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Figure 1. We proposed VividTalk, a generic talking head generation framework. Our method can generate high-visual quality talking head
videos with expressive facial expressions, various head poses, and lip-sync enhanced by a large margin.

Abstract

Audio-driven talking head generation has drawn much
attention in recent years, and many efforts have been made
in lip-sync, expressive facial expressions, natural head pose
generation, and high video quality. However, no model
has yet led or tied on all these metrics due to the one-to-
many mapping between audio and motion. In this paper,
we propose VividTalk, a two-stage generic framework that
supports generating high-visual quality talking head videos
with all the above properties. Specifically, in the first stage,
we map the audio to mesh by learning two motions, in-
cluding non-rigid expression motion and rigid head mo-
tion. For expression motion, both blendshape and vertex

∗ Work done as an intern at Alibaba Group.

are adopted as the intermediate representation to maximize
the representation ability of the model. For natural head
motion, a novel learnable head pose codebook with a two-
phase training mechanism is proposed. In the second stage,
we proposed a dual branch motion-vae and a generator
to transform the meshes into dense motion and synthesize
high-quality video frame-by-frame. Extensive experiments
show that the proposed VividTalk can generate high-visual
quality talking head videos with lip-sync and realistic en-
hanced by a large margin, and outperforms previous state-
of-the-art works in objective and subjective comparisons.
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1. Introduction
One-shot audio-driven talking head generation aims to drive
an arbitrary facial image with audio as input signal and
has extensive application scenarios, such as virtual avatars
[8, 20, 24], visual dubbing [13, 16, 32], and video confer-
ences [5, 30, 33, 35, 39]. As a consequence, it has attracted
widespread attention and inspired many researchers to work
in this field.

The facial motion of a talking head mainly comes from
two folds: non-rigid facial expression components and rigid
head components. To maximize the photo-realism of the
generated videos, both components need to be taken into
consideration. For facial expression motion, most exist-
ing approaches adopt a multi-stage framework to map the
audio feature to an intermediate representation, e.g., facial
landmarks [37, 39], and 3DMM coefficients [34, 36]. How-
ever, the facial landmarks are too sparse to model the ex-
pressive facial expression in detail. By contrast, the 3D
face morphable model [3] (3DMM) has been proven to have
the ability to represent the face with various expressions.
Whereas, we observed that the distribution of blendshapes
on the same expression varies considerably, which exacer-
bates the one-to-many mapping problem between audio and
facial motion and leads to a lack of fine-grained motion. For
rigid head motion, it is harder to model because of the weak
relationship with audio. Some works [16, 28, 38] utilize a
video to provide the head pose or to keep the head still when
speaking. Another line of methods [34, 36, 39] present to
learn head poses from audio directly, but generate noncon-
tinuous and unnatural results. Up to now, how to generate
reasonable head poses from audio is still a challenging prob-
lem to be solved.

To address the above problems, we proposed VividTalk,
a generic one-shot audio-driven talking head generation
framework. Our method only takes a single reference fa-
cial image and an audio sequence as inputs, then generates
a high-quality talking head video with expressive facial ex-
pressions and various head poses. Specifically, the proposed
model is a two-stage framework consisting of Audio-To-
Mesh Generation and Mesh-To-Video Generation. In the
first stage, considering the one-to-many mapping between
facial motion and blendshape distribution, we utilize both
blendshape and 3D vertex as the intermediate representa-
tion, in which blendshape provides a coarse motion and
vertex offset describes a fine-grained lip motion. Besides,
a multi-branch transformer-based network is also adopted
to make full use of long-term audio context to model the re-
lation with the intermediate representations. To learn rigid
head motion from audio more reasonably, we cast this prob-
lem as a code query task in a discrete and finite space, and
build a learnable head pose codebook with a reconstruction
and mapping mechanism. After that, both motions learned
are applied to reference identity, resulting in driven meshes.

