, i+1 = Wζr +e−ωt∆
(

WxMr, i −Wζr

)
(2.7)

where t∆ is the iteration period.

References

[1] Englsberger, Johannes, et al. "Bipedal walking control based on capture point dynamics."
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011.

[2] Englsberger, Johannes, et al. "Three-dimensional bipedal walking control based on diver-
gent component of motion." Ieee transactions on robotics 31.2 (2015): 355-368.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Foot Compliant (FCM)

Emmanuel Dean, Florian Bergner, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

FCM

Virtual
MSD

Figure 1.1: Foot Compliant module: This module implements the local zmp estimation for each
leg and the combined legs Wp, Lp, and Rp, respectively.

The Foot Compliant module (FCM) allows to modify the foot trajectories based on the
conditions of the environment. The principal idea behind this module is to provide a compliant
behavior for the foot to cope with uncertainties in the terrain. This compliant behavior uses the
FT sensor information to generate offsets for the foot, which modify the nominal foot trajectory
generated by the FTGM. The compliant behavior is generated using a virtual admittance model
that is defined in the local foot coordinate frame. Admittance control is a standard control
method to map forces to motion using simple virtual mass-damper dynamic systems.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

estimates the local Zero Moment Points (ZMP) for each foot and the global ZMP for both
feet, Wp, Lp, and Rp, respectively. The ZMP is an important concept for dynamics and control of
legged locomotion, e.g., for humanoid robots. It specifies the point where the dynamic reaction
forces at the contact of the foot with the ground does not produce any moment in the horizon-
tal direction, i.e. the point where the total of horizontal inertia and gravity forces are in equi-
librium. This module requires kinematic information of the feet, dynamic information of the
Center of Mass (CoM), and ground reaction forces, which can be obtained with Force/Torque
(FT) sensors, for example, mounted on the feet. The ZMP calculation can be extended using
IMU sensors as well. The information obtained from the ZMP analysis is extremely important
for balance, which is the highest priority task for legged robots. This module also filters the
signals of the FT sensors, which are used by other components of the OpenWalker framework.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

WXF ∈R7 Foot Pose CartesianPosition This vector represents the pose of the left and right feet
with respect to the world coordinate frame (wcf). The
orientation is represented as Quaternions.

WẊF ∈R6 Foot Velocity CartesianVelocity This vector represents the velocity of the foot with re-
spect to the world coordinate frame.

WẌF ∈R6 Foot Acceleration CartesianAcceleration This vector represents the acceleration of the foot with
respect to the world coordinate frame.

WXFr
∈R7 Reference Foot Pose CartesianPosition This vector represents the reference pose of the left and

right feet with respect to the world coordinate frame
(wcf). The orientation is represented as Quaternions.
This reference pose is obtained from a trajectory genera-
tor.

WẊFr
∈R6 Reference Foot Velocity CartesianVelocity This vector represents the reference velocity of the foot

with respect to the world coordinate frame.This refer-
ence pose is obtained from a trajectory generator.

WẌFr
∈R6 Reference Foot Acceleration CartesianAcceleration This vector represents the reference acceleration of the

foot with respect to the world coordinate frame.This ref-
erence pose is obtained from a trajectory generator.

LFT ∈R6 Left Foot FT ForceTorqueSensor This vector contains the signals of the force/torque sen-
sor mounted on the left foot.

RFT ∈R6 Right Foot FT ForceTorqueSensor This vector contains the signals of the force/torque sen-
sor mounted on the right foot.

2.2 Outputs

Symbol Name Type Description

F
WToff ∈R4×4 Global Foot Offset HomogeneousTransformation This homogeneous transformation provides the offset of the feet

relative to the world coordinate frame.
Fc
Fr

Toff ∈R4×4 Local Foot Offset HomogeneousTransformation This homogeneous transformation provides the offset of the com-
manded feet relative to the reference foot coordinate frame.

2.3 Inter-Connections

The inputs of the FCM come from the FTGM which provides reference trajectories for the

feet,
(

WXFr
, WẊFr

, WẌFr

)
, where F = {L, R}. The FKM produce the current foot state

(
WXF , WẊF, WẌF

)
.

Finally, the ZMPM provides the filtered FT sensor signals
(

FFTf

)
needed to compute the offsets.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

The generated offset will be used in CMDGENM to compute a commanded trajectory for the
feet.

