Practical

Neod)

RELATIONSHIPS ARE AS IMPORTANT AS
THE BIG DATA THAT CONNECTS THEM

Gregory Jordan
Foreword by Jim Webber

Apresse

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

FOrEWOKooiiiemenmsssnnsnnsssssnsnmnssssnssnsssssnsnssssssnnsnsssssnnsssssssnnnsnssssnnnsnssssnnnnnssssnnnnsnsssnnnnnnssnnns XV
About the AUtROFKccvvsrisris s —————————————— xvii
About the Technical REVIEWET'Scusesssssssssssmsssssssssssssmsssmsssssssssssssssssssssssssssnsssnsssnsssssnnss Xix
AcKNOWIEdgMENTScuuiiiimmmmmisssnnnmmssssnsnmsssssssnmssssssnnmsssssnsnssssssnnnsssssnnnnsssssnnnnessssnnnnnssssnnnnss XXi
Part 1: Getting Started...........cccccniiinemmmmmmnnnnsse s ——————————— 1
Chapter 1: Introduction to Graphs.........ccccivmnsemnmmmissssnmmmssssmsssssssesssss s ——— 3
Chapter 2: Up and Running with Neo04j........cucccemrrnsssmnnsmssssssnnsssssssnssssssssssssssssssssssssssnssssss 11
Part 2: Managing Your Data with Neo4j..........cccccmmmnnnisssssnmmmnmnnnssssssssssnnnnnas 21
Chapter 3: MoUelingccureressmmrsssnnmsssnnsssssnssssansessansesssnsesssnsesssnsesssnsesssnnessnnnesssnnssssnnssnns 23
Chapter 4: QUEIYING....ccccuurssssnnmesssssnnssssssnnsssssssssssessssnsssesssssssssssssnnnsssssssnnssssssnnnssssssnnnnsssss 39
Chapter 5: Importing from Another Data SOUrce.........ccccusemmmmmsssennmmmssssnnnmsssssssnnssssssnnsnan 49
Chapter 6: Extending Ne04jc.cccurusmmmssnssssssnsssssnsssssnsssssnsssssnsessansessansessansessnnsesssnnessnns 59
Part 3: Developing with Neo4jccccceeeeemmmnnnnnnnnnnnnmnssmssssssssssssssnssssssnns 69
Chapter 7: Neo4dj + .NET........ccuummmmmmmmmmmmmmmmmmsssssssssmnmsmssssssssssssnssssssssssssnssnsssssssssssssnnnnnnsnnss 71
Chapter 8: Ne04] + PHPccccuviieemnnnisssssnnmssssssnsmsssssssssssssssssssssssssssssssssssssssnnnsessssnnnnssnns 119
Chapter 9: Neo4dj + PYthon........cccceeemmnmmmmmmmmmssssssmmmmmmmmsssssssssssssssssssssssssssssssssssssnsssssnnnns 169
Chapter 10: Ne0dj + RubY......ccccussemmmnisssnmnmmssssssnmmssssssnmmssssssnmsssssssnssssssssssssssnnssnssssnnnnnssns 215
Chapter 11: Spring Data Neo4jcccurcerrrssmmmsssesmmsssnsssssssssssnsssssssesssnsesssnsesssnsesssnnesssnness 261
Chapter 12: Ne04dj + JAVA ...cccuuinsnnemsnmmmmmmmmmssssssssmmmmssssssssssssssssssssssssssnssnsssssssssssnnnnnnnsnnnss 319
11 . 379
v

www.it-ebooks.info

http://www.it-ebooks.info/

PART 1

Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to Graphs

What do Cisco, Walmart, and eBay have in common with many academic and research projects? They all depend on
graph databases as a core part of their technology stack.

Why have such a wide range of industries and fields found a common relationship through graph databases?

The short answer is that graphs can offer superior and consistent speed when analyzing deep, dense relationships
and can do so with a flexible data structure.

As many developers can attest, one of the most tedious pieces of a web application or software project is
managing the schema for its database. Although relational databases are often the right tool for the job, certain
limitations—particularly the time as well as the risk involved to make additions to or update the model—invite the use
or consideration of alternatives and complementary data storage solutions. Enter NoSQL.

When NoSQL databases, such as MongoDB and Cassandra, came along, they brought with them a simpler way to
model data, as well as a high degree of flexibility—or even a schema-less approach—for the model. While document
and key-value databases remove many of the time and effort hurdles, they were mainly designed to handle simple
data structures. However, the most useful, interesting and insightful applications require complex data and yield a
deeper understanding of the connections and relationships between different data sets.

Graph databases—another branch of databases in the NoSQL family tree—can offer the blend of simplicity and
speed while permitting data relationships to maintain a first-class status. For example, Twitter’s graph database,
called FlockDB, more elegantly solves the complex problem of storing and querying billions of connections than their
prior relational database solution. In addition to simplifying the structure of the connections, FlockDB also ensures
extremely fast access to this complex data. Twitter is just one use case of many that demonstrates why graph databases
have become a draw for many organizations that need to solve scaling issues for their data relationships.

While offering fast access to complex data at scale is a primary driver for adoption of graph databases, they also
offer the same tremendous flexibility found in so many other NoSQL options. The schema-free nature of a graph
database permits the data model to evolve without sacrificing any of the speed of access or adding significant and
costly overhead to development cycles.

Poised at the intersection of graph database capabilities, the growth of interest, and the trend toward more
connected large sets of data, this chapter demonstrates how the graph database will affect future web and mobile
application development—specifically, how graph databases will grow as a leading alternative to relational databases.

I start with a quick overview of graph theory and a look at the main elements of a graph database. I proceed to
show how graph databases compare to relational databases as well as other NoSQL options. I conclude the chapter
with a look at use cases for graph databases.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO GRAPHS

Graph Theory

The history of graph theory begins with Leonhard Euler (pronounced “oiler”), the Swiss mathematician and physicist.
Euler made many significant contributions to pure and applied mathematics over a more than 50-year academic
career. His solution to the Seven Bridges of Konigsberg problem in 1735 is considered to be the first theorem of graph
theory and one of his most important contributions.!

The Seven Bridges of Konigsberg problem was to find a path through the city that would cross each of the seven
bridges connecting two large islands. Figure 1-1 highlights the bridges connecting the mainland and the two islands
with oval markers.

Figure 1-1. The Seven Bridges of Kénigsberg

Other conditions of the problem were that the bridges may not be crossed more than once and each bridge must
be crossed completely. Euler’s subsequent treatise on the problem was written in 1736 and later published in 1741.
Euler proved that the problem could not be solved but, more importantly, noted that the most relevant aspect of the
problem is the order in which the bridges were crossed. In creating this singular, fundamental approach, Euler could
examine the problem in abstract terms. His more focused methodology considered only the mainland, the islands,
and the bridges that connected them.

'http://www.ams.org/journals/bull/2006-43-04/50273-0979-06-01130-X/S0273-0979-06-01130-X. pdf

4

www.it-ebooks.info

http://www.ams.org/journals/bull/2006-43-04/S0273-0979-06-01130-X/S0273-0979-06-01130-X.pdf
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO GRAPHS

In graph theory, the mainland and islands are what is referred to as vertices (the plural of vertex). Each bridge
that connects two vertices is known as an edge, which, for the purposes of graph theory, serves to identify which pair
of vertices is connected by that bridge. As you can see in Figure 1-2, the components of the problem are broken down
into four vertices connected by seven edges. The final mathematical structure that represents all the vertices and
edges is called a graph.

Figure 1-2. The Seven Bridges of Konigsberg problem displayed as Euler’s graph representation

Note A deep understanding of graph theory is not essential to working with graph databases. For those readers who
want to dive further into graph theory, Richard J. Trudeau’s Introduction to Graph Theory (Dover, 1993) provides a more
thorough discussion.

A common mistake is to refer to the item in Figure 1-3, and items similar to it, as a graph. Although graph data or
diagrams may be contained within a chart, the terms graph and chart are not synonymous.

Favorite Day of the Week

51 24
23

12z

2
1 "

Sunday Menday Tuesday ‘Wednesday Thursday Friday Saturday

Figure 1-3. Bar chart

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO GRAPHS

Graph Databases

In its simplest form, a graph database is a set of vertices and edges. Another way to picture graph databases is to

view the data as an arbitrary set of objects connected by one or more kinds of relationships. This section defines and
expands on the most essential components of a graph database—specifically, how they occur within and apply to the
graph database, Neo4;.

Nodes and Relationships

When discussing graph databases, vertices are more commonly referred to as nodes and edges are more commonly
referred to as relationships (Figure 1-4). While these two pairs of terms may be used interchangeably, this book follows
the more common usage.

Relationship 1

Figure 1-4. Two nodes connected by a relationship

A node can be thought of as an object with any number of properties. Unlike the keys that connect rows within a
relational database, relationships within a graph database can also have properties.

Labels

Starting with the 2.0 version of Neo4j, the concept of labels was introduced as a way to group nodes. As the example
in Figure 1-5 demonstrates, you can define a node as “Person” and then provide additional values for each property
of the node as necessary. By grouping nodes in this way, we can query the graph to show common subsets of what are
essentially node types. Labeling of nodes also offers a way to enforce modeling constraints when necessary, as well as
to increase the speed at which data can be accessed through improved indexing.

['WORKS_AT]

Figure 1-5. Labels provide a way for nodes to be grouped

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO GRAPHS

Traversal

The most common method for querying a graph is by performing a traversal. In a traversal operation, the query
begins with a single node that follows a path of relationships over connected nodes. Neo4j’s traversal API allows you
specify this path, essentially creating a subgraph of nodes and relationships. The shortest path has a length of zero,
which is a single node without returning its relationships as part of the query. When a path has a length of one, the
path can contain a relationship to another node or, as shown in Figure 1-6, even back to the same node.

Figure 1-6. A node that features a relationship back to itself

Indexes

Like many other databases, Neo4j relies on an index to do an explicit look-up for a specific node or relationship. While
itis possible to traverse the graph to find the node or relationship, it is sometimes more performant to allow indexing
to handle the request. For example, when looking a specific “Person” node, you could query the index by a unique
identifier such as a username or other unique key.

Relational Databases and Neo4j

When comparing graph databases to relational databases, one thing that should be clear upfront is that data affiliation
does not have to be exclusive. That is, graph databases or other NoSQL options will likely not take over or replace
relational databases. Clear and well-defined use cases will involve relational databases for the foreseeable future.
Matt Aslett, research director of data management for 451 Research, has observed the growth of graph databases,
specifically Neo4j, in which a relational database might have been otherwise used, and he notes that “there is a
tipping point, but that will take some time.”?

Undertaking the task of transforming an existing functional and manageable relational database into another
database type is sometimes necessary. Relational databases may be poor fits for the goals of certain data for a number
of reasons and use cases.

For example, the limitation on how a relationship is defined within a relational database is one reason to
consider switching to a graph database such as Neo4;j. As mentioned earlier in this chapter, relationships in the graph
can, like nodes, have properties of their own. With that capability, it would be fairly trivial to add in a property on a
graph relationship that was not defined when the relationship began. Although creating a join table (as it is known in
the relational database world) that brings together two disparate tables is a common practice, doing so adds a layer of
complexity. Chapter 3, which addresses data modeling with Neo4j, includes diagrams of graph models and how they
compare to modeling with a relational database.

*http://techcrunch.com/2014/02/02/neo4j-a-graph-database-for-building-recommendation-engines-gets-a-
visual-overhaul/

www.it-ebooks.info

http://techcrunch.com/2014/02/02/neo4j-a-graph-database-for-building-recommendation-engines-gets-a-visual-overhaul/
http://techcrunch.com/2014/02/02/neo4j-a-graph-database-for-building-recommendation-engines-gets-a-visual-overhaul/
http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO GRAPHS

Another reason you might consider moving to a graph database is to avoid the half-measures and workarounds
you must use to make your model fit within a relational database. A join table is created in order to have metadata that
provides properties about relationships between two tables. When a similar relationship needs to be created among
other tables, yet another join table must be created. Even if it has the same properties as the first join table, it must be
created in order to ensure the integrity of the relationships. A certain type of relationship—such as “LIKES”—can exist
among more than just two types of nodes. In fact, the relationship type could be applied to all types of nodes.

Another reason to favor graph databases over relational database is to avoid what might be referred to as
“join hell” The joins required to connect two tables are often trivial, but those types of joins provide the least
expressive data. When the application requires data that connects several tables, it is then that expense of joins begins
to manifest itself in both the complexity and as well as diminished performance. In addition, the nature and depth of
the query would need to be known ahead of time, or the query would need to be dynamically generated.

Despite the differences between graph and relational databases, there are a few similarities. A significant
similarity is that both can achieve what is known as ACID compliance. ACID—Atomicity, Consistency, Isolation and
Durability—is a set of principles guaranteeing that transactions completed by the database are processed reliably.

In Neo4j, the Enterprise edition is fully ACID in high-availability clustering, whereas the Community edition is
eventually consistent.

NoSQL and Neo4j

Graph databases are not the only alternative or complementary solutions to the shortcomings of relational databases.
Although the first use of the term NoSQL dates from the late 1990s, it was only toward the end of the 2000s that NoSQL
options became more focused and could be set into one of four different sectors or families: key-value, column-family,
document, and graph databases.® Another group is the multimodel category, which includes combinations of concepts
and features from at least two of the four main groups.

Note Contrary to the assumption in some quarters, NoSQL does not stand for “No to SQL.” The proper sense of the
acronym is “Not only SQL"—referring to alternatives to the relational database.

Key-value stores represent data by storing large sets of values, with each value based on a key. This simple data
structure allows related applications to store its data in a schema-less way. The column-family database, modeled
after Google’s BigTable, can be described simply as rows of objects that contain columns of related data. As with
key-value stores, column-family databases also have key values pairs that represent a row. Document databases
represent a collection of "documents"; each one has its own collection of keys and values. In some ways, documents
contained within a document database are like rows in relational database. In addition, querying against a unique id
or key is a typical method used to retrieve a document.

The first big difference between graph databases and other NoSQL categories is the data model. Each type of
node can have any number of properties. In addition, those properties can be changed over time, which provides a
model that does not require a schema. This schema-less nature is certainly not unique in the NoSQL world, but when
you consider that nodes can have arbitrary relationships that do not need to be determined ahead of time or carefully
modeled in after an initial release, the difference between graphs and other NoSQL options begins to take shape.
When you couple that with the fact that arbitrary relationships can also have any number of their own configurable
properties, the difference is even clearer. Finally, because graphs can be quickly adapted to changes in business
needs, especially in making connections between data, organizations are enabled to ask the right questions from the
data as the needs arise, and those questions do not have to be precisely identified prior to data capture.

*http://blog.monitis.com/index.php/2011/05/22/picking-the-right-Nosql-database-tool/

8

www.it-ebooks.info

http://blog.monitis.com/index.php/2011/05/22/picking-the-right-Nosql-database-tool/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO GRAPHS

Summary

This chapter provided a brief overview of graph theory as well as a look at the main elements of a graph database.
Graph databases were compared to relational databases as well as to other NoSQL options, together with some use
cases for graph databases. The next chapter covers how to install Neo4j quickly and how to test out its querying
capability with its web-based UI and console tools.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Up and Running with Neo4j

This chapter covers the requirements for running Neo4;j as well as the steps for installing an instance of the Neo4;j
database on your computer. To set you on the path to mastering data management with Neo4j, I introduce the Neo4j
Browser tool and walk you through the basics of the Neo4j query language, Cypher.

Neodj

Neo4j began its life in 2000, when Emil Eifrem, Johan Svensson, and Peter Naubauer—the creators of Neo4j—began
to notice a significant amount of overhead in both the performance and work required in one of their applications.
The first and most significant aspect of the overhead could be traced to the mismatch of their content management
system’s model with the relational database. While the properties of the model could be stored in and retrieved from
tables with relative ease, they observed that connections between the data imposed significant processing time for
queries. Moreover, the performance of the queries grew worse as the connections among the data became more
complex. Finally, the time and effort that was required to manage those relationships placed even more overhead on
the application’s development lifecycle.

After seeking out alternatives and performing a few rounds of research, they began to build out Project Neo. Neo
aimed to introduce a database that offered a better way to model, store, and retrieve data while keeping all of the core
concepts—such as ACIDity, transactions, and so forth—that made relational databases into a proven commodity.

Subsequent research and development has propelled the Neo4j to the top spot in popularity, justifying the tagline
associated with the Neo4j logo on promotional materials, “The World’s Leading Graph Database.”! As you will come to
see after working with Neo4j on your own, it fits extremely well with many different use cases, domains, and industries.

Requirements and Installation

The installation of Neo4j is straightforward and, regardless of whether you prefer Windows, Linux, or Mac, it should
take very little time to get running once it has been downloaded. If you are ready to get started with the quick install,
then browse to neo4j.com/download for a 30-day trial of the enterprise version. Click the download link and then
choose the version for your operating system. If you run into problems downloading from the neo4j site, you can also
visit http://www.graphstory.com/practicalneo4j and go to the download section to get the specific version as it
applies to the remainder of this book.

'http://db-engines.com/en/ranking/graph+dbms

11

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://db-engines.com/en/ranking/graph+dbms
http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

Note In addition to installing a version of Neo4j on your local machine, you can visit http: //www.graphstory.com/
practicalneo4j to setup a free, fully configured Neo4j instance of the enterprise version for personal use. You will be
provided with your own free trial, a knowledge base, and email support from Graph Story.

Requirements

The requirements in Table 2-1 apply to a single instance of Neo4;. In terms of capability and performance for a single
instance, memory and disk capability are the primary performance constraints. The amount of memory impacts the
graph size that can fit in memory and disk I/O capability affects read/write performance.

Table 2-1. Requirements for Running Neo4j

Minimum Recommended
CPU Intel Core i3 Intel Core i7
Memory 2GB 16-32GB
Disk 10GB SATA SSD with SATA
Filesystem ext4 ext4, ZFS

Versions

As of this writing, Neo Technology, the commercial entity that supports the ongoing development of Neo4j, offers a
community license as well as enterprise subscriptions. This book uses the enterprise version, which includes the most
critical features for exploring Neo4;j. With the enterprise edition, the pricing and feature set has been set to match the
current operational stage of a business. For example, the personal edition of Neo4j is in line with an early-stage or
bootstrap company.

Note The types of licenses can be found in Table 2-2, which display only some of the more pertinent differences
in capability and support with Neo4j. The license types are those available at time of writing publishing and are likely to
evolve.

12

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

Table 2-2. Neo4j License and Feature List

Community Personal Startup Enterprise
Primary Features
Property Graph Model X X X X
Native Graph Processing X X X X
Native Graph Storage X X X X
ACID X X X X
Cypher X X X X
Language Drivers X X X X
REST API X X X X
Memory X X X X
Disk X X X X
Filesystem X X X X
Performance and Scalability
High-Performance Cache X X X
Clustering X X X
Online Backup X X X
Advanced Monitoring X X X
Support
Commercial Email Support X X
Commercial Phone Support X
Support Hours 10x5 Upto24x7
License
Production instances 3 3 3+
Test instances 3 3 3+
Developer Support Upto2 2 3+
Java

The “j” in Neo4j stands for Java, and the Java Development Kit (JDK) is required to run it. So before unpacking the
download archive, make sure you have Oracle’s JDK installed on your computer. If you already have the JDK installed,
make sure it is at least version 7. If you need to install it, then be sure to use the latest stable version of JDK7. After you
have installed JDK?7 or verified that it has already been installed, you can proceed to the next section depending on
your preferred operating system

Note To get you up and running as quickly as possible, this chapter uses the console to run Neo4;j.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

Installation

After downloading the version of Neo4j that is compatible with your operating system, follow the appropriate set of
steps below.

Note Throughout this book, {NEO4J_ROOT} refers to the top-level installation directory for Neo4;.

Windows

Neo4j provides an installer version for Windows, but for the exercise in this chapter we will use the console:
1. Ensure that you have Java version 7 or higher running on your computer.

Extract the zip into a preferred directory on your computer.

Double-click on {NE04]_ROOT}\bin\Neo4j.bat.

Open a browser and go to http://localhost:7474.

A

Stop the server by executing “Ctrl-C” in the corresponding open console window.

Linux/Unix

1. Ensure that you have Java version 7 or higher running on your computer.
Extract the archive into a preferred directory on your computer.

Open a command prompt and change directory to {NEO4J_ROOT}\bin.
Run the command ./neo4j start.

Open a browser and go to http://localhost:7474.

S S o

Stop the server by executing . /neo4]j stop in the console.

Mac 0SX

Ensure that you have Java version 7 or higher running on your computer. While it is possible to follow the Linux/Unix
install instructions for Mac OS, users familiar with using Homebrew can install the latest stable version of Neo4;j
with the command, brew install neo4j && neo4j start.

This will provide a Neo4j instance running on http://localhost:7474. The installation files will reside
in /usr/local/Cellar/neo4j/community-{NEO4]_ROOT}/libexec/ —available to tweak settings and symlink the
database directory if desired. After the installation has completed, you can run Neo4j from the terminal.

The server can be started in the background from the terminal with the command neo4j start and then
stopped again with neo4j stop. The server can also be started in the foreground with the neo4j console, and it can
send the log output to the terminal.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

The Neo4j Browser

One of the most useful tools included with the database is the Neo4j Browser, a web-based shell (Figure 2-1).
Version 2.x of Neo4j contains significant enhancements to the features, speed, and visualization tools over the
previous incarnations of the web-based tool.

ol

« c localhost 7474/ browse

Neodj 2.1.5

Figure 2-1. The Neo4j Browser

In addition to execution of the commands to perform CRUD (Create, Read, Update, and Delete) operations
against the Neo4j database, the web interface provides helpful features to inspect the connected database instance
as well as the system configuration settings. As in Figure 2-1, the Neo4j Browser shows labels, relationship types, and
property keys that are contained within the data.

Tip The web-based shell uses a default value and can be accessed using the port number 7474. However, you can
change the port address by updating the server configuration located in the {NEO4] _ROOT}/conf/neo4j-server.
properties file using the setting for org.neo4j.server.webserver.port. Changing this setting might be necessary if
there are restrictions on your network for port ranges.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 UP AND RUNNING WITH NEO4J

When a populated database is accessed through the Browser, many of the top-level properties of Neo4;j are
displayed. For example, by clicking on one of the relationship types in Figure 2-2, a query is executed and displays sets
of related nodes that contain the node ID of both the “start” node and “end” node.

Neodj 2.1.5

Node labels.

Figure 2-2. The Neo4j Browser showing a visual graph result after executing a Cypher command

Figure 2-3 displays new tools in 2.x that offer shortcuts to perform common tasks. For example, one the new
features available is the ability to save and archive Cypher queries for later use. In addition, some shortcuts provide a
stubbed-out version of Cypher statements, such as the “Create a node” option under the General section.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

ol

€ c localhost 7474 [browse =

Saved scripts

* Genersl

Figure 2-3. The Neo4j Browser showing quick commands and saved scripts

Introducing Cypher

Cypher is the declarative query language used for data manipulation in Neo4j. It is similar in many ways to how a
relational database depends on Structured Query Language (SQL) to perform data operations. However, Cypher is
notyet a standard graph database language that can interact with other graph database platforms. If you have some
familiarity with SQL, you will probably be able grasp Cypher quickly. In addition, the expressive and relatively simple
nature of Cypher allows it to be a tool that can be used beyond the confines of an organization’s technology-centered
groups, similarly to the way SQL is used in an ad hoc way outside many IT departments.

Note A declarative language is a high-level type of language in which the purpose is to instruct the application on
what needs to be done or what you want from the application, as opposed to how to do it. A procedural language, by
contrast, instructs the application what to do, step by step.

While there are a number of language drivers as well as a native API to execute CRUD operations, Cypher is the
primary access tool for Neo4j.

Cypher will be covered in much greater detail in Chapter 4, but it is apposite at this point to get a feel for this
centerpiece of the Neo4j world from the following simple examples of Cypher queries.

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

Create

CREATE is analogous to an INSERT statement in SQL. Listing 2-1 is a very basic example of a CREATE operation.

Listing 2-1. Example CREATE query statement

CREATE (n:Business { name : 'GraphStory', description : 'Graph as a Service' })

Start

In the latest version of Neo4j, the START clause has become an optional part of a read operation. The counterparts in
SQL are portions of the FROM and WHERE clauses. In Listing 2-2, the lowercase business represents the variable being
returned, which is closer to the SELECT clause in SQL, but in this case the business variable also returns all of the
properties (or columns, as they are referred to in a relational database). The Business index is equivalent to a table in
the relational database world, and the name="GraphStory' portion is similar to a WHERE clause.

Listing 2-2. Example START query statement on the index Business

START business=node:Business (name = 'GraphStory')
RETURN business

Match

A MATCH clause represents a similar operation as a JOIN would in SQL. The Cypher statement in Listing 2-3 displays
how to return a collection of people who like GraphStory.

Listing 2-3. Sample MATCH query statement in earlier versions of Neo4;j

START business=node:Business (name = 'GraphStory')
MATCH people-[:LIKE]->business
RETURN people

A shorter way to represent the same result is to use Label, which excludes the START clause. The example shown
in Listing 2-4 is the current recommended way of executing a MATCH result.

Listing 2-4. The recommended way to execute a MATCH query statement

MATCH person-[:LIKE]->(b:Business { name: "Graph Story"})
RETURN person

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UP AND RUNNING WITH NEO4J

Set

The SET statement is analogous to an UPDATE statement in SQL. Listing 2-5 is a basic example of a SET operation.

Listing 2-5. Example MATCH query statement

MATCH (b:Business { name: 'GraphStory' })
SET b.description = 'The Leading Graph Database as a Service Provider'
RETURN b

Summary

This chapter provided a quick overview of Neo4j, including the requirements for running the server in your local
environment, as well as the steps to install for Windows, Linux/Unix, and Mac OSX. It also introduced the Cypher
query language. The next chapter will discuss modeling for Neo4j and will begin to explore the Cypher language a
bit more.

19

www.it-ebooks.info

http://www.it-ebooks.info/

PART 2

Managing Your Data with Neo4;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Modeling

This chapter reviews the elements that make up Neo4j and the proper way to view relationships within the model.
This chapter recurs to some of the concepts first addressed in earlier chapters from the perspective of how modeling
is handled within Neo4;j. It also explores a little more of the Cypher language, but only as it applies to our modeling
effort. Chapter 4 will deal with Cypher in greater depth. Finally, this chapter goes over some common models found in
various domains and looks at some of the common issues that data architects and developers face when modeling for
a graph. The chapter will begin with an overview of data modeling and why it can help ensure your application starts
on a solid foundation.

Data Modeling

If you are comfortable with the concepts of modeling, feel free to skip ahead to the next section. If, however, you are
still fairly new to data modeling or just need a refresher, this section will provide a quick conceptual overview and
cover the basics for proper modeling.

Data Modeling Overview

Data models serve as visual representations of the specific data that will reside within database and almost exclusively
in support of an external application. The models represent objects, such as a User or Shopping Cart, the connections
between the objects, and the rules that determine how the objects are stored within the database. The model typically
concentrates on what data will be stored and how it will be organized. The specific functions or how the application
will operate on the model should be considered separate from the modeling tasks. One common analogy of the model
are the blueprints of a house, where there is direction as to how the spaces are defined but the exact contents remain
to be determined after the main construction is completed.

In addition, for the some areas the data model is independent from the constraints of the database platform.
As you will see in the later sections of this chapter, there is a divergence that takes place when modeling relationships
within a relational database versus modeling within Neo4j. In either event, the model still serves as the high-level,
conceptual representation for all of the data points.

Why Is Data Modeling Important?

Regardless of whether you are using a graph database like Neo4j or a relational database, modeling is a critical part in
helping to ensure your application’s data can be stored and retrieved as efficiently as possible. In the case where there
is a dedicated database administrator (DBA), the model is provided as a diagram—almost like a set of “blueprints”—to
use as a guide while creating the actual database. In most cases, the model represents the basics of the tables, the
primary and foreign keys, and the meta-information on properties, such as their type. The model might also contain
constraint information, such as whether a value of field is required or can be null or empty.

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

Although the model can and likely will evolve over time, maintaining it in a diagram format or similar way is
important to ensure an efficient and cohesive design. It could be argued that for some applications either the domain
is limited enough or the objects representing the model are so well defined and documented that a model diagram is
unnecessary. In addition, it has been suggested that the time involved to create a model diagram can slow down the
development process.

However, most applications that start small will grow over time and the object code will—at some point—probably
be passed from the initial developers to a new set of developers. Without a diagram to quickly demonstrate all of the
data points represented within an application, the time and effort involved to explain the model will likely grow as
well as make it much more difficult to most efficiently add, update, or remove specific pieces of the model.

Data Model Components

The data model is developed in the first stage of the project and will evolve over time. Even as relational databases
have changed over the past forty years, they have retained certain design limitations, which, in turn, makes the initial
data modeling task a critical path within the scope of an application development project. Although NoSQL options
have helped the outcome of projects by lowering the risk of modifications to the model, the task of modeling is still
critical to successful application development.

In the data modeling stage, whether with an agile focus or otherwise, the project team, specifically analysts and
developers, will usually begin by having discussions with the application owners to understand the requirements
of the model. These discussions should yield at least one important result, which is an entity-relationship (ER)
diagram. The ER diagram is an important resource for an application project team because it provides a common
understanding of how the application’s data will be represented.

Entity-Relationship Model

Although many variants of the theme existed prior to it, the entity-relationship model is credited to Peter Chen in his
1976 paper, “The Entity-Relationship Model: Toward a Unified View of Data.”! Chen’s original description and design
was adapted to more common usage today for data analysts and administrators. The ER model is specifically useful
because of how well it maps to the structure of a relational model.

In addition, the ER model is fairly simple to create and can be understood by all members of the team and wider
organization with minimal instruction as well as act as the instructions to one or more team members on how to
specifically construct the database as it applies to the platform in use. Perhaps the most important aspect of the ER
model is that it acts as a universal way to communicate. Without its ubiquity, the method and manner of describing
and visualizing data models could vary from project to project.

Entities

Entities are characteristically viewed as the central objects within the ER model. Most often data modelers will
strive to use terms that are easily recognizable to each member of the project team in order to describe the entity.
Conversely, you should stay away from terminology that is not commonly used or not the default within the domain
or industry. For example, when modeling applications that deal with constructing residential areas, it would be more
common to use the word “house” rather than “abode”—even though they are synonyms.

We can see in Figure 3-1 that the model diagram employs the use of a box—a standard shape to symbolize
entities. In some model diagrams, the entities—as well as the relationships and attributes—will be shown in specific
colors to further visually distinguish each part of the model.

"Peter Chen, “The Entity-Relationship Model: Toward a Unified View of Data,” September 22-24, 1975, ACM Transactions on
Database Systems, Vol. 1, No. 1 (March 1976), pp. 9-36.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

Person Addresses

Figure 3-1. A simple ER model

Relationships

As you might surmise from Figure 3-1, relationships represent the connections or associations between entities.

In most cases, the relationship can be expressed using a verb. For example, if you were going to connect people who
use your application with where they live, you would typically express it as “a user has addresses.” In addition, you
would normally want to address cardinality, which measures how many times one entity type might be connected
to another distinct entity type. To express that a user has many addresses, the cardinality would be denoted as “1:M”
(one-to-many).

The relationship objects within the ER diagram usually address the optionality and direction of the association
between entities as well. Addressing the optionality of the relationship can be handled conveniently through its
cardinality. For example, you can express an optional relationship by showing its cardinality as “0:1”. The direction of
the relationship—often referred to as the parent-child—is shown by using an arrow pointing from the parent entity
to the child entity, e.g. Person » Address. In addition to arrows and lines with numeric representations, cardinality,
direction, and optionality can be expressed graphically. Figure 3-2 displays the special symbols that are often used in
ER diagrams to express relationships between entities: in this case, a relationship of one to many as one person could
have many addresses.

Person Addresses

Figure 3-2. A simple ER model

Attributes

Attributes act as an identity, characteristic, or descriptor for an entity. For example, a User entity might use an identity
attribute (also known as a key) which is named “Person ID”. The “Person ID” attribute can be used to identify a
specific instance of that entity type. In the case of descriptor attribute, the User entity might include “Person Name” or
“Person Email.”

In some entities, a single attribute might contain one or more of its sibling attributes, which is referred to as a
composite attribute. For example, the Address entity could have the attributes number, street, city, state, and ZIP code,
which together form the composite attribute called “Address’, shown in Figure 3-3.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

Street
Address

Person d Addresses

User Address

0/0/0]00

Figure 3-3. A ER model with attributes

Challenges in Using Entity-Relationship Modeling with Neo4j

Traditional entity-relationship models accept information and content that can be freely and easily contained within
arelational database and are typically only a good match for a relational structure. In fact, they are insufficient for
models in which the data cannot be suitably represented in relational form, as is the case with frequently changing,
semi-structured data. One of the biggest challenges for many applications is the possible frequency and scope of change
to the way model is structured. As detailed in Chapter 1, these types of modifications for relational systems are nontrivial,
involve at least moderate risk, and are often significant causes for changes from one database platform to another.

Modeling with Neo4j

This section begins to build out the model for the application to be discussed in the later chapters of the book. The
model contains some likely familiar themes in terms of its structure and includes five areas that have been identified
as the most significant portions of both consumer and business data: social, intent, consumption, interest, and location
graphs. These five graph types are certainly not the only use cases that make sense for Neo4j, but they are in wide use
and intrinsically shaped.

As part of our examination of the graph model for these areas, we will examine the companion model structure
as designed for a relational database. As noted in the data model overview section, a divergence takes place when
modeling relationships within a relational database versus modeling within Neo4j. The divergence is not significant
in terms of the data being captured, but, as Table 3-1 shows, the main components of an entity-relationship model in
Neo4j may be known by different names and take vastly different shapes.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 MODELING

Table 3-1. The Main Components of the ER Model Compared to Neo4j

Entity—Relationship Neodj

Entity Node
Relationship Relationship
Attribute Property

In either event, the model still serves as the high-level, conceptual representation for all of the data points.
The companion model will also allow us to see the transformation that would occur when moving from the relational
setting to the graph setting. Again, we will explore a bit more of the Cypher language in this chapter but only as it
applies to our modeling aim. In addition, your preferred programming language is important to how you might
consider some aspects of your model, but it is not critical to understanding the essential concepts for modeling
with Neo4;j.

Modeling Relationships

As you will likely find in working more frequently with graphs, the node types can seem more natural than tables,
especially when creating and managing relationships. However, there are some common pitfalls or issues that can
surface during the first exercises in modeling.

Directed relationships are an important aspect of graph databases and understanding how they should be
modeled is necessary to improving the design, efficiency and manageability of your Neo4j database. The example in
Figure 3-4 clearly denotes the direction to infer that “Greg works at GraphStory.” In turn, this relationship implies that
“GraphStory is an employer of Greg.”

[WORKS_AT]

Figure 3-4. Directed relationship type

It is not necessary to explicitly add both relationship types, as shown in Figure 3-5, because one directed
connection, by definition, suffices for the other direction. In fact, the speed of traversing the graph is not dependent
on the direction.

[:WORKS_AT]

[:IS_EMPQOYER_OF]

Figure 3-5. Two relationship connections are unneccesary as the first implies the other

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ MODELING

While some connections between nodes naturally suggest how the direction should be set, others have a mutual
or bidirectional relationship. Consider Figure 3-6, in which “GraphStory is a partner with NeoTechnology.” In these
bidirectional relationships, a second relationship connection, as with directed relationship, is unnecessary. Again, as
is the case with directed relationships, it is faster to have a single relationship with an arbitrary direction.

[:PARTNERS]

Figure 3-6. Bidirectional relationship with an arbitrary direction

Modeling Constraints

Ensuring that specific properties within the model remain unique is an important feature of any database and Neo4;j is
no different. With Neo4j 2.0, the concept of adding unique constraints based on labels was added. You can use unique
constraints, as shown in Listing 3-1, to ensure that property values are unique for all nodes with a specific label. If you

are creating the constraint after nodes have been created, then be aware that the new constraint could take some time

to become enforced as any existing data must be scanned beforehand.

Listing 3-1. Creating a Unique Constraint

CREATE CONSTRAINT ON (business:Business) ASSERT business.businessname IS UNIQUE

When adding a unique constraint on a node's property, please note that this process will also create an index on
the specific property and, therefore, you will not be able to add a separate index for the property. The index can be
used to perform lookups for specific nodes. If you need for some reason to remove the constraint, as shown in
Listing 3-2, and require an index on that property, then you will need to create a new index to support lookups.
Listing 3-2. Dropping a Unique Constraint

DROP CONSTRAINT ON (business:Business) ASSERT business.businessname IS UNIQUE

Modeling Use Cases

To begin building out the model for the application to be developed in the later chapters of the book, the following
sections examine in turn the five areas identified as the most significant portions of consumer and business
data—namely, social, interest, consumption, location, and intent graphs.

Social Graph

The social graph is the most widely discussed type of graph in the list of graph use cases. In its more well-known
incarnation, the social graph represents the degree of connection between users on a particular application,

such as Twitter. Facebook’s social graph is the largest social graph in the world, developed on a mostly proprietary
technology stack.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

In Neo4j, the social graph is typically defined in one of two manners. The first is a direct connection that implies
a mutual connection, which is similar to the approach user connections are made on Facebook. The second approach
is where one user follows another user, similar to the connections created on Twitter. In Figure 3-7 and 3-8, we can see
how both of these connections methods might be modeled within a relational database.

User Friends

Friendld

Password

0
e

Figure 3-7. Entity-relationship diagram with mutual connections

User Follow

Followerld

FollowedId

o

Password

s

Figure 3-8. Entity-relationship diagram with a one-way connection

Figures 3-9 and 3-10 show how the same relationships would be modeled for Neo4j. In Figure 3-9, the direction is
shown as a single relationship between two nodes. As mentioned earlier in this chapter, you should avoid duplicating
a typed relationship between two nodes. However, this is one exception to the directionality of relationship modeling,
as it is necessary to define whether the relationship is mutual and, indirectly, allows for certain features to be enabled.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ MODELING

[Friends]

Figure 3-9. Graph diagram with mutual connection. The direction implies who made the request

[Follows]

Figure 3-10. Graph diagram with specific directed connections

While deciding the manner in which your social model should be established, it is important to consider that
there is more than just a technology decision at stake, but, potentially, a business decision as well. While both models
allow for exploring connections in either direction from a technical standpoint, the bidirectional relationship implies
that only one user action needs to occur in order to establish a mutual connection.

In addition, using the bidirectional or mutual option, by definition, will reduce the number of relationships
comparatively by 50 percent. The problem of dense nodes—think of any celebrity who might have millions of
followers but only follows a few other users—is less a factor in performance in the latest version of Neo4j. However,
directional relationships can sometimes have an impact and need to be considered carefully. For the purposes of the
book’s example application, we will consider the directional relationship for the social aspect, such as the connection
method found in applications such as Twitter.

Interest Graph

The interest graph is closely connected to the intent graph. However, the interest graph is principally concerned with
the connecting a person with her specific interests. In that sense, the interest graph would allow for an application to
make recommendations regarding related items of interest much in the same way a thesaurus can offer synonyms

of a specific word. When combining the interest graph with a person’s demographic or social graph, an application
can make recommendations that typically have a higher degree of connectedness and relevance. Figure 3-11
demonstrates how an interest graph could be created within a relational model.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 MODELING

Userinterests

1 [l

Interestld

Username Interest

Interestld

Uk,

Password

(o

Figure 3-11. Entity relationship diagram with a user’s interests

Figure 3-12 shows the interest graph as it could be modeled for Neo4j. The interesting aspect in this graph type is
how the named relationship in this model, “UserInterests’, could be quickly modified to show a degree of interest and
the date and time when the interest was established.

[:UserlInterests] .

Figure 3-12. Graph diagram with a user’s interests

Asyou can see in Figure 3-13, adding a simple measurement for frequency is fairly trivial. Although adding
the same measurement in the relational model is possible, the change would probably not happen as easily. More
importantly, connecting people with those who have similar interests will be even easier and much faster as the
degrees of connection begin to increase.

[:UserInterests]
(count: 4)
(created: 11/10/2011 10:00 AM)

Figure 3-13. Graph diagram with a user’s interests, including properties for the named relationship

ki

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

Consumption Graph

While the consumption graph is primarily focused on the items that one might purchase - whether it is a good or
service - it also can be viewed from perspectives outside of pure commerce, such as the consumption of video content
or other digital content. In that sense, it is related somewhat to the Interest graph.

Figure 3-14 displays how consumption might be modeled within a relational database. In this case, the model
could have taken the form of an e-commerce product catalog.

User UserProductView et

o)
Productld

Password @

Figure 3-14. Entity relationship diagram with a user’s product views

(i

To gain a wider view of consumption, we are more interested in viewing consumption as a whole and not just
in terms of retail items. Therefore, the model needs to be expanded to account for other forms of consumption, as
shown in the relational model in Figure 3-15. In expanding this beyond the simple commerce system, one method to
accomplish this feature is to modify the join table to ensure that it provides a type. As you might surmise, expanding
the scope of the consumption view can get unmanageable very quickly.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 MODELING

UserProductView

Productld

Password

Username Productld

(o

UserContentView

Userld
Contentld

AL

Figure 3-15. Entity relationship diagram with a user’s product views and content views

However, we can see in Figure 3-16 that creating relationships between different node types in Neo4;j is fairly
clear and can be quickly expanded beyond its initial scope.