In the second stage, based on the driven meshes and ref-
erence image, we render the projection texture of both the
inner face and outer face, such as the torso, to model the
motion comprehensively. Then a novel dual branch motion-
vae is designed to model the dense motion, which is fed as
input to a generator to synthesize the final video in a frame-
by-frame manner.

Extensive experiments show that our proposed VividTalk
can generate lip-sync talking head videos with expressive
facial expressions and natural head poses. As shown in Fig-
ure 1 and Table 1, both visual results and quantitative anal-
ysis demonstrate the superiority of our method in both gen-
erated quality and model generalization. To summarize, the
main contributions of our work are as follows:
• We present to map the long-term audio context to both

blendshape and vertex to maximize the representation ca-
pability of the model, and an elaborate multi-branch gen-
erator is designed to model global and local facial mo-
tions individually.

• A novel learnable head pose codebook with a two-phase
training mechanism is proposed to model the rigid head
motion more reasonably.

• Experiments demonstrate that our proposed VividTalk is
superior to the state-of-the-art methods, supporting high-
quality talking head video generation and can be general-
ized across various subjects.

2. Related works
Audio-driven talking head generation. Audio-driven
talking head generation aims to drive a facial image accord-
ing to the audio signal. Early works [4, 7, 27] tried to
generate videos in an end-to-end manner. Recently, some
works adopted a multi-stage framework to map audio to
an intermediate representation, such as 3DMM coefficients
[17, 34, 36], and facial landmarks [9, 37, 39], to model the
motion better. [34] first generates the 3DMM coefficients
from audio, and then the generated 3DMM coefficients are
mapped to the unsupervised 3D keypoints to modulate the
face render to synthesize videos. [17] proposes to control
the facial motions with 3DMM coefficients and generates
final image in an coarse-to-fine strategy. Its framework can
be easily extended to tackle audio-driven talking head tasks
by learning a mapping from audio to 3DMM coefficients.
[9] uses facial landmarks and a pre-trained face render to
make the generated talking head videos more controllable
and high-quality. Similarly, facial landmarks are predicted
by [39] to reflect the speaker-aware dynamics to animate
both human face images and non-photorealistic cartoon im-
ages. [37] only generates lip-related landmarks to inpaint
the lower-half occluded facial images. Besides, multiple
reference images are needed to produce realistic rendering.
However, all of these methods are insufficient to generate
lip-sync and realistic talking head videos because of the lim-



itation of the intermediate representation. By contrast, our
method uses both blendshape and vertex as the intermediate
representation to model the coarse motion and fine-grained
motion, respectively.
Video-driven talking head generation. Video-driven talk-
ing head generation focuses on transferring the motion of
the source actor to the target subject, which is also known
as face reenactment. The approaches generally fall into two
categories: subject-specific and subject-agnostic. Subject-
specific methods [21–23] can produce high-quality videos
but can not be extended to new subjects, which limits
their application. Recently, some subject-agnostic works
[11, 17, 18, 25, 30, 31] have tried to address this problem
and achieved tremendous success. For example, [18] dis-
entangles the appearance and motion self-supervised, and
learn keypoints along with their local affine transformations
to animate the source image. [11] proposes to recover
the explicit dense 3D geometry from videos and utilizes
the learned depth information to improve the performance
of generated talking head videos. Compared to the above
methods, our task is more challenging because we need
to drive the image with audio as input without any motion
prior knowledge.

3. Method
Our method can generate talking head videos with diverse
facial expressions and natural head poses given an audio se-
quence and a reference facial image as input. As shown
in Figure 2, our framework is composed of two cascaded
stages, named Audio-To-Mesh Generation and Mesh-To-
Video Generation, respectively. In the following, we first
briefly introduce some preliminaries of the 3D morphable
model and data preprocessing in Section 3.1. Then, the de-
sign of the Audio-To-Mesh stage and Mesh-To-Video stage
are described in Section 3.2 and Section 3.3, respectively.
Finally, we depicted the training strategy of the total frame-
work in Section 3.4.