2.4 Common Methods

2.4.1 Admittance based on Virtual Dynamics

The standard admittance method is based on a virtual mass-damping system, defined as
[1]:

M WẌv,F +βWẊv,F = WFTF +WWδ,F (2.1)

where M = M> is a mass matrix, β is the viscous friction diagonal matrix, and WFTF is the FT
sensor signals of the foot F, relative to the world coordinate frame. FW

δ
is a virtual attractor

wrench generated with the error between the current foot pose and the reference foot pose, i.e.

W∆XF = WXF −WXFr
(2.2)

This second order system can be integrated to generate virtual velocities and positions,

WẊFv
and WXFv

respectively. Finally, the offset between the reference frame pose

W∆Xoff = WXFr
−WXFv

(2.3)

is used to generate the pose matrices F
WToff and Fc

Fr
Toff.

References

[1] Keemink, A. Q., van der Kooij, H., Stienen, A. H. Admittance control for physical human–
robot interaction. The International Journal of Robotics Research, 37(11), 1421–1444,
(2018).

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Balancer (BM)

Rogelio Guadarrama-Olvera, Emmanuel Dean, Florian Bergner,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

BM

FK

COMZMP

ComTG

Figure 1.1: Balancer module: This module ensures the tracking of the reference CoM trajectory
while suppressing external disturbances to keep both standing and walking balance.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

This module implements controllers to enforce the convergence of the real walking states
(DCM, ZMP and CoM) to the reference trajectories. The desired states are computed from the
reference trajectories in the form of continuous offset which are later added to the reference on
the command generator module.

The module is composed by four controllers:

• DCM tracker: Computes a desired ZMP from the reference ZMP and the DCM error.

• ZMP tracker: Computes an offset to pull the CoM trajectory in order to track the desired
ZMP with the real ZMP.

• CoM Tracker: Computes an offset to pull the commanded CoM trajectory to follow the
reference CoM trajectory.

• IMU orientation controller: Computes a rotational offset fo correct the attitude of the
base link to the reference orientation.

All the outputs of these controllers are then combined in an offset homogeneous trans-
formation which will be used in the Command Generator module to compute the Command
poses.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

Wpr ∈R3 Reference ZMP ZeroMomentPoint Reference trajectory for the ZMP.

Wζr ∈R3 Reference DCM Position DivergentComponentOfMotion Reference trajectory for the DCM.

Wζ̇r ∈R3 Reference DCM Velocity DivergentComponentOfMotion Derivative of the reference trajectory for the DCM.
Mr
W T ∈R4×4 Reference CoM Position HomogeneousTransformation Reference trajectory for the CoM. This includes both po-

sition and orientation of a virtual link located at the CoM
with the same oriantation of the base link.

WẊMr
∈R6 Reference CoM Velocity CartesianVelocity Derivative of the reference trajectory for the CoM. This

includes both linear and angular velocities of the base
link.

ẍimu ∈R3 IMU Linear Acceleration LinearAcceleration This vector contains the linear acceleration measured by
the Inertial Measurement Unit (IMU) sensor of the robot.

Qimu ∈R4 IMU Angular Position AngularPosition This vector contains the angular position in quaternion
measured by the Inertial Measurement Unit (IMU) sen-
sor of the robot.

Wp ∈R3 Real ZMP ZeroMomentPoint Real ZMP with respect to the world.

Wṗ ∈R3 Real ZMP velocity ZeroMomentPointP First derivative o real ZMP with respect to the world.

∈RζW3 Real DCM with respect to the world. DivergentComponentOfMotion Real position of the DCM with respect to the world.

Wζ̇ ∈R3 Reference DCM Velocity DivergentComponentOfMotionP Derivative of the real DCM with respect to the world.

M
WT ∈R4×4 Real CoM Position HomogeneousTransformation Real position of the CoM. This includes both position

and orientation of a virtual link located at the CoM with
the same oriantation of the base link.

WẊM ∈R6 Real CoM Velocity CartesianVelocity Derivative of the real trajectory of the CoM. This includes
both linear and angular velocities of the base link.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

2.2 Outputs

Symbol Name Type Description
CoMcmd
CoMr

Toff ∈R4×4 COM offset HomogeneousTransformation Offset needed on the COM commanded position to keep
balance and track the reference trajectories with the real
position.

Wζd ∈R3 Desired DCM Position DivergentComponentOfMotion Adjusted trajectory for the DCM to keep balance.