Figure 3-16. Graph diagram with a user’s product views and content views

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

Location Graph

A Gartner study referred to this graph use case as the mobile graph, but a better name would be the location graph.
The name mobile graph carries an implication that it is applied to devices within a specific network, such as a cellular
provider. However, that specific scope would likely limit the effectiveness of its practical use because it would be
confined to a specific network or mobile devices.

The location graph would be better applied to a broad scope of any object that has been connected to a specific
location. The relational model design for that scope is shown in Figure 3-17, which displays a user connected to
addresses that could have multiple types, such as mailing address or billing address.

T Address

Addressld

AddressType

Password

s
AANAAR AN

Address1

Address2

Zipcode

Figure 3-17. Entity-relationship diagram of locations

To address the domain in a graph, the location model can be created using a node type called location, but use
one of at least to ways to manage the type of location as demonstrated in Figures 3-18 and 3-19. In Figure 3-18, we
use labels to represent address types. Using this approach, new types of locations can be added to application design
more easily.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 MODELING

[:HAS]

Figure 3-18. Using labels to represent location or address types

Figure 3-19 uses relationships to represent address types. Using this approach, new types of locations can also
be added to application design more easily. In addition, we can add properties to the relationship, such as “Greg’s
Mailing Address”.

[:MAILING_ADDRESS]

[:BILLING_ADDRESS]

Figure 3-19. Using relationships to connect location or address types to a user

In addition to handling the model more elegantly, we could more easily connect other node types to these
locations if the scope of the application changes. Finally, we can use the Neo4j spatial plugin to handle geo searches
such as locations within a boundary.

Intent Graph

The intent graph seeks to map out a motivation or reasoning using a combination of other subgraphs from social,
consumption, interest, mobile and location. The intent graph might also be defined as the predictive graph in that
it uses those subgraphs to make predictions based on formulized intent. Based on those subgraphs, applications
can make suggestions or provide options that are in line with the calculated user intent and as such the value and
complexity of the intent graph is high.

For example, it would extremely valuable for Amazon—as well as other retailers—to understand how to ensure
adequate inventory and minimal time-to-delivery for any product they offer. While Amazon can factor in certain
events, such as popularity of a product, those factors provide a limited view as compared to coupling them with
connections, interest and location. To complete such a task with relational databases, the model would take a form
similar to the one shown in Figure 3-20.

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © MODELING

ProductTag
Sm—— Productld

Products Interest

Productid } AKA tag
Userinterest
—od]

Productid Orderltems

Orderld

0000 ¢
a0
HIY

Address C User Follow
po—+H o4
Addressld @ Followerld
@ @ Followedld
S

Figure 3-20. Tables to show user purchase intent, aka recommendations

The relational model could simply provide User’s friends that purchased certain Products, but to go deeper in the
recommendation it would be helpful to connect the users to friends who are nearby, share the same interests as well
as only show products that have the same interests, AKA “tags” Although doing this in a relational model is certainly
achievable, the number of joins could impact performance as the network of users, products, locations and interests
begins to grow. In addition, the query plan would need to be known ahead of time or dynamically generated.

We can see that in the graph model, shown in Figure 3-21, the has simpler way to display the interconnectedness
of each of the other four graph types as well as the ability to quickly connect intent with location. In addition to
creating an easy way to view, the query plan would not need to be precisely known ahead of time.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 MODELING

[:UserInterests]

[:CONTAINS]

Figure 3-21. Getting products ordered by friends who live nearby and use the same tags

The intent graph has obvious and practical use for retailers, but there are number of other areas to which it could
be applied. For example, hospitals and clinics could use the same combination of graphs to understand how to more
effectively prepare for short-term seasonal staffing needs or even get a better understanding of the day-to-day change
that could impact long-term treatment options.

Summary

This chapter provided an overview of data modeling and why it is important, and it contrasted the concepts when
modeling from a relational database perspective and a graph perspective. We took a tour through five model types,
exploring the differences when modeling for a relational database and modeling for Neo4j. The next chapter will
examine importing data into a Neo4j graph database.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Querying

Neo4j includes a powerful and expressive query language called Cypher. Cypher is a declarative query language that
provides for very efficient reading and writing of data within Neo4j. This chapter starts with some background on
Cypher and then moves to an overview of some basic Cypher operations.

If you are familiar with Structured Query Language (SQL), then you will notice some similarities between it and
the Cypher language. The section “SQL to Cypher” describes some of those similarities and compares statements in
SQL and Cypher.

This chapter goes on to discuss read statements, more advanced statements that exploit the benefits of various
functions within Cypher, some elementary write statements, and some more advanced write operations. The chapter
closes with a look at proper removal clauses and functions.

Cypher Basics

Cypher was created to be optimally accessible and simple to use for the widest possible array of users: software
developers, business analysts, and technical architects. The most common query operations in Cypher are meant
to focus on what needs to be retrieved and not on how it is retrieved. This section covers concepts that are
important to understand as you begin to use Cypher—whether through REST, within the web UI, or embedded
within your applications.

Note To get started with the Cypher and follow along with the examples in this chapter, you will need to have a running
instance of Neo4j. To quickly setup a Neo4j server instance, go to http://www.graphstory.com/practicalneo4j.
You will be provided with your own trial instance, a knowledge base, and email support from Graph Story.

Cypher shares some traits with SQL and uses similar keyword statements to run operations inside the Neo4;j
database. In many cases, a query is made up of several clauses to achieve an end result. As an example of Cypher’s
ability to focus on what is retrieved rather than on how the data is retrieved, a query may start by retrieving a large set of
nodes from the graph and then ultimately return a subcollection of the large set—sometimes referred to as subgraph.

Transactions

Beyond its superior speed and scaling abilities, another significant advantage of using Neo4;j for data operations is its
transactional capability. Any Cypher query that modifies the graph will run in a transaction and will always either fully
succeed on each query or not succeed at all.

39

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

When a data modification begins, it will either start with a new transaction or run within a transaction that
already exists. If a transaction does not exist in the current operation, Cypher will create one and commit it once the
query finishes. When a transaction is available within the current operation, the query will run inside that transaction
and the success of entire transaction determines whether any data will be committed. Of course, it is sometimes
necessary to add multiple queries within a single transaction, as follows:

1. Start a new transaction
2. Add the Cypher queries

3. Commit the transaction

A query will hold the changes in memory until the whole query has finished executing. A large query will consequently
need a JVM with lots of heap space.

Compatibility

Neo4j is a stable, proven database option and supports mission-critical applications for companies big and small, but

new features will be blended in over time. As Neo4j evolves, the Cypher language will evolve as well. The development
team working on Neo4j, specifically on Cypher, is mindful of adding new syntax or modifying existing syntax to ensure
minimal disruption in the application lifecycle. To that end, configuration options enable support of different

Cypher versions.

Note Throughout this book, {NEO4J_ROOT} refers to the top-level installation directory for Neo4;.

To configure a specific Cypher version for use throughout an entire Neo4j system, you can modify a line within the
{NEO4J_ROOT}/conf/neo4j.properties configuration file and specify the version you prefer as shown in Listing 4-1.
Listing 4-1. Explicitly Setting the Cypher Version in the Neo4j Configuration Properties

Enable this to specify a parser other than the default one.
cypher_parser_version=2.0

To enable a specific version on a case-by-case basis or to override a specific parser version, you can add the
version number to your Cypher query, as shown in Listing 4-2.

Listing 4-2. Specifying the Cypher Version in a Cypher Query

CYPHER 1.9 START person=node(0)
WHERE person.name="Greg"
RETURN person

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

SQL to Cypher

If you understand and use SQL, moving into Cypher requires only a small conceptual adjustment. Using a CRUD
(Create, Read, Update, Delete) comparison of some common SQL commands with how they would be written in
Cypher, this section introduces the basics of Cypher through a prior knowledge of SQL. Later sections in this chapter
cover Cypher in greater depth.

INSERT and CREATE

We start with a simple SQL command to add a User to a relational database and its counterpart in Cypher, as shown
in Listings 4-3 and 4-4. In both examples, we employ the User part of the “schema’; but the CREATE command in the
Cypher example implies that values are going to be added and does not need an explicit VALUES command.

Listing 4-3. SQL Query to INSERT a User
INSERT INTO User (username) VALUES (“"greg")

Listing 4-4. Cypher Query to CREATE a User

CREATE (u:User {username:"greg"})

Two unique and amazingly powerful advantages of Neo4j that can be realized through Cypher are adding
additional schema descriptors to Node entities through labels and adding new properties without having to use an
equivalent to the SQL ALTER TABLE command. In a relational database, if you needed another column, then you
would need to run a SQL similar to that shown in Listing 4-5.

Listing 4-5. ALTER TABLE Statement in SQL

ALTER TABLE table name
ADD my_new_column_name datatype

In Neo4j, if you wanted to add a new property to a node, then you would just add the property as a part of
executing the cypher, as shown in Listing 4-6.

Listing 4-6. Add a New Property to a Node

CREATE (u:User {username:"greg", business: "Graph Story"})

SELECT and START / MATCH

Listing 4-7 is the simple command to retrieve a User from a relational database; Listing 4-8 is its counterpart in
Cypher. Some additional SELECT-style operations will be covered later in this chapter.

Listing 4-7. SQL Query to SELECT a User

SELECT *
FROM User
WHERE username = "greg"

Listing 4-8. Cypher Query to START with a Node of Type User

START user=node:User(username="greg")
RETURN user

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

Specifying the User part of the “schema” and identifying the property on which to search are common to both
listings. However, the Cypher query uses START to locate a specific node with a specific value on a specific property.
The necessary values to be returned are specified at the end of the statement.

Note In the latest release of Neo4j, you should use MATCH as opposed to START when performing reading operations.

In Listings 4-9 and 4-10, respectively, the SQL SELECT statement is modified slightly to return specific values,
and the Cypher MATCH statement is used to perform a similar operation.
Listing 4-9. SQL Query to SELECT a User

SELECT fullname, email, username
FROM User
WHERE username = "greg"

Listing 4-10. Cypher Query to MATCH on a LABEL of Type User

MATCH (u:User {username: "greg"})
RETURN u.fullname, u.email, u.username

Both listings again specify the User part of the “schema” and use a specific property upon which to search.
However, the Cypher example now uses a MATCH statement to begin the query, then specifies the property and value,
and, finally, specifies at the end of the statement the values to be returned.

UPDATE and SET

To modify existing records within a table, SQL provides an UPDATE command to alter existing values. In Cypher, the
same principle is applied through the SET command, analogous to the SET command in SQL. Listings 4-11 and 4-12
contrast the two usages.

Listing 4-11. SQL Query to UPDATE a User

UPDATE User
SET fullname="Greg Jordan"
WHERE username="greg"

Listing 4-12. Cypher Query to UPDATE a User

MATCH (u:User {username: "greg"})
SET u.fullname = 'Greg Jordan'
RETURN u

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

DELETE

Deleting a record in a relational database and in Neo4j are nearly identical in terms of syntax, the one exception being
that the record search is performed before the DELETE command in Cypher, as shown in Listings 4-13 and 4-14.
Listing 4-13. SQL Query to DELETE a User

DELETE FROM User

WHERE username="greg"

Listing 4-14. Cypher Query to DELETE a User

MATCH (u:User {username: "greg"})
DELETE u

If you delete a node that has relationships, you need to be sure to remove the relationships as well. The good
news is that all of those steps can be done in the same command, as shown in Listing 4-15. A demonstration of how to
remove specific relationships from nodes will be given later in this chapter.

Listing 4-15. Cypher Query to DELETE a User and Its Relationships

MATCH (u:User {username: "greg"})-[r]-()
DELETE u

Cypher Clauses

Beyond the basics of Cypher covered through a CRUD comparison with SQL in the preceding section are many more
commands and functions at your disposal. This section starts out with a look at some useful Cypher clauses.

Return

The RETURN clause simply returns the parts of the graph that are necessary for display or further analysis within your
application. The RETURN is similar to the SELECT statement found in SQL. Typically, applications concerned with
domains such as social networks want to analyze the relationships but only return properties for display. However,
you can include nodes as well as relationships in your operations when necessary. Listings 4-16, 4-17, and 4-18 show
various combinations available when using the RETURN clause.

Listing 4-16. RETURN the Nodes Found in the MATCH

MATCH (u:User {username: "greg"})
RETURN u

Listing 4-17. RETURN a Property Using an Alias

MATCH (u:User {username: "greg"})
RETURN u.username AS uname

Listing 4-18. RETURN All Elements Found in the MATCH

MATCH (u:User {username: "greg"}) -[r]-()
RETURN u,

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

WITH, ORDER BY, SKIP, and LIMIT

The clauses covered in this section are often used together to structure what is returned at different points in the
query. The WITH clause allows you to pass a subquery result on to the next part of the query and to manipulate the
data in some way before proceeding. In Listing 4-19, the WITH statement is used in conjunction with DISTINCT,
which removes duplicates from the values.

In many applications, it is impractical and inefficient to return the entire result set for a specific query. For
example, in a social graph application that contains status updates, it is likely that the users will only want to see the
latest updates and have a way to periodically retrieve previous ones. In addition, it is more performant to request a
specific result set and only later to retrieve subsequent subsets. Using the SKIP and LIMIT clauses allows for this to
happen quite easily.

Many applications require data to be ordered based on a specific property that exists on an entity, such as
alphabetical ordering of a list of users or second level of ordering on a linked list of status updates. Listing 4-19 shows
the clauses used together to retrieve updates in a specific user’s status update feed.

Listing 4-19. Using WITH, ORDER BY, SKIP and LIMIT to Retrieve Status Updates

MATCH (u:User {username: {u} })-[:FOLLOWS*0..1]->f
WITH DISTINCT f,u

MATCH f-[:CURRENT]-1p-[:NEXT*0..]-su

RETURN su, f.username as username, f=u as owner
ORDER BY su.timestamp desc

SKIP {s}

LIMIT 4

Listing 4-20 shows the clauses used together to retrieve status updates in a specific user’s status update feed,
adding an ORDER BY to the WITH clause.

Listing 4-20. Retreiving Status Udpates of a User and the Users Being Followed

MATCH (u:User {username: {u} })-[:FOLLOWS*0..1]->f
WITH DISTINCT f,u

ORDER BY u.username

MATCH f-[:CURRENT]-1p-[:NEXT*0..]-su

RETURN su, f.username as username, f=u as owner
ORDER BY su.timestamp desc

SKIP {s}

LIMIT 4

Using

When setting up a MATCH statement or WHERE clause with a Cypher query, Neo4j can use the property information
supplied in the query to determine an index that should be used to perform the look up. However, the index selected
by Neo4j might not be the best choice from a performance perspective because Cypher might begin the search in an
index that is not applicable to the search. As shown in Listings 4-21 and 4-22, the USING clause allows you to specify
an index that should be used (sometimes referred to as an index hint).

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

Listing 4-21. A Query with USING INDEX to Explicitly Specify an Index to Be Searched

MATCH (u:User)

USING INDEX u:USER(username)
WHERE u.username = 'greg'
RETURN u

If your query could achieve better performance by scanning all the nodes via a LABEL, use USING SCAN, as
shown in Listing 4-22.
Listing 4-22. A Query with USING SCAN to Explicitly Specify an LABEL Type and the Filtering on a Property

MATCH (u:User)

USING SCAN u:USER

WHERE u.username = 'greg'
RETURN u

Reading

The preceding sections have covered a number of Cypher queries that read from the graph. This section digs a little
deeper into a few of the reading clauses that will likely make up the majority of the read statements in your Neo4;j
applications.

Match

The MATCH clause is the primary clause for retrieving data from your graphs and specifying the starting points in
your queries. Listings 4-23 through 4-26 exemplify ways that MATCH is used in combination with other clauses to
return data.

Listing 4-23. MATCH Using a Label, Returning All Nodes of Type User

MATCH (u:User)

RETURN u

Listing 4-24. MATCH Using a Label and Property and Specifying a Relationship Type or Direction

MATCH (a:User {username:"greg"})--(b)

RETURN a,b

Listing 4-25. MATCH Using a Label and Property and a Label on the Other Node but No Specific Relationship
Type or Direction

MATCH (ul:User {username: "greg"})--(u2:User)
RETURN ul, u2

Listing 4-26. MATCH Using a Label and Property and Two Relationship Types

MATCH (u:User {userId:1})-[:CURRENT|FAVORITE]-(s)
RETURN u,s

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

Optional Match

The OPTIONAL MATCH (Listing 4-27), which is a new clause in Neo4j 2.0, allows Cypher to match patterns against
your graph database, but the primary difference is that if no matches are found, NULLs will be returned for any
missing parts of the pattern. It is analogous to an outer join in SQL. In prior releases of Neo4j, a question mark was
supplied next to the relationship type.

Listing 4-27. OPTIONAL MATCH

MATCH (ul:User {username: "greg"})
OPTIONAL MATCH (u1)-[f:FOLLOWS]->(u2)
RETURN f

Where

WHERE is always used in conjunction with another clause, such as MATCH, WITH and/or START.
Listings 4-28 through 4-32 exemplify the use of WHERE to filter on results with MATCH.

Listing 4-28. MATCH Where a Property Has a Certain Value

MATCH (u:User)

WHERE u.active = true

RETURN u

Listing 4-29. MATCH Where a Property Has a regex Match

MATCH (u:User)

WHERE u.username = "gre.*"

RETURN u

Listing 4-30. MATCH Using a Property regex Case-Insensitive Match

MATCH (u:User)

WHERE u. username = "(?1i)GRE.*"

RETURN u

Listing 4-31. MATCH Where a Property Matches a Value in a Collection

MATCH (u:User)
WHERE u. username IN ["greg","jeremy"]
RETURN u

Listing 4-32. MATCH Using a Property regex Case-Insensitive Match

MATCH (u:User {username: "greg"})
WHERE NOT (f)-[:FOLLOWS]-(u)
RETURN f

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

Start

In certain instances, your application can provide a starting point with the query to begin at a certain point within the
graph. Nonetheless, the START clause is optional and Cypher can infer a starting point based on other clauses within
the query, as shown in Listings 4-33 and 4-34. Again, you should use MATCH in most read operations when specifying a
beginning point in your statement. START should be used when working with legacy indexes.

Listing 4-33. START Using a Node id

START n=node (1)
RETURN n

Listing 4-34. START Using a Property in a Lucene Index

START n=node:nodes("username:greg")
RETURN n

Writing
The preceding sections covered a number of clauses that allow writing to occur within the graph. This section shows
some clauses for writing to the graph.

SET

The “SQL to Cypher” section covered some common SET operations. Listings 4-35, 4-36, and 4-37 are further
examples of using SET in Cypher.

Listing 4-35. Set Properties from a Map

MATCH (user { username: "greg" })
SET user += { active: TRUE , business: 'Graph Story' }

Listing 4-36. Set Multiple Properties in a SET

MATCH (user { username: "greg" })
SET user.business: 'Graph Story', user.lastname: 'Jordan'

Listing 4-37. Set Multiple Labels on a Node in a SET

MATCH (user { username: "greg" })
SET user :WRITER:DEVELOPER

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © QUERYING

REMOVE

DELETE allows you to remove nodes and relationships. To remove a property, however, you need to use the REMOVE
clause. Listings 4-38 and 4-39 show how to remove properties from nodes and relationships.

Listing 4-38. Remove a Property from a Node

MATCH (ul:User {username: "greg"})
REMOVE uil.email
RETURN u1

Listing 4-39. Remove a Label from a Node

MATCH (ui1 {username: "greg"})
REMOVE u1:User
RETURN u1

Summary

In this chapter, you learned about Cypher, Neo4j’s declarative query language. It provides for very efficient reading
and writing of data within Neo4j, and it shares similarities to SQL in the relational database world. You also learned
that, although there are many different ways to find starting points within a Cypher query, most often a MATCH
should be used to filter on a beginning node or set of nodes. Finally, you reviewed the Cypher commands and clauses
that will most often be used within your applications. The next chapter discusses importing and managing data from
outside data sources.

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Importing from Another Data Source/

One of the most common tasks you need to perform when working with a new database technology is importing
and syncing data from another data source. This chapter explores what you should consider before beginning that
process. It discusses the processes and tools for importing data into Neo4j and how to select the best process or tool
for a specific situation.

In selecting from among the many ways for importing or synchronizing from another data source, give careful
consideration to your goal. To avoid wasting time on a process or tool that does match the scope of your work, start
from the goal of the data import and work back from that point. Each new version of Neo4j makes the process of
importing data easier, but the tools and processes form only part of the import equation.

Import Considerations

To work backward from your goal, you need to be able to answer the question, “What’s the purpose of the data
import?” If your goal is to have only enough representative data to test your application, some of the processes and
tools described in this chapter would be overkill and may be ruled out.

On the other hand, if your application will import existing data from a production data source or if you need
to consider options such as near real-time syncing of data, then you will probably need to consider a mix of tools
to complete the work. Moreover, directly importing data might not always make sense, such that incorporating
data-as-a-service might be a better fit for the goal. Table 5-1 tabulates a number of scenarios that you are apt to
encounter, together with appropriate tools. This chapter presents some guidelines about which tools to use and when.

Table 5-1. Considerations for Importing Data

Task Stage Frequency Data Size Tool(s)

Import Development/Test ~ One time >5M Built-in tools

Migrate Production One time <10M Built-in tools, programmatic
Import Production Scheduled Varied Built-in tools, programmatic

Third-party datasource tools

Sync (to Neo4j) Production Scheduled Varied Built-in tools, programmatic, messaging
queue system

The next section offers some examples of using specific tools for specific jobs in importing or syncing data.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Examples

The types of tools you use for your imports or synchronizations should be based on your goals. The following
scenarios commonly occur in development:

e Anew application without legacy data
e An existing application that is switching to a graph database

e Anexisting application that will use a graph and another data store

Note To get the working examples for this chapter, go to www.graphstory.com/practicalneo4j and
download Chapter 5.

Test Data with Cypher

If you are building out a new application that has no any legacy data, your best bet is to use Cypher in one form or another
to import data. For example, creating a spreadsheet with sample data and saving it as a CSV file can be done fairly easily
and quickly. Next, you could use the newly available LOAD CSV to take a few generated files and run a quick import.

However, there is an alternative that might be acceptable during the development and testing stages, depending
on your application’s or organization’s demands. By using a few Cypher statements, you can build out a small,
representative graph for your application and do so within just a few minutes.

In this example, we will create a very small graph that represents users in a social network. We will use the Twitter
method of user relationships, which is a bidirectional relationship called FOLLOWS. We will start by first creating a list of
users by using a Cypher statement. Again, we are just aiming for some test data to use in our fledgling application, so
the variation on the size of the user set will be limited but still representative of what the application requires and will
take only a few minutes to run. Listing 5-1 shows the Cypher command that will create the users.

Listing 5-1. Cypher Command to Create the Users

WITH
["Brian","Jeremy","Brad", "Daniel","Kenny","Michael","Greg","Leonard"] AS fname,
["Seesharp","Phpish","Pychamp","Rubyster","Relman", "Writesalot","Goodguy","Graphman"] AS lname
FOREACH (r IN range(0,7) |

CREATE (:User {id:r, username : lower(fname[r % size(fname)]+

size(fname)], lastname : lname[r % size(lname)] }

));

+r), firstname : fname[r %

Note Adding a large number of nodes or relationships to your local graph or remote graph will take some time. In
addition, you should have—at a minimum—4 GB to spare for the Neo4;j server for the best performance.

Listing 5-1 creates eight users in the graph with a distinct ID and username but keeps the first name and last
name as set in the Array. By running MATCH (n: User™) RETURN n LIMIT 25, you can verify the users were added.
Next, we will associate the users to each other by adding the FOLLOWS relationship, as shown in Listing 5-2.

50

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Listing 5-2. Cypher Command for All Users to Follow All Other Users

MATCH (n1: User™),(n2: User™)
WITH n1,n2

CREATE UNIQUE (n1-[:FOLLOWS]->n2)
WITH ni,n2

WHERE ni1<> n2

RETURN n1,n2

When you run the Cypher statement in the web UI from Listing 5-2, the result—when separated a bit for
readability—should look like the image in Figure 5-1 and show all users following all other users.

« Soawe:
-

Figure 5-1. Graph of all users following all other users

Test Data with Load CSV

When you are building an application and the data needs to be representative and as close to production-ready as
possible, using the LOAD CSV option is the next step. In this example, we are going to stick with the social application

example and use CSV files to generate users, relationships between users, posts, and posts that users have selected as
their favorites.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Note Before running a LOAD CSV command in a live environment, it would be prudent to test the CSV file before
creating any new nodes or relationships. One way to test would be to execute a LOAD CSV command and simply RETURN
the contents, as shown in Listing 5-3.

Listing 5-3. Cypher Command to Test CSV File
LOAD CSV WITH HEADERS FROM "http://site.com/THEFILE.csv" AS csvLine
RETURN csvlLine.header1, csvlLine.header2, csvlLine.headerX

The first CSV file we will import is going to create the User nodes. In this example, the users have a userId (which
we can reference later to create relationships), a username, and a first name. The Cypher statement also includes a
PERIODIC COMMIT statement to ensure that the query data does not stack up.

Creating a Unique Index

Before you run the LOAD CSV comment in Listing 5-3, you need to create an index for later lookups in the import
process. Because you know ahead of time that the userId value will be unique, you can add a unique constraint that
creates a unique index, which is faster than a standard index. In your web UI, you can run the code in Listing 5-4 to
create the unique index on the User node.

Listing 5-4. Cypher Command for All Users to Follow All Other Users
CREATE CONSTRAINT ON (u:User) ASSERT u.userId IS UNIQUE

Next, by running the Cypher statement in Listing 5-5, you add the Users to the graph. You can verify the results by
running MATCH (n:User™) RETURN n LIMIT 25.

Listing 5-5. Cypher Command for All Users to Follow All Other Users

USING PERIODIC COMMIT 1000

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/1ist of_
users.csv" AS csvlLine

CREATE (u:User { userId: toInt(csvLine.userId), username: csvLine.username, firstname: csvlLine.
firstname })

Creating Relationships

The second CSV file we import will create the relationships between the nodes. There are number of methods to
create the CSV for this purpose. In this case, I just created a simple PHP script to generate a CSV file, as shown in
Listing 5-6. This script creates a way for each user to randomly follow ten other users in the graph.

52

www.it-ebooks.info

http://site.com/THEFILE.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/list_of_users.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/list_of_users.csv
http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Listing 5-6. PHP Script to Create Followers for Users

$fp = fopen('followers.csv', 'w');
fputcsv($fp, array('userId', 'followerid'));
//total number of userIds in the user list
$totalusers = 5492;
for ($1i = 1; $i <= $totalusers; $i++) {

$rn = rand(1, $totalusers);

$c = 1;
for ($j = $rn; $j <= $totalusers; $j++) {
$c++;
if($3! = $i) {
fputcsv($fp, array($i, $j));
}
if($c == 10){
break;
}
}
}
fclose($fp);

echo 'Data saved to csvfile.csv';

Loading the Relationships

Next, you can use the LOAD CSV command, as shown in Listing 5-7, to match the userld via the unique index and to
create a relationship of FOLLOWS between the nodes.

Listing 5-7. Cypher Command for All Users to Follow All Other Users

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapters/csv/
followers.csv" AS csvline

MATCH (ul:User { userId: toInt(csvLine.userId)}) ,(u2:User { userId: toInt(csvLine.followerid)})
CREATE (u1)-[:FOLLOWS]->(u2)

By running the command shown in Listing 5-8, you can output a sample of the new relationships created with the
LOAD CSV command, which should look similar to the output shown in Figure 5-2.

Listing 5-8. Cypher Command for All Users to Follow All Other Users
MATCH (a)-[: FOLLOWS™]->(b) RETURN a,b LIMIT 25

53

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/followers.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/followers.csv
http://www.it-ebooks.info/

CHAPTER 5 IMPORTING FROM ANOTHER DATA SOURCE

. - e

© ¢

Figure 5-2. Graph of all users following all other users

Adding the Content Using a Linked List

The next step in the process is loading content and relating them to Users. For the purposes of this example, I generated
three separate CSV files that we are using to create a linked list of status updates, rather than relating each specific status
update directly to a User. Although the number of status updates is limited to three in this example, in a real-world
application the expectation is that the number of status updates will grow.

Indeed, some users may add thousands of status updates, so the number of direct relationships could grow into a
densely connected Node. The latest release of Neo4j helps with the dense node problem by splitting relationships by
type and direction, which will help as Users take on more followers and follow other Users.

However, it also makes sense to address this from a graph perspective to improve performance and design. In
most cases, the status updates will be returned in pages of a specific value—say, 15 per page—and the application will
not require immediate access to each connected status update other than through an identifier to show a single status.
In addition, the retrieval and filter of nodes can happen with the sequence of nodes already in their desired order.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Loading the “Current” Status

The first file contains the “current” status update made by a user. The current status refers to the most recent status
update for a specific user. I will connect them to the user by taking the userld and matching it to a User, and then by
creating a relationship type called CURRENT. First, I execute a LOAD CSV command (Listing 5-9) to ensure that the data
has the necessary properties.

Listing 5-9. Loading the Current Status to Review before Importing

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapters/csv/
currentstatus.csv" AS csvlLine

return csvline.statusId, csvlLine.userId, csvlLine.status

limit 5

Listing 5-10 provides the LOAD CSV command that you will need to execute to load the status updates into the
graph. As an added bonus, this will also create the relationship between the User and its current Status.

Listing 5-10. Importing the CURRENT Status Updates

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/
currentstatus.csv" AS csvline

MATCH (ul:User { userId: toInt(csvLine.userId)})

CREATE (u1)-[:CURRENT]->(s:Status { statusId: toInt(csvLine.statusId), userId: csvLine.userId,
status: csvLine.status })

Important Before you run the LOAD CSV for the CURRENTSTATUS import, be sure to create another unique index by
running CREATE CONSTRAINT ON (s:Status) ASSERT s.statusId IS UNIQUE.

Once the command is run, you can run the following command MATCH (u:User {userId:1})-[:CURRENT]-
>(s) RETURN u,s and you should see a result like the one shown in Figure 5-3.

Figure 5-3. Testing the results of the CURRENT status import

55

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/currentstatus.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/currentstatus.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/currentstatus.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/currentstatus.csv
http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

Loading the “NEXT” Status

As the last step for loading status updates, you can import the final set and associate them through a LOAD CSV
using the NEXT relationship type for each one, shown in Listings 5-11 and 5-12. You can use the statusld as a key
because it is unique.

Listing 5-11. First Set of “NEXT” Status Updates with LOAD CSV

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapters/
csv/nextstatusi.csv" AS csvline

MATCH (si:Status { statusId: toInt(csvlLine.lastStatusId)})

CREATE (s1)-[:NEXT]->(s:Status { statusId: toInt(csvLine.statusId), userId: csvLine.userId, status:
csvline.status })

Listing 5-12. Second Set of “NEXT” Status Updates with LOAD CSV

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapters/
csv/nextstatus2.csv" AS csvline

MATCH (si1:Status { statusId: toInt(csvLine.nextToLastStatusId)})

CREATE (s1)-[: NEXT]->(s:Status { statusId: toInt(csvLine.statusId), userId: csvLine.userId, status:
csvline.status })

Once the first “NEXT” status command is run, you can run the command MATCH (u:User {userId:1})-
[:CURRENT]->(s) -[:NEXT]-(n) return u,s,nand you should see a result like the one shown in

Figure 5-4. Finally, run the second “NEXT” status command and then run the command MATCH (u:User {userId:1}
)-[:CURRENT]->(s)-[:NEXT*0..2]-(n) return u,s,nand you should see a result like the one shown in Figure 5-5.

ﬁ) User
@ s

° s @ iz s

Figure 5-4. Displaying the user, current status, and next status

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * IMPORTING FROM ANOTHER DATA SOURCE

° o @ o @ = @

Figure 5-5. Final set of NEXT status updates

Tip If any of the unique constraints were necessary only for the purposes of the import, then you could run a
command such as DROP CONSTRAINT ON (s:Status) ASSERT s.statusId IS UNIQUE to remove the constraint.
Finally, you could also run MATCH (s) WHERE s:Status REMOVE s.statusId to remove the property from the Node.
In this application, we’d likely keep them, because they could be used for quick lookups.

Adding User Favorites

The last step in the process is loading a CSV that contains a list of the userIds and statusIds that denote a “favorite”
status update. In the concept application being created, the “favorite” feature allows users to favorite their own status
updates as well as others within the network. Listing 5-13 shows the LOAD CSV command that will create the favorites
per User.

Listing 5-13. Adding Favorite Status Updates

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/
favorite.csv" AS csvline

MATCH (ul:User { userId: toInt(csvLine.userId)}),(si:Status { statusId: toInt(csvLine.statusId)})
CREATE (u1)-[:FAVORITE]->(s1)

After running the LOAD CSV command for favorites, run MATCH (a)-[: FAVORITE]->(b) RETURN a,b LIMIT 5
to see a small sample. The result should look like the one in Figure 5-6.

57

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/favorite.csv
http://www.graphstory.com/practicalneo4j-book/code/chapter5/csv/favorite.csv
http://www.it-ebooks.info/

CHAPTER 5 IMPORTING FROM ANOTHER DATA SOURCE

Figure 5-6. “Favorite” status updates by user

Summary

This chapter presented some of the processes for creating or moving data into Neo4j for application development
and for migration of application data for an existing application. You are now familiar with using Cypher statements
directly, employing the LOAD CSV command, and setting up a programmatic method to import data based on your
application’s needs. Before selecting the best way to import or synchronize from another data source, always give
careful consideration to your goal.

The next chapter will explore extending Neo4j through the use of plugins and unmanaged extensions.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Extending Neo4;

One of the benefits of using Neo4j is being able to extend the database through the use of Java-based plugins and
extensions. Neo4j plugins are the quickest and most reliable way to add or create additional capability for the REST
API and to add new functionality to your graph-based applications. Plugins can extend the functionality that already
exists within nodes and relationships and can do so while ensuring the integrity of upgrades to the database.

This chapter examines the process for creating a plugin development environment. It shows you how to
create your first plugin and how to build a security-based plugin using the Neo4j framework. Finally, it considers
unmanaged extensions, which can provide you finer-grained control, albeit at a cost to the performance of your Neo4;j
server unless properly managed.

Plugin Development Environment for Neo4;

This section covers the basics of configuring a development environment to build out your first Neo4j plugin. If you
did not work through the installation steps in Chapter 2, please take a few minutes to review and walk through the
installation.

Note To get started with the Cypher and follow along with the examples in this chapter, you will need to have a running
instance of Neo4;j. To quickly setup a Neo4j server instance, go to http://www.graphstory.com/practicalneo4j.
You will be provided with your own trial instance, a knowledge base, and email support from Graph Story.

IDE

Although it is possible to work through this chapter using another Java IDE, I recommend that you install Eclipse to
follow along with the specific examples.

Readme If you already configured Eclipse while working through another chapter, you can skip ahead to the
“Maven Plugin” section. If you do not have Eclipse, download the Version 3.7 Indigo package “Eclipse IDE for Java EE
Developers” from http://www.eclipse.org/downloads/.

59

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 6 * EXTENDING NEO4J

Once Eclipse has been installed, you can open it and select a workspace for your application. A workspace in
Eclipse is simply an arbitrary directory on your computer where you choose to keep your code projects. When you
first open Eclipse, the program will ask you to specify which workspace you want to use (Figure 6-1). Choose a path
that works for you. If you are working through all the language chapters, then you could use the same workspace for
each project.

Select a workspace

Eclipse stores your projects in 2 folder called a workspace,
Choose a workspace folder to use for this session

s | I fpath, ¥ P - Erowse..

Use this as the default and do not ask again

Cancel 33

Figure 6-1. Opening Eclipse and choosing a workspace

Maven Plugin

The Eclipse IDE offers a convenient way to add new tools through their plugin platform. This section walks you
through the process for adding new plugins to Eclipse, which is straightforward and usually involves only a few steps.

Readme To use the examples in this chapter, you will need to have installed and configured Maven. The files and
installation instructions for Maven are available at http://maven.apache.org/download.cgi.

A specific plugin called m2e provides support for managing code dependencies with Apache Maven. Maven
helps to provide a standard way to build projects, which in turn can set a clear definition of the following:

e What should be included within the project
e An easy way to publish project information
e Away to share JARs across several projects
e Management of library dependencies

The goal of the m2e project is to provide Maven support in the Eclipse IDE, making it easier to edit Maven’s main
pom.xml, run a build from the IDE, and much more. For many Java developers, the level of integration significantly
eases the consumption of Java artifacts either being hosted on open source repositories such as Maven Central or
another trusted Maven repository.

Readme If you have already configured Eclipse with Maven, you can skip ahead to the “Neo4j Server Plugin” section.

60

www.it-ebooks.info

http://maven.apache.org/download.cgi
http://www.it-ebooks.info/

CHAPTER 6

Installing the SLF4J Plugin

EXTENDING NEO4J

To install the Maven Plugin, you will need to install the slf4j-api, which is responsible for logging. If you have Eclipse

installed and open, proceed through these steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one shown in Figure 6-2.

a8ann Install

Available Software

Check the iberns that you wish ta instal, .
J =

Work with: | 3] - hito:/ /wwwtuin.ang /52 -reoossary/ . Add...

Find maee seltware by working with the “Available Software Sies” sreferences.

Hama Veruan
gk org.epsd) pax configmanager source 0.22

G org.opsdipax logg ng.pax-kgging -ap. source L70
L 009 ops4] pe |09 0. plx - MEIng - Service Source 170
L sif4)-logej12 165
G si4) apisource 168
G sifa) logay12 source 168

L Srecens) Commans 0.4.0.20140512191815-6
g 0.4.0.201 404270559425
0.3.0.20031012143741-2
0.30.20131012143902-2

Saluct All Deelect All Lisem selected

Detads

Show anly the lates: versices of available software Hice o that e alveady installed
[Gromp ems by categony What it greach ingialisg?
Show only software appicable to target environment

[Comact 3l update 1ites during imnmtall t find regeined software

Figure 6-2. Installing the SLF4] plugin into Eclipse
2. Pastethe URL http://www.fuin.org/p2-repository/ for the update site into the
“Work With” text box, and hit the Enter (or Return) key.
Expand “Maven osgi-bundles” and select “slf4j-api’”.
Click the Next button to go to the license page.

Choose the option to accept the terms of the license agreement, and click the Finish button.

o o W

You may need to restart Eclipse to continue.

Installing the Maven Plugin

Now that the SLF4] plugin is installed, you can proceed through the steps below to add the Maven plugin to Eclipse:

1. Again, from the Help menu, select “Install New Software” to open the dialog, which will
appear similar to the one shown in Figure 6-2.

2. Paste the following URL—http://download.eclipse.org/technology/m2e/releases —for
the update site into the “Work With” text box, and hit the Enter (or Return) key.

3. Inthe populated table like the one in Figure 6-3, check the box next to the name of the
plug-in, and then click the Next button.

www.it-ebooks.info

http://www.fuin.org/p2-repository/
http://download.eclipse.org/technology/m2e/releases
http://www.it-ebooks.info/

CHAPTER 6 * EXTENDING NEO4J

Available Software

Check the neens that you wish 5o install
5 that you wisl ! Y -
Work with: | m2e - bitp:/ /@ownload.eclipse.org technology/m2el releases . Ade..

Find mcrn seftwane by working with the “Suaslable Softwars Stes” preferences.

Hame Version
=/ % il Maven Innegrasion for Eclipse
=4 L en2e - Maven tegration fer Eelipis 1.41.20140328- 1005
ghmle - Maven ntegration for [clipie 1.40.20130601-0317
o Kpbmze - It over logback logging IOptenal) LA L20040328- 1905
L mz2e - sif4] over loghack logging iDptienal) 1.40.20130601-0317
Select All Deselect Al 2items selected
Detaily
Shaw only the latest verions of sailable seftware Hige inews that are already installed
 Croup nems by categorny What is gready inglalies

Shenw cinly softwdre appleable 1 trget envircament

o Coetuet 1 upsate sites Suring install ts find required software

Figure 6-3. Installing the Maven plugin into Eclipse

4. Click the Next button to go to the license page.
5. Choose the option to accept the terms of the license agreement, and click the Finish button.

6. You may need to restart Eclipse to continue.

Setting Up Maven Projects

After installing Eclipse and setting up the Maven plugin, you have the minimum requirements to work with your
project in the workspace. Next, import the project into your workspace following these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4;j for Plugins” Unzip the archive file on to your computer.

2. InEclipse, select File » Import and type project in the “Select an import source”.

3. Under the “Maven” heading, select “Existing Maven Projects”. You should now see a
window similar to Figure 6-4.

62

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 6 = EXTENDING NEO4J

Select

ot
Import Existing Maven Projects i < [I

Select an import source.

1 Existing Prajects inte Workspace
| File Systern
[l Prefesences
L=l
e
=t
¥ & Insuall
J From Existing Installation
J Install Scftware Hems from File
* & Java EE
¥ (& Maven
L Check out Maven Prajects from SCM
L Existing Maven Projects.
Install or deploy 4 artifact to 3 Maven repository
£ Materialize Maven Projects from SOM
* (= Plug-in Developmert
® (= Remote Systems
¥ 2 Run/Debug
¥ (= Studie
* 2 Tasks
* & Team

@ < Back Next > Cancel
Figure 6-4. Importing an existing Maven project

4. Now that you have selected “Existing Maven Projects’, click the “Next »” button. The
dialogue should now show an option to “Select root directory”. Click the “Browse” button
and find the root path of the “practicalneo4j-extending-neo4;j” archive.

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 6-5.