3.1. Preliminaries

3D Morphable Model. Our method uses 3D-based (blend-
shape and vertex) instead of 2D-based information as the
intermediate representation for talking head generation. In
3DMM [3], the 3D face shape can be represented as:

S = S + αUid + βUexp, (1)

where S is the mean shape of the face, Uid, and Uexp are the
PCA bases of identity and expression, respectively. α and
β are the identity and expression coefficients for generating
a 3D face.
Data Preprocessing. Our model only needs to be trained
with an audio-visual synchronized dataset. Before train-
ing, some data preprocessing is a prerequisite. Specifically,

given a talking head video, we first crop the face region and
resize it into 256 × 256 following [18]. Then the coeffi-
cients {α ∈ R150, β ∈ R52}×f and mesh vertices sequence
M (3×n)×f are reconstructed by [29], where n is the vertex
number and f is the frame number. To model the head pose
P , rotation matrix R ∈ SO(3) and translation vector t ∈ R3

are also extracted.

3.2. Audio-To-Mesh Generation

In this section, our goal is to generate 3D-driven meshes ac-
cording to the input audio sequence and a reference facial
image. To be more specific, we first utilize FaceVerse[29]
to reconstruct the reference facial image. Next, we learn
both non-rigid facial expression motion and rigid head mo-
tion from the audio to drive the reconstructed mesh. To this
end, a multi-branch BlendShape and Vertex Offset Genera-
tor and a Learnable Head Pose Codebook are proposed.
BlendShape and Vertex Offset Generator. Learning a
generic model to generate accurate mouth movements and
expressive facial expressions with person-specific style is
challenging in two aspects: 1) The first challenge is the
audio-motion correlation problem. As audio signal corre-
lates best with mouth movements, it is difficult to model
non-mouth motion from audio. 2) The mapping from au-
dio to facial expression motions naturally has one-to-many
properties, which means that the same audio input may have
more than one correct motion pattern, leading to a mean
face phenomenon with no personal characteristics. To solve
the audio-motion correlation problem, we use both blend-
shape and vertex offset as the intermediate representation,
for which blendshape provides a coarse facial expression
motion globally and lip-related vertex offset offers a fine-
grained lip motion locally. As for the mean face prob-
lem, we proposed a multi-branch transformer-based gener-
ator to model each part’s motion individually and inject the
subject-specific style to maintain personal features.

Specifically, we utilize a pre-trained audio extractor [1]
to extract the contextualized speech representation A =
(a1, a2, ..., af ) from the input audio sequence. To repre-
sent the person-specific style characteristic, a pre-trained
3D face reconstruction model [29] is used to extract the
identity information α from the reference image Iref , which
will be encoded as a style embedding zstyle. Then the audio
feature A and the personal style embedding zstyle are added
and fed into a multi-branch transformer-based architecture
with two branches to generate blendshape that models facial
expression motion at a coarse level, and the third branch to
generate lip-related vertex offset as supplementation of lip
motion at a fine-grained level. Note that to model the tem-
poral dependencies better, the learned past motions will be
taken as the input of the network when predicting the cur-
rent motion, which can be formulated as

β̂f
i = Φbs

i (β̂1...f−1
i , A, zstyle), i ∈ {lip, other}, (2)
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Figure 2. Overview of the proposed VividTalk. Our framework is constituted by two cascaded stages. The Audio-To-Mesh stage maps
the audio to non-rigid facial expression motion and rigid head pose, respectively, which results in the driven meshes. The Mesh-To-Video
stage transforms the driven meshes into 2D dense motion and synthesizes high-visual quality and realistic talking head videos.
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Figure 3. The structure of the proposed BlendShape and Ver-
tex Offset Generator. The blendshape {β̂lip, β̂other} provide the
coarse facial expression motion with personal style, and the lip-
related vertex offset Ôlip supplement the lip motion at a fine-
grained level.