Wζ̇d ∈R3 Desired DCM Velocity DivergentComponentOfMotionP Adjusted velocity for the DCM to keep balance.

Wpd ∈R3 Desired ZMP ZeroMomentPoint Adjusted trajectory for the ZMP to keep balance and
track the desired DCM.

2.3 Inter-Connections

This module receives all the reference trajectories and their derivatives from the CoM tra-
jectory generator module (CoMTG), the IMU sensor data form the Real Robot module (RR),
the real ZMP and its derivative from the ZMP module, and all the output from the real CoM
module. The output of this module is connected to the Command generator module which
combines the offsets with the reference trajectories.

2.4 Common Methods

There are several techniques for biped balance control as shown in [1]. One simple method
to stabilize the LIPM model is to define a a proportional ZMP and CoM tracker in the form

WẋMd
= kzmp

(
Wp −WxM

)+kM

(
WxMr

−WxM

)
(2.1)

where kzmp,kM ∈R are positive gains. Another method is to stabilize the LIPM using LQR-
control which results in a control in the form

WẋMd
=−k1 Wp −k2 WxM −k3 WẋMr

(2.2)

where k1,k2,k3 ∈R are optimal gains tunned with LQR.
Finally, one las example is to adjust the desired ZMP position for tracking the reference

DCM as described in [2]

Wpd = kd Wζr −
(
kd −1

)
Wζ (2.3)

with kd < 0 ∈R. This desired ZMP can the be tracked with a simple PD as

WẋMd
= kzmp

(
Wp −Wpd

)+kd Wṗ (2.4)

References

[1] Kajita, Shuuji, et al. Introduction to humanoid robotics. Vol. 101. Springer Berlin Heidel-
berg, 2014.

[2] Englsberger, Johannes, and Christian Ott. "Integration of vertical com motion and angular
momentum in an extended capture point tracking controller for bipedal walking." 2012
12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). IEEE,
2012..

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Command Generator
(CMDGENM)

Simon Armleder, Emmanuel Dean, Florian Bergner,
Rogelio Guadarrama-Olvera, and Gordon Cheng

February 14, 2020

1 Module Description

CMDGENM

Figure 1.1: Command Generator: This module computes the commanded Cartesian pose for
both feet and the center of mass.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

The Command Generator module (CmdGen) computes the commanded Cartesian pose
for both feet and the center of mass. A command is constructed from a planned reference
pose that should be tracked by the robot and an offset that corrects for external disturbances
such as e.g. unknown ground conditions. The offset stores relative translational and rotational
corrections that are applied to the reference trajectory to ensure tracking.
Finally, the commanded Cartesian poses are send to the Inverse Kinematics solver (IK).

2 Module Connections

2.1 Inputs

Symbol Name Type Description
Lr
WT ∈R4×4 Left Foot Reference Coordinate

Frame
HomogeneousTransformation This homogeneous transformation matrix contains the reference

pose of the left foot ankle coordinate frame L with respect to the
world coordinate frame W.

Rr
WT ∈R4×4 Right Foot Reference Coordi-

nate Frame
HomogeneousTransformation This homogeneous transformation matrix contains the reference

pose of the right foot ankle coordinate frame R with respect to the
world coordinate frame W.

Mr
W T ∈R4×4 Center of Mass Reference Coor-

dinate Frame
HomogeneousTransformation This homogeneous transformation matrix contains the reference

pose of the Center of Mass coordinate frame M with respect to the
world coordinate frame W.

Lc
Lr

Toff ∈R4×4 Left Foot Offset Transformation HomogeneousTransformation This homogeneous transformation matrix contains the relative
offset for the left foot reference Coordinate Frame L.

Rc
Rr

Toff ∈R4×4 Right Foot Offset Transforma-
tion

HomogeneousTransformation This homogeneous transformation matrix contains the relative
offset for the right foot reference Coordinate Frame R.

Mc
Mr

Toff ∈R4×4 Right Foot Offset Transforma-
tion

HomogeneousTransformation This homogeneous transformation matrix contains the relative
offset for the center of mass reference Coordinate Frame M.

2.2 Outputs

Symbol Name Type Description
Lc
WT ∈R4×4 Left Foot Commanded Trans-

formation
HomogeneousTransformation This homogeneous transformation matrix contains the com-

manded pose of the left foot ankle coordinate frame L with respect
to the world coordinate frame W.