Maven Projects
Select Maven projects

Root Directory: /Users/ Deskiop/ practicalnecd) -extending - neo4) v Browse...
Projects:
o fpomaml com graphatory.; extending-neod] 0.0 1-SNAPSH crian
Deselect All
Refresh
Add project(s) to working set
Working set : Maore
b Adanced
o) -
@ < Back Next > Cancel

Figure 6-5. Importing Maven project into Eclipse

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * EXTENDING NEO4J

6. Once the project is finished importing into your workspace, you should have a directory
structure that looks similar to the one shown in Figure 6-6.

(5 Project Explorer &£ =R B.v=
P e Local Filesystem
¥ [practicalneodj-extending-neodj

¥ (M sre/mainfjava

> (Bgreftest/java

¥ = Maven Dependencies

* @ JRE System Library [JavaSE-1.7

=214

* [=-target

sl pom.xml
Connections.

Figure 6-6. The local project for the Neo4j plugins

Neodj Server Plugins

To create a plugin, your code must extend the org.neo4j.server.plugins.ServerPlugin class. Your plugin should
also ensure that it will produce one the following items:

e Aniterable of node, relationship, or path
e Any Java primitive or string
e Aninstance ofaorg.neo4j.server.rest.repr.Representation

The plugin could include parameters, a point of extension, and any necessary application logic. Listing 6-1
exemplifies how, when creating the plugin, to be sure that the discovery point type in the @luginTarget and the
@Source parameter are of the same type.

Listing 6-1. Example of a Neo4j Plugin That Returns All Relationships from a Node

package com.graphstory.practicalneo4j.plugin;
import java.util.Arraylist;

import org.neo4j.graphdb.Direction;

import org.neo4j.graphdb.Node;

import org.neo4j.graphdb.Relationship;

import org.neo4j.graphdb.Transaction;

import org.neo4j.server.plugins.Description;
import org.neo4j.server.plugins.PluginTarget;
import org.neo4j.server.plugins.ServerPlugin;
import org.neo4j.server.plugins.Source;

@escription("An extension to the Neo4j Server for getting all nodes or relationships")
public class GraphStoryPlugin extends ServerPlugin {

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = EXTENDING NEO4J

@escription("Get all nodes related to this node")
@PluginTarget(Node.class)
public Iterable<Relationship> getRelatedNodes(@Source Node node)

{ Arraylist<Relationship> relationships = new Arraylist<>();
try (Transaction tx = node.getGraphDatabase().beginTx())
{ for (Relationship relationship : node.getRelationships(Direction.BOTH))
{ relationships.add(relationship);
ix.success();
} ieturn relationships;

Important Make sure to include a file in the META-INF/services directory called org.neo4j.server.plugins.
ServerPlugin that includes the path to your plugin. This must be included in your .jar file. An example in the chapter

code can be reused in your own project.

Adding and Accessing the Plugin

To deploy the code to your Neo4;j server instance, simply compile it into a .jar file and place it in the server classpath
(which is typically the “plugins” directory under the Neo4j server home directory). You will need to restart the server
in order for the plugin to be accessible.

Once the server has been restarted, you can call the Listing 6-2 from the command line or some other tool, such
as the Chrome extension POSTMAN.

Listing 6-2. Executing the Plugin Endpoint via Command Line and Curl

curl -X POST http://localhost:7474/db/data/ext/GraphStoryPlugin/node/7/getRelatedNodes -H "Content-
Type: application/json"

Security Plugins

You may also use the plugin methodology to introduce a finer level of security control for your applications. In such
cases, instead of extending the org.neo4j.server.plugins.ServerPlugin class, your code would need to implement
the org.neo4j.server.rest.security.SecurityRule. Listing 6-3 exemplifies how to verify a list of IPs before
allowing access.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * EXTENDING NEO4J
Listing 6-3. Implementing a Security Rule
package com.graphstory.practicalneo4j;
import java.util.Arrays;
import javax.servlet.http.HttpServletRequest;
import org.apache.log4j.logger;
import org.neo4j.server.rest.security.SecurityFilter;
import org.neo4j.server.rest.security.SecurityRule;
public class GraphStoryIPCheck implements SecurityRule {
static Logger log = Logger.getLogger(GraphStoryIPCheck.class);

public static final String REALM = "GraphStory";

@0verride
public boolean isAuthorized(HttpServletRequest request)

{
String IPs[] = { "128.0.0.1", "173.193.188.115" };

if (Arrays.aslList(IPs).contains(request.getRemoteAddr())) {
System.out.println("passed");
return true;

}
else {
System.out.println("did not pass");
return false;
}
}
@0verride
public String forUriPath()
{
return "/*";
}
@0verride
public String wwwAuthenticateHeader()
{
return SecurityFilter.basicAuthenticationResponse(REALM);
}

In this example, the security rule is registered by adding the rules class to the neo4j-server.properties config file,
as shown in Listing 6-4. When you restart Neo4j and attempt to access Neo4jBrowser, you should notice—unless your
IP matches one of those listed—that you are unable to access the browser.

Listing 6-4. Adding the Security Rule to neo4j-server.properties

org.neodj.server.rest.security rules= com.graphstory.practicalneo4j.GraphStoryIPCheck

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = EXTENDING NEO4J

Unmanaged Extensions

In some applications you create, you might require fine-grained control over server-side operations within the
database. To make this possible, Neo4;j includes an unmanaged extension API. Listing 6-5 contains an example of
returning the db availability.

Listing 6-5. An Unmanaged Extension to Show if the Database Is Available

package com.graphstory.practicalneo4j.unmanaged;
import java.io.IOException;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

import javax.ws.rs.core.Response.Status;

import org.codehaus.jackson.JsonGenerationException;
import org.codehaus.jackson.map.JsonMappingException;
import org.codehaus.jackson.map.0ObjectMapper;
import org.neo4j.graphdb.GraphDatabaseService;

@Path("/graphstory")
public class GraphStoryResource

{
private final GraphDatabaseService database;
public GraphStoryResource(@Context GraphDatabaseService database)
{
this.database = database;
}
@GET
@Produces (MediaType.TEXT_PLAIN)
@Path("/dbname™)
public Response dbAvailable() throws JsonGenerationException, JsonMappingException, IOException
{
// Do stuff with the database
ObjectMapper objectMapper = new ObjectMapper();
return Response.status(Status.OK).entity(objectMapper.writeValueAsString(database.
isAvailable(5000))).build();
}
}

Warning Neo4j unmanaged extensions allow you to deploy arbitrary JAX-RS classes to the server, which if not
managed properly can consume significant heap space on the server and degrade Performance.

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * EXTENDING NEO4J

As shown in Listing 6-6, the extension is registered by using a comma-separated list of JAXRS packages
containing JAXRS Resource with one package name for each mountpoint in the neo4j-server.properties config file.
You can then access the extension results by going to http://localhost:7474/unmanaged/graphstory/dbname in
your browser.

Listing 6-6. Adding the Unmanaged Extension to neo4j-server.properties by Package Name

org.neodj.server.thirdparty jaxrs_classes=com.graphstory.practicalneo4j.unmanaged=/unmanaged

Summary

This chapter showed you, largely through examples, the processes for creating a plugin development environment
and for building and adding plugins that best fit the needs of your application, such as security-based plugins using
the Neo4j framework. You also learned how unmanaged extensions enable finer-grained control but need to be
managed to avoid degrading the performance of your Neo4j server.

In the final part of this book, “Developing with Neo4j,” you will explore the sample application in the context of
Neo4j drivers in tandem with various programming languages—C#, PHP, Python, Ruby, Spring Data, and Java Rest
Binding—each covered in an independent chapter.

68

www.it-ebooks.info

http://www.it-ebooks.info/

PART 3

Developing with Neo4j

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Neodj + .NET

This chapter focuses on using .NET and Neo4j and reviewing the code for a working application that integrates the
five graph model types covered in Chapter 3. As with other languages that offer drivers for Neo4j, the integration takes
place using a Neo4j server instance with the Neo4j REST API. The chapter is divided into the following topics:

e Neo4j and .NET Development Environment
e Neo4jClient API

e Developing a .NET and Neo4j web application

Tip In each chapter that explores a particular language paired with Neo4j, | recommend that you start a free trial on
www . graphstory.com or have installed a local Neo4;j server instance, as shown in Chapter 2.

For this chapter, I assume that you have a good understanding of HTML, JavaScript, and CSS, as well as .NET
web application development. I also assume that you have a basic understanding of the model-view-controller (MVC)
pattern SMF and some knowledge of ASP.NET MVC5 framework. Although an understanding of a previous release of
the ASP.NET MVC framework should suffice, I recommend that you have an understanding of the key differences in
MVCS5 to follow the code examples and sample applications provided in the book.

.NET and Neo4j Development Environment

Preliminary to this chapter’s discussion of the .NET Neo4j web application, this section covers the basics of
configuring a development environment.

Installing Visual Studio Express for Web

In this chapter, you will be using Visual Studio Express 2013 for Web. You can get the installer by visiting
http://www.asp.net/vwd and following the installations instructions provided by Microsoft.

71

www.it-ebooks.info

http://www.graphstory.com/
http://www.asp.net/vwd
http://www.it-ebooks.info/

CHAPTER 7 NEO4J + .NET

Adding the Project to Visual Studio

Once you have installed Visual Studio for the Web, you have the minimum requirements to work with the .NET
project. To import the project, follow these steps:

1. Gotohttp://www.graphstory.com/practicalneo4j and download the zip/archive file
for “Practical Neo4j for NET".

2. Unzip the archive file on to your computer to your preferred location. The project
dependencies are included as part of the project.

3. Open Visual Studio, then select File » Open Project. Next, select the main project file in
the project folder from the unzipped archived, as shown in Figure 7-1.

L T T L U Y ———— (= Pia @ =

PRSI VEW DIBUG TEAM TOOLS TEST WOOOW MLP

g-Lus 3 - P,

What's new in Web Development Creating Applications for Web

e it Sarees dect Bt Mobule, decricgan Pures &4t b3 Pughly tagrted

v | g i s e

WBtr (11 T cputate s T st i o cuamadativ saree o astre acdiions s sy s
Oy] ol -

oo

1 8 4 g ant O KL eyl that anbes rasen diniegan b bk appibc o Piat wes T Opem UL, imnclard and st & ebshions Pt & provwing b devaiopen Cipan KML acoyitern, Ths arleaia
[rersrar - e Apnch 10 Bneaa, W O VAL S v L P

bt et e Vil

BliEFMyEC0d + O

Figure 7-1. Opening the sample project in Visual Studio for the Web

Neo4jClient

This section covers basic operations and usage of the Neo4jClient with the goal of reviewing the specific code
examples before implementing it within an application. The next section of this chapter will walk you through a
sample application with specific graph goals and models.

Like most of the language drivers and libraries available for Neo4j, the purpose of Neo4jClient is to provide a
degree of abstraction over the Neo4j REST API. In addition, the Neo4jClient provides some additional enhancements
that might otherwise be required at some other stage in the development of your .Net application.

72

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Note Neo4jClient is maintained by the super-awesome Tatham Oddie and supported by a number of great .NET
Neo4j developers. If you would like to get involved with Neo4jClient, go to https://github.com/Readify/Neo4jClient.

Each of the following brief sections covers concepts that tie either directly or indirectly to features of Neo4jClient.
If you choose to go through each language chapter, you should notice how each library covers those features and
functionality in similar ways but takes advantage of the language-specific capabilities to ensure the language-specific
API is flexible and performant.

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, including the most basic of graph concepts, the node.
Managing nodes and their properties will probably account for the bulk of your application’s graph-related code.

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 7-1. Creating a node begins
with setting up a connection to the database and making the node instance. Next, the node properties are set, and
then the node can be saved to the database.

Listing 7-1. Creating a Node
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

User user = new User { username = "Greg"};

// use ExecuteWithoutResults if you do not need to return a result node.
_graphClient.Cypher
.Create(" (user:User {user}) ")
WithParam("user",user)
.ExecuteWithoutResults();

// or use results with single to return the first node returned in the collection.

User resultUser = _graphClient.Cypher
.Create(" (user:User {user}) ")
WithParam("user",user)
.Return(u => u.As<User>())
.Results.Single();

Warning Although it is possible to manually construct and execute Cypher queries with the NeodjClient, it is highly
discouraged because it could introduce security issues through Cypher injections.

73

www.it-ebooks.info

https://github.com/Readify/Neo4jClient
http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Retrieving and Updating a Node

Once nodes have been added to the database, you will need a way to retrieve and modify them. Listing 7-2 shows the
process for finding a node by its node id value and for retrieving a node and updating it in the same query execution.

Listing 7-2. Retrieving and Updating a Node
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

// retrieve a user by their user.userId
User u = _graphClient.Cypher
.Match(" (user:User)")
.Where<User>(user => user.userId == "10")
.Return(user => user.As<User>())
.Results.Single();

// update the user by their user.id

_graphClient.Cypher

.Match("(user:User)")

.Where<User>(user => user.userId == "10")
.Set("user.Business = { business }")
.WithParam("business ", "Graph Story")
.ExecuteWithoutResults();

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
In order to remove a node, a match can be made on a node object instance and then the node can be deleted in the
same query execution (Listing 7-3).

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

Listing 7-3. Deleting a Node
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

// delete a user
_graphClient.Cypher
.Match("(user:User)")
.Where<User>(user => user.userId == "10")
.Delete("user"
.ExecuteWithoutResults();

// delete a user and its relationships
_graphClient.Cypher
.OptionalMatch(" (user:User)<-[r]-()")
.Where<User>(user => user.userId == "10")
.Delete("r, user")
.ExecuteWithoutResults();

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Creating a Relationship

Creating a relationship between two nodes with Neo4jClient can be handled in a few different ways, but the most
efficient is to retrieve the nodes and create the relationship in the same cypher statement. As shown in Listing 7-4, the
query sets up a relationship between two users by using the FOLLOWS relationship type.

Note Both the start and end nodes used to create a relationship must already be saved within the database before
the relationship can be saved.

Listing 7-4. Finding Two Nodes and Creating a Relationship between Them

var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

_graphClient.Cypher
.Match("(user1:User)", "(user2:User)")
.Where<User>(userl => useri.userld == "10")
.AndWhere<User>(user2 => user2.userld == "1")
.Create("user1-[:FOLLOWS]->user2")
.ExecuteWithoutResults();

Retrieving Relationships
Once a relationship has been created between two or more nodes, then the relationship can be retrieved based on
one of the nodes within the relationship (Listing 7-5).
Listing 7-5. Retrieving Relationships
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));
_graphClient.Cypher
. Match("(useri:User)-[f:FOLLOWS]-(user2:User)")
.Where<User>(user1 => useri.userId == "10")
.AndWhere<User>(user2 => user2.userld == "1")

.Return((f) => new {
Relationship = f.As< Relationship >()
1))

.Results.Single();

Deleting a Relationship

Once arelationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary. In order to remove a relationship, it must be set as a relationship object instance and then the delete
method for the relationship (Listing 7-6) can be called.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-6. Deleting a Relationship
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

// removing a relationship using a WHERE clause
_graphClient.Cypher
.Match("(user1:User)-[f:FOLLOWS]-(user2:User)")
.Where<User>(user1 => useri.userld == "10")
.Andwhere(user2 => user2.userId == "1")
.Delete("f")
.ExecuteWithoutResults();

// removing a relationship using a MATCH clause
_graphClient.Cypher
.Match(" (u1:User {username:{u1}})-[f:FOLLOWS]->(u2:User {username:{u2}}) ")
WithParams(new {ul = "user1", u2 = "user2"})
.Delete("f")
.ExecuteWithoutResults();

Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4j 2.0 to
help in querying, but they can also function as a way to quickly create a subgraph.

Adding a Label to Nodes

In Neo4jClient, you can add one more labels to a node. As Listing 7-7 shows, the SET is used to add a label to an
existing node.

Caution A label will not exist on the database server until it has been added to at least one node.

Listing 7-7. Adding a Label to a Node
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

_graphClient.Cypher

.Match(" (user:User)")
.Where<User>(user => user.userId == "10")
.Set(" user :Developer")
.ExecuteWithoutResults();

Removing a Label

Removing a label uses similar syntax as adding a label to a node. After the given label has been removed from the
node (Listing 7-8), the return value is a list of labels still on the node.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-8. Removing a Label from a Node
var _graphClient = new GraphClient(new Uri("http://localhost:7474/db/data"));

_graphClient.Cypher

.Match(" (user:User)")
.Where<User>(user => user.userId == "10")
.Remove(" user :Developer")
.ExecuteWithoutResults();

Debugging

As part of developing Cypher queries, you will from time to time need to view the actual query that’s being executed
for debugging purposes. To that end, each query can be set to a variable as well as access the QueryText and
QueryParameters output through the Query object, as shown in Listing 7-9.

Listing 7-9. Removing a Label from a Node

var query = graphClient.Cypher

.Match(" (user:User)")
.Where<User>(user => user.userId == "10")
.Remove(" user :Developer")
.ExecuteWithoutResults();

Developing a .NET Neo4j Application

Preliminary to building out your first NET Neo4j application, this section covers the basics of configuring a
development environment.

Preparing the Graph

To spend more time highlighting code examples for each of the more common graph models, you will use a preloaded
instance of Neo4j including necessary plugins, such as the spatial plugin.

Tip To quickly setup a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from Graph
Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to graphstory.com/
practicalneo4j, downloading the zip file containing the sample database and plugins, and adding them to your local
instance.

Using the Sample Application

If you have already downloaded the sample application from graphstory.com/practicalneo4j for NET and
configured it with your local application environment, you can skip ahead to the section “NET Application
Configuration.” Otherwise, you will need to go back to the “NET and Neo4j Development Environment” section in this
chapter and set up your local environment in order to follow along with examples in the sample application.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

.NET Application Configuration

Before diving into the code examples, you need to update the configuration for the .Net application. In Visual Studio,
open the file Web.config and edit the GraphStory connection string information. If you are using a free account from
graphstory.com, you will change the username, password, and URL in Listing 7-10 with the one provided in your
graph console on graphstory.com.

Listing 7-10. Database Connection Setting in Web.config

<connectionStrings>
<add name="graphStory" connectionString="https://username:password@theURL:7473/db/data" />
</connectionStrings>

If you have installed a local Neo4j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, as in Listing 7-11.

Listing 7-11. Database Connection Setting in Web.config for a Local Instance of Neo4;j

<connectionStrings>
<add name="graphStory" connectionString="http://localhost:7474/db/data" />
</connectionStrings>

Once the environment is properly configured and started, you can open and run the application by hitting F5,
and then you should see a page like the one shown in Figure 7-2.

_ |

Graph Story

The leading graph-as-a-service provider

Easy path to Social Most Interesting Content is King
Quic At_\ create an onling community and h-_-'p them ¥ i within your communities by What YOUr cusiomers read can tell you what to write - and
connect and share faster with Graph Story. Crea helping them manage their interests. what not to write tch tome with your
I own

Maps are a graph! Recommendations Win at Starting
Graph Story is a next generation platform for apps that Relevant recommendatior e sales! Graph Story will phityStanup helps your team see all the parts of your

€ location information L e and et F and manage their startup, ke everything in one place, moving forwand
us 4o the work. recommendations 10 ;t“_ maore relevant results and stay Ing strong

© Graph Story, Inc. 2014
Figure 7-2. The .NET sample application home page
78

www.it-ebooks.info

http://graphstory.com/
http://graphstory.com/
http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Neo4jModule and Ninject

To avoid repeating the connection information through out the application, the application makes use of the open
source dependency injector, Ninject.

Note Ninject is included as part of the application configuration, so you shouldn’t need to do anything to make it
work during the review of the application.

Ninject works by binding the Neo4jClient to the application using the Neo4jModule located in the App_Start/
Modules folder, a snippet of which is shown in Listing 7-12.

Listing 7-12. Neo4jModule.cs

public class Neo4jModule : NinjectModule

{
/// <summary>Loads the module into the kernel.</summary>
public override void Load()
{
Bind<IGraphClient>().ToMethod(InitNeo4]Client).InSingletonScope();
}
private static IGraphClient InitNeo4]Client(IContext context)
{
var neo4JUri = new Uri(ConfigurationManager.ConnectionStrings["graphStory"].
ConnectionString);
var graphClient = new GraphClient(neo4lUri);
graphClient.Connect();
return graphClient;
}
}

Once the Neo4jModule is added, it can be registered with the application in the NinjectWebCommon file, which
islocated in the App_Start folder. The module is registered in the RegisterServices method as shown in Listing 7-13.

Once the Module is registered, an IGraphClient instance can be called within the application, such as within the
service layer, to perform operations on your database.

www.it-ebooks.info

79

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-13. The RegisterServices method in NinjectWebCommon.cs

namespace PracticalNeo4j DotNet.App Start

{
public static class NinjectWebCommon
{
//other methods
private static void RegisterServices(IKernel kernel)
{
kernel.Load <Neo4jModule>();
}
}
}

Controller and Service Layers

All of the controllers in the sample application extend a parent controller called GraphStoryController. The
GraphStoryController provides access to the GraphStory class and the GraphStoryInterface service. The
SecurityController provides a login check on the application as well as providing the string value of the username that
is currently logged into the application via the cookie called graphstoryUserAuthKey.

The GraphStory object encapsulates the domain objects for the sample application and is primarily used for
convenience. This object allows domain objects to be sent to the service layer and returned, in some cases, with
additional objects and properties.

The GraphStoryInterface service provides access to each of the individual service interfaces that support
persistence and other service-level operations on each of the domain objects. For example, if an exception is raised
in the service layer, such as when attempting to create a User that matches an existing User’s username, then the
GraphStory object can be returned with message information, such as an error message, which can then be used to
determine the next part of the application flow as well as return messages to the view.

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany the use of that type
of model. In particular, this section looks at the following:

e The User Entity

e Sign-up and Login

e Updating a user

e Creating a relationship type through a user by following other users

e Managing user content, such as displaying, adding, updating, and removing status updates

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Note The sample graph database used for these examples is loaded with data so that you can immediately begin
working with representative data in each of the graph models. In the case of the social graph—and for other graph
models, as well—you will login with the user ajordan. Going forward, please login with ajordan to see each of the
working examples.

User Node Entity

I approach the social graph model by reviewing the code for creating a User node in the graph via the sign-up process.
Later in this section, you will briefly review the code to validate a user attempting to login. In each case, the code
contains brief validation routines to demonstrate the basics of running checks against data. In the case of sign-up, the
code will check to see if a User already exists with the same username.

Node Entities

To begin, open the User class located in the Models package. Like the other classes in the application, the User entity
has properties that are commonly found in similar applications, such as firstname and lastname (Listing 7-14).

One significant difference is that the NodeReference class is included. The NodeReference is added to the object
when called from the database and is especially helpful when doing Cypher queries that require the START clause to
complete the function or operation.

Listing 7-14. The User Object

using System;

using System.Collections.Generic;
using System.ling;

using System.lWeb;

using Neo4jClient;

namespace PracticalNeo4j_ DotNet.Models

{

public class User

{
public long nodeld { get; set; }
public NodeReference noderef { get; set; }
public string userId { get; set; }
public string username { get; set; }
public string firstname { get; set; }
public string lastname { get; set; }

1}

Sign-Up

The HTML required for the user sign-up form is shown in Listing 7-15 and can be found in the {PROJECTROOT}/Views/
Home/index.cshtml file. The important item to note in the HTML form is that the graphStory object and then class
name and then property are used to specify what is passed to the controller and, subsequently, to the service layer for
saving to the database.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-15. HTML Snippet of Sign-Up in Views/Home/Index.cshtml

<form class="navbar-form navbar-left" action="/signup/add"
role="form" id="createaccountform" method="post">
<div class="form-group">
<input type="text" placeholder="Username"
name="graphStory.user.username" class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button>
</form>

Note While the sample application creates a user without a password, | am certainly not suggesting or advocating
this approach for a production application. Excluding the password property was done in order to create a simple sign-up
and login that helps keep the focus on the more salient aspects of the Neo4jClient library.

Sign-Up Controller

In the SignupController class, use a method called Add to control the flow of the sign-up process, shown in
Listing 7-16. This particular controller does not extend the GraphStoryController class or the SecurityController
class because it does not need to check the user login status or have access to the accompanying values. It does
include access to the GraphStoryInterface, which will access the save method of the UserInterface and return a
GraphStory object.

If no errors were returned during the save attempt, the request is redirected via RedirectToRoute to a message
view in the HomeController to thank the user for signing up. Otherwise, a ViewBag is set with an error variable and
output the error message back to the specified view.

Listing 7-16. The SignupController

public class SignupController : Controller

{
private GraphStoryInterface graphStoryService;
public SignupController(GraphStoryInterface graphStoryService) {
this.graphStoryService = graphStoryService;
}
public ActionResult Add(GraphStory graphStory)
{
graphStory = graphStoryService.userInterface.save(graphStory);
if (graphStory.haserror==false)
return RedirectToRoute(new { controller = "Home", action = "msg",
msg = "Thank you," + graphStory.user.username });
}
82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

else
{
ViewBag.error = graphStory.error;
return View("~/Views/Home/Index.cshtml");

Adding a User

Each domain object must have a corresponding interface and implementation in order to manage the respective
domain object. As a part of the architecture, each interface is part of the main service layer created with the
GraphStoryService class, which implements the GraphStoryInterface. In addition, each of the implementation
classes adds the IGraphClient in order to have access to the injected GraphClient via the Neo4jModule.

In this case, the UserService class implements the methods found in UserInterface, both of which are located
in the Service folder. The UserInterface is shown in Listing 7-17.

Listing 7-17. The UserInterface Class

public interface UserInterface

{
User getByUserName(string username);
GraphStory login(GraphStory graphStory);
GraphStory save(GraphStory graphStory);
User update(User user);
List<User> following(string username);
MappedUserLocation getUserLocation(String currentusername);
List<User> searchNotFollowing(String currentusername, String username);
List<User> follow(String currentusername, String username);
List<User> unfollow(String currentusername, String username);

Note Although the chapter does not dive into the details of the GraphStoryService and GraphStoryInterface
classes, they will be reused throughout the application. As noted previously, the GraphStoryService class is used for
convenience in order to have access to each specific interface by using a single top-level service interface.

In the UserService class, you will notice several implemented methods to manage the User object. To add the
User object to the database, use the save method, which will first check to see if a username has already been added
to the database. If no user exists, then the user will be saved to the database, as shown in Listing 7-18.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-18. UserService Class

public class UserService : UserInterface

{
private readonly IGraphClient graphClient;
private User tempuser;
public UserService(IGraphClient graphClient)
{
_graphClient = graphClient;
public GraphStory save(GraphStory graphStory)
{
graphStory.user.username = graphStory.user.username.ToLower();
// if userexists is false, save the user
if (userExists(graphStory.user.username)==false)
{
graphStory.user.userId = Guid.NewGuid().ToString();
User u= _graphClient.Cypher
.Create(" (user:User {user}) ")
.WithParam("user", graphStory.user)
.Return(user => user.As<User>())
.Results.Single();
graphStory.user = u;
} // otherwise, return an error msg
else
{
graphStory.haserror = true;
graphStory.error = "The username you entered already exists.";
return graphStory;
}
private bool userExists(string username)
{
bool userFound = false;
if (getByUserName(username) != null) {
userFound = true;
}
return userFound;
}
84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

public User getByUserName(string username)

{
User u = null;
Node<User> n = _graphClient.Cypher
.Match(" (user:User {username:{user}}) ")
WithParam("user", username.ToLower())
.Return(user => user.As<Node<User>>())
.Results.Single();
// set user
u = n.Data;
// set node id
u.noderef = n.Reference;
return u;
}
1}
Login

This section reviews the login process for the sample application. To execute the login process, use the
LoginController as well as the User and UserService classes. Before reviewing the controller and service layer, take a
quick look at the front-end code for the login.

Login Form

The HTML required for the user login form is shown in Listing 7-19 and can be found in the {PROJECTROOT }/Views/
Home. cshtml layout file. Again, one important item to note in the HTML form is that the graphStory object then
class name then property are used to specify what is passed to controller and, subsequently, to the service layer for
querying the database.

Listing 7-19. The login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="graphStory.user.username" class="form-control">
</div>
<button type="submit" class="btn btn-success">Sign in</button>

</form>

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Login Controller

In the LoginController class, you will use the method named Index to control the flow of the login process, as
shown in Listing 7-20. Inside the Index controller method, the GraphStoryInterface will pass the login method of
the UserInterface the GraphStory object from the HTML form shown in Listing 7-20 and then return a GraphStory
object back to the controller.

Listing 7-20. The login Controller

public ActionResult Index(GraphStory graphStory)

{
graphStory = this.graphStoryService.userInterface.login(graphStory);
if (graphStory.haserror == false)
HttpCookie userCookie = new HttpCookie(graphstoryUserAuthKey);
userCookie.Value = graphStory.user.username;
userCookie.Expires = DateTime.Now.AddDays(20);
Response.Cookies.Add(userCookie);
return RedirectToRoute(new { controller = "Social", action = "Index" });
}
else
{
ViewBag.error = graphStory.error;
return View("~/Views/Home/Index.cshtml");
}
}

If no errors were return during the login attempt, a cookie is added to the response and the request is redirected
via RedirectToRoute to the social home page, shown in Figure 7-3. Otherwise, the View will specify the HTML page to
return as well as use the ViewBag object to add the error messages that need to be displayed back to the View.

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Social Graph

Gragh Story

Social Graph

This section of the application demonsirates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

o960 NBA Dra sene Jordan Edit Detete

tags: nba - Posted by ajordan at
1ags: university of memphis, economics - Posted by anwray at 06/01/2014 al 6.06 AM

1ags: music, funny = Posted by ptfarsworth at 05/1

Figure 7-3. The Social Graph home page

Login Service

To check to see if the user values being passed through are connected to a valid user combination in the database, the
application uses the login method in UserService. As shown in the UserService code in Listing 7-21, the result of
the getByUsername method is assigned to the tempUser variable.

If the result is not null, the result is set on the User object of the GraphStory service object. Otherwise, a message
is added to the GraphStory error property and returned to the controller along with the original User object.

Listing 7-21. UserService Class with the login Method

public class UserService : UserInterface
{
private readonly IGraphClient _graphClient;

private User tempuser;

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

public UserService(IGraphClient graphClient)

{
_graphClient = graphClient;
}
public GraphStory login(GraphStory graphStory)
{
tempuser = getByUserName(graphStory.user.username.TolLower());
if (tempuser!=null)
{
// set the graphStory.user to the tempuser var
graphStory.user = tempuser;
// or if not found, then return error.
else{
graphStory.haserror = true;
graphStory.error = "The username you entered does not exist.";
}
return graphStory;
}
public User getByUserName(string username)
{
User u = null;
Node<User> n = _graphClient.Cypher
Match(" (user:User {username:{user}}) ")
.WithParam("user", username.TolLower())
.Return(user => user.As<Node<User>>())
.Results.Single();
// set user
u = n.Data;
// set node id
u.noderef = n.Reference;
return u;
}
}
Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as shown in
Figure 7-4. In this example, the front-end code uses an AJAX request via PUT and inserts—or, in the case of the
ajordan user, updates—the first and last name.

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Sacial Graph

&%Graph Story

Social Graph - Friends

This section of the application shows how o update a user's settings

Social Menu User Settings for ajordan

First Name Abvin
Last Name Jorcar

Update User

Figure 7-4. The User Settings page

User Update Form

The user settings form is located in {PROJECTROOT}/Views/User/Index.cshtml and is similar in structure to the other
forms presented in the Sign Up and Login sections. One difference is that you have added the value property to the
input element as well as the variables for displaying the respective stored values. If none exist, the form fields will be
empty. (See Listing 7-22).

Listing 7-22. User Update Form MOVED

<form class="form-horizontal" id="userform">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname" name="user.
firstname" value="@Html.DisplayFor(model => model.firstname)" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname" name="user.
lastname" value="@Html.DisplayFor(model => model.lastname)" />
</div>
</div>
<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update
User</button>
</div>
</div>
</form>

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

User Controller

The UserController class contains a method called Edit, which takes the User object argument. The “Sign-Up” and
“Login” examples use the GraphStory object to pass through values. This example demonstrates another way to pass
values into the back-end code (Listing 7-23).

Notice that the User object is converted from a JSON string and returns a User object as Json. The response could
be used to update the form elements, but because the values are already set within the form there is no need to update
the values. In this case, the application uses the JSON response to let the user know if the update succeeded or not via
a standard JavaScript alert message.

Listing 7-23. UserController Edit Method

public JsonResult Edit(User user)

{
user.username = graphstoryUserAuthValue;
graphStoryService.userInterface.update(user);
return Json(User);

}

User Update Method

To complete the update, the Edit method calls the update method in UserService layer. Because the object being
passed into the update method did nothing more than modify the first and last name of an existing entity, you can use
the SET clause via Cypher to update the properties in the graph, as shown in Listing 7-24. This Cypher statement also
uses the WithParams clause, which requires an array of parameter objects as its argument, to pass the updated values
to the SET clause.

Listing 7-24. Update Method for a User

public User update(User user)

{
_graphClient.Cypher
.Match(" (user:User {username:{user}}) ")
WithParam("user", user.username.ToLower())
.Set("user.firstname = {fn}, user.lastname = {In} ")
WithParams(new {fn=user.firstname,ln=user.lastname })
.ExecuteWithoutResults();
return user;
}

Note Each of the controllers and the front-end code make use of similar syntax. The next and subsequent sections
will therefore not feature the controller and front-end code and instead focus on the Neo4jClient aspects of the
application. The controllers and front-end code will be referenced, but not listed directly in the following sections.

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. The following sample application uses the directed relationship type called FOLLOWS. By going to the
“Friends” page within the social graph section, you can see the list of the users the current user is following, search for
new friends to follow, add them, and remove friends the current user is following. The UserController contains each
of the methods to control the flow for these features, including friends, searchbyusername, follow, and unfollow.

To display the list of the users the current user is following, the friends method in the UserController calls the
following method in UserService. The following method in UserService, shown in Listing 7-25, creates a list of users
by matching the current user’s username with directed relationship FOLLOWS on the variable user. If the list contains
users, it will be returned to the controller and displayed in the right-hand part of the page, as shown in Figure 7-5. The
display code for showing the list of users can be found in {PROJECTROOT }/Views/User/Friends.cshtml.

Listing 7-25. UserService—following Method

// UserService

public List<User> following(string username)
{
List<User> following = _graphClient.Cypher
.Match(" (user { username:{u}})-[:FOLLOWS]->(users) ")
WithParam("u", username.ToLower())
.Return(users => users.As<User>())
.OrderBy("users.username"
.Results.Tolist<User>();

return following;

< - e {2 Graph Story | Friends

éram Soctl Grph

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks

Social Menu Search For Friends Current Friends

Thomas Edison
Philo Famsworth

o= Opal Jordan
Nikola Tesla
Leonard Euler
John Baird
Jimi James
Andrew Wray

Aling Wray

Figure 7-5. The Friends page

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

To search for users to follow, the UserController uses the Searchbyusername method, which calls the
searchNotFollowing in UserService. The first part of the WHERE clause in searchNotFollowing returns users whose
username matches on a wildcard String value (Listing 7-26). The second part of the WHERE clause in searchNotFollowing
checks to make sure the users in the MATCH clause are not already being followed by the current user.

Listing 7-26. searchNotFollowing Method in the UserService

// UserService

public List<User> searchNotFollowing(String currentusername, String username)

username = username.ToLower() + ".*";

List<User> following = _graphClient.Cypher
.Match(" (n:User), (user { username:{c}}) ")
WithParam("c", currentusername.ToLower())
.Where(" (n.username =~ {u} AND n <> user) ")
.Andwhere (" (NOT (user)-[:FOLLOWS]->(n)) ™)
WithParam("u", username)

.Return(n => n.As<User>())
.OrderBy("n.username")
.Results.TolList<User>();

return following;

The searchByUsername in {PROJECTROOT}/Content//js/graphstory.js uses an AJAX request and formats the
response in renderSearchByUsername. If the list contains users, it will be displayed in the center of the page under the
search form, as shown in Figure 7-5. Otherwise, the response will display “No Users Found”

Once the search returns results, the next action would be to click on the “Add as Friend” link, which will call the
addfriend method in graphstory. js. This will perform an AJAX request to the follow method in the UserController
and call follow in UserService. The follow method in UserService, shown in Listing 7-27, will create the
relationship between the two users by first finding each entity via the MATCH clause and then use the CreateUnique
clause to create the directed FOLLOWS relationship. Once the operation is completed, the next part of the query then
runs a MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 7-27. The follow Method

// UserService

// follows a user and also returns the list of users being followed
public List<User> follow(String currentusername, String username)

{
List<User> following = _graphClient.Cypher
.Match(" (useri:User {username:{cu}}), (user2:User {username:{u}}) ")
WithParams(new { cu = currentusername.TolLower(), u = username.ToLower() })
.CreateUnique("user1-[:FOLLOWS]->user2")
MWith(" useri)
Match(" (user1)-[f:FOLLOWS]->(users) ")
92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

.Return(users => users.As<User>())
.OrderBy("users.username"
.Results.TolList<User>();

return following;

The unfollow feature for the FOLLOWS relationships uses a nearly identical application flow as follows feature.
In the unfollow method, shown in Listing 7-28, the controller passes in two arguments: the current username and
username to be unfollowed. As with the follow method, once the operation is completed, the next part of the query
then runs a MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 7-28. The unfollow Method

// UserService
// unfollows a user and also returns the list of users being followed
public List<User> unfollow(String currentusername, String username)

{
List<User> following = _graphClient.Cypher
Match(" (useri:User {username:{cu}})-[f:FOLLOWS]->(user2:User {username:{u}}) ")
WithParams(new {cu = currentusername.TolLower(), u = username.TolLower()})
.Delete("f")
MWith(" useri)
.Match(" (user1)-[f:FOLLOWS]->(users) ")
.Return(users => users.As<User>())
.OrderBy("users.username"
.Results.TolList<User>();
return following;
}

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content—sometimes referred to as user-generated content. In the case of this content, you will not be creating
connections between the content and its owner but creating a linked list of status updates. In other words, you are
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time,
and using a limited linked list is more efficient than getting all status updates connected directly to a user and then
sorting and limiting the number of items to return. Second, it also helps to limit the number of relationships that are
placed on the User and Content entities. Therefore, the overall graph operations should be made more efficient by
using the linked list approach. Listing 7-29 shows the properties that are included in a CONTENT object.

Listing 7-29. The Content Object

public class Content

{
public long nodeld { get; set; }
public NodeReference noderef { get; set; }
public string contentId { get; set; }
public string title { get; set; }
public string url { get; set; }

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

public string tagstr { get; set; }

public long timestamp { get; set; }

public string userNameForPost { get; set; }
private string TimestampAsStr;

public string timestampAsStr

{
get
{
System.DateTime datetime = new DateTime(1970, 1, 1, 0, 0, 0, O,
System.DateTimeKind.Utc);
datetime = datetime.AddSeconds(this.timestamp).ToLocalTime();
this.timestampAsStr = datetime.ToString("MM/dd/yyyy") + " at " + datetime.
ToString("h:mm tt");
return TimestampAsStr;
}
set
{
TimestampAsStr = value;
}
}

public List<Tag> tags { get; set; }
public User user { get; set; }
public Content next { get; set; }

Getting Status Updates

To display the first set of status updates, start with the Index method inside of the SocialController. This method
accesses the getContent method within ContentService, which takes an argument of the GraphStory object, the
current user’s username, the page being request and the number of items to be returned. The page refers to set
number of objects within a collection. In this instance the paging is zero-based, so you will request page 0 and limit
the page size to 3 in order to return the first page.

The getContent method in ContentService, shown in the first part of Listing 7-30, first determines whom
the user is following and then matches that set of users with the status updates, starting with the CURRENTPOST.
The CURRENTPOST is then matched on the next three status updates via the [:NEXTPOST*0. .3] section of the query.
Finally, the query uses a ViewModel to return only the properties that are necessary to display back to the View in the
application.

Listing 7-30. The getContent Method in ContentService

public GraphStory getContent(GraphStory graphStory, string username, int page, int pagesize)
{

graphStory.content = graphClient.Cypher.Match(" (u:User {username: {u} }) ")
WithParam("u", username)
With("u")
.Match(" (u)-[:FOLLOWS*0..1]->f ")
With(" DISTINCT f,u ")
.Match(" f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p")
.Return(() => Return.As<MappedContent>("{contentId: p.contentId, title: p.title,
url: p.url,” +

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

" tagstr: p.tagstr, timestamp: p.timestamp, userNameForPost: f.username,
owner: f=u}"))

.OrderByDescending("p.timestamp")

.Skip(page)

.Limit(pagesize)

.Results.Tolist();

return graphStory;

Using View Models

For many applications, it is necessary to return only certain elements of the model to complete the parts of the view.
In addition, the view sometimes requires display elements that are not provided within the core model objects. In the
case of .NET applications, the solution to this challenge is to add classes known as ViewModels.

For example, the MappedContent shown in Listing 7-31 allows the application to return properties from both
the Content and User classes as well as properties, such as the TimestampAsStr, that are modifications of an existing
property. As you walk through the remainder of the graph examples, you will review a number of the ViewModel
classes that were created to satisfy the needs within the View sections of the application.