Ôf
lip = Φvo

lip(Ô
1...f−1
lip , A, zstyle), (3)

where β̂f
lip, β̂f

other are the lip-related blendshape and the
other blendshape at frame f , respectively. Ôf

lip is the lip-
related vertex offset at frame f . And Φ is the corresponding
network of each branch. Once the training is finished, the
driven meshes with non-rigid facial expression motion can
be obtained by

M̂nr = (S+αUid+(β̂lip, β̂other)Uexp+Ôlip)⊗Pref , (4)

where Pref is the pose of reference facial image and ⊗ rep-
resents the affine transformation caused by Pref .
Learnable Head Pose Codebook. The head pose is an-
other important factor that influences the realism of talking
head videos. However, it is not easy to learn it from au-
dio directly because of the weak relationship between them,
which will lead to unreasonable and discontinuous results.
Inspired by [26] which utilized a discrete codebook as a
prior to guarantee high-fidelity generation even with a de-
graded input. We propose to cast this problem as a code
query task in a discrete and finite head pose space and a
two-phase training mechanism is carefully designed, with
the first phase building an abundant head pose codebook
and the second phase mapping the input audio to the code-
book to generate the final results, as shown in Figure 4.

In the reconstruction phase, the task is to build a context-
rich head pose codebook Z = {zk}Kk=1 and a decoder
D with the ability to decode realistic head pose sequence
P 1:f ∈ R6×f from Z . We adopt a VQ-VAE which consti-
tutes an encoder E , a decoder D, and a codebook Z as the
backbone. Firstly, the relative head pose P 1:f

r = P 1:f −P 0

is calculated and encoded as a latent code Ẑ = E(P 1:f
r ).

Then we obtain Zq using an element-wise quantization
function q(·) to map each item ẑ in Ẑ to its closest code-
book entry zk:

Zq = q(ẑ) = argmin
zk∈Z

∥ẑ − zk∥ . (5)
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Finally, based on the Zq , the reconstructed relative head
pose P̂ 1:f

r is given by the decoder D as follows:

P̂ 1:f
r = D(Zq) = D(q(E(P 1:f

r ))). (6)

In the mapping phase, we focus on building a network
that can map the audio to the codebook learned in the pre-
vious phase to generate natural and successive head pose
sequences. To model the temporal continuity better, a
transformer-based autoregressive model Φmap with self-
attention and cross-modal multi-head attention mechanisms
was proposed. Specifically, Φmap takes an audio sequence
A, person-specific style embedding zstyle and initial head
pose P 0 as input, and output an intermediate feature Ẑ
which will be quantized into Zq from codebook Z , and then
decoded by the pre-trained decoder D:

P̂ 1:f
r = D(Zq) = D(q(Φmap(A, s, P 0))). (7)

Note that the codebook Z and the decoder D are frozen
during the training of mapping phase.

So far, both the non-rigid facial expression motion and
rigid head pose have been learned. Now, we can obtain the
final driven meshes M̂d by applying the learned rigid head
pose to mesh M̂nr:

M̂1:f
d = M̂1:f

nr ⊗ P̂ 1:f
r . (8)

3.3. Mesh-To-Video Generation

This section is devoted to transforming the driven meshes
into videos. As shown in Figure 5, a dual branch motion-
vae is proposed to model the 2D dense motion, which will
be taken as the input of the generator to synthesize the final
video. Next, we will introduce this process in detail.

Transforming 3D domain motion to 2D domain mo-
tion directly is difficult and inefficient because the network
needs to seek the correspondence between two domain mo-
tions for better modeling. To decrease the learning burden
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Figure 5. The architecture of the proposed dual branch motion-
vae. The below branch models the motion across images globally.
The upper branch augments the lip motion based on lip-related
landmarks.

of the network and achieve further performance, we con-
duct this transformation in the 2D domain with the help of
projection texture representation.