Rc
W T ∈R4×4 Right Foot Commanded Trans-

formation
HomogeneousTransformation This homogeneous transformation matrix contains the com-

manded pose of the right foot ankle coordinate frame R with re-
spect to the world coordinate frame W.

Mc
W T ∈R4×4 Center of Mass Commanded

Transformation
HomogeneousTransformation This homogeneous transformation matrix contains the com-

manded pose of the center of mass coordinate frame M with re-
spect to the world coordinate frame W.

2.3 Inter-Connections

The CmdGen is connected to the output of the Foot Trajectory Generator (FTG) which pro-
vides a reference pose for both feet. The translational and rotational offsets applied to this
reference are received through a connection to the Foot Compliant Model (FCM).
The Center of Mass Trajectory Generator (CoMTG) provides a reference pose for the center of
mass. The CoM offsets are generated by the Balancer module.

The commanded output poses for feet and CoM are send to the Inverse Kinematics solver
(IK) to compute the required joint space coordinates.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

2.4 Common Methods

Both, the reference poses and offsets are represented by Affine Transformation matrices.
The pose commands are then obtained by multiplying the references with their corresponding
offsets.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Inverse Kinematics (IKM)

Florian Bergner, Emmanuel Dean, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

IKM

URDF Optimization
Parameters

KDL/
RBDL/
KINDR

Figure 1.1: Inverse Kinematics module: This module implements the inverse kinematics for the
robot.

The Inverse Kinematics module (IKM) computes the inverse kinematics of the robot. The
inverse kinematics finds a set of joint positions such that a given set of robot end-effectors

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

reach a specified Cartesian position. The OpenWalker framework uses one IKM to compute the
commanded joint position qc such that the left and right foot, and the center-of-mass (CoM)
of the real robot reach the desired Cartesian position Lc

WT, Rc
W T, and Mc

W T.

2 Module Connections

2.1 Inputs

Symbol Name Type Description
Lc
WT ∈R4×4 Left Commanded Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms

coordinates in the left commanded foot coordinate
frame L to the world coordinate frame W.

Rc
W T ∈R4×4 Right Commanded Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms

coordinates in the right commanded foot coordinate
frame R to the world coordinate frame W.

Mc
W T ∈R4×4 Commanded CoM Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms

coordinates in the commanded CoM coordinate frame to
the world coordinate frame W.

2.2 Outputs

Symbol Name Type Description

qc ∈RDOF Commanded Joint Position JointPosition This vector contains the next commanded joint positions for all
the joints of the robot. The OpenWalker framework uses this mod-
ule input to send position commands to the position controlled
real robot.

2.3 Inter-Connections

The inputs of the IKM are connected to the outputs of the Command Generation Module
(CmdGenM) which fuses the reference and offset coordinate frames of the left and right foot
and the CoM to commanded coordinate frames. The output of the IKM is connected to the Real
Robot Module (RRM) which sends the commanded joint positions to the position controlled
real robot.

2.4 Common Methods

Similar to the Forward Kinematics Module (FKM), this module uses kinematic parameters
such as joint properties (location, type), and link properties (location, length) to build up a rigid
multi body system (MBS) that represents the kinematic model of the robot. Using this kine-
matic model, we can iteratively compute the inverse kinematics using a damped Levenberg-
Marquardt method, also known as Damped Least Squares method. Therefore we repeatedly
compute

qc,k = qc,k−1 +∆θ (2.1)

∆θ = J>
(
J J>+λ2 I

)−1
e (2.2)

where

J#λ(q) = J>
(
J J>+λ2 I

)−1
(2.3)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

is the damped pseudo inverse, J(q) the Jacobian, and e the error between the actual Cartesian
positions and the target Cartesian positions [1, 2]. The iteration either stops when the error
between actual and target Cartesian position is below the tolerance or when the step width

||∆θ||2 ≤ δstep (2.4)

is below the acceptable step tolerance. The parameter λ is the damping factor and has to be
chosen carefully.

References

[1] RBDL: An efficient rigid-body dynamics library using recursive algorithms,
https://rbdl.bitbucket.io/de/d92/group__kinematics__group.html#
gaa5eabd37ff8b0925d2ecbf49fee1a8a7.

[2] Di Vito, D., Natale, C., and Antonelli, G. (2017). A comparison of damped least squares
algorithms for inverse kinematics of robot manipulators. IFAC-PapersOnLine, 50(1), 6869-
6874.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