Listing 7-31. The View Model Object: Mapped Content

?ublic class MappedContent
public string contentId { get; set; }
public string title { get; set; }
public string url { get; set; }
public string tagstr { get; set; }
public long timestamp { get; set; }
public string userNameForPost { get; set; }
private string TimestampAsStr;
public string timestampAsStr
{
get
{
System.DateTime datetime = new DateTime(1970, 1, 1, 0, 0, 0, O,
System.DateTimeKind.Utc);
datetime = datetime.AddSeconds(this.timestamp).ToLocalTime();

this.timestampAsStr = datetime.ToString("MM/dd/yyyy") + " at " + datetime.
ToString("h:mm tt");
return TimestampAsStr;

TimestampAsStr = value;

public bool owner { get; set; }

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Adding a Status Update

The page shown in Figure 7-6 shows the form to add a status update for the current user, which is displayed when
clicking on the “Add Content” link just under the “Graph Story - Social Feed” header. The HTML for the form can
be found in {PROJECTROOT}/Views/Social/Posts.cshtml. The form uses the addContent function in graphstory.
js to POST a new status update as well as return the response and add it to the top of the status update stream. In the
SocialController, use the add method to pass the content to the service layer, as shown in Listing 7-32.

<« - I ' |
{) Social Graph
Side ~ Ston
(_;ragi Story
Social Graph

This section of the application demanstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts

Social Menu Graph Story - Social Feed

Trtle

URL
Tags

Add Content
tags: nba - Posted by ajordan at 0
tags. university of memphis, economics - Posted by anwray at

tags: music, funny - Posted by ptfarsworth at 051

Figure 7-6. Adding a status update

Listing 7-32. The add Method in the Social Controller

// add content
[HttpPost]
public JsonResult add(Content jsonObj) {
MappedContent mappedContent = graphStoryService.contentInterface.add(jsonObj,graphstoryUserAuth
Value);
mappedContent.userNameForPost = graphstoryUserAuthValue;
return Json(jsonObj,JsonRequestBehavior.AllowGet);

The add method for ContentService is shown in Listing 7-32. When a new status update is created, in addition to
its graph id, the add method also generates a contentId, which is performed using the Guid.NewGuid method.

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

The add method makes the status the CURRENTPOST but also determines whether a previous CURRENTPOST exists

and, if one does, changes its relationship type to NEXTPOST. In addition, the tags connected to the status update will be
merged into the graph and connected to the status update via the HAS relationship type.

Listing 7-33. The add Method in ContentService

public MappedContent add(Content content, string username)

{

content.contentId
content.timestamp

Guid.NewGuid().ToString();
(long) (DateTime.UtcNow.Subtract(new DateTime(1970, 1, 1))).TotalSeconds;

content.tagstr = removeTrailingComma(content.tagstr);

// splits up the comma separated string into arrays and removes any empties.

// each tag uses MERGE and connected to the the content node thru the HAS,

e.g content-[:HAS]->tag

// remember that MERGE will create if it doesn't exist otherwise based on the

properties provided

String[] tags = content.tagstr.Split(",".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);

MappedContent contentItem = _graphClient.Cypher
.Match(" (user { username: {u}}) ")
WithParam("u", username)
.CreateUnique(" (user)-[:CURRENTPOST]->(newLP:Content { title:{title}, url:{url}, " +
" tagstr:{tagstr}, timestamp:{timestamp}, contentId:{contentId} }) ")
WithParams(new { title = content.title, url = content.url,
tagstr = content.tagstr, timestamp=content.timestamp, contentId=content.contentId})
With("user, newLP")
.ForEach(" (tagName in {tags} | " +
"MERGE (t:Tag {wordPhrase:tagName})" +
" MERGE (newLP)-[:HAS]->(t) " +
"))
JWithParam("tags",tags)
With("user, newLP")
.OptionalMatch(" (newLP)<-[:CURRENTPOST]-(user)-[oldRel:CURRENTPOST]->(0ldLP)")
.Delete(" oldRel ")
.Create(" (newLP)-[:NEXTPOST]->(oldLP) ")
With("user, newLP")
.Return(() => Return.As<MappedContent>(" { contentId: newLP.contentId, title: newLP.title,
url: newlP.url," +
" tagstr: newlLP.tagstr, timestamp: newLP.timestamp, userNameForPost: {u}, owner: true } "))
.Results.Single();

return contentItem;

Editing a Status Update

When status updates are displayed, the current user’s status updates will contain a link to “Edit” the status. Once
clicked, it will open the form, similar to the “Add Content” link, but it will populate the form with the status update
values and modify the form button to read “Edit Content’, as shown in Figure 7-7. Notice that clicking “Cancel” under
the heading removes the values and returns the form to its ready state.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

t W) et localhost 50125 /cocial __
b Social Graph
%ﬁﬂ’api“ Story
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed
Title 260 NE 8 JOrda
URL http./inba-draft-history findthebest comA/7T78/Gene-Jordan

Tags

Edit Conlent

tags: nba :: Posted by ajordan at
tags: university of memphis, economics = Posted by anwray at 06701

tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at

Figure 7-7. Editing a status update

The edit feature, like the add feature, uses a method in the SocialController and a function in graphstory. js,
which are edit and updateContent, respectively. The edit method passes in the content object, with its content id,
and then calls the edit method in ContentService, as shown in Listing 7-34.

In the case of the edit feature, you do not need to update relationships. Instead, simply retrieve the existing node
by its generated String Id (not its graph id), update its properties where necessary, and save it back to the graph.

Listing 7-34. The edit Method in ContentService

public MappedContent edit(Content content, string username)
content.tagstr = removeTrailingComma(content.tagstr);

// splits up the comma separated string into arrays and removes any empties.

// each tag uses MERGE and connected to the the content node thru the HAS,

e.g content-[:HAS]->tag

// remember that MERGE will create if it doesn't exist otherwise based on the

properties provided

String[] tags = content.tagstr.Split(",".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);

MappedContent mappedContent = _graphClient.Cypher
.Match(" (c:Content {contentId:{contentId}})-[:NEXTPOST*0..]-()-[:CURRENTPOST]-(user {
username: {u}}) ")
.WithParams(new { u = username, contentld = content.contentId})
Set(" c.title = {title}, c.url = {url}, c.tagstr = {tagstr} ")

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

.WithParams(new {title=content.title, url=content.url, tagstr=content.tagstr })
.ForEach(" (tagName in {tags} | " +
"MERGE (t:Tag {wordPhrase:tagName})" +
" MERGE (c)-[:HAS]->(t) " +
"))
.WithParam("tags", tags)
With("user, c"
.Return(() => Return.As<MappedContent>(" { contentId: c.contentId, title: c.title,
url: c.url," +
" tagstr: c.tagstr, timestamp: c.timestamp, userNameForPost: user.username, owner: true } "))
.Results.Single();

return mappedContent;

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates contain a link to
“Delete” the status. Once clicked, it asks if you want it deleted (no regrets!) and, if accepted, generates an AJAX
GET request to call the delete method in the SocialController. This method then calls the delete method in
ContentService, shown in Listing 7-35.

The Cypher in the delete method begins by finding the user and content that will be used in the rest of the query.
In the first MATCH, you can determine if this status update is the CURRENTPOST by checking to see if it is related to a
NEXTPOST. If this relationship pattern matches, make the NEXTPOST into the CURRENTPOST with CREATE UNIQUE.

Next, the query will ask if the status update is somewhere the middle of the list, which is performed by
determining if the status update has incoming and outgoing NEXTPOST relationships. If the pattern is matched, then
connect the before and after status updates via NEXTPOST.

Regardless of the status update’s location in the linked list, retrieve it and its relationships and then delete the
node along with all of its relationships.

To recap, if one of the relationship patterns matches, replace that pattern with the nodes on either side of the status
update in question. Once that has been performed, then the node and its relationships can be removed from the graph.

Listing 7-35. The delete Method for ContentService

public void delete(string contentId, string username)

{
_graphClient.Cypher

.Match("(u:User { username: {u} }), (c:Content { contentId: {contentId} })")
WithParams(new { u = username, contentId = contentId})
MWith("u,c"
.Match(" (u)-[:CURRENTPOST]->(c)-[:NEXTPOST]->(nextPost) ")
Where("nextPost is not null ")
.CreateUnique(" (u)-[:CURRENTPOST]->(nextPost) ")
MWith(" count(nextPost) as cnt ")
Match(" (before)-[:NEXTPOST]->(c:Content { contentId: {contentId}})-[:NEXTPOST]->(after) ")
Where(" before is not null AND after is not null ")
.CreateUnique(" (before)-[:NEXTPOST]->(after) ")
With(" count(before) as cnt ")
.Match(" (c:Content { contentId: {contentId} })-[r]-() ")
.Delete("c,1"
.ExecuteWithoutResults();

}

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Interest Graph Model

This section looks at the interest graph and examines some basic ways it can used to explicitly define a degree of
interest. The following topics are covered:

e Adding filters for owned content
e Adding filters for connected content

e Analyzing connected content (count tags)

Tag Entity

Listing 7-36 displays the Tag entity, which will be used determine a user’s interest and network of interest based
on user she follows. The tag entity also has incoming relationships with Users and Products, but the relationship
is defined using the other entities. To that point, it is not necessary to explicitly annotate the relationships on both
entities because one implies the other.

Listing 7-36. The Tag Object

public class Tag

{
public long nodeld { get; set; }
public NodeReference noderef { get; set; }
public string wordPhrase { get; set; }

}

Interest in Aggregate

Inside the view method of the InterestController, we retrieve all of the user’s tags and their friends’ tags by calling,
respectively, the userTags and tagsInNetwork methods found in the TagService class (Listing 7-37).

Listing 7-37. tagsInMyNetwork Located in the TagService Class

public GraphStory tagsInMyNetwork(GraphStory graphStory)
{
graphStory.tagsInNetwork = _graphClient.Cypher
.Start(new { u = graphStory.user.noderef })
.Match("u-[:FOLLOWS]->F")
MWith("distinct ")
.Match(" f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c")
MWith("distinct ¢")
Match(" c-[ct:HAS]->(t)")
With("distinct ct, t")
.Return(() => Return.As<MappedContentTag>("{name: t.wordPhrase,
label: t.wordPhrase, " +
" id: count(*) }"))
.OrderByDescending("count(*) ")
.Results.Tolist();

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

graphStory.userTags = _graphClient.Cypher
.Start(new { u = graphStory.user.noderef })
.Match("u-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c"
MWith("distinct c")

Match(" c-[ct:HAS]->(t)")
MWith("distinct ct, t")
.Return(() => Return.As<MappedContentTag>(" {name: t.wordPhrase, label:
t.wordPhrase, " +

" id: count(*) }"))
.OrderByDescending("count(*) ")
.Results.TolList();

return graphStory;

This is displayed Figure 7-8 in the left-hand column. The display code is located in {PROJECTROOT}/Views/
Interest/Index.cshtml.

= o R e e - -] YT rr—

Interest Graph

Graplﬂ Story

Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags

My Interests Graph Story - Interest Feed

!z‘g: 4n‘.e|;n.el nm:n;\ pf:r..:t;d by ajordan at
Interests in my network T E———
music (8) funny (8) cats tags: inlernet = Posted by ajordan at D6/222013 al 7°1

Figure 7-8. Filtering the current user’s content

The tagsInMyNetwork method uses two queries, which are shown in Listing 7-38. The tagsInNetwork finds users
being followed, accesses all of their content, and finds connected tags through the HAS relationship type. Finally, the
method returns an iterable of MappedContentTag.

The userTags method is similar but is concerned only with content and, subsequently, tags connected to the
current user. Both methods limit the results to 30 items. The methods return MappedContentTag, which supports
an autosuggest plugin in the view and requires both a label and name to be provided in order to execute. This
autosuggest feature is used in the status update form as well as some search forms found later in this chapter.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-38. The MappedContentTag

public class MappedContentTag

{
public string id {get; set;}
public string label {get; set;}
public string name {get; set;}
}

Filtering Managed Content

Once the list of tags for the user and for the group that she follows has been provided, the content can be filtered
based of the generated tag links, which is shown in Figure 7-8. If a tag is clicked on the inside of the “My Interests”
section, then the getContentByTag method, displayed in Listing 7-39, will called be with the isCurrentUser value set
to true.

Listing 7-39. getContentByTagin ContentService

public List<MappedContent> getContentByTag(string username, string tag, bool isCurrentUser)
{

List<MappedContent> mappedContent = null;

if (isCurrentUser == true)

{
mappedContent = graphClient.Cypher.Match(" (u:User {username: {u} }) ")
WithParam("u", username)
JMWith("u™)
.Match(" u-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p ")
JWith(" DISTINCT u,p ")
.Match(" p-[:HAS]-(t:Tag {wordPhrase : {wp} })")
WithParam("wp",tag)
.Return(() => Return.As<MappedContent>(" { contentId: p.contentId, title: p.title,
url: p.url," +
" tagstr: p.tagstr, timestamp: p.timestamp, userNameForPost: u.username, owner:
true } "))
.OrderByDescending("p.timestamp")
.Results.TolList();
}
else
{

mappedContent = graphClient.Cypher.Match(" (u:User {username: {u} }) ")
WithParam("u", username)

JMith("u™)

Match(" (u)-[:FOLLOWS]->f ")

JWith(" DISTINCT f ")

.Match(" f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p ")

JWith(" DISTINCT f,p ")

.Match(" p-[:HAS]-(t:Tag {wordPhrase : {wp} })")

.WithParam("wp", tag)

.Return(() => Return.As<MappedContent>(" { contentId: p.contentld, title: p.title,

url: p.url, " +

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

"tagstr: p.tagstr, timestamp: p.timestamp, userNameForPost: f.username, owner:
false } "))

.OrderByDescending("p.timestamp")

.Results.TolList();

}

return mappedContent;
}

As with a query for the getContent method in ContentService, the first query in getContentByTag returns a
collection of MappedContent items based on the matching tag, placing no limit on the number of status updates to
be returned. In addition, it marks the owner property as true, because you've determined ahead of time that you are
returning only the current user’s content.

Filtering Connected Content

If a tag is clicked on the inside of the “Interests in my Network” section, then the getContentByTag method will be
called with the isCurrentUser value set to false, as shown in Listing 7-39.

The second query is nearly identical to the first query found in getContentByTag, except that it will factor in the
users being followed and exclude the current user. The method also returns a collection of MappedContent items and
matches resulting content to a provide tag, placing no limit on the number of status updates to be returned.

In addition, it marks the owner property as false. The results of calling this method are shown in Figure 7-9.

£-c & Graph Story | Interest

Interest Graph

Grag‘ Story

Interest Graph

This section of the application shows interest via a user's tagged content and the users network of friends tagged content. This could be expanded to show users with common
Interests via tags

My Interests Graph Story - Interest Feed

tags: music, funny :: Posted by ptfarsworth at 182014 at 3-00 AM

Interests in my network T
music (B)funny (8)Catq 1ags: music, serious - Posted by nlesla at 04/242014 at 1
(5)internet (3) me s (3 F o 15

tags: music, funmy | Posted by nlesia at 04

tags: music, dub - Posted by james at 04/1

tags. music - Posted by jjames at 03/06/2014 at

tags. music, hendrix . Posted by tedison al 11/27/2013 al 1
tags: music - Posled by leuler at 06/272013 al 716 AM

1ags: music - Posted by jjames al

Figure 7-9. Filtering the content of current user’s friends

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the prepopulated set of products provided in the sample
graph. The code required for the console will reinforce the standard persistence operations, this section focuses on
the operations that take advantage of this model type, including:

e Capturing consumption
e Filtering consumption for users

e Filtering consumption for messaging

Product Entity

The Product entity will be used to demonstrate the consumption graph— specifically how a user’s product trail can be
provided. As shown in Listing 7-40, this entity is similar to the other entities that have been outlined for this chapter.

Listing 7-40. The Product Object

public class Product

{
public long nodeld { get; set; }
public NodeReference noderef { get; set; }
public string productId { get; set; }
public string title { get; set; }
public string description { get; set; }
public string tagstr { get; set; }
public string content { get; set; }
public string price { get; set; }

Capturing Consumption

The process above for creating code that directly captures consumption for a user could also be done by creating
a graph-backed service to consume the webserver logs in real time, or by creating another data store to create
the relationships. The result would be the same in any event: a process that connects nodes to reveal a pattern of
consumption.

The sample application used the createUserViewAndReturnViews method in ProductService first to find the
Product entity being viewed and then to create an explicit relationship type called VIEWED. As you may have noticed,
this is the first relationship type in the application that also contains properties. In this case, you are creating a
timestamp with a Date object and String value of the timestamp. The query, provided in Listing 7-41, checks to see if a
VIEWED relationship already exists between the user and the product using MERGE.

In the MERGE section of the query, if the result of the MERGE is zero matches, then a relationship is created with key
value pairs on the new relationship—specifically, dateAsStr and timestamp. Finally, the query uses MATCH to return
the existing product views.

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-41. The createUserViewAndReturnViews Method in ProductService

// capture view and return all views
public List<MappedProductUserViews> createUserViewAndReturnViews(string username, long
productNodeId)
{
DateTime datetime = DateTime.UtcNow;
string timestampAsStr = datetime.ToString("MM/dd/yyyy") + " at " +
datetime.ToString("h:mm tt");
long timestampAsLong = (long)(datetime.Subtract(new DateTime(1970, 1, 1))).TotalSeconds;

List<MappedProductUserViews> mappedProductUserViews = _graphClient.Cypher
.Match(" (p:Product), (u:User { username:{u} }) ")
WithParam("u",username)

.Where("id(p) = {productNodeId}")

.WithParam("productNodeId",productNodeId)

MWith(" u,p")

.Merge(" (u)-[r:VIEWED]->(p)")

.Set(" r.dateAsStr={d}, r.timestamp={t} ")

WithParams(new { d = timestampAsStr, t = timestampAslLong })

Mith(" u ")

Match(" (u)-[r:VIEWED]->(p) ")

.Return(() => Return.As<MappedProductUserViews>("{ title: p.title, "+
"dateAsStr: r.dateAsStr }"))

.OrderByDescending("r.timestamp")

.Results.Tolist();

return mappedProductUserViews;

Filtering Consumption for Users

One practical use of the consumption model would be to create a content trail for users, as shown in

Figure 7-10. As a user clicks on items in the scrolling product stream, the interaction is captured using
createUserViewAndReturnViews, which ultimately returns a List of relationship objects of the VIEWED type, which are
displayed using the ViewModel object called MappedProductUserViews.

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 NEO4J + .NET

(—’» (& rp/lncalhost 301 75/ consumption p-c

2 Graph Story | Consumption

Consumption Graph

Gragh Story

Consumption Graph

This section of the application demonsirales a way 10 view products via a Sf-’ﬂ-‘"ﬂg st When a3 user Clicks on a product descrption, they are connected 1o the product via the VIEWED
retationship.

Consumption Menu Graph Story - Productsville

Scrofl down 1o show moar products

“Long Sleep” Portal Sleep Tank
Viewed Products 1 Description

ltems the cument user has recently viewed

"Wash Is My Copilot” License Plate Frame
“Leng Sleep™ Portal Sleep Tank

last viewed on: 09102014 at 807 AM

11th Doctor Costume Pajama Set
last viewed on: 090172014 at 457 PM 10th Doctor Costume Pajama Set

2014 Worldbuilders Fantasy Calendar
last viewed on: 0900172014 at 457 PM

3D Space Cookie Cutters 11th Doctor Costume Pajama Set
last viewed on: 090172014 at 455 PM

10th Doctor Costume Pajama Set
last viewed on: 09/012014 at 4:40 PM

50 Cups of Coffes Tub o' Caffeinated Candy
last viewed on. 09012014 al 440 PM

2014 Worldbuilders Fantasy Calendar

"Wash Is My Copilot” License Plate Frame 3
last viewed on: 090172014 at 439 PM 3D Space Cockie Cutters
Exclusive Game of Thrones Sigil Poster . i e

last viewed on: 8/30/2014 at 4115 PM

50 Cups of Coffes Tub o' Caffeinated Candy

Figure 7-10. The scrolling Product and Product Trail page

In the ConsumptionController, you will take a look at the CreateUserProductViewRel method to see how the
process begins inside the controller. The controller method first saves the view and then returns the complete history
of views using the getProductTrail, which can be found in the ProductService class (Listing 7-42). The process is

started when the createUserProductViewRel function is called, which is located in graphstory. js.

Listing 7-42. getProductTrail in the ProductService

public List<MappedProductUserViews> getProductTrail(string username)

{

106

List<MappedProductUserViews> mappedProductUserViews = _graphClient.Cypher
.Match("(u:User { username: {username} })-[r:VIEWED]->(p)")
WithParam("username", username)

.Return(() => Return.As<MappedProductUserViews>("{ title: p.title, "+
"dateAsStr: r.dateAsStr }"))

.OrderByDescending("r.timestamp")

.Results.TolList();

return mappedProductUserViews;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Filtering Consumption for Messaging

Another practical use of the consumption model is to create a personalized message for users, as displayed in
Figure 7-11. In this case, a filter allows the “Consumption Console” to narrow down to a very specific group of users
who visited a product that was also tagged with a keyword or phrase each user had explicitly used.

Consumption Graph

Consumption Graph

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
retationship with products. In this way, the users are consuming “product views" via a keyword or phrase

NOTE: this is different than when a user enters a keyword or phrase as a lag with CONTENT in the social graph. While the connection could be made between a user's lagged content
it is separate for the purpose of this example.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the 1ags’ music
« ajordan
- anwray

The product Star Wars Mimobot Thumb Drives shares the 1ags: star wars
+ ajordan
* anwray

The product Sound Splash Bluetooth Waterproof Shower Speaker shares the 1ags: music
- ajordan
« anwray

Figure 7-11. The consumption console

Using usersWithMatchingTags found in the ProductService class and shown in Listing 7-43, the application
optionally provides a tag as a string and simply returns the product title and the user and tags that are a match.

Listing 7-43. The usersWithMatchingTags Method in ProductService

// getProductsHasATagAndUserUsesAMatchingTag
public List<MappedProductUserTag> usersWithMatchingTags(string tag)
{
List<MappedProductUserTag> mappedProductUserTags = null;
if(!String.IsNullOrEmpty(tag)){
mappedProductUserTags = _graphClient.Cypher
.Match("(t:Tag { wordPhrase: {wp} })")
.WithParam("wp", tag)
.Match(" (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) ")

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

.Return(() => Return.As<MappedProductUserTag>("{ title: p.title , " +
"users: collect(u.username), tags: collect(distinct t.wordPhrase) }"))

.Results.TolList();

telse{
mappedProductUserTags = _graphClient.Cypher
.Match(" (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) ")
.Return(() => Return.As<MappedProductUserTag>("{ title: p.title , " +
"users: collect(u.username), tags: collect(distinct t.wordPhrase) }"))
.Results.TolList();

}

return mappedProductUserTags;

Either query will return a list of MappedProductUserTag ViewModel objects, as shown in Listing 7-44.

Listing 7-44. The View Mode Object—MappedProductUserTag

public class MappedProductUserTag

{
public string title {get; set;}
public List<string> users { get; set; }
public List<string> tags { get; set; }
}
Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin
e Filtering on location
e Products based on location

The example will demonstrate how to add a console to enable you to connect products to locations in an ad hoc
manner.

Location Entity

The Location entity provides a way to store geopoints for stores and each of the stores have various products in stock
(Listing 7-45). Because the Location entity does not require any START-based queries, the NodeReference is excluded
as a property.

Listing 7-45. The Location Object

public class Location

{
public long nodeld { get; set; }
public string locationId {get;set;}
public string name { get; set; }
public string address { get; set; }
108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

public string city { get; set; }
public string state { get; set; }
public string zip { get; set; }
public double lat { get; set; }
public double lon { get; set; }

The User object also contains a relationship to Location via the HAS relationship type. User locations are
retrieved through the getUserLocation method, shown in Listing 7-46, which is located in the UserService class.
Listing 7-46 also provides the ViewModel object named MappedUserLocation, which returns the necessary properties
for the Location view layer.

Listing 7-46. getUserlLocationinUserService

public MappedUserLocation getUserLocation(string currentusername)

MappedUserLocation mappedUserLocation = _graphClient.Cypher
.Match(" (u:User { username : {u} })-[:HAS]-(1:Location) ")
WithParam("u", currentusername)
.Return(() => Return.As<MappedUserLocation>("{ username: u.username, address:
l.address," +
" city:l.city, state: l.state, zip: l.zip, lat: l.lat, lon: 1l.lon} "))
.Results.First();

return mappedUserLocation;

}

public class MappedUserLocation

{
public string username { get; set; }
public string address { get; set; }
public string city { get; set; }
public string state { get; set; }
public string zip { get; set; }
public double lat { get; set; }
public double lon { get; set; }

}

Search for Nearby Locations

To search for nearby locations, as shown in Figure 7-12, use the current user’s location, obtained with
getUserLocation, and then the returnLocationsWithinDistance (Listing 7-47) to provide the location information
and the type of location being requested. The returnLocationsWithinDistance method in LocationService also
uses a method called addDistanceTo to place a string value of the distance between the starting point and the
respective location.

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 NEO4J + .NET

& Graph Story | Location

Location Graph

Gragh Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a cenain distance or search for proudcls with a cenain distance

Location Graph

The user “ajordan™ lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letiers to autosuggest products and find out which stores have the product in stock

Distance 10 Miles | Search

Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store 5 3.99 Miles Away

South Graham Store is 4.02 Miles Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Wartord Store is 6.20 Miles Away

Figure 7-12. Searching for Locations within a certain distance of the User location

Listing 7-47. returnLocationsWithinDistance in the LocationService

public List<MappedLocation> returnLocationsWithinDistance(double lat, double lon, double distance,
string locationType)

{

110

var q = string.Format(distanceQueryAsString(lat, lon, distance));

List<MappedLocation> mappedLocations = _graphClient.Cypher
.Start(new { n = Node.ByIndexQuery("geom", q) })
.Where(" n.type = {locationType} ")
.WithParam("locationType", locationType)
.Return(() => Return.As<MappedLocation>("{locationId: n.locationld, address: n.address , " +
" city: n.city , state: n.state, zip: n.zip , name: n.name, lat: n.lat , lon: n.lon}"))
.Results.TolList();
addDistanceTo(mappedLocations, lat, lon);

return mappedlLocations;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Locations with Product

To search for products nearby, as shown in Figure 7-13, the application makes use of an autosuggest AJAX request,
which ultimately calls the search method in the ProductService class. The method, shown in Listing 7-48, returns
an array of MappedProductSearch objects to the product field in the search form and applies the selected product’s
productNodeId to the subsequent location search (Listing 7-49).

LR (W 5 et ocalbiost $0125 loc stionTproduct=Advent J = €6

Gragh Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance

& Graph Story | Location

Location Graph

Location Graph

The user "ajordan®™ lives al 5300 Walnut Grove Road Memphis, TN 38120

Use the form below 1o search for store locations near 5900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letlers to autosuggest products and find oul which stores have the product in stock.

Distance 10 Miles| v Search

The following locations have "Adventure Time Finn's Backpack™
Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store s 3.99 Miles Away
South Graham Store is 4 02 Miles Away
Barilett Woods Store (s 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichigrman Store is 549 Miles Away

Warford Store is 6.20 Miles Away

Figure 7-13. Searching for Products in stock at Locations within a certain distance of the User location

For almost all cases, it is recommended not to use the graphld because it can be recycled when its node is
deleted. In this case, the productNodeld should be consider safe to use, because products would not be in danger of
being deleted but only removed from a Location relationship.

Listing 7-48. Search Method in ProductService

public MappedProductSearch[] search(String q)
{

q = q.Trim().ToLower() + ".*";
MappedProductSearch[] mappedProductSearch=_graphClient.Cypher

.Match("(p:Product)")
.Where("lower(p.title) =~ {q}")

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

.WithParam("q", q)

.Return(() => Return.As<MappedProductSearch>(" { name: count(*), " +
" id: TOSTRING(ID(p)), label: p.title }"))

.OrderBy("p.title")

.Limit(5)

.Results.ToArray();

return mappedProductSearch;

}

Listing 7-49. The View Model Object—MappedProductSearch

public class MappedProductSearch

{
public string id { get; set; }
public string label { get; set; }
public string name { get; set; }
}

Once the product and distance have been set and the search is executed, the LocationController tests to see if a
prouctNodeld property has been set. If so, the controller calls returnLocationsWithinDistanceAndHasProduct in the
LocationService, as shown in Listing 7-50.

Listing 7-50. The returnLocationsWithinDistanceAndHasProduct in the LocationService

public GraphStory returnlLocationsWithinDistanceAndHasProduct(GraphStory graphStory, double lat,
double lon, double distance)

{
string q = distanceQueryAsString(lat, lon, distance);
List<MappedLocation> mappedLocations= _graphClient.Cypher
.Start(new { n = Node.ByIndexQuery("geom", q), p = graphStory.product.noderef})
Match(" n-[:HAS]->p ")
.Return(() => Return.As<MappedLocation>(" { locationId: n.locationId, address:
n.address , " +
" city: n.city , state: n.state, zip: n.zip , name: n.name, lat: n.lat , lon:
n.lon} "))
.Results.Tolist();
addDistanceTo(mappedLocations, lat, lon);
graphStory.mappedLocations = mappedlLocations;
return graphStory;
}
Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase entity, shown in Listing 7-51. The intent graph also considers the products, users, locations, and tags that are
connected based upon the Purchase entity.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Listing 7-51. The Purchase Object

public class Purchase

{
public long nodeld { get; set; }
public string purhcaseld { get; set; }

In addition, each one of the following examples makes use of the MappedProductUserPurchase ViewModel found
in Listing 7-52.

Listing 7-52. The View Model Object - MappedProductUserPurchase

public class MappedProductUserPurchase

{
public string productId { get; set; }
public string title { get; set; }
public List<string> fullname { get; set; }
public string wordPhrase { get; set; }
public int cfriends { get; set; }

}

Products Purchased by Friends

To get all of the products that have been purchase by friends, the friendsPurchase method is called from
PurchaseService, as shown in Listing 7-53.

The query, shown in Listing 7-53, finds the users being followed by the current user and then matches those users
to a purchase that has been MADE which CONTAINS a product. The return value is a set of properties that identify the
product title, the name of the friend or friends, and the number of friends who have bought the product. The result is
ordered by the number of friends who have purchased the product and then by product title, as shown in Figure 7-14.

Listing 7-53. The friendsPurchase Method in PurchaseService

public List<MappedProductUserPurchase> friendsPurchase(string userId)

{
return _graphClient.Cypher
.Match("(u:User { userId : {userId} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p")
WithParam("userId", userId)
.Return(() => Return.As<MappedProductUserPurchase>("{ productId:p.productld,title:p.
title," +
"fullname:collect(f.firstname + ' ' + f.lastname),wordPhrase:null,cfriends:
count(f) } "))
.OrderByDescending("count(f)")
.Results.TolList();
}

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 NEO4J + .NET

L2l (S) hiiplocalhost 50125 /intent B = & | & Greph Story | Products Purc... »

Intent Graph

&FGraph Story

Intent Graph

This section of the application shows interest via a user's tagged conlent and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags

Intent Menu Intent Graph - Products Purchased by Friends

Product # Friends who purchased
Star Wars Mimobot Thumb Drives

Doctor Who TARDIS Water Bottle

Lebowski Bowling Hoodie 1

Star Wars Princess Leia Beach Towel

Star Wars Light-Up Lightsaber Pens

| Never Finish Anyth 1
Breaking Bad iPhone Cases

Doctor Who Sonic Screwdriver Lamp

Star Trek Tribble Slippers with Sound

Doctor Who Beach Towel

Sound Splash Bluetooth Waterproof Shower Speaker

Jedi Academy Book

Figure 7-14. Products purchased by friends

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars
Mimbot Thumb Drives’; and then search for friends who have purchased this product, as shown in Figure 7-15. This is
done via the friendsPurchaseByProduct method in PurchaseService, which is shown in Listing 7-54.

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

&« |- FItD 125 intent/f Bl O -2

Grth Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded 1o show users with common
inlerests via tags

& Graph Story | Specific Prod...

Intent Graph

Intent Menu Intent Graph - Specific Products Purchased by Friends

Star Wars Mimobol Thumb Drives Search

Product # Friends who purchased

Star Wars Mimobot Thumb Drives

Friends

» Nikola Tesla
« Philo Farnsworth
+ John Baird

Figure 7-15. Specific Products Purchased by Friends

Listing 7-54. The friendsPurchaseByProduct Method in PurchaseService

public List<MappedProductUserPurchase> friendsPurchaseByProduct(string userId, string title)
{
return _graphClient.Cypher

.Match("(p:Product)")
.Where("lower(p.title) =lower({title})")
WithParam("title", title)
ith("p™)
.Match("(u:User { userId : {userId} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->(p) ")
.WithParam("userId", userId)
.Return(() => Return.As<MappedProductUserPurchase>("{productId:p.productld,title:p.
title," +
"fullname:collect(f.firstname +
count(f) }"))
.OrderByDescending("count(f)")
.Results.Tolist();

+ f.lastname),wordPhrase:null,cfriends:

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Products Purchased by Friends and Matches User’s Tags

In this next instance, we want to determine products that have been purchased by friends but also have tags that are
used by the current user. The result of the query is shown in Figure 7-16.

& hitpe/Nocalhost 50175/ intent FriendsPurchaseTa O = © | (2 Graph Story | Products Purc... =

rapf‘ Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags

Intent Menu Intent Graph - Products Purchased by Friends and Matches Users Tags
Product # Friends who purchased
Star Wars Mimobot Thumb Drives
Friends
Aatct Tag = Nikola Tesia

ends = Philo Farmsworth
s Tag = John Baird

Tags: star wars

Sound Splash Bluetooth Waterproof Shower Speaker
Figure 7-16. Products Purchased by Friends and Matches User’s Tags

Using friendsPurchaseTagSimilarity in PurchaseService, shown in Listing 7-55, the application provides the
userld to the query and uses the FOLLOWS, MADE, and CONTAINS relationships to return products purchases by users
being followed. The subsequent MATCH statement takes the USES and HAS directed relationship types to determine
the TAG connections the resulting products and the current user have in common.

Listing 7-55. The friendsPurchaseTagSimilarity Method in PurchaseService

public List<MappedProductUserPurchase> friendsPurchaseTagSimilarity(string userId)
{
return _graphClient.Cypher
.Match("(u:User { userId : {userId} })-[:FOLLOWS]-(F)-[:MADE]->()-[:CONTAINS]->p")
.WithParam("userId", userId)
MWith("u,p, ")
.Match("u-[:USES]->(t)<-[:HAS]-p")
.Return(() => Return.As<MappedProductUserPurchase>("{productld:p.productld,title:p.
title," +
"fullname:collect(f.firstname + ' ' + f.lastname),wordPhrase:t.wordPhrase,cfriends:
count(f)}"))
.OrderByDescending("count(f)")
.Results.TolList();

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © NEO4J + .NET

Products Purchased by Friends Nearby and Matches User’s Tags

To find products that match with a specific user’s tags and have been purchased by friends who live within
a set distance of the user, use the friendsPurchaseTagSimilarityAndProximityTolLocation method,
which is easily world’s longest method name and is located in PurchaseService class. The method uses the
MappedProductUserPurchase ViewModel, as shown in Listing 7-56.

Listing 7-56. The friendsPurchaseTagSimilarityAndProximityToLocation method in PurchaseService

public List<MappedProductUserPurchase> friendsPurchaseTagSimilarityAndProximityTolLocation(double
lat, double lon, double distance, string userId)

{

var q = string.Format(distanceQueryAsString(lat, lon, distance));

return _graphClient.Cypher
.Start(new { n = Node.ByIndexQuery("geom", q) })
MWith("n™)
.Match("(u:User { userId : {userId} })-[:USES]->(t)<-[:HAS]-p")
WithParam("userId", userId)
MWith("n,u,p,t")
.Match("u-[:FOLLOWS]->(f)-[:HAS]->(n) ")
With("p,f,t")
.Match("f-[:MADE]->()-[:CONTAINS]->(p)")
.Return(() => Return.As<MappedProductUserPurchase>("{productld:p.productld,title:p.
title," +
"fullname:collect(f.firstname + ' ' + f.lastname),wordPhrase:t.wordPhrase,cfriends:
count(f)}"))
.OrderByDescending("count(f)")
.Results.TolList();

The query begins starts with a location search within a certain distance, then matching the current user’s tags
to products. Next, the query matches friends based the location search. The resulting friends are matched against
products that are in the set of user tag matches. The result of the query is shown in Figure 7-17.

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 NEO4J + .NET

(—.—; B hitp 501

& Graph Story | Products Purc...

() Intent Graph
Gragh Story
Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged conlent. This could be expanded to show users with common
Interests via tags

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches Users Tags

Matches to friends who live near 5900 Walnut Grove Road Memphis, TN 38120

Product # Friends who purchased
Star Wars Mimobol Thumb Drives :J.:

Friends

= Philo Famsworth

Tags: star wars

Figure 7-17. Products Purchased by Friends Nearby and Matches User’s Tags

Summary

This chapter presented the setup for .NET and Neo4j and sample code for using the Neo4Client driver. It proceeded
to look at sample code for setting up a social network and examining interest within the network. It then looked
at the sample code for capturing and viewing consumption—in this case, product views— and the queries for
understanding the relationship between consumption and a user’s interest. Finally, it looked at using geospatial
matching for locations and examples of methods for understanding user intent within the context of user location,
social network, and interests.

The next chapter will review using PHP in tandem with Neo4j, covering the same concepts presented in this
chapter but in the context of a PHP driver for Neo4;.

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Neodj + PHP

This chapter focuses on using PHP with Neo4j and creating a working application that integrates the five graph model
types covered in Chapter 3. As with other languages that offer drivers for Neo4j, the integration takes place using a
Neo4;j server instance with the Neo4j REST APL This chapter is divided into the following topics:

e PHP and Neo4j Development Environment
e Neo4jPHP
e Developing a PHP and Neo4j application

In each chapter that explores a particular language paired with Neo4j, I recommend that you start a free trial on
www. graphstory.com or have installed a local Neo4;j server instance as shown in Chapter 2.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from
Graph Story.

For this chapter, I assume that you have at least a beginning knowledge of PHP and a basic understanding of how
to configure PHP for your preferred operating system. To proceed with the examples in this chapter, you will need to
have installed and configured PHP 5.3.28 or greater. In addition, the sample application uses the Apache HTTP server
and php5_module.

Do This If you do not have Apache HTTP installed, it is highly recommended that you follow the instructions at
http://httpd.apache.org/ based on your operating system. Configuring PHP with a local instance of Apache HTTP is
beyond the scope of this book, but the basic steps can be found at http://www.php.net/manual/en/refs.utilspec.

server.php.

I also assume that you have a basic understanding of the model-view-controller (MVC) pattern and some
knowledge of PHP frameworks that provide an MVC pattern. There are, of course, a number of excellent PHP
frameworks from which to choose, but I had to pick one for the illustrative purposes of the application in this chapter.
I chose the Slim PHP framework because it is limited in its scope and allows the focus to remain on the application to
the greatest extent possible. This chapter is focused on integrating Neo4j into your PHP skill set and projects and does
not dive deeply into the best practices of developing with PHP or PHP frameworks.

119

www.it-ebooks.info

http://www.graphstory.com/
http://httpd.apache.org/
http://www.php.net/manual/en/refs.utilspec.server.php
http://www.php.net/manual/en/refs.utilspec.server.php
http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

PHP and Neo4j Development Environment

Preliminary to this chapter’s discussion of the PHP and Neo4j application, this section covers the basics of configuring
a development environment. Again, if you have not worked through the installation steps in Chapter 2, please take a
few minutes to review and walk through the installation.

Readme Although each language chapter walks through the process of configuring the development environment
based on the particular language, certain steps are covered repeatedly in multiple chapters. While the initial development
environment setup in each chapter is somewhat redundant, it allows each language chapter to stand on its own. Bearing
this in mind, if you have already configured Eclipse with the necessary plugins while working through another chapter,
you can skip ahead to the section “Adding the Propse.”

IDE

The reasons behind the choice of an IDE vary from developer to developer and are often tied to the choice of
programming language. I chose the Eclipse IDE for a number of reasons but mainly because it is freely available and
versatile enough to work with all the programming languages featured in this book.

Although you are welcome to choose a different IDE or other programming tool for building your application,
I recommend that you install and use Eclipse to be able to follow the PHP and Neo4j examples and the related
examples found throughout the book and online.

Tip If you do not have Eclipse, please visit http://www.eclipse.org/downloads/ and download the Indigo package,
titled “Eclipse IDE for Java EE Developers.” The Indigo package is also labeled “Version 3.7.”

Once you have installed Eclipse, open it and select a workspace for your application. A workspace in Eclipse is
simply an arbitrary directory on your computer. As shown in Figure 8-1, when you first open Eclipse, the program
will ask you to specify which workspace you want to use. Choose the path that works best for you. If you are working
through all of the language chapters, you can use the same workspace for each project.

INDIGO

»r .
—eclipse

Select a workspace

Eclipse stores your projects in a folder called a workspace,
Choote a workspace folder to use for this session

Workspace: | fsome/path/to/your fworkspace v Browst...

Use this as the default and do not ask again

Caneel oK

Figure 8-1. Opening Eclipse and choosing a workspace

120

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Aptana Plugin

The Eclipse IDE offers a convenient way to add new tools through their plugin platform. The process for adding new
plugins to Eclipse is straightforward and usually involves only a few steps to install a new plugin—as you will see in
this section.

A specific web-tool plugin called Aptana provides support of server-side languages like Python as well as client
languages such as CSS and JavaScript. This chapter and the other programming language chapters use the plugin to
edit both server- and client-side languages. A benefit of using a plugin such as Aptana is that it can provide code-assist
tools and code suggestions based on the type of file you are editing, such as CSS, JS, or HTML. The time saved with
code-assist tools is usually significant enough to warrant their use. Again, if you feel comfortable exploring within
your preferred IDE or other program, please do so.