To render the projection texture of 3D mesh, we first nor-
malize the mean shape of the 3D face to 0−1 in x, y, z axis
to obtain a Normalized Coordinate Code NCC with three
channels similar to RGB, which can be seen as a new rep-
resentation of the face texture:

NCCi =
Si −min(Si)

max(Si)−min(Si)
, i ∈ {x, y, z}. (9)

Then we adopt Z-Buffer to render the projected 3D inner
face texture PTin colored by NCC. However, the outer
face region can not be modeled well because of the limita-
tion of 3DMM. To model the motion across frames better,
we use [14] to parse images and obtain the outer face region
texture PTout, such as the torso and background, which will
be combined with PTin as below:

PT = PTin ·M + PTout · (1−M) (10)

where M is the mask of the inner face.
As shown in Figure 5, in the facial branch, the refer-

ence projected texture PTref and driven projected texture
PTd are concatenated and fed into an Encoder followed by
an MLP, which outputs a 2D facial motion map. To fur-
ther enhance lip movements and model more accurately,
we also selecte lip-related landmarks and transform them
into Gaussian maps, a more compact and efficient repre-
sentation. Then an Hourglass network takes the substracted
Gaussian map as input and outputs a 2D lip motion, which
will be concatenated with the facial motion and decoded
into a dense motion and an occlusion map.

Finally, we warp the reference image based on the dense
motion map predicted before and obtain the deformed im-
age, which will be taken as the input to the generator with
the occlusion map to synthesize the final video frame by
frame.



3.4. Training Strategy

Training such a framework is not easy. Specifically, we
train the Audio-To-Mesh stage and Mesh-To-Video stage
separately. And the complete framework can be inferred in
an end-to-end fashion. The BlendShape and Vertex Offset
Generator are supervised by reconstruction loss in terms of
blendshape and mesh:

Lbsvo =
∥∥∥β − β̂

∥∥∥+
∥∥∥M − M̂nr

∥∥∥ . (11)

In the training of Learnable Head Pose Codebook, due to
the quantization function 5 is not differentiable, we apply a
straight-through gradient estimator [2] that copies the gra-
dients from the decoder to the encoder. Then the two-phase
training is supervised as follows:

Lrec =
∥∥∥P 1:f

r − P̂ 1:f
r

∥∥∥2 + ∥∥sg(E(P 1:f
r ))− zq

∥∥2
2

+
∥∥sg(zq)− E(P 1:f

r )
∥∥2
2
,

(12)

Lmap =
∥∥∥P 1:f

r − P̂ 1:f
r

∥∥∥2 + ∥∥∥Ẑ − sg(Zq)
∥∥∥2
2
, (13)

where sg(·) denotes a stop-gradient operation.
As for the Mesh-To-Video stage, the perceptual loss

Lperc based on the pre-trained VGG-19 [19] network is
used as the main driving loss. The feature matching loss
Lfm is also used to stabilize the training as the generator
has to produce realistic results.

4. Experiments
4.1. Dataset and Metrics

Dataset. We train our model with the HDTF [36] dataset
and VoxCeleb [15] dataset. HDTF is a high-resolution
audio-visual dataset containing over 16 hours of video on
346 subjects. VoxCeleb is another larger dataset involving
more than 100k videos and 1000 identities. We first filter
the two datasets to remove the invalid data, e.g., data with
out-of-sync audio and video. Then following the [18], we
leverage a face landmarks detector to crop the face region in
the video and resize them into 256 × 256. Finally, the pro-
cessed videos are divided into 80%, 10%, 10%, which will
be used for training, validating, and testing.
Metrics. To demonstrate the superiority of the proposed
method, we evaluate the model with several metrics. The
SyncNet score [6] is utilized to measure lip synchroniza-
tion quality, which is the most important indicator for talk-
ing head applications. To evaluate the realism and identity
preservation of the results, we calculate the Frechet Incep-
tion Distance (FID) [10] and cosine similarity (CSIM) be-
tween the reference image and generated frames. Besides,
the standard deviation of the generated head pose (both ro-
tation and translation) is calculated to evaluate head pose
diversity (HPD) better.