To install the Aptana plugin, you need to have Eclipse installed and opened. Then proceed through the following
steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one in Figure 8-2.

Check the items that you wish to install.

Available Software
-

Work with: | Mtp://@ownload aptans com/studiod pluginupdate/ - Add.

Find mare softwars by working with the “Available Software Sites” preferences.

Name Version
o ¥ 10 Agtana Suadie 3
o “pAptana Stucko 3 Plugn 3.4.2.201308081736-TWN5TboCRERAIL.

Sabect ANl Deselect All 1 iter selacted

Details

Show oanly the latest versions of available saftware Hide items that are slready installed
+ Group items by categery What is alrgady installed?
Show only sofware appicable 10 T geL envisonment

 Contact a1 Lpdate sites during Install to And required software

Figure 8-2. Installing the Aptana plugin
2. Paste the URL for the update site, http://download.aptana.com/studio3/plugin/

install, into the “Work with” text box, and hit the Enter (or Return) key.

3. Inthe populated table below, check the box next to the name of the plugin, and then click
the Next button.

4. Click the Next button to go to the license page.

5. Choose the option to accept the terms of the license agreement, and click the Finish
button.

6. You may need to restart Eclipse to continue.

121

www.it-ebooks.info

http://download.aptana.com/studio3/plugin/install
http://download.aptana.com/studio3/plugin/install
http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Adding the Project to Eclipse

After installing Eclipse plugin, you have the minimum requirements to work with your project in the workspace. To
keep the workflow as fluid as possible for each of the language example application, use the project import tool with
Eclipse. To import the project into your workspace, follow these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4j for PHP” Unzip the archive file on to your computer.

2. InEclipse, select File » Import and type “project” in the “Select an import source.”

3. Under the “General” heading, select “Existing Projects into Workspace”. You should now
see a window similar to Figure 8-3.

Select
Create new projects from an archive file or directory. 'E - 5

Select an import source:

¥ (= General
|, Archive File
]_,—':Dti!ling Folder as New Project
| Existing Projects into Workspace

_| File System
[Preferences
b EOVs
»=He
» = Git
* = Install
* = Java EE
¥ (= Maven
» = Plug-in Development
F (= Remote Systems
¥ = Run/Debug
» (= Swdio
P (= Tasks
-? < Back Next > Cancel

Figure 8-3. Importing the project into Eclipse

4. Now that you have selected “Existing Projects into Workspace’, click the “Next >” button.
The dialogue should now show an option to “Select root directory.” Click the “Browse”
button and find the root path of the “practicalneo4j-php” archive.

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 8-4.

122

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

mport
Import Projects =
Select a directory to search for existing Eclipse projects. i /
-
+) Select root directory: /Volumes/MacMac/temp/practicalnec4j-php | Browse...
() Select archive file: Browse...
Projects:
v practicalneodj-php (/Vol IMacMac/temp/ practicalneod)-php) Select Al
Deselect All
Refresh
v Copy projects into workspace
Working sets
_| Add project to working sets
Working sets:
(@ <Back Next > | Cancel

Figure 8-4. Selecting the project location

6.

| 3 |30 Q- |9 [oF &
;I.f’_‘J Project Explorer 53
P < Local Filesystem
¥ &2 practicalneo4j-php
¥ 52 app
» (= logs
P (& neodj
¥ = public
> (= service
P (= templates
» - vendor
.l composer.json
|=| composer.lock
EdreADME.md
@ Connections

Figure 8-5. Snapshot of the imported project

www.it-ebooks.info

CHAPTER 8 = NEO4J + PHP

Once the project is finished importing into your workspace, you should have a directory
structure that looks similar to the one shown in Figure 8-5.

123

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Composer

The project in this chapter also makes use of Composer, which is a tool for dependency management in PHP.
Composer allows you to explicitly declare any of the PHP libraries your project needs and then installs them in your
project for you. This is a huge benefit when your application depends upon one or more PHP libraries, which is the
case with the sample application in this chapter and will probably be the case with most of your PHP projects.

Tip To download Composer and get information about installing it, go to https://getcomposer.org/.

Even though the sample project in this chapter has all of the dependencies already set, you should take some
time and become familiar with Composer and how to use it in your projects. The example in Listing 8-1 shows the
contents of the Composer file that is included within this project.

Listing 8-1. composer. json file for the sample project

{

"name": "slim/slim-skeleton",
"description”: "A Slim Framework skeleton application for rapid development”,
"keywords": ["microframework","rest","router"],
"homepage": "http://github.com/codeguy/Slim-Skeleton",
"license": "MIT",
"authors": [
{
"name": "Josh Lockhart",
"email": "info@joshlockhart.com",
"homepage": "http://www.joshlockhart.com/"

1,

"require": {
"php": ">=5.3.0",
"monolog/monolog": "1.*",
"slim/slim": "2.%*",
"slim/views": "0.1.*",
"twig/twig": "1.*",
"everyman/neo4jphp": "dev-master"

The first section contains meta-information about the project, but the most important section is the require key/
value section. The require section shows the specific dependencies for the project. Once Composer is installed and
you have added a composer. json file to the root of your project, you can execute the command in Listing 8-2. The
example in Listing 8-2 assumes that you have installed Composer using the global installation method.

Listing 8-2. Creating a project with Composer

// Replace [my-neo4j-app] with the desired directory name or path for your new application.
composer create-project slim/slim-skeleton [my-neo4j-app]

124

www.it-ebooks.info

https://getcomposer.org/
http://github.com/codeguy/Slim-Skeleton
http://www.joshlockhart.com/
http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Slim PHP

Slim is a PHP implementation of what is often called a micro framework. The aim of a micro framework is to help you
quickly build out powerful web applications and APIs using only what is absolutely necessary to get the job done.

Note Slim is maintained by the outstanding PHP dev Josh Lockhart and supported by a number of equally
outstanding committers, including our technical reviewer Jeremy Kendall. If you would like to get involved with Slim,
please visit http://www.slimframework.com/.

Listing 8-3. SlimPHP Example of GET Route

<?php
. include file code omitted for brevity...

//setup app

$app = new \Slim\Slim(array(
'log.enabled' => true,
'log.level' => \S1lim\Log: :DEBUG,
'log.writer' => $logWriter,
'view' => new \Slim\Views\Twig()

));

...code omitted for brevity...

// new GET route to /somepath
$app->get('/somepath', function() use ($app){
//render this html file
$app->render('graphs/social/posts.html');
D;

Local Apache Configuration

To follow the sample application found later in this chapter, you will need to properly configure your local Apache
webserver to use the workspace project in Eclipse as the document root. One way to accomplish this is adding a virtual
host to Apache. Listing 8-4 covers the basic configuration for adding a virtual host to the httpd-vhosts.conf file.

Important If you do not have Apache HTTP installed, go to http://httpd.apache.org/ and follow the instructions
based on your operating system. Configuring PHP with a local instance of Apache HTTP is out of scope for this book, but
you can find the basic configuration steps at http://www.php.net/manual/en/refs.utilspec.server.php.

Listing 8-4. Minimum Configuration for httpd-vhosts.conf

NameVirtualHost *:80

<VirtualHost *:80>
add practicalneo4j-php to your hosts file OR substiute your
ServerName practicalneo4j-php
DocumentRoot /path/to/your/workspace/practicalneo4j-php/app/public

125

www.it-ebooks.info

http://www.slimframework.com/
http://httpd.apache.org/
http://www.php.net/manual/en/refs.utilspec.server.php
http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

<Directory /path/to/your/workspace/practicalneo4j-php/app/public>
RewriteEngine On
RewriteCond %{REQUEST FILENAME} !-f
RewriteRule ~(.*)$ index.php [QSA,L]
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

</VirtualHost>

In addition the configuration changes for your local Apache webserver, complete the following two items to
finalize your development environment:

1. Point your virtual host document root to your new application’s public/ directory.

2. Ensure logs/ and templates/cache are web writeable.

Neo4jPHP

This section covers basic operations and usage of the Neo4jPHP library with the goal of understanding the library
before implementing it within an application. The next section of this chapter will walk you through a sample
application with specific graph goals and models.

Like most of the language drivers and libraries available for Neo4j, the purpose of Neo4jPHP is to provide
a degree of abstraction over the Neo4j REST API. In addition, the Neo4jPHP API provides some additional
enhancements that might otherwise be required at some other stage in the development of your PHP application,
such as caching.

Note Neo4jPHP is maintained by the super-awesome Josh Adell and supported by a number of great PHP graphistas.
If you would like to get involved with Neo4jPHP, go to https://github.com/jadell/neo4jphp.

Each of the following brief sections covers concepts that tie either directly or indirectly to features and
functionality found within the Neo4j Server and REST APL. If you choose to go through each language chapter, you will
notice how each library covers those features and functionality in similar ways but takes advantage of the language-
specific capabilities to ensure that the API is flexible and performant.

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, which includes the most basic of graph concepts: the
node. Managing nodes and their properties and relationships will probably account for the bulk of your application’s
graph-related code.

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 8-5. Creating a node begins
with setting up a connection to the database and making the node instance. The node properties are set next, and
then the node can be saved to the database.

126

www.it-ebooks.info

https://github.com/jadell/neo4jphp
http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Listing 8-5. Creating a Node

<?php

require_once '../vendor/autoload.php';
// Neo4jClient class

require_once '../neo4j/Neo4jClient.php';

// Create Neo4j client
$neo4jClient = new Everyman\Neo4j\Client('localhost', 7474);
Neo4Client::setClient($neodjClient);

// setup the node
$user = $neoqjClient->makeNode();

// populate & save the node
$ user->setProperty('name', 'Greg')->setProperty('business’, 'Graph Story')->save();

Retrieving and Updating a Node

Once nodes have been added to the database, you will need a way to retrieve and modify them. Listing 8-6 shows the
process for finding a node by its node id value and updating it.

Listing 8-6. Retrieving and Updating a Node

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$user = $neo4jClient->getNode(10);

// update & save the node
$user->setProperty('name', 'Greg')->setProperty('business', 'Crowdplace')->save();

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
In order to remove a node, set a variable as a node object instance and then call the delete method for the node
(Listing 8-7).

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Listing 8-7. Deleting a Node

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$user = $neo4jClient->getNode(10);

// delete the node
$user->delete();

Creating a Relationship

Neo4jPHP offers two different methods for creating relationships: one using the relateTo method; the other using the
makeRelationship method. The example in Listing 8-8 sets up the relationship using the relateTo method, which is the
less verbose of the two options.

Note Both the start and end nodes of a relationship must already be established within the database before the
relationship can be saved.

Listing 8-8. Relating Two Nodes

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$greg = $neodjClient->getNode(10);

// retrieve the node by its node id value, in this case 1
$jeremy = $neo4jClient->getNode(1);

// populate & save the relationship ($greg follows $jeremy)
$greg->relateTo($jeremy, 'FOLLOWS')->save();

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Retrieving Relationships

Once a relationship has been created between one or more nodes, the relationship can be retrieved based on a node.

Listing 8-9. Retrieving Relationships

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$greg = $neo4jClient->getNode(10);

// get all relationships
$gregRels = $greg->getRelationships();

// get relationships based on relationship named 'FOLLOWS'
$ gregKNOWSRels = $greg->getRelationships(array('FOLLOWS'));

Deleting a Relationship

Once arelationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary. In order to remove a relationship, it must be set as a relationship object instance and then the delete
method for the relationship can be called.

Listing 8-10. Deleting a Relationship

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the Relationshipby its Relationship id value, in this case 20
$rel = $client->getRelationship(20);

// delete the relationship
$rel->delete();

Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4j 2.0 to

help in querying, and they can also function as a way to quickly create a sub-graph.

www.it-ebooks.info

129

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Adding a Label to Nodes

In Neo4jPHP, you can add one more labels to a node. As Listing 8-10 shows, the addLabels function takes one or more
labels as argument. You can return each of the labels on a node by calling its getLabels function. The value used for the
label should be any nonempty string or numeric value.

Caution A label will not exist on the database server until it has been added to at least one node.

Listing 8-10. Creating a Label and Adding It to a Node

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$greg = $neo4jClient->getNode(10);

// create three labels

$userLabel = $client->makelLabel('User');
$devLabel = $client->makeLabel('Developer');
$memeLabel = $client->makelLabel('GoodGuyGreg');

// add the labels to $greg
$labels = $greg->addLabels(array($userLabel, $devLabel, $memeLabel));

// get the labels for $greg
$labels = $greg->getlabels();

Removing a Label

Removing a label uses similar syntax as adding a label to a node. After the given label has been removed from the
node (Listing 8-12), the return value is a list of labels still on the node.

Listing 8-12. Removing a Label from a Node

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// retrieve the node by its node id value, in this case 10
$greg = $neodjClient->getNode(10);

// delete the relationship
$remaininglabels = $node->removelabels(array($memeLabel));

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Querying with a Label

To get nodes that use a specific label, use the function called getNodes. This function returns value as a result Row
object, which can be iterated over like an array.

Listing 8-13. Querying with a Label

<?php
// Neo4jClient class
// ...omitted...

// Create Neo4j client
// ...omitted...

// get the label
$devLabel = $client->makelLabel('Developer');

// return the nodes
$devNodes = $devLabel->getNodes();

// Only return nodes that have whose name property value is "Greg"
$nodes = $devLabel->getNodes("name", "Greg");

Developing a PHP and Neo4j Application

Preliminary to building out your first PHP and Neo4j application, this section covers the basics of configuring a
development environment.
Again, if you have not worked through the installation steps in Chapter 2, please take a few minutes to install it.

Preparing the Graph

In order to spend more time highlighting code examples for each of the more common graph models, we will use a
preloaded instance of Neo4j including necessary plugins, such as the spatial plugin.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from Graph
Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to graphstory.com/
practicalneo4j, downloading the zip file containing the sample database and plugins, and adding them to your
local instance.

Using the Sample Application

If you have already downloaded the sample application from graphstory.com/practicalneo4j for PHP and
configured it with your local application environment, you can proceed to the “Slim Application Configuration”
section. Otherwise, you will need to go back to the “PHP and Neo4j Development Environment” section and set up
your local environment in order to follow the examples in the sample application.

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Slim Application Configuration

Before diving into the code examples, you need to update the configuration for the Slim application. In Eclipse (or the
IDE you are using), open the file {PROJECTROOT}/app/service/AppConfig.php and edit the GraphStory connection
string information. If you are using a free account from graphstory.com, you will change the username, password and
URL in Listing 8-14 with the one provided in your graph console on graphstory.com.

Listing 8-14. Database Connection Settings for a Remote Service such as Graph Story

$neoqjClient =

new Everyman\Neo4j\Client('someurl.graphstory.com', 7473);
$neodjClient->getTransport()->useHttps()->setAuth('username’,

"password');

If you have installed a local Neo4j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, similar to the example shown in Listing 8-15.

Listing 8-15. Database Connection Settings for Local Enviroment

$neoqjClient =

new Everyman\Neo4j\Client('localhost', 7474);

Once the environment is properly configured and started, you can open a browser to the url, http://
practicalneo4j-PHP, and you should see a page like the one shown in Figure 8-6.

Graph Stoey | Home

€ C

practicalneodj-php/

Graph Story

The leading graph-as-a-service provider

cvam

Get Interested

Maps are a graph! Graph Story is a next
generation platform for apps
location information. Keep loc
let us do the work.

Easy path to Social

Quickly create an online community and help

Maps are a graph! Recommendations
Graph Story is a next generation Déﬂ‘l‘xm for Relevant recommendations create sal es'
1w'~1'm1r‘age location information. Keep Graph Story will help your ¢ 1

@ and let us do the work.

understand and manage their
recommaendations to get more relevant
resuits,

Figure 8-6. The PHP sample application home page

132

Content is King

What your customers read can you what
hat not to write. our
ords with your own.

Wln at Startlng

> aliows your team to look
down on your ﬂe1 from a high level to make
Sure you are considering all the components
of your startup & keeps everything in one
place, moving forward and staying strong.

www.it-ebooks.info

http://practicalneo4j-php/
http://practicalneo4j-php/
http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany the use of that type
of model. In particular, this section looks at the following:

e Sign-up and Login
e Updating a user
e Creating arelationship type through a user by following other users

e Managing user content, such as displaying, adding, updating, and removing status updates

Note The sample graph database used for these examples is loaded with data, so you can immediately begin working
with representative data in each of the graph models. In the case of the social graph—and for other graph models,
as well—you will login with the user ajordan. Going forward, please login with ajordan to see each of the working
examples.

Sign Up

The HTML required for the user sign-up form is shown in Listing 8-16 and can be found in the {PROJECTROOT}/app/
templates/home/index.mustache file.

Listing 8-16. HTML Snippet of the Sign-Up Form

<form class="navbar-form navbar-left" action="/signup/add" role="form"
id="createaccountform" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="username"
class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button>
</form>

Note While the sample application creates a user without a password, | am certainly not suggesting or advocating
this approach for a production application. Excluding the password property was done in order to create a simple sign-up
and login that helps keep the focus on the more salient aspects of the Neo4jPHP library.

Sign-Up Route

In the sign-up route, start by doing a look up on the username passed in the request and see if it already exists in the
database using the getByUsername method found in the User service layer, as provided in Listing 8-17. If no match is
found, then the username is passed on to the saveUser method.

If no errors were returned during the save attempt, the request is redirected and a message is passed to thank the
user for signing up. Otherwise, the error message back to the home view informs the user of the problem.

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Listing 8-17. The Signup Controller Route

// create new user & redirect
$app->post('/signup/add', function() use ($app){
$params = $app->request()->post();
// make sure the user name was passed.
$username = trim($params['username']);

//FYI - this is one way to log with SLIM
// $app->log->debug('some message then a variable: ' . $username);

if (lempty($username)) {
// lower case the username.
$username=strtolower($username);

// see if there's already a User node with this username
$checkuser = User::getByUsername($username);

//No? then save it
if(is_null($checkuser)){
// setup the object
$user = new User();
$user->username = $username;
// save it
User::saveUser($user);
// redirect to thank you page
$app->redirect(' /thankyou?u=".%username);

}
// show the "try again" message.
else {
$app->view()->setData(array('error' =>
'The username "'.$username.'" already exists. Please try again.'));
$app->render(' home/index.mustache');

// username field was empty
} else {
$app->view()->setData(array('error' => 'Please enter a username.'));
$app->render('home/index.mustache');
}
D;

Adding a User

In each part of the five graph areas covered in the chapter, the domain object will have a corresponding service to
manage the persistence operations within the database. In this case, the User class covers the management of the
application’s user nodes using a mix of Neo4jPHP convenience methods and executing Cypher queries.

To save a node and label it as a User, the saveUser method, shown in Listing 8-18, makes use of the Neo4jPHP

save method by passing in the username param and value. Once the node is created, the Neo4jPHP addLabels
method applies the User label.

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Listing 8-18. The saveUser Method in the User Class

public static function saveUser(User $user){
if(!$user->node){
$user->node = new Node(Neo4Client::client());
}

$userlabel = Neo4Client::client()->makelLabel('User");

// set properties

$user->node->setProperty('username’, $user->username);
$user->node->setProperty('firstname', $user->firstname);
$user->node->setProperty('lastname’, $user->lastname);
// save the node
$user->node->save()->addLabels(array($userlabel));

//set the id on the user object

$user->id = $user->node->getId();

Login

This section reviews the login process for the sample application. To execute the login process, we also use the login
route as well as User class. Before reviewing the controller and service layer, take a quick look at the front-end code for
the login.

Login Form

The HTML required for the user login form is shown in Listing 8-19 and can be found in the {PROJECTROOT}/app/
templates/global/homeheader.mustache layout file.

Listing 8-19. The Login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">

<div class="form-group">

<input type="text" placeholder="Username" name="username" class="form-control">
</div>

<button type="submit" class="btn btn-success">Sign in</button>

</form>

Login Route

In the {PROJECTROOT }/app/public/index.php file, use the login route to control the flow of the login process, as
shown in Listing 8-20. Inside the login route, we used the getByUsername method to check if the user exists in the
database.

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Listing 8-20. The Login Route

// login
$app->post('/login', function() use ($app){
$params = $app->request()->post();

// make sure the user name was passed.
$username = trim($params['username']);

if (lempty($username)) {
// lower case the username.
$username=strtolower($username);
$app->log->debug($username);
$checkuser = User::getByUsername($username);

// match
if(!is_null($checkuser)){

$ SESSION['username'] = $username;

$app->redirect('/intent');

telse{

$app->view()->setData(array('msg' => 'The username you entered was not found.'));
$app->render('home/message.mustache');

}

}
else{
$app->view()->setData(array('msg' => 'Please enter a username.'));
$app->render('home/message.mustache');

})->name('login');
If the user is found during the login attempt, a cookie is added to the response and the request is redirected via

redirect to the social home page, shown in Figure 8-7. Otherwise, the route will specify the HTML page to return as
well as add the error messages that need to be displayed back to the view.

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Social

- e practicalneodj-php/ sccial =
Q) Soclal Graph
rth Story -
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Draft - Gene Jordan Ec

: Posted by ajordan at (

4 at 7:02 PM

Andrew M. Wray IIl Memorial £ sl

tags: university of memphis, economics :: Posted by anwray at 06/01/2014 at 8:08 AM

Rob Base Decision Tree
tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM

MNext > > >

Figure 8-7. The social graph home page

Login Service

To check to see if the user values being passed through are connected to a valid user combination in the database,
the application uses the getByUsername method in the User class. As shown in the Listing 8-21, the result of the
g getByUsername method is assigned to the user variable.

If the result is not null or empty, the result is set on the User object and returned to the controller layer of the
application.

Listing 8-21. The getByUsername Method in the User Class

public static function getByUsername($username)

{
$userlabel = Neo4Client::client()->makelLabel('User');
$nodes= $userlabel->getNodes('username', $username);
if (empty($nodes) || count($nodes)==0) {
return null;
}else{
return self::fromArray($nodes[0]);
}
}

Now that the user is logged in, he can edit his settings, create relationships with other users in the graph, and
create his own content.

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as shown in
Figure 8-8. In this example, the front-end code uses an AJAX request via PUT and inserts—or, in the case of the
ajordan user, updates—the first and last name of the user.

Graph Story | User

&« e practicalneodj-php/user

(]

O
&$Graph Story

Social Graph - Friends

This section of the application shows how to update a user's seftings.

Social Menu User Settings for ajordan
First Name Abvin
Last Name Jordan

Update User

Figure 8-8. The User Settings page

User Update Form

The user settings form is located in {PROJECTROOT}/app/templates/graphs/social/user.mustache and is similar
in structure to the other forms presented in the Sign Up and Login sections. One difference is that we have added the
value property to the input element as well as the variables for displaying the respective stored values. If none exist,
the form fields will be empty (Listing 8-22).

Listing 8-22. User Settings Form

<form class="form-horizontal" id="userform">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname" name="user.firstname"
value="{{user.firstname}}" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname" name="user.lastname"
value="{{user.lastname}}" />
</div>
</div>

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update User</button>
</div>
</div>
</form>

User Edit Route

The application contains a route with the path /user/edit, which takes the JSON object argument. The User object

is converted from a JSON string and returns a User object as JSON. The response could be used to update the form
elements, but because the values are already set within the form there is no need to update the values. In this case, the
application uses the JSON response to let the user know if the update succeeded or not via a standard JavaScript alert
message (Listing 8-23).

Listing 8-23. User edit Route

// edit a user

$app->put('/user/edit', function() use ($app){
$params = json_decode($app->request()->getBody());
$user=User: :updateUser($ SESSION['username'],$params->Ffirstname,$params->lastname);
echo json_encode($user);

};

User Update Method

To complete the update, the controller layer calls the updateUser method in User class. Because the object being
passed into the update method did nothing more than modify the first and last name of an existing entity, you can use
the SET clause via Cypher to update the properties in the graph, as shown in Listing 8-24. This Cypher statement also
makes use of the MATCH clause to retrieve the User node.

Listing 8-24. The updateUser Method in the User Class

public static function updateUser($username,$firstname,$lastname){

$queryString="MATCH (user:User {username:{u}}) "
"SET user.firstname = {fn}, user.lastname = {In}".

"RETURN user";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

u' => $username,
"fn' => $firstname,
'In' => $lastname));

$result = $query->getResultSet();

return self::returnAsUsers($result);

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. In the sample application, we use the directed relationship type called FOLLOWS. By going to the “Friends
page within the social graph section, you can see the list of the users the current user is following, search for new
friends to follow, add them and remove friends the current user is following. The user management section of the
App class contains each of the routes to control the flow for these features, specifically the routes that cover friends,
search_by user name, follow and unfollow.

To display the list of the users the current user is following, the /friends route, showing in Listing 8-26, calls the
following method in User class. The following method in User, also shown in Listing 8-25, creates a list of users by
matching the current user’s username with directed relationship FOLLOWS on the variable user.

”

Listing 8-25. The /friends Route and the following Method

// friends route that shows connected users via FOLLOW relationship
$app->get('/friends', $isLoggedIn, function() use ($app){
$user = User::getByUsername($_SESSION['username']);
$following = User::following($_SESSION['username']);
$app->view()->setData(array('user' => $user,
'following' => $following,
"title'=>'User Settings'));
$app->render('graphs/social/friends.mustache');

B;

// the following method in the User class
public static function following($username)
{
$queryString = "MATCH (user { username:{u}})-[:FOLLOWS]->(users) ".
" RETURN users ORDER BY users.username";
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString,
array('u' => $username));
$result = $query->getResultSet();
return self::returnAsUsers($result);

If the list contains users, it will be returned to the controller and displayed in the right-hand part of the page, as
shown in Figure 8-9. The display code for showing the list of users can be found in {PROJECTROOT}/ app/templates/
graphs/social/friends.mustache and is shown in the code snippet in Listing 8-26.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Frierds

&« c practicalneodj-php/ friends

Soclal Graph

O
& Graph Story

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks.

Social Menu Search For Friends Current Friends
Jimi James
a John Baird
Lecnard Euler Ramove
Search
Mikola Tesla
Aline Wray Add as Friend Opal Jordan
Andoa Wiy Philo Farmnswaorth Remove
Thomas Edison Remove

Figure 8-9. The Friends page

Listing 8-26. The HTML Code Snippet for Displaying the List of Friends

<div class="col-md-3">
<h3>Current Friends</h3>
<table class="table" id="following">
{{#following}}
<tr><td>s{{firstname}} {{lastname}}</td><tds><a href="#" id="{{username}}"
class="removefriend">Remove</td></tr>
{{/following}}
{{"following}}
No friends :(
{{/following}}
</table>
</div>

To search for users to follow, the user section contains a GET route /searchbyusername and passes in a username
value as part of the path. This route executes the searchByUsername method found in User class, showing the second
part of Listing 8-27. The first part of the WHERE clause in the method returns users whose username matches on a
wildcard String value. The second part of the WHERE clause in the method checks to make sure the users in the MATCH
clause are not already being followed by the current user.

Listing 8-27. The searchbyusername Route and searchByUsername Service Method

//search users by name

$app->get('/searchbyusername/:u', function($u) use ($app){
$users = User::searchByUsername($u,$ SESSION['username']);
echo '{"users": ' . json_encode($users) . '}';

};

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

// search by user returns users in the network that aren’t already being followed
public static function searchByUsername($username, $currentusername)

{
// wild card search on $username - which is just a string passed
// in from the request, e.g. the letter 'a’
$username=$username."’.*";
$queryString = "MATCH (n:User), (user { username:{c}}) " .
"WHERE (n.username =~ {u} AND n <> user) AND (NOT (user)-[:FOLLOWS]->(n)) ".
" RETURN n";
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,
'c' => $currentusername));
$result = $query->getResultSet();
return self::returnAsUsers($result);
}

The searchByUsername in {PROJECTROOT}/app/public/js/graphstory.js uses an AJAX request and formats the
response in render SearchByUsername. If the list contains users, it will be displayed in the center of the page under
the search form, as shown in Figure 8-9. Otherwise, the response will display “No Users Found.”

Once the search returns results, the next action would be to click on the “Add as Friend” link, which will call the
addfriend method in graphstory. js. This will perform an AJAX request to the follow route, which will then call
the follow method in the User class. The follow method in User, shown in Listing 8-28, will create the relationship
between the two users by first finding each entity via the MATCH clause and then use the CreateUnique clause to create
the directed FOLLOWS relationship. Once the operation is completed, the next part of the query then runs a MATCH on
the users being followed to return the full list of followers ordered by the username.

Listing 8-28. The follow Route and follow Service Method

// takes current user session and will follow :username, e.g. one way follow
$app->get('/follow/:username', function ($username) use ($app) {

$following = User::follow($ SESSION['username'], $username);

echo '{"following": ' . json_encode($following) . '}';
D;

// the follow method in the User class
public static function follow($username, $userTofollow)

{

$queryString = " MATCH (useri:User {username:{cu}}), ".
" (user2:User {username:{u}}) " .
" CREATE UNIQUE useri-[:FOLLOWS]->user2 " .
" WITH user1" .
" MATCH (user1)-[f:FOLLOWS]->(users)" .
" RETURN users " .
" ORDER BY users.username";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'cu' => $username,

u' => $userTofollow

));
$result = $query->getResultSet();

return self::returnAsUsers($result);

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

The unfollow feature for the FOLLOWS relationships uses a nearly identical application flow as follows feature.
In the unfollow method, shown in Listing 8-29, the controller passes in two arguments—the current username and
username to be unfollowed. As with the follows method, once the operation is completed, the next part of the query
then runs a MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 8-29. The unfollow Route and unfollow Service Method

// takes current user session and will unfollow :username

$app->get('/unfollow/:username’, function ($username) use ($app) {
$following = User::unfollow($ SESSION['username'], $username);
echo '{"following": ' . json_encode($following) . '}';

D;

// the unfollow method in the User class

public static function unfollow($username, $userToUnfollow)

{

$queryString = "MATCH (useri:User {username:{cu}})-[f:FOLLOWS]->".

" (user2:User {username:{u}}) " .
" DELETE £ " .
" WITH user1" .
" MATCH (user1)-[f:FOLLOWS]->(users)" .
" RETURN users " .
" ORDER BY users.username";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'cu' => $username,

u' => $userToUnfollow

));
$result = $query->getResultSet();

return self::returnAsUsers($result);

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content—sometimes referred to as user-generated content. In the case of this content, we will not be creating
connections between the content and its owner, but creating a linked list of status updates. In other words, you are
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time,
and using a limited linked list is more efficient than getting all status updates connected directly to a user and then
sorting and limiting the number of items to return. Second, it helps to limit the number of relationships that are
placed on the User and Content entities. Therefore, the overall graph operations should be more efficient using the
linked list approach.

Getting the Status Updates

To display the first set of status updates, start with the social route of the social section of the sample PHP application.
This method accesses the get_content method within Content service class, which takes an argument of the current
user’s username and the page being requested. The page refers to set number of objects within a collection. In this
instance the paging is zero-based, so will request page 0 and limit the page size to 4 in order to return the first page.

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

The getContent method in Content class, shown in Listing 8-30, will first determine whom the user is following
and then match that set of user with the status updates starting with the CURRENTPOST. The CURRENTPOST is then
matched on the next three status updates via the [:NEXTPOST*0. . 3] section of the query. Finally, the method uses
aloop to add a readable date and time string property—based on the timestamp—on the results returned to the
controller and view.

Listing 8-30. The getContent Method in the Content Class

public static function getContent($username, $s) {
// we're doing LIMIT 4. at present were' only displaying 3. the extra item
// is to ensure there's more to view, so the next skip will be 3, then 6, then 12
$queryString = " MATCH (u:User {username: {u} })-[:FOLLOWS*0..1]->f " .
" WITH DISTINCT f,u " .
" MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p " .
" RETURN p, f.username as username, f=u as owner
" ORDER BY p.timestamp desc SKIP {s} LIMIT 4 ";
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

u' => $username,

s' => $s

));
$result = $query->getResultSet();
return self::returnMappedContent($result);

Adding a Status Update

Figure 8-10 shows the form to add a status update for the current user, which is displayed when clicking on the “Add
Content” link just under the “Graph Story - Social Feed” header. The HTML for the form can be found in {PROJECTROOT}/
app/templates/graphs/social/posts.mustache. The form uses the add_content function in graphstory. js to POST a
new status update as well as return the response and add it to the top of the status update stream.

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Social

€& c practicalneodj-php/ social =
__ Secial Graph
raQI". Story ==
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title

URL

Tags
Add Content

tags: nba :: Posted

by ajordan

Rob Base Decision Tree

tags: music, funny = Pested by ptfarsworth at 05/18/2014 at 5

ost Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM

Next > > >

Figure 8-10. Adding a status update

The post content route and addContent method are shown in Listing 8-31. When a new status update is created, in
addition to its graph id, the addContent method also generates a contentld, which performs using the uniqid method.

The addContent method also makes the status the CURRENTPOST. Determine whether a previous CURRENTPOST
exists and, if one does, change its relationship type to NEXTPOST. In addition, the tags connected to the status update
will be merged into the graph and connected to the status update via the HAS relationship type.

Listing 8-31. addContent Route and addContent Method for a Status Update

// add a status update - route
$app->post('/posts/add’, function() use ($app){
$request = $app->request();
$contentParams = json_decode($request->getBody());

$content = new Content();
$content->title=$contentParams->title;
$content->url=$contentParams->url;

// are tags set?
if(isset($contentParams->tagstr)){

$content->tagstr=$contentParams->tagstr;
}

$content = Content::addContent($ SESSION['username'], $content);

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

$app->response->headers->set('Content-Type', 'application/json');
echo json_encode($content);
})->name('add-content");

// add a status update
public static function addContent($username, Content $content) {

$tagstr=self::trimContentTags($content->tagstr);
$tags=explode(',"', $tagstr);

$queryStr1ng = " MATCH (user { username: {u}}) "
" CREATE UNIQUE (user)-[:CURRENTPOST]- >(p Content { title:{title}, url: {url},
tagstr:{tagstr}, timestamp:{timestamp}, contentId:{contentId} }) "
" WITH user, p" .
" FOREACH (tagName in {tags} | " .
MERGE (t:Tag {wordPhrase:tagName}) " .
MERGE (p)-[:HAS]->(t) " .
n)II .
" WITH user, p " .
" OPTIONAL MATCH (p)<-[:CURRENTPOST]-(user)-[oldRel:CURRENTPOST]->(0ldLP)" .
" DELETE oldRel " .
" CREATE (p)-[:NEXTPOST]->(oldLP) " .

RETURN p, {u} as username, true as owner ";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,
'title' => $content->title,
'url' => $content->url,
"tagstr' => $tagstr,
"tags' => $tags,
"timestamp' => time(),
"contentId' => uniqid()

));

$result = $query->getResultSet();

return self::returnMappedContent($result);

Editing a Status Update

When status updates are displayed, the current user’s status updates will contain a link to “Edit” the status. Once
clicked, it will open the form, similar to the “Add Content” link, but will populate the form with the status update
values as well as modify the form button to read “Edit Content’, as shown in Figure 8-11. As with many similar UI
features, clicking “Cancel” under the heading will remove the values and return the form to its ready state.

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Social

= o] practicalneodj-php/ sccial =
%J-. Social Graph [EIEEECE
& -
% Graph Story
Social Graph
This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.
Social Menu Graph Story - Social Feed
Cancel

Title 1960 NBA Draft - Gena Jordan
URAL htipz//nba-draft-history. findthebast.com/l/7 778/Gene-Jordan
Tags nba
Edit Content

1960 NBA
tags: 2014 at 7:02 PM
Rob Base Decision Tree
tags: music, funny :: Posted by pifarsworth at 05/18/2014 at 5:00 AM

Most Requested Song of All Time

tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM

Next>>>

Figure 8-11. Editing a status update

As with the add feature, the edit feature will use a route as well as a function in graphstory. js, which are edit
and editContent, respectively. The edit content route passes in the content object, with its content id, and then calls
the editContent method in Content class, as shown in Listing 8-32.

In the case of the edit feature, we will not need to update relationships. Instead, simply retrieve the existing node
by its generated String Id (not its graph id), update its properties where necessary, and save it back to the graph.

Listing 8-32. Edit Route and Method for a Status Update

// edit a status update - route
$app->put('/posts/edit', function() use ($app){
$request = $app->request();
$contentParams = json_decode($request->getBody());
$content = Content::getStatusUpdate(
$contentParams->contentld,
$ SESSION['username']

)5

$content = $content[0];

$content->title=$contentParams->title;
$content->url=$contentParams->url;

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

// are tags set?

if (isset($contentParams->tagstr)) {
$content->tagstr = $contentParams->tagstr;

}

$content = Content::editContent($_SESSION['username'], $content);
$app->response->headers->set('Content-Type', 'application/json');

echo json_encode($content);
})->name('edit-content");

// edit a status update
public static function editContent($username, Content $content) {

$tagstr=self::trimContentTags($content->tagstr);
$tags=explode(',"', $tagstr);

$queryString = " MATCH (p:Content { contentId: {contentId} })-[:NEXTPOST*0..]".
"-()-[:CURRENTPOST]-(user { username: {u} }) " .
" SET p.title = {title}, p.url = {url}, p.tagstr = {tagstr}" .
" FOREACH (tagName in {tags} | " .
" MERGE (t:Tag {wordPhrase:tagName}) " .
" MERGE (p)-[:HAS]->(t) " .
" RETURN p, {u} as username, true as owner " ;
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
"contentId' => $content->contentId,
'u' => $username,
'title' => $content->title,
'url' => $content->url,
"tagstr' => $tagstr,
'tags' => $tags
));
$result = $query->getResultSet();
return self::returnMappedContent($result);

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates contain a link to
“Delete” the status. Once clicked, it will ask if you want it deleted (no regrets!) and, if accepted, generate an AJAX GET
request to call the delete route and corresponding method in the Content class, shown in Listing 8-33.

The Cypher in the delete method begins by finding the user and content that will be used in the rest of the query.
In the first MATCH, you can determine if this status update is the CURRENTPOST by checking to see if it is related to a
NEXTPOST. If this relationship pattern matches, make the NEXTPOST into the CURRENTPOST with CREATE UNIQUE.

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Next, the query will ask if the status update is somewhere the middle of the list, which is performed by
determining if the status update has incoming and outgoing NEXTPOST relationships. If the pattern is matched, then
connect the before and after status updates via NEXTPOST.

Regardless of the status update’s location in the linked list, retrieve it and its relationships and then delete the
node along with all of its relationships.

To recap, if one of the relationship patterns matches, replace that pattern with the nodes on either side of the status
update in question. Once that has been performed, the node and its relationships can be removed from the graph.

Listing 8-33. Deleting a Status Update

// remove a status update
public static function deleteContent($username, $contentId) {

$queryString = " MATCH (u:User { username: {u} }), (c:Content { contentId: {contentId} }) " .
" WITH u,c " .

MATCH (u)-[:CURRENTPOST]->(c)-[:NEXTPOST]->(nextPost) " .

WHERE nextPost is not null " .

CREATE UNIQUE (u)-[:CURRENTPOST]->(nextPost) " .

WITH count(nextPost) as cnt " .

MATCH (before)-[:NEXTPOST]->(c:Content { contentId: {contentId}})-[:NEXTPOST]->(after) " .
WHERE before is not null AND after is not null " .

CREATE UNIQUE (before)-[:NEXTPOST]->(after) " .

WITH count(before) as cnt " .

MATCH (c:Content { contentId: {contentId} })-[r]-() " .

DELETE c, r";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

'u' => $username,

"contentId' => $contentlId

));
$query->getResultSet();
}
Interest Graph Model

This section looks at the interest graph and examines some basic ways it can be used to explicitly define a degree of
interest. The following topics are covered:

¢ Adding filters for owned content
¢ Adding filters for connected content

e Analyzing connected content (count tags)

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Interest in Aggregate

Inside the /interest route, we retrieve all of the user’s tags and their friends tags by calling, respectively, the userTags
and tagsInNetwork methods found in the Tag class. This is displayed in the left-hand column ikn Figure 8-12.

Graph Story | Interest

= practicalneodj-php/interestMtag=internet&userscontent=true =
3l Girag Interest Graph
Graph Story
Interest Graph

This section of the application shows interest via a user's tagged content and tha user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

My Interests Graph Story - Interest Feed

nternet (2) nba (1) history (1)
T 3 Cart: the web (see what | did thera?

tags: internet, history :: Posted by a;ord.«n at 06/23/2013 at 9:16 AM

Interests in my network

Figure 8-12. Filtering the current user’s content

The display code is located in {PROJECTROOT}/ app/templates/graphs/interest/index.mustache. The
interest route uses two queries, which are shown in Listing 8-35 and 8-36. The getFollowingContentWithTag finds
users being followed, accesses all of their content, and finds connected tags through the HAS relationship type.

The getUserContentWithTag method is similar, but is concerned only with content and, subsequently, tags
connected to the current user. Both methods limit the results to 30 items. As mentioned earlier, the methods return an
array of content and tags, which supports an autosuggest plugin in the view and requires both a label and name to be
provided in order to execute. This autosuggest feature is used in the status update form as well as some search forms
found later in this chapter.

Listing 8-34. The interest Route

show tags within the user's network (theirs and those being followed)
$app->get('/interest', $isLoggedIn, function () use ($app) {

get the user's tags
$userTags = Tag::userTags($ SESSION['username']);

get the tags of user's friends
$tagsInNetwork=Tag: :tagsInNetwork($_SESSION['username']);

$contents = null;

$userscontent = $app->request()->get('userscontent');

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

if(lempty($userscontent)){
$tag = $app->request()->get('tag');

if the user's content was requested
if($userscontent === "true"){
$contents = Content::getUserContentWithTag($_SESSION['username'],$tag);
if the user's friends' content was requested
telse{
$contents = Content::getFollowingContentWithTag(
$ SESSION['username'],$tag);

}

$app->view()->setData(array('contents'=>$contents,
'userTags'=>%userTags,
"tagsInNetwork'=>$tagsInNetwork,
"title'=>"Interest'));
$app->render('graphs/interest/index.mustache');
})->name('interest');

Filtering Managed Content

Once the list of tags for the user and for the group she follows has been provided, the content can be filtered based of
the generated tag links, as shown in Figure 8-12. If a tag is clicked on the inside of the “My Interests” section, then the
getUserContentWithTag method, displayed in Listing 8-35, will be called.

Listing 8-35. Get the Content of the Current User Based on a Tag

public static function getUserContentWithTag($username,$wp){
$queryString = " MATCH (u:User {username: {u} })-[:CURRENTPOST]-1lp-[:NEXTPOST*0..]-p " .
" WITH DISTINCT u,p" .
" MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" .
" RETURN p.contentId as contentId, p.title as title, p.tagstr as tagstr,
" p.timestamp as timestamp, p.url as url, u.username as username, true as owner" .
" ORDER BY p.timestamp DESC";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,
‘'wp' => $wp

));

$result = $query->getResultSet();

foreach($result as $row){
$row->timestampAsStr = date('n/d/Y',$row['timestamp']) .
"at ' . date('g:i A',$row['timestamp']);
}

return $result;

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Filtering Connected Content

If a tag is clicked on the inside of the “Interests in my Network” section, then getFollowingContentWithTag method
will be called, as shown in Listing 8-36. The second query is nearly identical the first query found in the interest
route, except it will factor in the users being followed and exclude the current user.

The method also returns a collection of status updates based on the matching tag, placing no limit on the number
of status updates to be returned. In addition, it marks the owner property as true, because you've determined ahead of
time you are returning only the current user’s content. The results of calling this method are shown in Figure 8-13.

Listing 8-36. Get the Content of the Users Being Followed Based on a Tag

public static function getFollowingContentWithTag($username,$wp){
$queryString = " MATCH (u:User {username: {u} })-[:FOLLOWS]->f" .
" WITH DISTINCT f" .
MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p" .
WITH DISTINCT f,p" .
MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" .
RETURN p.contentId as contentId, p.title as title, p.tagstr as tagstr, " .
p.timestamp as timestamp, p.url as url, f.username as username, false as owner" .
ORDER BY p.timestamp DESC";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,

'wp' => $wp
));

$result = $query->getResultSet();
foreach($result as $row){
$row->timestampAsStr = date('n/d/Y',$row[' timestamp']) .

"at ' . date('g:i A',$row['timestamp']);
}

return $result;

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Interest x

“« c practicalneodj-php/ interesttag=music&userscontent=false =
Q) Social Graph Interest Graph
& B
raph Story
Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded o show users with common
Interests via tags.

My Interests Graph Story - Interest Feed

Rob Base Decision Tree
tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM

Interests in my network

Most Requested Song of All Time
ca ernat (3) -

tags: music, serious .: Posted by ntesla at 04/24/2014 at 3:06 AM

From Hendrix to The Beatles
tags: music, funny :: Posted by ntesla at 04/20/2014 at B:

World's Greatest Scientist: Hopaton Br
tags: music, dub :: Posted by jlames at

Greatest Jazz Guitar of All Time. [

tags: music :: Posted by [james at 03

Hendrix
tags: music, hendrix :: Posted by tedison at 11/27,

Make sura to check out the High Lia
tags: music :: Posted by leuler at [

s
/2013 at 9:16 AM

A Day In The Life
tags: music :: Posted by jjames at 06/15/2013 at 8:16 AM

Figure 8-13. Filtering content of the current user’s friends

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the prepopulated set of products provided in the sample
graph. The code required for the console will reinforce the standard persistence operations, but this section focuses
on the operations that take advantage of this model type, including:

e (Capturing consumption
e Filtering consumption for users

e Filtering consumption for messaging

Capturing Consumption

The process above for creating code that directly captures consumption for a user could also be done by creating
a graph-backed service to consume the webserver logs in real time, or by creating another data store to create
the relationships. The result would be the same in any event: a process that connects nodes to reveal a pattern of
consumption (Listing 8-37).

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Listing 8-37. Consumption Route to Show a List of Products and the Product Trail of the Current User

show products and products VIEWED by user
$app->get('/consumption', $isLoggedIn, function() use ($app){
get products by page
$products = Product::getProducts(0);

$next = true;
$nextPageUrl = "/consumption/10";
$productTrail = Product::getProductTrail($ SESSION['username']);

$app->view()->setData(array('products'=>$products,
'next'=>$next,
"nextPageUrl'=>$nextPagelrl,
'productTrail’'=>$productTrail,
"title'=>"Consumption'));
$app->render('graphs/consumption/index.mustache');
})->name(' consumption');

The sample application used the createUserViewAndReturnViews method in the Product class to first find
the product being viewed and then create an explicit relationship type called VIEWED. As you might have noticed,
this is the first relationship type in the application that also contains properties. In this case, we are creating a
timestamp with a date and string value of the timestamp. The query, provided in Listing 8-38, checks to see if a VIEWED
relationship already exists between the user and the product using MERGE.

In the MERGE section of the query, if the result of the MERGE is zero matches, then a relationship is created with key
value pairs on the new relationship, specifically dateAsStr and timestamp. Finally, the query uses MATCH to return the
existing product views.

Listing 8-38. Add consumption_add Route and create_user view and return views Method
// add a product via VIEWED relationship and return VIEWED products
$app->get('/consumption/add/:productNodeld’, function($productNodeld) use ($app){

#save the view and return the full list of views
$productTrail=Product::createUserViewAndReturnViews(
$ SESSION['username'],$productNodeld);

$app->response->headers->set('Content-Type', 'application/json');

echo '{"productTrail": ' . json_encode($productTrail) . '}';
})->name(' consumption-add');

// the method to add a user view of a product and return all views
public static function createUserViewAndReturnViews($username,$productNodeId){

$productNodeId = intval($productNodeld);

create timestamp and string display

$ts = time();

$timestampAsStr = date('n/d/Y',$ts) . ' at ' . date('g:i A',$ts);

154

www.it-ebooks.info

http://www.it-ebooks.info/

$queryString = " MATCH (p: Product), (u:User { username:{u} })"
" WHERE id(p) = {productNodeId}"
" WITH u,p" .
MERGE (u)-[r:VIEWED]->(p)" .

WITH u " .
MATCH (u)-[r:VIEWED]->(p)" .

ORDER BY r.timestamp desc";

CHAPTER 8 = NEO4J + PHP

SET r.dateAsStr={timestampAsStr}, r.timestamp={ts}" .

RETURN p.title as title, r.dateAsStr as dateAsStr" .

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

u' => $username,

"productNodeId' => $productNodeld,
"timestampAsStr' => $timestampAsStr,
"ts' => $ts,

));
$result = $query->getResultSet();

return self::returnMappedProductUserView($result);

Filtering Consumption for Users

One practical use of the consumption model is to create a content trail for users, as shown in Figure 8-14. As a user
clicks on items in the scrolling product stream, the interaction is captured using createUserViewAndReturnViews,

which ultimately returns a List of relationship objects of the VIEWED type.

Graph Stery | Consumpt

€ practicalnesdj-php/consumption

| cial Graph terest Grap Consumption Greph
%‘f’p Graph Story

Consumption Graph
This section of the application damonsirates a way to view products via a scroling Est. When a user clicks on a product description, they are connected to the product via the
VIEWED relationship.

Consumption Menu Graph Story - Productsville

Scroll down to show moar products

“Long Sleep” Portal Sleep Tank
Viewed Products See Produc

Items the current user has recently viewed.

Long Slssp* Partal Slesp Tank "Wash Is My Comlot License Plate Frame

last viewed on: 08/04/2014 at 5:10 AM Sea Prc

iDuck - Bathtub Music

last viewed on: 0B/D2/2014 at 7:07 PM 10th Doctor Costume Pajama Set
“Wash Is My Copliot” License Plate Frame See Product Description...

last viowod on: 08/02/2014 at 6:32 PM

Eyn Case For Smartphones 11th Doctor Costume Pajama Set

last viewoed on: 0B/D2/2014 at 6:32 PM shaa Procuct Dessrion..

2014 Worldbuilders Fantasy Calendar

agi ewod of 032 0)4/eL A58 P 2014 Worldbuilders Fantasy Calendar
10th Doctor Costume Pajama Set oY

last viewed on: 08/01/2014 at 7:54 PM

Figure 8-14. The Scrolling Product and Product Trail page

www.it-ebooks.info

155

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

In the consumption graph section, we take a look at the consumption route to see how the process begins
inside the controller. The controller method first saves the view and then returns the complete history of
views using the getProductTrail, which can be found in the Product class. The process is started when the
createUserProductViewRel function is called, which is located in graphstory. js.

Filtering Consumption for Messaging

Another practical use of the consumption model is to create a personalized message for users, as displayed in Figure 8-15.
In this case, we have a filter that allows the “Consumption Console” to narrow down to a very specific group of users who
visited a product that was also tagged with a keyword or phrase each user had explicitly used (Listing 8-39).

Graph Story | Consumpt

L c practicalneodj-php/consumption/console
O 3l Grag terest Grapt Consumption Graph
rapk‘- Story

Consumption Graph

(1]

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
redationship with products. In this way, the users are consuming "product views® via a keyword or phrase

NOTE: this is different than when a user enters a keyword or phrase as a tag with CONTENT in the social graph. While the connection could be made batween a user's tagged
content, it is separate for the purpose of this example.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the tags: music with thesea users:
= ajordan
© anwray

The preduct Star Wars Mimobot Thumb Drives shares the tags: star wars with these users:
= anwray
= ajordan

The product Sound Splash L Shower shares the tags: music with these users:
= ajordan
o anwray

Figure 8-15. The consumption console

Listing 8-39. The Consumption Console Route and Methods to Get Connected Products and Users via Tags

// displays products that are connected to users via a tag relationship
$app->get('/consumption/console’, $isLoggedIn, function() use ($app){

$usersWithMatchingTags = null;

$tag = $app->request()->get('tag');

was tag supplied, then get product matches based on specific tag
if(lempty($tag)){

$usersWithMatchingTags =

Product: :getProductsHasSpecificTagAndUserUsesSpecificTag($tag);

}else{
}

$usersWithMatchingTags = Product::getProductsHasATagAndUserUsesAMatchingTag();

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

$app->view()->setData(array('usersWithMatchingTags'=>$usersWithMatchingTags,
"title'=>"'Consumption Console'));
$app->render('graphs/consumption/console.mustache');
})->name(' consumption-console');

// products that share any tag with a user
public static function getProductsHasATagAndUserUsesAMatchingTag(){

$queryString = " MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) " .
" RETURN p.title as title , collect(u.username) as users, "

collect(distinct t.wordPhrase) as tags ";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, null);
$result = $query->getResultSet();

return $result;

}

// products that share a specific tag with a user
public static function getProductsHasSpecificTagAndUserUsesSpecificTag($tag){

$queryString = " MATCH (t:Tag { wordPhrase: {wp} }) " .
" WITH t " .
" MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) " .
" RETURN p.title as title,collect(u) as u, collect(distinct t) as t ";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'wp' => $tag
));

$result = $query->getResultSet();

return $result;

Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin
e Filtering on locationProducts based on location
The example demonstrates how to add a console to enable you to connect products to locations in an ad hoc
manner (Listing 8-40).
Listing 8-40. Location Route for Showing Locations or Locations with Specific Product
// show locations nearby or locations that have a specific product

$app->get('/location', $isLoggedIn, function() use ($app){

// get the user's locations
$userlocations = Userlocation::getUserLocation($ SESSION['username']);

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

#was distances provided
$distance = $app->request()->get('distance');

if (lempty($distance)) {
use first location
$ul = $userlocations[0];
$productNodeId = $app->request()->get('productNodeld');
$1q = Userlocation::getlQ($ul,$distance);
$app->log->debug($1q);
if (lempty($productNodeId)) {
$locations = Location::locationsWithinDistanceWithProduct($1q,$ul,$productNodeld);

$app->view()->setData(array('locations' => $locations,
'mappedUserLocation’=>$userlocations));

}
else{
$locations = Location::locationsWithinDistance($lq, $ul,"business");
$app->view()->setData(array('locations' => $locations,
'mappedUserLocation’=>$userlocations));
}
else{

$app->view()->setData(array('mappedUserLocation'=>$userlocations));

$app->view()->setData(array('title'=>"Location"'));
$app->render('graphs/location/index.mustache');

})->name('location');

Search for Nearby Locations

To search for nearby locations, as shown in Figure 8-16, use the current user’s location, obtained with
getUserLocation, and then use the locationsWithinDistance. The locationsWithinDistance method in Location
service class uses a method called distance to return a string value of the distance between the starting point and the
respective location (Listing 8-41).

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Graph Story | Location x

= o] practicalneodj-php/location’product=_&distance=10.00&productNodeld=
%F. Social Graph Interest Grapk Consumption Graph Intent Grap
% Graph Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph

The user "ajordan® livas at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5900 Walnut Grove Road Memphis, TN 38120

Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles ¢ Search

Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store is 3.92 Miles Away

South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.48 Miles Away

Wartord Store is 6.20 Miles Away

Figure 8-16. Searching for Locations within a certain distance of User location

Listing 8-41. The locations_within_distance Method in the Location Class

public static function locationsWithinDistance($1q,$mappedUserLocation,$locationType){
$queryString = " START n = node:geom({1q}) WHERE n.type = {locationType} "
" RETURN n.locationId as locationId, n.address as address, n.city as city, "

n.state as state, n.zip as zip, n.name as name, n.lat as lat, n.lon as lon";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
‘19" => $lq,
'locationType' => $locationType

));

$result = $query->getResultSet();

foreach($result as $row){

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

$row->distanceTolocation =
self::distance(floatval($mappedUserLocation["lat"]),
floatval ($mappedUserLocation["lon"]),
floatval ($row["lat"]),
floatval($row["lon"]),
"M") . " Miles away";

return $result;

Locations with Product

To search for products nearby, as shown in Figure 8-17, the application makes use of an autosuggest AJAX request,
which ultimately calls the search method in the Product service class. The method, shown in Listing 8-42, returns

an array of objects to the product field in the search form and applies the selected product’s productNodeId to the
subsequent location search.

Graph Story | Location x

= o] practicalneodj-php/ location?product=Adventure+ Time+Finn%27s +Backpack&distance=10.00&productNodeld=281

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph

The user "ajordan® livas at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles §+ Search

The fellowing locations have "Adventure Time Finn's
Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store is 3.98 Miles Away
South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store Is 6.20 Miles Away

Figure 8-17. Searching for Products in stock at Locations within a certain distance of the User location

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Listing 8-42. The product_search Route and product_search Methods

// return product array as json
$app->get('/productsearch/:q"', function($q) use ($app){
get matches
$productsFound = Product::productSearch($q);

$app->response->headers->set('Content-Type', 'application/json');
echo json_encode($productsFound);
})->name('productsearch');

// product_search method - located in the Product service class.
public static function productSearch($q){

$q = trim($q) . ".*";

$queryString = " MATCH (p:Product) WHERE lower(p.title) =~ {q} ".

" RETURN count(*) as name, TOSTRING(ID(p)) as id, p.title as label " .
" ORDER BY p.title " .

"OLIMIT 5 "5

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'q' => $q
));

$result = $query->getResultSet();

return self::returnMappedProductSearch($result);

For almost all cases, it is recommended not to use the graphld because it can be recycled when its node is
deleted. In this case, the productNodeId should be consider safe to use, because products would not be in danger of
being deleted but only removed from a Location relationship.

Once the product and distance have been set and the search is executed, the Location route tests to see if a
productNodeld property has been set. If so, the locationsWithinDistanceWithProduct method is called from the
Location class, which is shown in Listing 8-43.

Listing 8-43. The locationsWithinDistanceWithProduct Method in the Location Class

public static function locationsWithinDistanceWithProduct($1q,$mappedUserLocation, $productNodeId){
$queryString = " START n = node:geom({1q}), p=node({productNodeId}) " .
" MATCH n-[:HAS]->p " .
" RETURN n.locationId as locationId, n.address as address,
n.city as city, n.state as state, n.zip as zip, n.name as name,
n.lat as lat, n.lon as lon";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'19" => $1q,
"productNodeld' => intval($productNodeld)

));

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

$result = $query->getResultSet();

foreach($result as $row){
$row->distanceTolocation =
self::distance(floatval($mappedUserLocation["lat"]),
floatval($mappedUserLocation["lon"]),
floatval($row["lat"]),
floatval($row["lon"]),
"M") . " Miles away";

}

return $result;

Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase node type. The intent graph also considers the products, users, locations, and tags that are connected based
on a Purchase.

Products Purchased by Friends

To get all of the products that have been purchase by friends, the friendsPurchase method is called from Purchase
class, which is shown in Listing 8-45. The corresponding route is shown in Listing 8-44.

Listing 8-44. Intent Route to Show Purchases Made by Friends

// purchases by friends

$app->get('/intent', $isLoggedIn, function() use ($app){
$mappedProductUserPurchaseList = Purchase::friendsPurchase($ SESSION['username']);
$app->view()->setData(array(

'mappedProductUserPurchaselist’ => $mappedProductUserPurchaselist,
"title' =>"Products Purchased by Friends"));

$app->render('graphs/intent/index.mustache");

})->name('intent');

The query shown in Listing 8-45 finds the users being followed by the current user and then matches those users
to a purchase that has been MADE which CONTAINS a product. The return value is a set of properties that identify the
product title, the name of the friend or friends, as well the number of friends who have bought the product. The result
is ordered by the number of friends who have purchased the product and then by product title, as shown in Figure 8-18.

Listing 8-45. The friendsPurchase method in the Purchase Class

// products purchased by friends
public static function friendsPurchase($username){
$queryString =
" MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p" .
" RETURN p.productId as productId, " .
" p.title as title, " .
" collect(f.firstname + + f.lastname) as fullname,
null as wordPhrase, count(f) as cfriends "

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

" ORDER BY cfriends desc, p.title ";
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

'u' => $username
));
$result = $query->getResultSet();
return $result;

Graph Story | Products Pu. =

= o] practicalneodj-php/intent

Grth Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded o show users with common
Inerests via tags.

Intent Menu Intent Graph - Products Purchased by Friends

Product # Friends who purchased
Star Wars Mimobot Thumb Drives

Breaking Bad iPhone Cases

Doctor Who Beach Towel

Doctor Who Senic Screwdriver Lamp

Doctor Who TARDIS Water Bottle

| Never Finish Anyth

Jadi Academy Book

Lebowski Bowling Hoodie

Sound Splash Bluetooth Waterproof Shower Speaker
Star Trek Tribble Slippers with Sound

Star Wars Light-Up Lightsaber Pens

Star Wars Princess Lela Beach Towel

Figure 8-18. Products Purchased By Friends

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars
Mimobot Thumb Drives’; and then search for friends who have purchased this product, as shown in Figure 8-19. This
is done via the friendsPurchaseByProduct route and method of the same name in Purchase service class, both of
which are shown in Listing 8-46.

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

Graph Sory | Specfic Pro

practicalneodj-php/ intent/specificProductsPurchasedByUsersFriends

%—’O{Jraor Ston

Intent Graph

This section of the application shows interest via a user's tagged content and tha user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Specific Products Purchased by Friends

Star Wars Mimobot Thumb Drives Search

Product # Friends who purchased

Star Wars Mimobot Thumb Drives 3

Tags
Figure 8-19. Specific Products Purchased by Friends

Listing 8-46. The friends purchase by product Route and Method

// specific product purchases by friends
$app->get('/intent/friendsPurchaseByProduct’, $isLoggedIn, function() use ($app){
$mappedProductUserPurchaselist = Purchase::friendsPurchaseByProduct(
$ SESSION['username'],
"Star Wars Mimobot Thumb Drives");
$app->view()->setData(array(
'mappedProductUserPurchaselist’ => $mappedProductUserPurchaselist,
"title' =>"Specific Products Purchased by Friends"));
$app->render('graphs/intent/index.mustache');
})->name(' friendsPurchaseByProduct');

// a specific product purchased by friends
public static function friendsPurchaseByProduct($username,$tit1e){
$queryStr1ng = " MATCH (p:Product) "
" WHERE lower(p.title) 1ower({t1t1e}) "
"WITH p " .
" MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->(p) " .
RETURN p.productId as productId, " .
" p.title as title, " .
" collect(f.firstname + + f.lastname) as fullname,
null as wordPhrase, count(f) as cfriends "
ORDER BY cfriends desc, p.title ";
$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,
"title' => $title

));
$result = $query->getResultSet();
return $result;

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

Products Purchased by Friends and Matches User’s Tags

In this next instance, we want to determine products that have been purchased by friends but also have tags that are
used by the current user (Listing 8-47). The result of the query is shown in Figure 8-20.

Listing 8-47. Product and Tag Similarity of the Current Users’s Friends

// friends bought specific products. match these products to tags of the current user
$app->get('/intent/friendsPurchaseTagSimilarity', $isLoggedIn, function() use ($app){
$mappedProductUserPurchaselist = Purchase::friendsPurchaseTagSimilarity(
$ SESSION['username']);
$app->view()->setData(array(
'mappedProductUserPurchaselist’ => $mappedProductUserPurchaselist,
"title' =>"Products Purchased by Friends and Matches User's Tags"));
$app->render('graphs/intent/index.mustache");
})->name(' friendsPurchaseTagSimilarity');

Graph Story | Products P

= = practicalneodj-php/intent/productsPurchasedByUsersFriendsAndMatchesTagsUsedBylUser =
Intent Graph
Graph Story
Intent Graph

This section of the application shows interest via a user's tagged content and tha user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends and Matches User's Tags
Product # Friends who purchased
Star Wars Mimobot Thumb Drives

Sound Splash Bluetooth Waterproof Shower Speaker

Figure 8-20. Products Purchased by Friends and Matches User’s Tags

Using friendsPurchaseTagSimilarity in Purchase service class, shown in Listing 8-48, the application provides
the userld to the query and uses the FOLLOWS, MADE, and CONTAINS relationships to return product purchases by users
being followed. The subsequent MATCH statement takes the USES and HAS directed relationship types to determine the
tag relationships the resulting products and the current user have in common.

Listing 8-48. The Method to Find Products Purchased by Friends and Matches Current User’s Tags

// products purchased by friends that match the user's tags
public static function friendsPurchaseTagSimilarity($username){
$queryString =

" MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " .
" WITH u,p,f " .
" MATCH u-[:USES]->(t)<-[:HAS]-p " .
" RETURN p.productId as productId, " .
" p.title as title, " .

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © NEO4J + PHP

collect(f.firstname + ' ' + f.lastname) as fullname,
t.wordPhrase as wordPhrase, "

count(f) as cfriends "

" ORDER BY cfriends desc, p.title ";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(

u' => $username

));
$result = $query->getResultSet();

return $result;

Products Purchased by Friends Nearby and Matches User’s Tags

To find products that match with a specific user’s tags and have been purchased by friends who live within a set
distance of the user is performed by the friendsPurchaseTagSimilarityAndProximityToLocation method, easily the
world’s longest method name, and is located in the Purchase class (Listing 8-49).

Listing 8-49. The friendsPurchaseTagSimilarityAndProximityToLocation Route

// friends that are nearby bought this product. the product should also matches tags of the current
user
$app->get('/intent/friendsPurchaseTagSimilarityAndProximityTolLocation',
$isLoggedIn, function() use ($app){
// get the user's locations
$userlocations = UserlLocation::getUserLocation($ SESSION['username']);

// create the location query using first location
$1q = UserlLocation::getLQ($userlocations[0],"10.00");

get result set
$mappedProductUserPurchaselist =
Purchase: :friendsPurchaseTagSimilarityAndProximityTolocation($_SESSION['username'],$1q);

$app->view()->setData(array(
'mappedProductUserPurchaselist’ => $mappedProductUserPurchaselist,
'mappedUserLocation’=>$userlocations,
"title' =>"Products Purchased by Friends Nearby and Matches User's Tags"));
$app->render('graphs/intent/index.mustache');
})->name(' friendsPurchaseTagSimilarityAndProximityToLocation');

The friendsPurchaseTagSimilarityAndProximityToLocation route calls the
friendsPurchaseTagSimilarityAndProximityToLocation method shown in Listing 8-50.

Listing 8-50. The friendsPurchaseTagSimilarityAndProximityToLocation Method in the Purchase Class

// user's friends' purchases who are nearby and the products match the user's tags
public static function friendsPurchaseTagSimilarityAndProximityTolLocation($username,$1q){
$queryString = " START n = node:geom({lq}) " .
"WITHn " .
" MATCH (u:User {username: {u} })-[:USES]->(t)<-[:HAS]-p " .
" WITH n,u,p,t " .

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = NEO4J + PHP

MATCH u-[:FOLLOWS]->(f)-[:HAS]->(n) " .

WITH p,f,t " .

MATCH f-[:MADE]->()-[:CONTAINS]->(p) " .

RETURN p.productId as productId, " .

p.title as title, " .

collect(f.firstname + + f.lastname) as fullname,

t.wordPhrase as wordPhrase, "

count(f) as cfriends "

ORDER BY cfriends desc, p.title ";

$query = new Everyman\Neo4j\Cypher\Query(Neo4Client::client(), $queryString, array(
'u' => $username,

'1g" => $1q

));
$result = $query->getResultSet();
return $result;

The query begins starts with a location search within a certain distance, then matches the current user’s tags
to products. Next, the query matches friends based the location search. The resulting friends are matched against
products that are in the set of user tag matches. The result of the query is shown in Figure 8-21.

Graph Story | Products P

= = practicalneodj-php/intent/productsPurchasedBylsersFriendsWhoLiveNearbyAndMatchesTagsUsedByUser

&$Graph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded ‘o show users with common
interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches User's
Tags
Matches to friends who live near 5300 Walnut Grove Road Memphis, TN 38120

Product ¥ Friends who purchased

Star Wars Mimobot Thumb Drives

Figure 8-21. Products Purchased by Friends Nearby and Matches User’s Tags

Summary

This chapter presented the setup for a development environment for PHP and Neo4j and sample code using the
Neo4jPHP driver. It proceeded to look at sample code for setting up a social network and examining interest within
the network. It then looked at the sample code for capturing and viewing consumption—in this case, product
views—and the queries for understanding the relationship between consumption and a user’s interest. Finally, it
looked at using geospatial matching for locations and examples for understanding user intent within the context of
their location, social network, and interests.

The next chapter will review using Python and Neo4j, covering the same concepts presented in this chapter but in
the context of a Python driver for Neo4;.

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Neodj + Python

This chapter focuses on using Python with Neo4j and reviewing the code for a working application that integrates the
five graph model types covered in Chapter 3. As with other languages that offer a driver for Neo4j, the integration takes
place using a Neo4j server instance with the Neo4j REST API. This chapter is divided into the following topics:

e Python and Neo4j Development Environment
e Py2neo
e Developing a Python and Neo4j application

In each chapter that explores a particular language paired with Neo4j, I recommend that you start a free trial on
www. graphstory.com or have installed a local Neo4;j server instance as shown in Chapter 2.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from
Graph Story.

For this chapter, I assume that you have a good understanding of HTML, JavaScript, and CSS, at least a beginning
knowledge of Python, and a basic understanding of how to configure Python for your preferred operating system. To
proceed with the examples in this chapter, I recommend you install and configure Python 2.7. While the examples
should work with later versions of Python with some modifications, Python 2.7 is the version used in this chapter. In
addition, the sample application uses the Apache HTTP server and wsgi_module.

Do This If you do not have Apache HTTP installed, it is highly recommended that you follow the instructions at
http://httpd.apache.org/ based on your operating system. Configuring Python and the wsgi_module with a local
instance of Apache HTTP is beyond the scope of this book, but the basic configuration steps can be found at
https://code.google.com/p/modwsgi/.

I also assume that you have a basic understanding of the model-view-controller (MVC) pattern and some
knowledge of Python frameworks that provide an MVC pattern. There are, of course, a number of excellent Python
frameworks from which to choose, but I had to pick one for the illustrative purposes of the application in this chapter.
I chose the Bottle framework because it is limited in its scope and allows the focus to remain on the application to the
greatest extent possible. This chapter is focused on integrating Neo4j into your Python skill set and projects and does
not dive deeply into the best practices of developing with Python or Python frameworks.

169

www.it-ebooks.info

http://www.graphstory.com/
http://httpd.apache.org/
https://code.google.com/p/modwsgi/
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Python and Neo4j Development Environment

Preliminary to this chapter’s discussion of the Python and Neo4j application, this section covers the basics of
configuring a development environment.

Readme Although each language chapter walks through the process of configuring the development environment
based on the particular language, certain steps are covered repeatedly in multiple chapters. While the initial development
environment setup in each chapter is somewhat redundant, it allows each language chapter to stand on its own. Bearing
this in mind, if you have already configured Eclipse with the necessary plugins while working through another chapter,
you can skip ahead to the section “Adding the Project to Eclipse.”

IDE

The reasons behind the choice of an IDE vary from developer to developer and are often tied to the choice of
programming language. I chose the Eclipse IDE for a number of reasons but mainly because it is freely available and
versatile enough to work with most of the programming languages featured in this book.

Although you are welcome to choose a different IDE or other programming tool for building your application, I
recommend that you install and use Eclipse to be able to follow the Python examples and the related examples found
throughout the book and online.

Tip If you do not have Eclipse, please visit http://www.eclipse.org/downloads/ and download the Indigo package
that is titled “Eclipse IDE for Java EE Developers.” The Indigo package is also labeled “Version 3.7.”

Once you have installed Eclipse, open it and select a workspace for your application. A workspace in Eclipse is
simply an arbitrary directory on your computer. As shown in Figure 9-1, when you first open Eclipse, the program
will ask you to specify which workspace you want to use. Choose the path that works best for you. If you are working
through all of the language chapters, you can use the same workspace for each project.

INDIGO

B,
;e___cllpse

Select a workspace

Belipia $1006E your projects in 3 folder called 3 werkipace
Choose a workspace folder to use for this session.

Workspace: | /some/path/tofyour /warkspace - Browse...

Use this as the defasit asd do not ask again

Cancel [

Figure 9-1. Opening Eclipse and choosing a workspace

170

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Aptana Plugin

The Eclipse IDE offers a convenient way to add new tools through their plugin platform. The process for adding new
plugins to Eclipse is straightforward and usually involves only a few steps to install a new plugin—as you will see in
this section.

A specific web-tool plugin called Aptana provides support of server-side languages like Python as well as client
languages such as CSS and JavaScript. This chapter and the other programming language chapters use the plugin to
edit both server- and client-side languages. A benefit of using a plugin such as Aptana is that it can provide code-assist
tools and code suggestions based on the type of file you are editing, such as CSS, JS, or HTML. The time saved with
code-assist tools is usually significant enough to warrant their use. Again, if you feel comfortable exploring within
your preferred IDE or other program, please do so.

To install the Aptana plugin, you need to have Eclipse installed and opened. Then proceed through the following
steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one in Figure 9-2.

Check the items that you wish to install.

Available Software
-

Work with: | Mtp://@ownload aptans com/studiod pluginupdate/ - Add.

Find mare softwars by working with the “Available Software Sites” preferences.

Name Version
o ¥ 10 Agtana Suadie 3
o “pAptana Stucko 3 Plugn 3.4.2.201308081736-TWN5TboCRERAIL.

Sabect ANl Deselect All 1 iter selacted

Details

Show oanly the latest versions of available saftware Hide items that are slready installed
+ Group items by categery What is alrgady installed?
Show only sofware appicable 10 T geL envisonment

 Contact a1 Lpdate sites during Install to And required software

Figure 9-2. Installing the Aptana plugin
2. Paste the URL for the update site, http://download.aptana.com/studio3/plugin/

install, into the “Work With” text box, and hit the Enter (or Return) key.

3. Inthe populated table below, check the box next to the name of the plugin, and then click
the Next button.

4. Click the Next button to go to the license page.

5. Choose the option to accept the terms of the license agreement, and click the Finish
button.

6. You may need to restart Eclipse to continue.

171

www.it-ebooks.info

http://download.aptana.com/studio3/plugin/install
http://download.aptana.com/studio3/plugin/install
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Log Watcher

When working with applications, it is often helpful to have a way to view application output through server logs.
There are a few plugins available for Eclipse for this purpose, such as LogWatcher. With LogWatcher, you can watch
output for multiple files inside or outside of Eclipse as well as filters to highlight or skip over specific patterns. At
time of writing, the LogWatcher does not have an update URL for quick installation. To manually install LogWatcher,
visit http://graysky.sourceforge.net/ and follow the quick installation steps and set up the view to suit your
development environment.

Adding the Project to Eclipse

After installing Eclipse plugin, you will have the minimum requirements to work with your project in the workspace.
To keep the workflow as fluid as possible for each of the language sample applications, use the project import tool
with Eclipse. To import the project into your workspace, follow these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4;j for Python.” Unzip the archive file on to your computer.

2. InEclipse, select File » Import and type project in the “Select an import source.”

3. Under the “General” heading, select “Existing Projects into Workspace”. You should now
see a window similar to Figure 9-3.

Select
Create new projects from an archive file or directory. _E - E

Select an import source:

¥ (= General
|, Archive File
|5 Existing Folder as New Project
| Existing Projects into Workspace
| File System
LPreferences
= CVS
= E1B
= Git
-Install
= Java EE
= Maven
% Plug-in Development
= Remote Systems
= Run/Debug
= Studio
= Tasks

Y Y Y YYYYTYIYYY

"?:.‘- Back Next > Cancel

Figure 9-3. Importing the project into Eclipse

4, Now that you have selected “Existing Projects into Workspace’, click the “Next >” button.
The dialogue should now show an option to “Select root directory." Click the “Browse”
button and find the root path of the “practicalneo4j-python” archive.

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 9-4.

172

www.it-ebooks.info

http://graysky.sourceforge.net/
http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

mport
Import Projects

Select a directory to search for existing Eclipse projects.

=

-
(+) Select root directory: /Volumes/MacMac/temp/practicalnecdj-python | | Browse... |
() Select archive file: Browse,
Projects:
v practicalnecd-python :Notumes.ruxbhu:em.rur.\((lcalneo-tj-pw ._Se_lﬁ&il__
Deselect All |
Refresh
v Copy projects into workspace
Working sets
_| Add project to working sets
Working sets: Select...
(@ < Back Next > | Cancel | " Finish

Figure 9-4. Selecting the project location

6.

structure that looks like the one shown in Figure 9-5.

¥ <o Local Filesystemn
¥ =5 practicalneod)-python
¥ [=app
» = bottle
= logs
¥ (= public
¥ = service
|| adapter.wsgi
b @ pythen (fuse/bin/pythen)
@Conne:lions

Figure 9-5. Snapshot of the imported project

www.it-ebooks.info

CHAPTER 9 © NEO4J + PYTHON

Once the project is finished importing into your workspace, you should have a directory

173

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Bottle Web Framework for Python

Bottle is a Python implementation of what is often called a micro framework. The aim of a micro framework is to help
you quickly build out powerful web applications and APIs only using what is absolutely necessary to get the job done.
Bottle is fast, simple, and lightweight and uses the Python specification known as the Web Server Gateway
Interface. It is distributed as a single file module and has no dependencies other than the Python Standard Library.
Asyou can see in Listing 9-1, the code required for processing a request and providing a response is fairly limited.

Note Bottle is maintained by the Python dev Marcel Hellkamp and supported by a number of equally outstanding
committers. If you would like to get involved with Bottle, please visit http://bottlepy.org/.

Listing 9-1. Bottle Example of GET Route

from bottle import route, template

home page
@route('/")
def index():
return template("public/templates/home/index.html", title="Home")

Local Apache Configuration

To follow the sample application found later in this chapter, you will need to properly configure your local Apache
webserver to use the workspace project in Eclipse as the document root. One way to accomplish this is adding a
virtual host to Apache. Listing 9-2 covers the basic configuration for adding a virtual host to the httpd-vhosts.conf file.

Important If you do not have Apache HTTP installed, go to http://httpd.apache.org/ and follow the instructions
based on your operating system. Configuring Python with a local instance of Apache HTTP is out of the scope of this book,
but you can find the basic configuration steps at https://code.google.com/p/modwsgi/.

Listing 9-2. Minimum Configuration for httpd-vhosts.conf

NameVirtualHost *:80
<VirtualHost *:80>
ServerName practicalneo4j-python
DocumentRoot /path/to/your/workspace/practicalneo4j-python/app/public

<Directory /path/to/your/workspace/practicalneo4j-python/app/public>
Options None
AllowOverride None
Order allow,deny
allow from all
</Directory>

WSGIDaemonProcess graphstory user= www group=_www processes=1 threads=15
WSGIProcessGroup graphstory

174

www.it-ebooks.info

http://bottlepy.org/
http://httpd.apache.org/
https://code.google.com/p/modwsgi/
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

WSGIApplicationGroup %{GLOBAL}
WSGIScriptAlias / /path/to/your/workspace/practicalneo4j-python/app/adapter.wsgi

Alias /css/ /path/to/your/workspace/practicalneo4j-python/app/public/css/
Alias /fonts/ /path/to/your/workspace/practicalneo4j-python/app/public/fonts/
Alias /img/ /path/to/your/workspace/practicalneo4j-python/app/public/img/
Alias /js/ /path/to/your/workspace/practicalneo4j-python/app/public/js/

<Directory /path/to/your/workspace/practicalneo4j-python/app/bottle>
Options None
AllowOverride None
Order allow,deny
allow from all
</Directory>

ErrorLog /path/to/your/workspace/practicalneo4j-python/app/logs/error.log
LogLevel warn
</VirtualHost>

Py2neo

This section covers basic operations and usage of the Py2neo library with the goal of understanding the library before
implementing it within an application. The next section of this chapter will walk you through a sample application
with specific graph goals and models.

Like most of the language drivers and libraries available for Neo4j, the purpose of Py2neo is to provide a degree of
abstraction over the Neo4j REST API. In addition, the Py2neo API provides some additional enhancements that might
otherwise be required at some other stage in the development of your Python application, such as caching.

Note Py2neo is maintained by the super-awesome Nigel Small and supported by a number of great Python
graphistas. If you would like to get involved with Py2neo, go to https://github.com/nigelsmall/py2neo.

Each of the following brief sections covers concepts that tie either directly or indirectly to features and
functionality found within the Neo4j Server and REST API. If you choose to go through each language chapter, then
you should notice how each library covers those features and functionality in similar ways but takes advantage of the
language-specific capabilities to ensure the API is flexible and performant.

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, which includes the most basic of graph concepts: the
node. Managing nodes and their properties and relationships will probably account for the bulk of your application’s
graph-related code.

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 9-3. Creating a node begins
with setting up a connection to the database and making the node instance. The node properties are set next, and
then the node can be saved to the database.

175

www.it-ebooks.info

https://github.com/nigelsmall/py2neo
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON
Listing 9-3. Creating a Node
from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService("https://user:password@graphstory.com:7473/db/data/")

simple method to create node.
user, = graph_db.create({"name": "Greg", 'business': 'Graph Story'})

Warning The create method will always return a list, even when only creating a single node or relationship. Add a
trailing comma to automatically unpack a list containing a single node, as shown in the example.

Retrieving and Updating a Node

Once nodes have been added to the database, you will need a way to retrieve and modify them. Listing 9-4 shows the
process for finding a node by its node id value and updating it.

Listing 9-4. Retrieving and Updating a Node
from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

find the user node by it's node id. In this example, nodeld of 1
userNode = graph db.node(1)

update a property - this replaces all existing properties with properties provided.
userNode.set properties({"business " : "Graph Story" })

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
To remove a node, set a variable as a node object instance and then call the delete method for the node (Listing 9-5).

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

176

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON
Listing 9-5. Deleting a Node
from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

find the user node by it's node id
userNode = graph db.node(1)

delete the node
userNode.delete()

in some cases you might want to delete the node AND related notes and relationships
userNode.detele related()

Creating a Relationship

Py2neo offers different methods to create relationships. The example in Listing 9-6 sets up the relationship using a
simple create method.

Note Both the start and end nodes of a relationship must already be established within the database before the
relationship can be saved.

Listing 9-6. Relating Two Nodes

from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

create two nodes
greg, = graph db.create({"name": "Greg"})
brad, = graph db.create({"name": "Brad"})

create the relationship between the two nodes
graph_db.create(rel(greg, "FOLLOWS", brad))

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Retrieving Relationships

Once a relationship has been created between one or more nodes, then the relationship can be retrieved based on a
node (Listing 9-7).

Listing 9-7. Retrieving Relationships
from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

greg = graph db.node(1)
brad = graph_db.node(10)

find relationship via outgoing relationship
rels = greg.match_outgoing(rel type="FOLLOWS", end node= brad)

find relationship ignoring the direction of the relationship
rels = greg.match(rel type="FOLLOWS", other node= brad)

Deleting a Relationship

Once a relationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary. To remove a relationship, set it as a relationship object instance and then call the delete method for the
relationship (Listing 9-8).