4.2. Implementation Details

In our experiments, we use FaceVerse [29], the state-of-the-
art single image reconstruction method to recover the video
and obtain the ground truth blendshapes and meshes for su-
pervision. During training, the Audio-To-Mesh stage and
Mesh-To-Video stage are trained separately. Specifically,
the BlendShape and Vertex Offset Generator and Learnable
Head Pose Codebook in the Audio-To-Mesh stage are also
trained separately. During inference, our model can work in
an end-to-end manner by cascading the above two stages.
For optimization, the Adam optimizer [12] is used with the
learning rate 1× 10−4 and 1× 10−5 for two stage, respec-
tively. And the total training costs 2 days on 8 NVIDIA
V100 GPUs. More details about training and network ar-
chitecture can be referred to in the supplementary material.

4.3. Comparison with state-of-the-art methods

We qualitatively and quantitatively compare the proposed
method to several prior state-of-the-art works on audio-
driven talking head generation, including the SadTalker
[34], TalkLip [28], MakeItTalk [39], Wav2Lip [16], and PC-
AVS [38]. The experiments are conducted in Same-Identity
Reconstruction and Cross-Identity Dubbing setting. In the
Same-Identity Reconstruction setting, the audio signal and
the reference image come from the same identity. While
in the Cross-Identity Dubbing setting, videos non-existent
in the world are generated because the audio comes from
another person.
Qualitative Comparison. Figure 6 demonstrates the vi-
sual results of our method and previous methods. It can
be seen that SadTalker [34] fails to generate accurate fine-
grained lip motion and is inferior to our video quality. This
is because it only uses the blendshape as the intermediate
representation which is insufficient to model the expressive
facial motion. TalkLip [28] generates blurry results and
changes the skin color style to slightly yellow, which loses
the identity information to a certain degree. MakeItTalk
[39] can not generate accurate mouth shapes, especially in
the Cross-Identity Dubbing setting. Wav2Lip [16] tends
to synthesize blurry mouth regions, and output video with
static head pose and eye movement when inputting a sin-
gle reference image. PC-AVS [38] requires a driven video
as input and struggles for identity preservation. By contrast,
our proposed method can generate high-quality talking head
video with accurate lip-synchronized and expressive facial
motion.
Quantitative Comparison. As shown in Table 1, our
method performs better in image quality and identity preser-
vation, which is reflected by lower FID and higher CSIM
metrics. Thanks to the novel learnable codebook mecha-
nism, the head pose generated by our method is also more
diverse and natural. Though the SyncNet score of our
method is inferior to Wav2Lip [16], our method can drive



Method
Head Pose
Generation

Same-Identity Reconstruction Cross-Identity Dubbing
SyncNet ↑ FID ↓ CSIM ↑ HPD ↑ SyncNet ↑ CSIM ↑ HPD ↑

Real Video 7.838 0.000 1.000 0.217
SadTalker [34] 5.711 28.35 0.862 0.305 5.416 0.849 0.337
TalkLip [28] 5.503 23.18 0.713 5.295 0.686
MakeItTalk [39] 3.346 33.73 0.845 0.286 3.128 0.840 0.291
Wav2Lip [16] 6.757 21.80 0.816 6.127 0.807
PC-AVS [38] 6.404 84.67 0.674 5.538 0.613
Ours 6.684 20.32 0.916 0.437 6.018 0.907 0.497

Table 1. The quantitative comparison with several state-of-the-art talking head generation works. Note that our proposed VividTalk
outperforms previous works in video quality, identity preservation, and head pose diversity.
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Figure 6. The qualitative comparison results of our method and several state-of-the-art methods on talking head generation. SadTalker [34]
and MakeItTalk [39] can generate results with a single image and audio as input. While TalkLip [28], Wav2Lip [16], and PC-AVS [38]
need another video to provide the head poses for the final results.

the reference image with single audio instead of video and
generate frames in higher quality.