Listing 9-8. Deleting a Relationship

from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

greg = graph db.node(1)
brad = graph_db.node(10)

find single relationship
rel = graph_db.match_one(start_node=greg, rel type="FOLLOWS", end_node= brad)

you could also set bidirectional to True if reversed relatioships should be matched
rel = graph db.match one(start node=greg, rel type="FOLLOWS", end node= brad, bidirectional=True)

delete relationship
rel.delete()

Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4;j 2.0 in
order to help in querying and can also function as a way to quickly create a subgraph.

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Adding a Label to Nodes

In Py2neo, you can add one more labels to a node. As Listing 9-9 shows, the add_labels function takes one or more
labels as argument. You can return each of the labels on a node by calling its get_labels function. The value used for
the label should be any nonempty string or numeric value.

Caution A label will not exist on the database server until it has been added to at least one node.

Listing 9-9. Retrieving a Node and Adding a Label to It

from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

find the user node by its node id
userNode = graph db.node(1)

add the label
userNode.add labels("User")

Removing a Label

Removing a label uses similar syntax as adding a label to a node. After the given label has been removed from the
node (Listing 9-10), the return value is a list of labels still on the node.

Listing 9-10. Removing a Label from a Node

from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph _db = neo4j.GraphDatabaseService()

find the user node by it's node id
userNode = graph_db.node(1)

remove the label
userNode.remove_labels("Developer")

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Querying with a Label

To get nodes that use a specific la bel, use the function called getNodes. This function returns value is a result Row
object, which can be iterated over like an array (Listing 9-11).

Listing 9-11. Querying with a Label

from py2neo import neo4j, ogm, node, rel

set connection information (defaults to: http://localhost:7474/db/data/)
graph_db = neo4j.GraphDatabaseService()

property key and property value default to None
users = list(graph db.find('User', property key='name', property value='Brad'))

Developing a Python and Neo4j Application

Preliminary to building out your first Python and Neo4j application, this section covers the basics of configuring a
development environment.
Again, if you have not worked through the installation steps in Chapter 2, please take a few minutes to install it.

Preparing the Graph

In order to spend more time highlighting code examples for each of the more common graph models, you will use a
preloaded instance of Neo4j including necessary plugins, such as the spatial plugin.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from Graph
Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to graphstory.com/
practicalneo4j, downloading the zip file containing the sample database and plugins, and adding them to your local
instance.

Using the Sample Application

If you have already downloaded the sample application from graphstory.com/practicalneo4j for Python and
configured it with your local application environment, you can skip ahead to the next section, “Bottle Application
Configuration” Otherwise, you will need to go back to the section in this chapter titled “Python and Neo4j
Development Environment” section and set up your local environment in order to follow the examples in the sample
application.

Bottle Application Configuration

Before diving into the code examples, you need to update the configuration for the Bottle application. In Eclipse (or
the IDE you are using), open the file {PROJECTROOT}/app/bottle/graphstory.py and edit the GraphStory connection
string information. If you are using a free account from graphstory.com, you will change the username, password,
and URL in Listing 9-12 with the one provided in your graph console on graphstory.com.

180

www.it-ebooks.info

http://graphstory.com/
http://graphstory.com/
http://www.it-ebooks.info/

Listing 9-12. Database Connection Settings

CHAPTER 9 © NEO4J + PYTHON

graph_db = neo4j.GraphDatabaseService("https://username:password@theURL:7473/db/data/")

If you have installed a local Neo4j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, as in the example shown in Listing 9-13.

Listing 9-13. Database Connection Settings for Local Enviroment

graph _db = neo4j.GraphDatabaseService("http://localhost:7474/db/data/")

Once the environment is properly configured, you can open a browser to the URL, http://practicalneo4j-
python, and you should see a page like the one shown in Figure 9-6.

enon

L2 c

Graph Story | Home

practicalneodj-python/

Graph Story

The leading graph-as-a-service provider

Easy path to Social

Quickly create an online community and help them
connect and share faster with Graph Story. Create a
alable, secure, social app in minutes!

Maps are a graph!

Graph Story is a next generation pla
manage location information. Keep lo
let us do the work.

rm for apps that
ation simple and

© Graph Story, Inc. 2014

Most Interesting

Build special connections within your communities by
helping them manage their interests.

Recommendations

Relevant recommendations create sales! Graph Story
tomers understand and manage their
recommendations to get more relevant results,

will help your cus

Figure 9-6. The Python sample application home page

www.it-ebooks.info

Content is King

What your customers read can tell you what to write -
and what not to write. Match your cusiomers words with
your own.

Win at Starting

riup helps your team sae all the parts of
your startup, keeps everything in one place, moving
forward and staying strong.

181

http://practicalneo4j-python/
http://practicalneo4j-python/
http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany it. In particular, this
section looks at the following:

e Sign-up and login
e Updating a user
e Creating arelationship type through a user by following other users

e Managing user content, such as displaying, adding, updating, and removing status updates

Note The sample graph database used for these examples is loaded with data, so you can immediately begin work-
ing with representative data in each of the graph models. In the case of the social graph—and for other graph models,
as well—you will login with the user ajordan. Going forward, please login with ajordan to see each of the working
examples.

Sign-Up

The HTML required for the user sign-up form is shown in Listing 9-14 and can be found in the {PROJECTROOT}/app/
public/templates/home/index.html file.

Listing 9-14. HTML Snippet of Sign-Up Form

<form class="navbar-form navbar-left" action="/signup/add" role="form"
id="createaccountform" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="username"
class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button>
</form>

Note While the sample application creates a user without a password, | am certainly not suggesting or advocating
this approach for a production application. Excluding the password property was done in order to create a simple sign-up
and login that helps keep the focus on the more salient aspects of the Py2Neo library.

Sign-Up Route

In the sign-up route, start by doing a lookup on the username passed in the request and see if it already exists in the
database using the get_user_by_username method found in the User class, as provided in Listing 9-15. If no match is
found, the username is passed on to the save_user method within else statement.

If no errors are returned during the save attempt, the request is redirected via redirect and a message is passed
to thank the user for signing up. Otherwise, the error message back to the home view informs the user of the problem.

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-15. The Sign-Up Route

@route('/signup/add', method='POST")
def signup():
username = request.forms.get('username’).strip().lower()

make sure username was passed
if username:

check if username exists
user = User().get user by username(graph db, username)
if user:

user found, show message

return template('public/templates/home/index.html’, layout=homelayout, title="Home",
error="'The username ' + username + ' already exists. Please use a
different username.")

else:

save user
User().save_user(graph db, username)
redirect("/msg?u=" + username)

otherwise send back
else:
return template('public/templates/home/index.html’, layout=homelayout,
title="Home", error="Please enter a username.")

Adding a User

In each part of the five graph areas covered in this chapter, the domain object has a corresponding service class to
manage the persistence operations within the database. In this case, the User class covers the management of the
application’s user nodes, using a mix of py2neo convenience methods and executing Cypher queries.

To save a node and label it as a User, the save_user method, shown in Listing 9-16, makes use of the create
method by passing in the username param and value. Once the node is created, the add_labels method applies the
User label.

Listing 9-16. The save_user Method in the User Class

def save_user(self, graph_db, username):
create user
newuser, = graph db.create({"username": username})
add the label
newuser.add labels("User")
return newuser

Login

This section reviews the login process for the sample application. To execute the login process, you will also use the
login route as well as User class. Before reviewing the controller and service layer, take a quick look at the front-end
code for the login.

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Login Form

The HTML required for the user login form is shown in Listing 9-17 and can be found in the {PROJECTROOT }/app/
public/templates/global/base-home.html layout file.

Listing 9-17. The Login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">
<div class="form-group">

<input type="text" placeholder="Username" name="username" class="form-control">
</div>

<button type="submit" class="btn btn-success">Sign in</button>

</form>

Login Route

In the graphstory application, use the login route to control the flow of the login process, as shown in Listing 9-18.
Inside the login route, use the get_user_by username method to check if the user exists in the database.

Listing 9-18. The login Route

@route('/login', method='POST")
def login():
make sure username was passed
username = request.forms.get('username').strip().lower()

if username:

look for username

user = User().get user by username(graph db, username)

if user:
user found, set cookie and redirect
response.set_cookie(graphstoryUserAuthKey, user["username"], path="/")
redirect("/social")

else:
otherwise send back with not found message
return template("public/templates/home/index.html", layout=homelayout, title="Home",
error="The username you entered was not found.")
otherwise send back
else:
return template('public/templates/home/index.html’, layout=homelayout, title="Home",
error="Please enter a username.")

If the user is found during the login attempt, a cookie is added to the response and the request is redirected via
redirect the social home page, shown in Figure 9-7. Otherwise, the route will specify the HTML page to return and
will add the error messages that need to be displayed back to the view.

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | Social

= 5 practicalneodj-python/social =
O Soclal Graph nterest
rapk Story -
Social Graph

This section of the application demonstrates some of the common features of a soclal graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

raft - Gene Jorda

: Posted by ajordan at

4 at 7:02 PM

Andrew M. Wray (Il Memaorial & ship
tags: university of memphis, economics :: Posted by anwray at 06/01/2014

Rob Base Decision Tree
tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM

Next>>>

Figure 9-7. The social graph home page

Login Service

To check to see if the user values being passed through are connected to a valid user combination in the database,
the application uses the get_user_ by username method in the User class. As shown in Listing 9-19, the result of the
get_user_ by username method is assigned to the user variable.

If the result is not null or empty, the result is set on the User object and returned to the controller layer of the
application.

Listing 9-19. The get_user by username Method in the User Class

def get user by username(self, graph db, username):
query = neo4j.CypherQuery(graph db,
" MATCH (user:User {username: {username}}) " +
" RETURN user ")
params = {"username": username}
result = query.execute one(**params)
return result

Now that the user is logged in, he can edit his settings, create relationships with other users in the graph, and
create his own content.

Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as shown in
Figure 9-8. In this example, the front-end code uses an AJAX request via PUT and adds—or, in the case of the ajordan
user, updates—the first and last name of the user.

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | User x

&« € [practicalneodj-python user
Soclal Graph
rapf“ Story -

Social Graph - Friends

This section of the application shows how to update a user's settings.

Social Menu User Settings for ajordan
First Name Alvin
Last Name Jordan
Update User

Figure 9-8. The User Settings page

User Update Form

The user settings form is located in {PROJECTROOT}/app/public/templates/graphs/social/user.html and is similar
in structure to the other forms presented in the Sign Up and Login sections. One difference is that you have added the
value property to the input element as well as the variables for displaying the respective stored values. If none exist,
the form fields will be empty (Listing 9-20).

Listing 9-20. User Update Form

<form class="form-horizontal" id="userform" action="/user/edit" method="put">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname" name="user.firstname"
value="{{user.firstname}}" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname" name="user.lastname"
value="{{user.lastname}}" />
</div>
</div>
<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update User</button>
</div>
</div>
</form>

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

User Edit Route

The graphstory application contains a route with the path /user/edit, which takes the JSON object argument. The
User object is converted from a JSON string and returns a User object as JSON. The response could be used to update
the form elements, but because the values are already set within the form there is no need to update the values. In
this case, the application uses the JSON response to let the user know if the update succeeded or not via a standard
JavaScript alert message (Listing 9-21).

Listing 9-21. user_edit Route

@route('/user/edit', method='PUT")
def user edit():
User().update user(graph db, request.get cookie(graphstoryUserAuthKey),
request.json["firstname"], request.json["lastname"])

response.content_type = 'application/json’

return {"msg": "ok"}

User Update Method

To complete the update, the controller layer calls the update_user method in User class. Because the object being
passed into the update method did nothing more than modify the first and last name of an existing entity, you can use
the SET clause via Cypher to update the properties in the graph, as shown in Listing 9-22.

This Cypher statement also makes use of the MATCH clause to retrieve the User node. You could also complete this
feature by executing a find or using the get_user_by username method, and then updating the first and last name via
the update_properties method of the py2neo Node class.

Listing 9-22. The update_user Method in the User Class

def update user(self, graph db, username, firstname, lastname):
query = neo4j.CypherQuery(graph_db,
"MATCH (user:User {username:{u}}) " +
"SET user.firstname = {fn}, user.lastname = {1ln}")
params = {"u": username, "fn": firstname, "In": lastname}
result = query.execute(**params)
return result

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. In the sample application, you will use the directed relationship type called FOLLOWS. By going to the
“Friends” page within the social graph section, you can see the list of the users the current user is following, search for
new friends to follow, add them and remove friends the current user is following.

The user management section of graphstory.py contains each of the routes to control the flow for these features,
specifically the routes that cover friends, search_by username, follow and unfollow.

To display the list of the users the current user is following, the friends route, showing in Listing 9-23, in the
graphstory application calls the following method in User class. The following method in User class, also shown in
Listing 9-23, creates a list of users by matching the current user’s username with directed relationship FOLLOWS on the
variable user.

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-23. The friends Route and the following Method

@route('/friends', method='GET')
def friends():
following = User().following(graph db, request.get cookie(graphstoryUserAuthKey))

return template('public/templates/graphs/social/friends.html’,
following=following, layout=applayout, title="Friends")

the following method in the User class
def following(self, graph_db, username):
query = neo4j.CypherQuery(graph db,
" MATCH (user { username:{u}})-[:FOLLOWS]->(users) " +
" RETURN users.firstname as firstname, users.lastname as
lastname, "+
" users.username as username " +
" ORDER BY users.username")
params = {"u": username}
result = query.execute(**params)

return result

If the list contains users, it will be returned to the controller and displayed as on the right-hand part of Figure 9-9.
The display code for showing the list of users can be found in {PROJECTROOT}/app/public/templates/graphs/social/
friends.html and is shown in the code snippet in Listing 9-24.

Graph Story | Frierds

= 5 practicalneodj-python/friends

&7 Graph Story

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks.

Soclal Graph

Social Menu Search For Friends Giiveiit Fenda
Jimi James Ramove

a John Baird Remove

Leonard Euler

Search
Mikola Tesla
Aline Wray Add as Friend Opal Jordan Asmove
Andrew Wray Add as Friend oo Fameworth —
Thomas Edison Remove

Figure 9-9. The Friends page

188

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-24. The HTML Code Snippet for Displaying the List of Friends

<div class="col-md-3">
<h3>Current Friends</h3>
<table class="table" id="following">
{{#following}}
<tr><td>{{firstname}} {{lastname}}</td><td><a href="#"
id="{{username}}"
class="removefriend">Remove</td></tr>
{{/following}}
{{*following}}
No friends :(
{{/following}}
</table>
</div>

To search for users to follow, the user section of graphstory contains a GET route /searchbyusername and passes
in a username value as part of the path. This route executes the search_by username_not_following method found
in User class, showing the second section of Listing 9-25. The first part of the WHERE clause in search_by username_
not_following returns users whose username matches on a wildcard String value. The second part of the WHERE
clause in search_by username_not_following checks to make sure the users in the MATCH clause are not already
being followed by the current user.

Listing 9-25. The searchbyusername Route and service Method

@route('/searchbyusername/<username>’, method='GET")
def search by username(username):
get the users' the current user is following
users = User().search by username_not following(graph db,
request.get cookie(graphstoryUserAuthKey),
username)

response.content_type = 'application/json'

return as json
return dumps({"users": User().users results as array(users)})

search by user returns users in the network that aren’t already being followed
def search by username not following(self, graph db, currentusername, username):

username = username.lower() + ".*"

query = neo4j.CypherQuery(graph db,

" MATCH (n:User), (user { username:{cu}}) " +

WHERE (n.username =~ {u} AND n <> user) " +
AND (NOT (user)-[:FOLLOWS]->(n)) " +
RETURN n.firstname as firstname, n.lastname as lastname,"+
n.username as username")
params = {"u": username, "cu": currentusername}
result = query.execute(**params)
return result

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

The searchByUsername in {PROJECTROOT}/app/public/js/graphstory.js uses an AJAX request and formats
the response in renderSearchByUsername. If the list contains users, it is displayed in the center of the page under the
search form, as shown in Figure 9-9. Otherwise, the response displays “No Users Found”.

Once the search returns results, the next action is to click on the “Add as Friend” link, which calls the addfriend
method in graphstory. js. This performs an AJAX request to the follow method in the UserController and calls
followin UserService. The follow method in UserService, shown in Listing 9-26, will create the relationship
between the two users by first finding each entity via the MATCH clause and then using the CreateUnique clause to
create the directed FOLLOWS relationship. Once the operation is completed, the next part of the query then runs a
MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 9-26. The follow Route and follow service Method

follow a user
@route('/follow/<username>', method='GET")
def follow(username):
following = User().follow(graph db, request.get cookie(graphstoryUserAuthKey), username)

response.content_type = 'application/json'
return dumps({"following": User().users results as_array(following)})

the follow method in the User class
def follow(self, graph db, currentusername, username):
query = neo4j.CypherQuery(graph db,

" MATCH (useri:User {username:{cu}}), (user2:User
{username:{u}}) " +
" CREATE UNIQUE useri-[:FOLLOWS]->user2 " +
" WITH user1" +
" MATCH (user1)-[f:FOLLOWS]->(users)" +
" RETURN users.firstname as firstname, users.lastname

as lastname, " +
" users.username as username " +
" ORDER BY users.username")
params = {"cu": currentusername,"u": username}
result = query.execute(**params)

return result

The unfollow feature for the FOLLOWS relationships uses a nearly identical application flow as follows feature.
In the unfollow method, shown in Listing 9-27, the controller passes in two arguments—the current username and
username to be unfollowed. As with the follows method, once the operation is completed, the next part of the query
then runs a MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 9-27. The unfollow Route and unfollow Method

@route('/unfollow/<username>', method='GET")
def unfollow(username):
following = User().unfollow(graph db, request.get cookie(graphstoryUserAuthKey), username)

response.content_type = 'application/json'

return dumps({"following": User().users results as_array(following)})

190

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

unfollow a user
def unfollow(self, graph db, currentusername, username):
query = neo4j.CypherQuery(graph db,

" MATCH (useri:User {username:{cu}})-[f:FOLLOWS]->(user2:User
{username:{u}}) " +

" DELETE f " +

WITH user1" +

MATCH (user1)-[f:FOLLOWS]->(users)" +

RETURN users.firstname as firstname, users.lastname as lastname, "+

" users.username as username " +

ORDER BY users.username")

params = {"cu": currentusername, "u": username}

result = query.execute(**params)

return result

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content—sometimes referred to as user-generated content. In the case of this content, you will not be creating
connections between the content and its owner, but creating a linked list of status updates. In other words, you are
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time,
and using a limited linked list is more efficient than getting all status updates connected directly to a user and then
sorting and limiting the number of items to return. Second, it also helps to limit the number of relationships that are
placed on the User and Content entities. Therefore, the overall graph operations should be made more efficient by
using the linked list approach.

Getting the Status Updates

To display the first set of status updates, start with the social route of the social section of grapstory.py. This method
accesses the get_content method within Content service class, which takes an argument of the current user’s
username and the page being requested. The page refers to set number of objects within a collection. In this instance
the paging is zero-based, and so you will request page 0 and limit the page size to 4 in order to return the first page.

The get_content method in Content class, shown in Listing 9-28, will first determine whom the user is following
and then match that set of user with the status updates starting with the CURRENTPOST. The CURRENTPOST is then
matched on the next three status updates via the [:NEXTPOST*0. .3] section of the query. Finally, the method uses
aloop to add a readable date and time string property—based on the timestamp—on the results returned to the
controller and view.

Listing 9-28. The get_content Method in Content Class

def get content(self, graph db, username, skip):
query = neo4j.CypherQuery(graph db,
" MATCH (u:User {username: {u} })-[:FOLLOWS*0..1]->f " +
" WITH DISTINCT f,u " +
" MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p " +
" RETURN p.contentId as contentId, p.title as title, " +

p.tagstr as tagstr, p.timestamp as timestamp, " +
p.url as url, f.username as username, f=u as owner " +
" ORDER BY p.timestamp desc SKIP {s} LIMIT 4 ")

191

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

params = {"u": username, "s": skip}
result = query.execute(**params)
for r in result:
setattr(r, "timestampAsStr",
datetime.fromtimestamp(int(r.timestamp)).strftime('%m/%d/%Y') + " at " +

datetime.fromtimestamp(int(r.timestamp)).strftime('%I:%M %p"')
)

return result

Adding a Status Update

The page shown in Figure 9-10 shows the form to add a status update for the current user, which is displayed when
clicking on the “Add Content” link just under the “Graph Story—Social Feed” header. The HTML for the form can
be found in {PROJECTROOT}/app/public/templates/graphs/social/posts.html. The form uses the addContent

function in graphstory. js to POST a new status update as well as return the response and add it to the top of the
status update content stream.

Graph Story | Soclal

€ C' [practicalneodj-python/social

Social Graph
This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.
Social Menu Graph Story - Social Feed

Cancel

« Soclal Feed
» LUsar Settings
» Friends Title

URL
Tags
Add Content

1960 NBA Draft - Gene Jordan Edit/ Delete
tags: nba :: Posted by ajordan at 08/02/2014 at 7:02 PM

Rob Base Decision Tree
tags: musie, funny = Posted by ptfarsworth at 05/18/2014 at 5:00 AM

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM

MNeaxt = > >

Figure 9-10. Adding a status update

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

The add_content route and add_content method are shown in Listing 9-29. When a new status update is created,
in addition to its graph id, the add_content method also generates a contentld, which performs using the uuid1
method.

The add_content method also make the status the CURRENTPOST. Determine whether a previous CURRENTPOST
exists and, if one does, change its relationship type to NEXTPOST. In addition, the tags connected to the status update
are merged into the graph and connected to the status update via the HAS relationship type.

Listing 9-29. add_content Route and add_content Method for a Status Update

add status update
@route('/posts/add', method='POST")
def add_content():

get json from the request
content = request.json

#save the status update
content=Content().add content(graph db, request.get cookie(graphstoryUserAuthKey), content)

set response type
response.content_type = 'application/json’

return the saved content
return dumps(content)

add a status update
def add_content(self, graph db, username, content):

tagstr=self.trim content tags(content["tagstr"])

tags = tagstr.split(",
ts = time.time()

query = neo4j.CypherQuery(graph db,
" MATCH (user { username: {u}}) " +
CREATE UNIQUE (user)-[:CURRENTPOST]->(newLP:Content { title:{title}, " +
url:{url}, tagstr:{tagstr}, timestamp:{timestamp}, contentId:{contentId} }) " +
WITH user, newLP" +
FOREACH (tagName in {tags} | " +
MERGE (t:Tag {wordPhrase:tagName}) " +
MERGE (newLP)-[:HAS]->(t) " +
")+
WITH user, newlLP " +
OPTIONAL MATCH (newLP)<-[:CURRENTPOST]-(user)-[oldRel:CURRENTPOST]->(oldLP)" +
DELETE oldRel " +
CREATE (newLP)-[:NEXTPOST]->(oldLP) " +
RETURN newLP.contentId as contentId, newLP.title as title, newlLP.tagstr as tagstr, " +
newlLP.timestamp as timestamp, newLP.url as url, {u} as username, true as owner ")
params = {"u": username, "title": contentItem["title"].strip(),
"url": contentItem["url"].strip(),
"tagstr":tagstr, "timestamp":ts,"contentId": uuid.uuid1(), "tags":tags}

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

result = query.execute(**params)
for r in result:
setattr(r, "timestampAsStr",
datetime.fromtimestamp(int(r.timestamp)).strftime('%m/%d/%Y') + " at " +
datetime.fromtimestamp(int(xr.timestamp)).strftime('%I:%M %p"')

)

return result

Editing a Status Update

When status updates are displayed, the current user’s status updates will contain a link to “Edit” the status. Once
clicked, it will open the form, similar to the “Add Content” link, but will populate the form with the status update
values and modify the form button to read “Edit Content’, as shown in Figure 9-11. As with many similar UI features,
clicking “Cancel” under the heading will remove the values and return the form to its ready state.

Graph Story | Social x

= C practicalneodj-python/social

Grth Story

(]

Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title 1960 NBA Draft - Gena Jordan
UAL hittpz//nba-draft-history.findthebest.com/U7778/Gene-Jordan
Tags nba
Edit Content
1960 NBA Draft - Gene Jordan

tags: nba :: Posted by ajordan af

Rob Basa Decision Tree
tags: music, funny = Posted by ptfarsworth at 05/18/2014

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/20

Next>>>

Figure 9-11. Editing a status update

The edit feature, like the add feature, uses a route in the graphstory application and a function in graphstory. js,
which are edit_and updateContent, respectively. The edit_content route passes in the content object, with its
content id, and then calls the edit_content method in Content class, as shown in Listing 9-30.

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

In the case of the edit feature, you do not need to update relationships. Instead, simply retrieve the existing node
by its generated String Id (not its graph id), update its properties where necessary, and save it back to the graph.

Listing 9-30. edit_content Route and edit_content Method for a Status Update

edit the status update
@route('/posts/edit', method='POST")
def edit content():

get json from the request
content = request.json

#update the status update
content=Content().edit_content(graph_db, request.get cookie(graphstoryUserAuthKey), content)

set response type
response.content_type = 'application/json'

return the saved content
return dumps(content)

edit a status update
def edit_content(self, graph_db, username, content):

tagstr=self.trim _content_tags(content["tagstr"])

tags = tagstr.split(",

query = neo4j.CypherQuery(graph_db,
" MATCH (c:Content {contentId:{contentId}})-[:NEXTPOST*0..]-()-[:CURRENTPOST]-
(user { username: {u}}) " +
" SET c.title = {title}, c.url = {url}, c.tagstr = {tagstr}" +
FOREACH (tagName in {tags} | " +
MERGE (t:Tag {wordPhrase:tagName}) " +
MERGE (c)-[:HAS]->(t) " +
")+
RETURN c.contentId as contentId, c.title as title, c.tagstr as tagstr, " +
c.timestamp as timestamp, c.url as url, {u} as username, true as owner ")
params = {"u": username, "contentId": content["contentId"],
"title": content["title"].strip(), "url": content["url"].strip(),"tagstr":tagstr,
"tags":tags}
result = query.execute(**params)
for r in result:
setattr(r, "timestampAsStr",
datetime.fromtimestamp(int(r.timestamp)).strftime('%m/%d/%Y') + " at " +
datetime.fromtimestamp(int(xr.timestamp)).strftime('%I:%M %p"')

)

return result

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates contain a link to
“Delete” the status. Once clicked, it asks if you want it deleted (no regrets!) and, if accepted, generates an AJAX GET
request to call the delete_content route and corresponding method in the Content class, shown in Listing 9-31.

The Cypher in the delete method begins by finding the user and content that will be used in the rest of the query.
In the first MATCH, you can determine if this status update is the CURRENTPOST by checking to see if it is related to a
NEXTPOST. If this relationship pattern matches, make the NEXTPOST into the CURRENTPOST with CREATE UNIQUE.

Next, the query will ask if the status update is somewhere the middle of the list, which is performed by
determining if the status update has incoming and outgoing NEXTPOST relationships. If the pattern is matched, then
connect the before and after status updates via NEXTPOST.

Regardless of the status update’s location in the linked list, retrieve it and its relationships and then delete the
node along with all of its relationships.

To recap, if one of the relationship patterns matches, replace that pattern with the nodes on either side of the
status update in question. Once that has been performed, the node and its relationships can be removed from the
graph.

Listing 9-31. delete_content Route and delete_content Method for a Status Update

delete a status update
@route('/posts/delete/<contentId>"', method='GET")
def delete content(contentId):

#delete the status update
delete = Content().delete content(graph db, request.get cookie(graphstoryUserAuthKey),
contentId)

set response type
response.content_type = 'application/json’

return the response
return {"msg": "ok"}

delete a status update
def delete content(self, graph db, username, contentId):
query = neo4j.CypherQuery(graph_db,
" MATCH (u:User { username: {u} }) (c:Content { contentId: {contentId} }) "

" WITH u,c " +

" MATCH (u)-[:CURRENTPOST]->(c)-[:NEXTPOST]->(nextPost) " +
WHERE nextPost is not null " +
CREATE UNIQUE (u)-[:CURRENTPOST]->(nextPost) " +
WITH count(nextPost) as cnt " +
MATCH (before)-[:NEXTPOST]->(c:Content { contentId: {contentId}})-[:NEXTPOST]->(after) "
WHERE before is not null AND after is not null " +
CREATE UNIQUE (before)-[:NEXTPOST]->(after) " +
WITH count(before) as cnt " +
MATCH (c:Content { contentId: {contentId} })-[r]-() " +
DELETE c, 1"
params = {"u": username, "contentId": contentId}
result = query.execute(**params)
return result

+

196

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Interest Graph Model

This section looks at the interest graph and examines some basic ways it can be used to explicitly define a degree of
interest. The following topics are covered:

e Adding filters for owned content
e Adding filters for connected content

e Analyzing connected content (count tags)

Interest in Aggregate

Inside the interest route of graphstory.py, we retrieve all of the user’s tags and their friends’ tags by calling,
respectively, the user_tags and tags__in_network methods found in the Tag class. This is displayed in Figure 9-12 in
the left-hand column.

Graph Story | Interest

< 5 practicalneodj-python/interest®tag=internet&userscontent=true =
%} - Interest Graph
2 Graph Story
Interest Graph

This section of the application shows interest via a user's tagged content and tha user's natwork of friends tagged content. This could be expanded to show usars with common
interests via tags.

My Interests Graph Story - Interest Feed

nternet (2) nba (1) history (1)

Cert: the web (see what | did thera?)

: internet, history :: Posted by ajordan at 06

£9:16 AM

Interests in my network

tarr 3]

ould be called shakedown-ir
2 Posted by ajordan a

Figure 9-12. Filtering the current user’s content

The display code is located in {PROJECTROOT}/app/views/graphs/interest/index.html. The interest route
also uses two additional methods, which are shown in Listings 9-33 and 9-34. The get_following_content_with_tag
finds users being followed, accesses all of their content, and finds connected tags through the HAS relationship type.

The get_user_content_with_tag method is similar but is concerned only with content and, subsequently, tags
connected to the current user. As mentioned earlier, the methods return an array of content and tags, which supports
an autosuggest plugin in the view and requires both a label and name to be provided in order to execute. This
autosuggest feature is used in the status update form as well as some search forms found later in this chapter.

Listing 9-32. The interest Route

show tags within the user's network (theirs and those being followed)
@route('/interest")
def interest():

get the user's tags

userTags = Tag().user tags(graph db, request.get cookie(graphstoryUserAuthKey))

197

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

get the tags of user's friends
tagsInNetwork = Tag().tags_in_network(graph_db, request.get_cookie(graphstoryUserAuthKey))

if the user's content was requested
if request.query.get('userscontent') == "true":
contents = Content().get user content with_tag(graph db,
request.get cookie(graphstoryUserAuthKey),
request.query.get('tag'))
if the user's friends' content was requested
else:
contents = Content().get following content with tag(graph db,
request.get cookie(graphstoryUserAuthKey),
request.query.get('tag'))

return template('public/templates/graphs/interest/index.html', layout=applayout,

userTags=userTags,
tagsInNetwork=tagsInNetwork, contents=contents, title="Interest")

Filtering Managed Content

Once the list of tags for the user and for the group she follows has been provided, the content can be filtered based

on the generated tag links, which is shown in Figure 9-12. If a tag is clicked on the inside of the “My Interests” section,

then the get_user content_with_tag method, displayed in Listing 9-33, will be called.

Listing 9-33. Get the Content of the Current User Based on a Tag

def get user content with tag(self, graph db, username, wordPhrase):
query = neo4j.CypherQuery(graph db,

" MATCH (u:User {username: {u} })-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p

+
" WITH DISTINCT u,p" +
" MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" +
" RETURN p.contentId as contentId, p.title as title, p.tagstr as

tagstr, " +

" p.timestamp as timestamp, p.url as url, u.username as username, true

as owner" +
" ORDER BY p.timestamp DESC")
params = {"u": username, "wp": wordPhrase}
result = query.execute(**params)
for r in result:
setattr(r, "timestampAsStr",
datetime.fromtimestamp(int(r.timestamp)).strftime('%m/%d/%Y"') + " at " +
datetime.fromtimestamp(int(xr.timestamp)).strftime('%I:%M %p"')
)

return result

Filtering Connected Content

If a tag is clicked on the inside of the “Interests in my Network” section, then get_following content with_tag
method will be called, as shown in Listing 9-34. The second query is nearly identical the first query found in the
interest route, except that it will factor in the users being followed and exclude the current user (Figure 9-13).

198

www.it-ebooks.info

http://www.it-ebooks.info/

Graph Story | Interest

CHAPTER 9 © NEO4J + PYTHON

L 5 practicalneodj-python/interesttag=music&userscontent=false =
Q) Interest Graph
& B
raph Story
Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded o show users with common
Inerests via tags.

My Interests

Imternet (2) nba (1) history (1)

Graph Story - Interest Feed

Rob Base Decision Tree
tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:08 AM
From Hendrix to The Beatles

tags: music, funny :: Posted by ntesla at 04/20/2014 at B:22 AM

World's Greatest Scientist: Hopeton Brown
tags: music, dub :: Posted by james at 04/18/2014 at 8:54 AM

Greatast Jazz Guitar of All Time. Deba

tags: music :: Posted by [james at 03 t 10:09 AM

Hendrix
tags: music, hendrix :: Posted by tedison at 11/27/2013 at 3:18 PM

Make sura to check out the High Liamas
tags: music :: Posted by leuler at 06/23/2013 at 8:16 AM

A Day In The Life
tags: music :: Posted by jjames at 06/15/2013 at 8:16 AM

Figure 9-13. Filtering content of the current user’s friends

The method also returns a collection of status updates based on the matching tag, placing no limit on the number
of status updates to be returned. In addition, it marks the owner property as true, because you've determined ahead of
time you are only returning the current user’s content. The results of calling this method are shown in Figure 9-13.

Listing 9-34. Get the Content of the User’s Being Followed Based on a Tag

def get following content with tag(self, graph db, username, wordPhrase):
query = neo4j.CypherQuery(graph_db,

params
result

{ru":

" MATCH (u:User {username: {u} })-[:FOLLOWS]->f" +

" WITH DISTINCT f" +

" MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p" +

" WITH DISTINCT f,p" +

" MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" +

" RETURN p.contentId as contentId, p.title as title, p.tagstr as
tagstr, " +

" p.timestamp as timestamp, p.url as url, f.username as username,
false as owner" +

" ORDER BY p.timestamp DESC")

username, "wp": wordPhrase}

query.execute(**params)

199

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

for r in result:
setattr(r, "timestampAsStr",
datetime.fromtimestamp(int(r.timestamp)).strftime('%m/%d/%Y"') + " at " +
datetime.fromtimestamp(int(xr.timestamp)).strftime('%I:%M %p"')
)

return result

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the prepopulated set of products provided in the sample
graph. The code required for the console will reinforce the standard persistence operations, this section focuses on
the operations that take advantage of this model type, including:

e (Capturing consumption
e Filtering consumption for users

¢ Filtering consumption for messaging

Capturing Consumption

The process above for creating code that directly captures consumption for a user could also be done by creating
a graph-backed service to consume the webserver logs in real time or by creating another data store to create

the relationships. The result would be the same in any event: a process that connects nodes to reveal a pattern of
consumption (Listing 9-35).

Listing 9-35. Consumption Route to Show a List of Products and the Product Trail of the Current User

show products and products VIEWED by user
@route('/consumption', method='GET")
def consumption():
products = Product().get products(graph db, 0)
next = True
nextPageUrl = "/consumption/10"

productTrail = Product().get product trail(graph db, request.cookies[graphstoryUserAuthKey])

return template('public/templates/graphs/consumption/index.html",
layout=applayout, products=products,
productTrail=productTrail, next=next, nextPageUrl=nextPageUrl,
title="Consumption")

The sample application used the create_user view_and_return_views method in the Product class to first
find the product being viewed and then create an explicit relationship type called VIEWED. As you may have noticed,
this is the first relationship type in the application that also contains properties. In this case, you are creating a
timestamp with a date and string value of the timestamp. The query, provided in Listing 9-36, checks to see if a VIEWED
relationship already exists between the user and the product using MERGE.

In the MERGE section of the query, if the result of the MERGE is zero matches, then a relationship is created with key
value pairs on the new relationship, specifically dateAsStr and timestamp. Finally, the query uses MATCH to return the
existing product views.

200

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-36. Add consumption_add Route and create_user_view_and_return_views Method

add a product via VIEWED relationship and return VIEWED products
@route('/consumption/add/<productNodeId:int>", method='GET")
def consumption add(productNodeId):

#save the view and return the full list of views
productTrailAsJson=Product().create user view and return_views(graph db, request.cookies
[graphstoryUserAuthKey], productNodeId)

#set the response type
response.content_type = 'application/json’

#return the list of views
return dumps(productTrailAsJson)

the method to add a user view of a product
def create user view and return_views(self, graph db, username, productNodeId):

create timestamp and string display
ts = time.time()
timestampAsStr = datetime.fromtimestamp(int(ts)).strftime(
"dm/%d/%Y') + " at " + datetime.fromtimestamp(int(ts)).strftime('%I:%M %p')

query = neo4j.CypherQuery(graph db,
" MATCH (p:Product), (u:User { username:{u} })" +
WHERE id(p) = {productNodeId}" +
" WITH u,p" +
MERGE (u)-[r:VIEWED]->(p)" +
SET r.dateAsStr={timestampAsStr}, r.timestamp={ts}" +
WITH u " +
MATCH (u)-[r:VIEWED]->(p)" +
RETURN p.title as title, r.dateAsStr as dateAsStr" +
ORDER BY r.timestamp desc")

params = {"productNodeId": productNodeId,"u": username,
"timestampAsStr": timestampAsStr,"ts": ts }
result = query.execute(**params)

result=self.get product trail results as json(result)

return result

Filtering Consumption for Users

One practical use of the consumption model is to create a content trail for users, as shown in Figure 9-14. As a user
clicks on items in the scrolling product stream, the interaction is captured using create_user view_and_return_
views, which ultimately returns a List of relationship objects of the VIEWED type.

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | Consumptic

- C |1 practicalneo4j-python/consumption

&F Graph Story

Consumption Graph

This section of the application demonstrates a way to view products via a scrolling list. When a user clicks on a product description, they are connected to the product via the

VIEWED relationship.

Consumption Menu

Viewed Products
Items the current user has recently viewed.

“Long Sleep” Portal Sleep Tank
last viewed on: 08/04/2014 at 9:10 AM

iDuck - Bathtub Music
last viewed on: 08/02/2014 at 7:07 PM

"Wash Is My Copilot” License Plate Frame
last viewed on: 08/02/2014 at 6:32 PM

Eyn Case For Smartphones
last viewed on: D8/02/2014 at 6:32 PM

2014 i Fantasy C:
last viewed on: 08/02/2014 at 4:56 PM

10th Doctor Costume Pajama Set
last viewed on: 08/01/2014 at 7:54 PM

Graph Story - Productsville

Scroll down to show moar products

“Long Sleep"” Portal Sleep Tank

See Product Description...

"Wash Is My Copilot" License Plate Frame

See Product Dascription...

10th Doctor Costume Pajama Set

See Product Description...

11th Doctor Costume Pajama Set

See Product Descripti

on..

2014 Worldbuilders Fantasy Calendar

See Product Dascription...

Figure 9-14. The Scrolling Product and Product Trail page

In the consumption graph section, you will take a look at the consumption route to see how the process
begins inside the controller. The controller method first saves the view and then returns the complete history of
views using the get_product_trail, which can be found in the Product class. The process is started when the
createUserProductViewRel function is called, which is located in graphstory. js.

Filtering Consumption for Messaging

Another practical use of the consumption model is to create a personalized message for users, as displayed in
Figure 9-15. In this case, you have a filter that allows the “Consumption Console” to narrow down to a very specific
group of users who visited a product that was also tagged with a keyword or phrase each user had explicitly used

(Listing 9-37).

202

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | Consumptic =

L 5 practicalneodj-python/censumption/console
raph Story

Consumption Graph

(]

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
redationship with products. In this way, the users are consuming “product views® via a keyword or phrase

NOTE: this is different than when & user enters a keyword or phrase as a tag with CONTENT in the social graph. While the connection could be made between a user’'s tagged
content, it is separate for the purpose of this example.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the tags: music with thesa users:
= ajordan
o anwray

The preduct Star Wars Mimobot Thumb Drives shares the tags: star wars with these users:
= anwray
= ajordan

The product Sound Splash
= ajordan
& ANWray

P Shower shares the tags: music with these users:

Figure 9-15. The consumption console shows products connected to users via tags

Listing 9-37. The consumption console Route and Methods to Get Connected Products and Users via Tags

displays products that are connected to users via a tag relationship
@route('/consumption/console', method='GET")
def consumption console():
was tag supplied, then get product matches based on specific tag
if request.query.get('tag'):
usersWithMatchingTags = Product().getProductsHasSpecificTagAndUserUsesSpecificTag(graph db,
request.query.get('tag'))
otherwise return all product matches as long as at least one tag matches against the users
else:

usersWithMatchingTags = Product().getProductsHasATagAndUserUsesAMatchingTag(graph_db)

return template('public/templates/graphs/consumption/console.html’, layout=applayout,
usershWithMatchingTags=usersWithMatchingTags, title="Consumption Console")

tags that match products and users
def getProductsHasATagAndUserUsesAMatchingTag(self, graph db):
query = neo4j.CypherQuery(graph db,
" MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) "+
" RETURN p.title as title , collect(u.username) as users, " +
" collect(distinct t.wordPhrase) as tags ")
result = query.execute()
return result

203

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

a specific tag that matches products and users
def getProductsHasSpecificTagAndUserUsesSpecificTag(self, graph db, wp):
query = neo4j.CypherQuery(graph db,
" MATCH (t:Tag { wordPhrase: {wp} }) " +
"WITH t " +
" MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) " +
" RETURN p.title as title,collect(u) as u, collect(distinct t) as t ")
params= {"wp": wp}
result = query.execute(**params)
return result

Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin

e Filtering on location

e Products based on location

The example demonstrates how to add a console to enable you to connect products to locations in an ad hoc
manner (Listing 9-38).