4.4. User Studies

To further evaluate the proposed method, we conducted a
user study with 20 volunteers to rate the videos generated



Method
Lip

Sync
Motion

Naturalness
Identity

Preservation
Overall
Quality

SadTalker [34] 3.891 3.107 4.035 3.626
TalkLip [28] 3.217 3.891 3.418
MakeItTalk [39] 2.836 2.748 3.740 2.914
Wav2Lip [16] 2.751 3.814 2.471
PC-AVS [38] 3.106 2.603 2.513
Ours 4.315 3.896 4.618 4.307

Table 2. User study.

by each method. For a fair comparison, 10 in-the-wild fa-
cial images with various characteristics and poses are se-
lected as reference images, and 5 audio with diverse lan-
guages and speaking styles are chosen as driven signals,
which are taken as the input of each method and generate
50 videos in total. The volunteers are asked to rate each
video between 1 and 5 (higher is better) in terms of lip syn-
chronization, motion naturalness, identity preservation, and
overall quality. As shown in Table 2, the final mean score
of our method outperforms previous methods in all metrics,
which indicates the superiority of our method.

4.5. Ablation Studies

In this section, we conduct several ablation studies to verify
the effectiveness of each design in proposed method.

reference vertexblendshape blendshape + vertices

Figure 7. Ablation about Intermediate representation.

Ablation about Intermediate Representation. To verify
the superiority of using both blendshape and vertex offset as
the intermediate representation, we implement two variant
models using either blendshape or vertex offset to generate
3D meshes from audio. The final driven results are shown in
Figure 7. We can see that the method using blendshape only
as the intermediate representation can model most facial ex-
pression motions well but not lip motion. The method using
vertex offset as the intermediate representation can model
the mouth shape better but lead to artifacts in the teeth re-
gion. By comparison, the method with both representation
can generate accurate and fine-grained motions with high
video quality maintained.
Ablation about Learnable Head Pose Codebook. We also
perform experiments to validate the design effectiveness of
the Learnable Head Pose Codebook. On the one hand, we
learn absolute instead of relative head pose from the audio.
On the other hand, we remove the initial head pose P 0 as
a condition in the mapping phase. As shown in Table 3,

Method Diversity ↑ Naturalness ↑
Absolute Head Pose Prediction 0.379 3.641
w/o Initial Head Pose 0.408 3.728
Our Full 0.437 3.896

Table 3. Ablation about Learnable Head Pose Codebook.

learning absolute head pose leads to lower diversity, and
our method without the initial head pose results in an un-
natural visual effect. By contrast, our full method performs
better in both evaluation metrics, indicating the benefits of
our designs.
Ablation about dual branch Motion-VAE. We evalu-
ate the proposed dual branch motion-vae in Mesh-To-
Video stage regarding lip synchronization and video qual-
ity. Specifically, we designed a variant that keeps the fa-
cial motion branch only and removes the lip motion branch.
As shown in Figure 8, the method without the lip-motion
branch can not model the mouth shape accurately and gen-
erates frames with artifacts in the teeth area. In contrast, the
dual branch model can synthesize results well benefits from
the enhancement of the lip-motion by lip-branch.

ground truth facial-branch only dual-branch

Figure 8. Ablation about dual branch Motion-VAE.

5. Conclusion

In this paper, we proposed VividTalk, a novel and generic
framework supporting the generation of high-quality talking
head videos with expressive facial expressions and natural
head poses. For non-rigid expression motion, both blend-
shape and vertex are mapped as the intermediate represen-
tation to maximize the representation of the model, and
an elaborate multi-branch generator is designed to model
global and local facial motions individually. As for rigid
head motion, a novel learnable head pose codebook with
a two-phase training mechanism is proposed to synthesize
natural results. Thanks to the dual branch motion-vae and
generator, the driven meshes can be transformed into dense
motion well and used to synthesize finale videos. Experi-
ments demonstrate our method outperforms previous state-
of-the-art methods and opens new avenues in many applica-
tions, such as digit human creation, video conferences, and
so on.
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