Listing 9-38. Location Route for Showing Locations or Locations with Specific Products

show locations nearby or locations that have a specific product
@route('/location")
def location():
get user location
userlocations = UserLocation().get user location(graph db,
request.get cookie(graphstoryUserAuthKey))

distance = request.query.get('distance')

was distances provided
if distance:

use first location
ul = userlocations[0]

productNodeId = request.query.get('productNodeld")

test for productNodeId
if productNodeld:

pnid = int(productNodeld)

get locations that have product

locations = Location().locations_within_distance_with_product(graph_db,
UserLocation().get 1q(ul, distance), pnid, ul)

productNode = graph db.node(pnid)

return template('public/templates/graphs/location/index.html’,

204

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

layout=applayout, title="Location",
productTitle=productNode["title"], locations=locations,
mappedUserLocation=userlocations)
no product provided
else:
get locations
locations = Location().locations within distance(graph db,
UserLocation().get 1lq(ul, distance),
ul,"business")
return template('public/templates/graphs/location/index.html’,
layout=applayout, title="Location",
locations=1ocations, mappedUserLocation=userlocations)

return search template for locations
else:

return template('public/templates/graphs/location/index.html', layout=applayout,
title="Location",

mappedUserLocation=userlocations)

Search for Nearby Locations

To search for nearby locations, as shown in Figure 9-16, use the current user’s location, obtained by calling the
get_user location method in the UserLocation class, and then by calling the locations_within_distance. The

locations_within_distance method in Location class uses a method called distance to return a string value of the
distance between the starting point and the respective location (Listing 9-39).

Craph Story | Location

L c practicalneodj-python /location?product=&distance=10.00&productNodeld =

) _ =] Location Graph
& Graph Story ==

Location Graph - Home
This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph

The user “ajordan® lives at S500 Walnut Grove Road Memphis, TN 38120

Usa the form below to search for stora locations near 5900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find cut which siores have e product in stock.

Distance 10 Mies % Ssarch

Humphrey Oaks Store is 1.22 Miles Away
Burfordl Siore s 3.99 Miles Away

South Graham Store is 4.02 Miles Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Swore is 6.20 Miles Away

Figure 9-16. Searching for Locations within a certain distance of User location

205
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-39. The locations_within_distance Method in the Location Class

def locations within distance(self, graph db, 1lq, mappedUserlLocation,locationType):

query = neo4j.CypherQuery(graph_db, " START n
" WHERE n.type = {1
" RETURN n.location
" n.city as city,
" n.lat as lat, n.l

= node:geom({1q}) " +

ocationType} " +

Id as locationId, n.address as address," +
n.state as state, n.zip as zip, n.name as name,
on as lon")

params = {"1q": 1lg, "locationType":locationType}
result = query.execute(**params)
for r in result:

add the distance in miles
setattr(r, "distanceTolocation", self.dis

Locations with Product

To search for products nearby,as shown in Figure 9-17, the application makes use of an autosuggest AJAX request,

tance(float(r.lon), float(r.lat),
float(mappedUserLocation["lon"]),
float(mappedUserLocation["lat"])))

which ultimately calls the search method in the Product service class. The method, shown in Listing 9-40, returns

an array of objects to the product field in the search form and applies the selected product’s productNodeld to the

subsequent location search.

-

Craph Story | Location

c

(Ego@aph Story

practicalneodj-python location?product=Adventure+ Time+Finn%27s + Back packSdist

ance=10,00&productNodeld=281

Location Graph

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph
The user "ajordan® lives at 5500 Walnut Grove Road Memphis, TN 38120

Use the form below to search for stora locations near 5800 Walnut Grove Road Memphis, TN 38120

Enter a few starting letters to autosuggest products and find cut which stores have the product in stock.

Distance 10 Mies % Ssarch

The following lecatens have "Adventure Time Finn's Backpack"
Humphrey Oaks Stora g 1.22 Miles Away
Burfordi Swore is 3.99 Miles Away
South Graham Store is 4.02 Miles Away
Bartiett Woods Store is 4.12 Miles Away
Poplar Store Is 5.48 Miles Away
Lichterman Store is 5.48 Miles Away

Warford Siore is 6.20 Miles Away

Figure 9-17. Searching for Products in stock at Locations within a certain distance of the User location

206

www.it-ebooks.info

+

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

For almost all cases, it is recommended not to use the graphld because it can be recycled when its node is
deleted. In this case, the productNodeld should be considered safe to use, because products would not be in danger
of being deleted but only removed from a Location relationship.

Listing 9-40. The product_search Route and product_search Methods

return product array as json
@route('/productsearch/<g>")
def product_search (q):
get matches
productsFound = Product().product search(graph db, q + ".*")

create array
products = Product().product results as json(productsFound)

set response type
response.content_type = 'application/json'

return as json
return dumps(products)

search for products
def product_search(self, graph db, q):
query = neo4j.CypherQuery(graph_db, "MATCH (p:Product) " +
" WHERE lower(p.title) =~ {q} " +
" RETURN TOSTRING(ID(p)) as id, count(*) as name, " +
" p.title as label " +
" ORDER BY p.title LIMIT 5")
params = {"q": q}
result = query.execute(**params)
return result

return products as a list
def product results as list (self, productsFound):
products = []
for r in productsFound:
products.append({"id": r.id, "title": r.name, "label": r.label})
return products

Once the product and distance have been set and the search is executed, the Location route tests to see if a
productNodeId property has been set. If so, the locations within_distance with product method is called from
the Location class, as shown in Listing 9-41.

Listing 9-41. The locations within distance with product Method in the Location Class

def locations within distance with product(self, graph db, lg, productNodeId, mappedUserlLocation):
query = neo4j.CypherQuery(graph db,
" START n = node:geom({lq}), " +
" p=node({productNodeId}) " +
" MATCH n-[:HAS]->p " +

207

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

" RETURN n.locationId as locationId, n.address as address, " +

n.city as city, n.state as state, n.zip as zip, n.name as name, " +
n.lat as lat, n.lon as lon")

params = {"1q": lg, "productNodeId": productNodeId}

result = query.execute(**params)

Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase node type. The intent graph also considers the products, users, locations, and tags that are connected based
on a Purchase.

Products Purchased by Friends

To get all of the products that have been purchased by friends, the friends_purchase method is called from Purchase
class, which is shown in Listing 9-43. The corresponding route is first shown in Listing 9-42.

Listing 9-42. Intent Route to Show Purchases Made by Friends

purchases by friends
@route('/intent', method='GET")
def intent():
get result set
result = Purchase().friends purchase(graph_db, request.get cookie(graphstoryUserAuthKey))

return template('public/templates/graphs/intent/index.html', layout=applayout,
title="Products Purchased by Friends",
mappedProductUserPurchaselist=result)

The query, show in Listing 9-43, finds the users being followed by the current user and then matches those users
to a purchase that has been MADE which CONTAINS a product. The return value is a set of properties that identify the
product title, the name of the friend or friends, as well the number of friends who have bought the product. The result is
ordered by the number of friends who have purchased the product and then by product title, as shown in Figure 9-18.

Listing 9-43. The friends_purchase Method in the Purchase Class

products purchased by friends
def friends purchase(self, graph db, username):
query = neo4J CypherQuery(graph_db,
MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p" +
RETURN p.productId as productId, " +
p.title as title, " +
collect(f.firstname + + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +
ORDER BY cfriends desc, p.title ")
params = {"u": username}
result = query.execute(**params)
return result

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Craph Stary | Products Pu

L2 C [Jpracticalneodj-python /intent

@?)Gragh Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with commaon
interests via tage.

1]

Social Graph nimrest Graph Consumption Grapt Lecation Graph Irtent Graph

Intent Menu Intent Graph - Products Purchased by Friends
Product # Friends who purchased
» Products Purchasad by Friands
+ Specific Products Purchased by Star Wars Mimobot Thumb Drives 3
Friends

Broaking Bad iPhone Cases 1

Products Purchased by Friends
Matches Users Tags

= Products Py sod by Friends
Nearby and Matches Users Tags

Doctor Who Beach Towes

Doctor Who Sonic Screwdriver Lama

Doctor Who TARDIS Water Bottle 1
| Never Finish Anyth 1
Jed Academy Boaok

Lebowskl Bowling Hoodle 1
Seund Splash Bluetocth Waterproof Shower Spaaker 1
Star Trek Tribble Slippers with Sound 1
Star Wars Light-Up Lightsaber Pens 1

Star Wars Princess Lela Beach Towel 1

Figure 9-18. Products Purchased By Friends

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars
Mimbot Thumb Drives’, and then search for friends who have purchased this product, as shown in Figure 9-19. This is
done via the friends_purchase_by product method in Purchase service class, which is shown in Listing 9-44.

Graph Story | Specific Pro. =

L C [1 practicalneodj-python/intent/specificProductsPurchasedByUsersFriends =
%} Social Graph Interast Graph Consumption Graph Location Graph
Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Specific Products Purchased by Friends

Star Wars Mimobot Thumb Drives Search

Products Purchasad by Friands
Specific Products Purchased by

Friands Product # Friends who purchased
« Products Purchased by Friends
and Matches Users Tags Star Wars Mimobot Thumb Drives 3

Products Purchased by Friends
Nearby and Maiches Users Tags

Figure 9-19. Specific Products Purchased by Friends

209

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-44. The friends_purchase_by product Route and Method

specific product purchases by friends
@route('/intent/friendsPurchaseByProduct', method='GET")
def friends purchase by product():
get or use default product title
producttitle = request.query.producttitle or 'Star Wars Mimobot Thumb Drives'
get result set
result = Purchase().friends purchase by product(graph db, request.get
cookie(graphstoryUserAuthKey), producttitle)
return template('public/templates/graphs/intent/index.html', layout=applayout,
title="Specific Products Purchased by Friends",
mappedProductUserPurchaselist=result, producttitle=producttitle)

a specific product purchased by friends
def friends_purchase by product(self, graph db, username, title):
query = neo4j.CypherQuery(graph db,
" MATCH (p:Product) " +
WHERE lower(p.title) =lower({title}) " +
"WITH p " +
" MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, " +
" p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +
ORDER BY cfriends desc, p.title ")
params = {"u": username, "title": title}
result = query.execute(**params)
return result

Products Purchased by Friends and Matches User’s Tags

In this next instance, we want to determine products that have been purchased by friends but also have tags that are
used by the current user (Listing 9-45). The result of the query is shown in Figure 9-20.

Listing 9-45. Product and Tag Similarity of the Current User’s Friends

friends bought specific products. match these products to tags of the current user
@route('/intent/friendsPurchaseTagSimilarity', method="GET")
def friends purchase tag similarity():
get result set
result = Purchase().friends purchase tag similarity(graph db, request.get
cookie(graphstoryUserAuthKey))
return template('public/templates/graphs/intent/index.html', layout=applayout,
title="Products Purchased by Friends and Matches User's Tags",
mappedProductUserPurchaselist=result)

210

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | Products P

< 5 practicalneodj-python/intent/ productsPurchasedByUsersFriendsAndMatchesTagsUsedBylUser

O
& Graph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends and Matches User's Tags
Product # Friends who purchased
Star Wars Mimobot Thumb Drives

Sound Splash Bluetooth Waterproof Shower Speaker

Figure 9-20. Products Purchased by Friends and Matches User’s Tags

Using friends_purchase_tag_similarity in Purchase service class, shown in Listing 9-46, the application
provides the username to the query and uses the FOLLOWS, MADE, and CONTAINS relationships to return products
purchases by users being followed. The subsequent MATCH statement takes the USES and HAS directed relationship
types to determine the tag relationships the resulting products and the current user have in common.

Listing 9-46. The Method to Find Products Purchased by Friends and Matches Current User’s Tags

products purchased by friends that match the user's tags
def friends_purchase_tag_similarity(self, graph_db, username):

query = neo4j.CypherQuery(graph db,

" MATCH (u:User {username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +

WITH u,p,f " +
MATCH u-[:USES]->(t)<-[:HAS]-p " +
RETURN p.productId as productId, " +
p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +
count(f) as cfriends " +
ORDER BY cfriends desc, p.title ")
params = {"u": username}
result = query.execute(**params)
return result

Products Purchased by Friends Nearby and Matches User’s Tags

Finding products that match with a specific user’s tags and have been purchased by friends who live within a set
distance of the user is performed by the friends_purchase_tag similarity and_proximity to_location method,
easily the world’s longest method name, and is located in Purchase class(Listing 9-47).

211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Listing 9-47. Route to Find Products of Nearby Friends and Matches Tags of Current User

friends that are nearby bought this product.
the product should also matches tags of the current user
@route('/intent/friendsPurchaseTagSimilarityAndProximityToLocation', method="GET")
def friends purchase tag similarity and proximity to location():
get user location
userlocations = Userlocation().get user location(graph db, request.get
cookie(graphstoryUserAuthKey))
use first location
ul = userlocations[0]

get result set
result = Purchase().friends purchase tag similarity and proximity to location(graph db,
request.get cookie(graphstoryUserAuthKey), UserLocation().get 1q distance_set(ul))

return template('public/templates/graphs/intent/index.html', layout=applayout,
title="Products Purchased by Friends Nearby and Matches User's Tags",
mappedProductUserPurchaselist=result, mappedUserLocation=userlocations)

The friends_purchase_tag _similarity and_proximity to_location route calls the friends_purchase tag_
similarity_and_proximity to_location method shown in Listing 9-48

Listing 9-48. friendsPurchaseTagSimilarityAndProximityTolLocation Method in the Purchase Class

user's friends' purchases who are nearby and the products match the user's tags
def friends_purchase tag similarity and_proximity to location(self, graph db, username, 1q):
query = neo4j.CypherQuery(graph db,
" START n = node:geom({lq}) " +
"WITH n " +
" MATCH (u:User {username: {u} })-[:USES]->(t)<-[:HAS]-p " +
WITH n,u,p,t " +
MATCH u-[:FOLLOWS]->(f)-[:HAS]->(n) " +
WITH p,f,t " +
MATCH f-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, " +
p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +
count(f) as cfriends " +
ORDER BY cfriends desc, p.title ")
params = {"u": username, "lq": 1lq}
result = query.execute(**params)
return result

The query begins with a location search within a certain distance, then matches the current user’s tags to
products. Next, the query matches friends based on the location search. The resulting friends are matched against
products that are in the set of user tag matches. The result of the query is shown in Figure 9-21.

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © NEO4J + PYTHON

Graph Story | Products P

L (&) practicalneodj-python/intent/productsPurchasedByUsersFriendsWholiveNearbyAndMatchesTagsUsedByUser

Gragh Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

(1]

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches User's
Tags

Matches to friends who live near 5800 Walnut Grove Road Memphis, TN 38120

Product # Friends who purchased

ds Star Wars Mimobot Thumb Drives

s Tags

Figure 9-21. Products Purchased by Friends Nearby and Matches User’s Tags

Summary

This chapter presented the setup for a development environment for Python and Neo4j and sample code using the
py2neo driver. It proceeded to look at sample code for setting up a social network and examining interest within the
network. It then looked at the sample code for capturing and viewing consumption—in this case, product views—and
the queries for understanding the relationship between consumption and a user’s interest. Finally, it looked at using
geospatial matching for locations and examples of methods for understanding user intent within the context of user
location, social network, and interests.

The next chapter will review using Ruby and Neo4j, covering the same concepts presented in this chapter but in
the context of a Ruby driver for Neo4;.

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Neodj + Ruby

This chapter focuses on using Ruby with Neo4j and reviewing the code for a working application that integrates the
five graph model types covered in Chapter 3. As with other languages that offer a driver for Neo4j, the integration takes
place using a Neo4j server instance with the Neo4j REST API. This chapter is divided into the following topics:

e Rubyand Neo4j Development Environment
e Neography
e Developing a Ruby and Neo4j application

In each chapter that explores a particular language paired with Neo4j, I recommend that you start a free trial on
www. graphstory.com or have installed a local Neo4;j server instance, as shown in Chapter 2.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from Graph Story.

For this chapter, I expect that you have at least a beginning knowledge of Ruby and a basic understanding of how
to configure Ruby for your preferred operating system. While the examples should work with later versions of Ruby,
Ruby 1.9.2 is the version used in this chapter. In addition, the sample application uses the Apache HTTP server and
Passenger (also known as mod_rails).

Do This If you do not have Apache HTTP installed, it is highly recommended that you follow the instructions at
http://httpd.apache.org/ based on your operating system. Configuring Ruby and Passenger with a local instance of
Apache HTTP is beyond the scope of this book, but the basic steps can be found at http://recipes.sinatrarb.com/
p/deployment/apache_with_passenger.

I also assume that you have a basic understanding of the model-view-controller (MVC) pattern and some
knowledge of Ruby frameworks that provide an MVC pattern. There are, of course, a number of excellent Ruby
frameworks from which to choose, but I had to pick one for the illustrative purposes of the application in this chapter.
I chose the Sinatra framework because it is limited in its scope and allows the focus to remain on the application to
the greatest extent possible. This chapter is focused on integrating Neo4;j into your Ruby skill set and projects and does
not dive deeply into the best practices of developing with Ruby or Ruby frameworks.

215

www.it-ebooks.info

http://www.graphstory.com/
http://httpd.apache.org/
http://httpd.apache.org/
http://recipes.sinatrarb.com/p/deployment/apache_with_passenger
http://recipes.sinatrarb.com/p/deployment/apache_with_passenger
http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Ruby and Neo4j Development Environment

Preliminary to this chapter’s discussion of the Ruby and Neo4;j application, this section covers the basics of
configuring a development environment.

Readme Although each language chapter walks through the process of configuring the development environment
based on the particular language, certain steps are covered repeatedly in multiple chapters. While the initial development
environment setup in each chapter is somewhat redundant, it allows each language chapter to stand on its own. Bearing
this in mind, if you have already configured Eclipse with Aptana while working through another chapter, you can skip
ahead to the section “Adding the Project to Eclipse.”

IDE

The reasons behind the choice of an IDE vary from developer to developer and are often tied to the choice of
programming language. I chose the Eclipse IDE for a number of reasons but mainly because it is freely available and
versatile enough to work with most of the programming languages featured in this book.

Although you are welcome to choose a different IDE or other programming tool for building your application,
Irecommend that you install and use Eclipse to be able to follow the Ruby and Neo4j examples and the related
examples found throughout the book and online.

Tip If you do not have Eclipse, please visit http://www.eclipse.org/downloads/ and download the Indigo
package, titled “Eclipse IDE for Java EE Developers” or “Version 3.7”.

Once you have installed Eclipse, open it and select a workspace for your application. A workspace in Eclipse is
simply an arbitrary directory on your computer. As shown in Figure 10-1, when you first open Eclipse, the program
will ask you to specify which workspace you want to use. Choose the path that works best for you. If you are working
through all of the language chapters, you can use the same workspace for each project.

216

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

» .
—qCHPSE

INDIGO

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | [some/path/to/your/workspace v Browse...

Use this as the default and do not ask again

Cancel OK

Figure 10-1. Opening Eclipse and choosing a workspace

Aptana Plugin

The Eclipse IDE offers a convenient way to add new tools through their plugin platform. The process for adding new
plugins to Eclipse is straightforward and usually involves only a few steps to install a new plugin, as you will see
in this section.

A specific web-tool plugin called Aptana provides support for server-side languages such as Python as well as
client languages such as CSS and JavaScript. This chapter and the other programming language chapters use the
plugin to edit both server- and client-side languages. A benefit of using a plugin such as Aptana is that it can provide
code-assist tools and code suggestions based on the type of file you are editing, such as CSS, JS, or HTML. The time
saved with code-assist tools is usually significant enough to warrant their use. Again, if you feel comfortable exploring
within your preferred IDE or other program, please do so.

To install the Aptana plugin, you need to have Eclipse installed and opened. Then proceed through the
following steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one in Figure 10-2.

217

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Available Software

Check the items that you wish to install.

Work with: | http:/ /download.aptana.com/studio3/plugin/update /

type filter text

Name
v v Aptana Studio 3
v L» Aptana Studio 3 Plugin

Select All Deselect All | 1 item selected

Derails

| Show only the latest versions of available software
v Group items by category
_| Show only software applicable to target environment

_f Contact all update sites during install to find required software

Figure 10-2. Installing the Aptana plugin

2. Paste the URL for the update site, http://download.aptana.com/studio3/plugin/install,
into the “Work With” text box, and hit the Enter (or Return) key.

3. Inthe populated table below, check the box next to the name of the plugin, and then click

the Next button.

Insta

[v] [Add..
Find more software by working with the "Available Software Sites™ preferences.
Version
3.4.2.201308081736-7W7157boG98RAI4...
|_| Hide items that are already installed
What is already installed?
< Back | Next > | | Cancel Finish

4. Click the Next button to go to the license page.

5. Choose the option to accept the terms of the license agreement, and click the Finish button.

6. You may need to restart Eclipse to continue.

218

www.it-ebooks.info

»
D3

http://download.aptana.com/studio3/plugin/install
http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Adding the Project to Eclipse

After installing Eclipse and the Aptana plugin, you have the minimum requirements to work with your project in the
workspace. To keep the workflow as fluid as possible for each of the language example application, use the project
import tool with Eclipse. To import the project into your workspace, follow these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4j for Ruby.” Unzip the archive file on to your computer.

2. InEclipse, select File » Import and type project in the “Select an import source.”

3. Under the “General” heading, select “Existing Projects into Workspace." You should now
see a window similar to Figure 10-3.

mport

Select
Create new projects from an archive file or directory. | ? - 5 |

Select an import source:
type filter text

¥ (= General
[, Archive File
= Existing Folder as New Project
= Existing Projects into Workspace
__,File System
L Preferences

> (= CVS

(= EB

P = Git

> (= Install

P (= Java EE

P (= Maven

(== Plug-in Development

= Remote Systems

P (= Run/Debug

P (= Studio

W [~ Tasks

=
(?) < Back Next > Cancel | Finish

Figure 10-3. Importing the project into Eclipse

4. Now that you have selected “Existing Projects into Workspace’, click the “Next >” button.
The dialogue should now show an option to “Select root directory.” Click the “Browse”
button and find the root path of the “practicalneo4j-ruby” archive.

219

www.it-ebooks.info

http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 10-4.

import
Import Projects = —
Select a directory to search for existing Eclipse projects. f I._r
-
*) Select root directory: /Volumes/MacMac/temp/practicalneodj-ruby _ Browse... |
() Select archive file: Browse
Projects:

v practicalneodj-ruby (/Volumes/MacMac/temp/practicalneodj-ruby) | Select All |
| DeselectAll |
| Refresh |

g" Copy projects into workspace

Working sets

|| Add project to working sets

Working sets: Select...
@ _ <Back | [Next> | [Cancel Finish

Figure 10-4. Selecting the project location

6. Once the project is finished importing into your workspace, you should have a directory
structure that looks similar to the one shown in Figure 10-5.

220

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

L Project Explorer &3 =k - =0
P < Local Filesystem
v -2 practicalneodj-ruby
¥ i=app
> (= logs
(=>model
P (= public
P (= service
> (= tmp
P (= views
@ |config.ru
@ |graphstory.rb
@Connections

Figure 10-5. Snapshot of the imported project

Sinatra Web Framework for Ruby

Sinatra is a Ruby implementation of what is often called a micro framework. The aim of a micro framework is to help
you quickly build out powerful web applications and APIs only using what is absolutely necessary to get the job done
(Listing 10-1).

Listing 10-1. Sinatra Example of GET Route

home page
get '/' do
@title = "Home"
mustache :"home/index"
end

Note Sinatra is maintained by Blake Mizerany and supported by a number of equally outstanding committers. If you
would like to get involved with Sinatra, please visit https://github.com/sinatra/sinatra.

The starting point for the Sinatra application is the {PROJECTROOT}/app/config. ru file, which is shown in Listing 10-2.

Listing 10-2. The config.ru File

root = ::File.dirname(__FILE)

require ::File.join(root, 'graphstory')
run App.new

The {PROJECTROOT}/app/graphstory.rb file contains the global application settings, such as the database
connection and the requests routes. An abbreviated version of the file is shown in Listing 10-3.

221

www.it-ebooks.info

https://github.com/sinatra/sinatra
http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Listing 10-3. The graphstory.rb File

require 'rubygems'

require 'ostruct'

require 'sinatra/base’
require 'sinatra/mustache’
require "sinatra/cookies"
require "sinatra/json"
require 'neography’
require 'logger'

require './service/content’
require './service/location’
require './service/product’
require './service/purchase’
require './service/tags’

require './service/user’

require './service/userlocation’

class App < Sinatra::Base

helpers Sinatra::Cookies
helpers Sinatra::Content
helpers Sinatra::Location
helpers Sinatra::Product
helpers Sinatra::Purchase
helpers Sinatra::Tags

helpers Sinatra::User

helpers Sinatra::Userlocation

set :views, 'views'
Excon.defaults[:ssl verify peer] = false
graphstoryUserAuthKey = "graphstoryUserAuthKey"

log = Logger.new('logs/practicalneo4j-ruby-debug.log")

neo

Neography: :Rest.new("http://localhost:7474/db/data")
#routes start here...
home page
get '/' do
@title = "Home"
mustache :"home/index"
end
#...more routes...

end

222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Local Apache Configuration

To follow the sample application found later in this chapter, you will need to properly configure your local Apache
webserver to use the workspace project in Eclipse as the document root. One way to accomplish this is by adding a
virtual host to Apache. Listing 10-4 covers the basic configuration for adding a virtual host to the httpd-vhosts.conf file.

Listing 10-4. Minimum Configuration for httpd-vhosts.conf

NameVirtualHost *:80
<VirtualHost *:80>
ServerName practicalneo4j-ruby
DocumentRoot /Users/username/somepath/practicalneo4j-ruby/app/public

<Directory /Users/username/somepath/practicalneo4j-ruby/app/public>

Options None
AllowOverride None
Order allow,deny
allow from all

</Directory>

ErrorlLog /Users/username/somepath/practicalneo4j-ruby/app/logs/error.log

LogLevel warn

</VirtualHost>

Important If you do not have Apache HTTP installed, go to http://httpd.apache.org/ and follow the instructions based
on your operating system. Configuring Ruby + Sinatra with a local instance of Apache HTTP is out of the scope of this book,
but you can find the basic configuration steps at http://recipes.sinatrarb.com/p/deployment/apache with_passenger.

Neography

As with most of the language drivers and libraries available for Neo4j, the purpose of Neography is to provide a degree
of abstraction over the Neo4j REST API. In addition, the Neography API provides some additional enhancements that
might otherwise be required at some other stage in the development of your Ruby application, such as caching.

This section reviews the operations and usage of the Neography library with the goal of understanding the library
before implementing it within an application. Then the “Developing a Ruby and Neo4j Application” section will walk
you through a sample application with specific graph goals and models.

Note Neography is maintained by the super-awesome Max De Marzi and supported by a number of great Ruby
graphistas. If you would like to get involved with Neography, go to https://github.com/maxdemarzi/neography.

Each of the following brief sections covers concepts that tie either directly or indirectly to features and
functionality found within the Neo4j Server and REST API. If you choose to go through each language chapter, then
you should notice how each library covers those features and functionality in similar ways but takes advantage of the
language-specific capabilities to ensure the API is flexible and performant.

223

www.it-ebooks.info

http://httpd.apache.org/
http://recipes.sinatrarb.com/p/deployment/apache_with_passenger
https://github.com/maxdemarzi/neography
http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, which includes the most basic of graph concepts: the
node. Managing nodes and their properties and relationships will probably account for the bulk of your application’s
graph-related code.

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 10-5. Creating a node begins
with setting up a connection to the database and making the node instance. The node properties are set next, and
then the node can be saved to the database.

Listing 10-5. Creating a Node

require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

node = neo.create node("username" => "Greg")
neo.add label(node, "User")

Retrieving and Updating a Node

Once nodes have been added to the database, you will need a way to retrieve and modify them. Listing 10-6 shows the
process for finding a node by its node id value and updating it.

Listing 10-6. Retrieving and Updating a Node

require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

greg = neo.get node(1)

neo.set_node properties greg, {"business" => "Graph Story"}

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
To remove a node, set a variable as a node object instance and then call the delete method for the node (Listing 10-7).

Listing 10-7. Deleting a Node

require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

greg=neo.get node(1)

224

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Delete node that has no relationships
neo.delete _node(greg)

Delete an unrelated node
neo.delete node! (greg)

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

Creating a Relationship

Neography offers two different methods to create relationships, one using the relateTo method and another using the
makeRelationship method. In the example in Listing 10-8, it sets up the relationship using the relateTo method, which
is the less verbose of the two options.

Listing 10-8. Relating Two Nodes

require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost’, :port => 7474,
:directory => '/db/data'})

greg = neo.get node(1)
daniel = neo.get node(10)

neo.create relationship("FOLLOWS", greg, daniel)

Note Both the start and end nodes of a relationship must already be established within the database before the
relationship can be saved.

225

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Retrieving Relationships

Once a relationship has been created between one or more nodes, the relationship can be retrieved based on a node
(Listing 10-9).

Listing 10-9. Retreiving relationships.

require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

get the related nodes
greg = neo.get node(1)
daniel = neo.get node(10)

find their directed relationship
rels = neo.get node relationships to(greg, daniel, "in", "FOLLOWS")

Deleting a Relationship

Once arelationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary. To remove a relationship, set it as a relationship object instance and then call the delete method for the
relationship (Listing 10-10).

Listing 10-10. Deleting a Relationship
require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

get the related nodes
greg = neo.get node(1)
daniel = neo.get node(10)

find their directed relationship
rels = neo.get node relationships to(greg, daniel, "in", "FOLLOWS")

delete the relationship
rels.each { |rel id| neo.delete relationship(rel id) }

Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4j 2.0 in
order to help in querying and can also function as a way to quickly create a subgraph.

226

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Adding a Label to Nodes

In Neography, you can add one more labels to a node. As Listing 10-11 shows, the addLabels function takes one or
more labels as argument. You can return each of the labels on a node by calling its getLabels function. The value used
for the label should be any nonempty string or numeric value.

Listing 10-11. Creating a Label and Adding It to a Node
require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

greg = neo.get node(1)

add single label
neo.add label(greg, "User")

add multiple labels
neo.add label(greg, ["User

, "Developer"])

Caution A label will not exist on the database server until it has been added to at least one node.

Removing a Label

Removing a label uses similar syntax as adding a label to a node. After the given label has been removed from the
node (Listing 10-12), the return value is a list of labels still on the node.

Listing 10-12. Removing a Label from a Node
require 'neography'

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

greg = neo.get node(1)

delete single label
neo.delete label greg, "Developer"

Querying with a Label

To get nodes that use a specific label, use the function called getNodes. This function returns value is a result Row
object, which can be iterated over like an array (Listing 10-13).

227

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Listing 10-13. Querying with a Label
require 'neography’

neo = Neography::Rest.new({ :protocol => 'http://', :server => 'localhost', :port => 7474,
:directory => '/db/data'})

find all developers
developers = neo.get nodes labeled("Developer")

find all developers named Daniel
developers = neo. find nodes labeled("Developer", username: "Daniel")

Developing a Ruby and Neo4j Application

Preliminary to building out your first Ruby and Neo4j application, this section covers the basics of configuring a
development environment.
Again, if you have not worked through the installation steps in Chapter 2, please take a few minutes to do so.

Preparing the Graph

In order to spend more time highlighting code examples for each of the more common graph models, we will use a
preloaded instance of Neo4j including necessary plugins, such as the spatial plugin.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from
Graph Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to
graphstory.com/practicalneo4j, downloading the zip file containing the sample database and plugins, and
adding them to your local instance.

Using the Sample Application

If you have already downloaded the sample application from graphstory.com/practicalneo4j for Ruby and
configured it with your local application environment, you can skip ahead to the “Sinatra Application Configuration”
section. Otherwise, you will need to go back to the section in this chapter titled “Ruby and Neo4j Development
Environment” and set up your local environment in order to follow the examples in the sample application.

”

Note The sample application also contains a readme file with instructions on configuration as well as contact
information at graphstory. com for support.

228

www.it-ebooks.info

http://graphstory.com
http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Sinatra Application Configuration
Before diving into the code examples, you need to update the configuration for the Sinatra application. In Eclipse (or
the IDE you are using), open the file {PROJECTROOT}/app/graphstory.rb and edit the GraphStory connection string
information. If you are using a free account from graphstory.com, you will change the username, password, and URL
in Listing 10-14 with the one provided in your graph console on graphstory.com.
Listing 10-14. Database Connection Settings for a Remote Service such as Graph Story
neo = Neography::Rest.new("https://username:password@theURL:7473/db/data/")

If you have installed a local Neo4;j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, as shown in Listing 10-15.
Listing 10-15. Database Connection Settings for Local Environment

neo = Neography::Rest.new("http://localhost:7474/db/data")

Once the environment is properly configured and started, you can open a browser to graphstory.com/practicalneo4j,
and you should see a page like the one shown in Figure 10-6.

00
-] Graph Story | Home

L2 c

practicalneodj-ruby/

raph Story

The leading graph-as-a-service provider

Content is King

Easy path to Social

Quickly create an online community and haelp them

Maps are a graph!

Graph Story Is a next generation platform for apps that
manage location information. Keep location simple and
l&t us do the work.

© Graph Story, Inc. 2014

Most Interestlng

B 15 within your communities by
Polnnng them manage their interests.

Recommendations

Relevant recommendations create sales! Graph Story
will help your customers understand and manage their
recommendations to gct more relevant results.

Figure 10-6. The Ruby sample application home page

www.it-ebooks.info

What your customers read can tel IyDu what to write -
and what not to write. CUs Brs Wor
your own.

s with

Wln at Stamng

p helps your team see all the parts of
your startup, keeps everythin g Inone place, moviry i+
forward and staying strong.

229

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany it. In particular, this
section looks at the following:

e The User Entity

e Sign-up and login

e Updating a user

e Creating a relationship type through a user by following other users

e Managing user content, such as displaying, adding, updating, and removing status updates

Note The sample graph database used for these examples is loaded with data, so you can immediately begin working
with representative data in each of the graph models. In the case of the social graph—and for other graph models, as well—
you will log in with the user ajordan. Going forward, please log in with ajordan to see each of the working examples.

Sign Up

The HTML required for the user sign-up form is shown in Listing 10-16 and can be found in the {PROJECTROOT}/app/
views/home/index.mustache file.

Listing 10-16. HTML Snippet of Sign-Up Form

<form class="navbar-form navbar-left" action="/signup/add" role="form"
id="createaccountform" method="post">
<div class="form-group">
<input type="text" placeholder=
"Username" name="username" class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button>
</form>

Note Although the sample application creates a user without a password, | am certainly not suggesting or advocating
this approach for a production application. Excluding the password property was done in order to create a simple sign-up
and login that helps keep the focus on the more salient aspects of the Neography library.

Sign-Up Route

In the sign-up route, start by doing a lookup on the username passed in the request and see if it already exists in the
database using the get_user_by user_name method found in the User service layer, as provided in Listing 10-17. If no
match is found, the username is passed on to the save_user method.

If no errors are returned during the save attempt, the request is redirected via redirect and a message is passed to
thank the user for signing up. Otherwise, the error message back to the home view informs the user of the problem.

230

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Listing 10-17. The Sign-Up Controller Route

sign up
post '/signup/add' do
search db for user
user = get user by user _name(neo,params[:username])

found a match. need to use another username
if !luser.nil && !user.empty?
@title = "Home"
@error ="The username
mustache :"home/index"
#save the user
else
save_user(neo,params[:username])
redirect to("/msg?u="+params|[:username])
end
end

+params[:username]+ " already exists. Please use a different username"

Adding a User

In each part of the five graph areas covered in the chapter, the domain object will have a corresponding service to
manage the persistence operations within the database. In this case, the User class covers the management of the
application’s user nodes using a mix of Neography convenience methods and executing Cypher queries.

To save a node and label it as a User, the save_user method, shown in Listing 10-18, makes use of the create_node
method by passing in the username param and value. Once the node is created, then the add_label method applies
the User label.

Listing 10-18. The save_user Method in the User Class

def save_user(neo, username)
node = neo.create node("username" => username)
neo.add label(node, "User")

end

Login

This section reviews the login process for the sample application. To execute the login process, we also use the login
route as well as User class. Before reviewing the controller and service layer, take a quick look at the front-end code for
the login.

231

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Login Form

The HTML required for the user login form is shown in Listing 10-19 and can be found in the {PROJECTROOT}/ app/
views/global/homeheader.mustache layout file.

Listing 10-19. The Login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">

<div class="form-group">

<input type="text" placeholder="Username" name="username" class="form-control">
</div>

<button type="submit" class="btn btn-success">Sign in</button>

</form>

Login Route

In the App class, use the login route to control the flow of the login process, as shown in Listing 10-20. Inside the login
route, use the get_user by user name method to check if the user exists in the database.

Listing 10-20. The login Route

login
post '/login' do
search db for user
user = get user by user _name(neo,params[:username])

found it! set cookie and redirect
if luser.nil? && luser.empty?
@user = user
response.set_cookie(graphstoryUserAuthKey, :value => @user["username"], :path => "/", :expires
=> Time.now + 86400000)
redirect to('/social')

not found. show message
else
@title = "Home"
@error ="The username you entered was not found."
mustache :"home/index"
end
end

232

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

If the user is found during the login attempt, a cookie is added to the response and the request is redirected via
redirect to the social home page, shown in Figure 10-7. Otherwise, the route will specify the HTML page to return
and will add the error messages that need to be displayed back to the view.

Graph Story | Social

- e practicalneodj-ruby/ sccial

Soclal Graph

raoh Story

Social Graph

This section of the application demonstrates some of the commeon features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed
Add Content

L Draft - Gene Jordan Edit /
tags: nba :: Posted by ajordan at 0

4 at 7:02 PM

Andrew M. Wray Ill Memaorial

tags: university of memphis, economics :: Posted by anwray at 0¢

Rob Base Decision Tree

tags: music, funny = Posted by ptfarsworth at 05/18/2014 at 5:00 AM

MNext > > >

Figure 10-7. The social graph home page

Login Service

To check to see if the user values being passed through are connected to a valid user combination in the database, the
application uses the get_user by user name method in the User class. As shown in Listing 10-21, the result of the
get user by user name method is assigned to the user variable.

Listing 10-21. The get_user_by_user_name Method in the User class

def get user by user name(neo, username)
user=""
users = neo.find nodes labeled("User", username: username)
if !lusers && users.any?
user = users.first["data"]
end
user
end

If the result is not null or empty, the result is set on the User object and returned to the controller layer of the
application.

Now that the user is logged in, he can edit his settings, create relationships with other users in the graph, and
create his own content.

233

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as shown in
Figure 10-8. In this example, the front-end code uses an AJAX request via PUT and inserts—or, in the case of the
ajordan user, updates—the first and last name.

Graph Story | User

&« c practicalneodj-ruby/ user

O
&$Graph Story

(]

Social Graph - Friends

This section of the application shows how to update a user's seftings.

Social Menu User Settings for ajordan
First Name Abvin
Last Name Jordan

Update User

Figure 10-8. The User Settings page

User Update Form

The user settings form is located in {PROJECTROOT}/ app/views/graphs/social/user.mustache and is similar in
structure to the other forms presented in the Sign Up and Login sections. One difference is that we have added the
value property to the input element as well as the variables for displaying the respective stored values. If none exist,
the form fields will be empty (Listing 10-22).

Listing 10-22. User Update Form

<form class="form-horizontal" id="userform">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname" name="user.firstname"
value="{{user.firstname}}" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname" name="user.lastname"
value="{{user.lastname}}" />
</div>
</div>

234

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update User</button>
</div>
</div>
</form>

User Edit Route

The App class contains a route with the path /user/edit, which takes the JSON object argument. The User object

is converted from a JSON string and returns a User object as JSON. The response could be used to update the form
elements, but because the values are already set within the form, there is no need to update the values. In this case,
the application uses the JSON response to let the user know if the update succeeded or not via a standard JavaScript
alert message (Listing 10-23).

Listing 10-23. /user/edit Route

edit user's first/last name

put '/user/edit' do
user = JSON.parse(request.body.read)
update_user(neo,user,request.cookies[graphstoryUserAuthKey])
json user

end

User Update Method

To complete the update, the controller layer calls the update_user method in User class. Because the object being
passed into the update method did nothing more than modify the first and last name of an existing entity, you can use
the SET clause via Cypher to update the properties in the graph, as shown in Listing 10-24. This Cypher statement also
makes use of the MATCH clause to retrieve the User node.

Listing 10-24. The update_user Method in the User Class

def update_user(neo,user,username)
cypher = "MATCH (user:User {username:{u}}) " +
"SET user.firstname = {fn}, user.lastname = {1ln}"
neo.execute _query(cypher, {:fn => user["firstname"],:1n => user["lastname"], :u => username})
end

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. In the sample application, we use the directed relationship type called FOLLOWS. By going to the “Friends”
page within the social graph section, you can see the list of the users the current user is following, search for new
friends to follow, add them and remove friends the current user is following. The user management section of the

App class contains each of the routes to control the flow for these features, specifically the routes that cover friends,
search_by user_name, follow, and unfollow.

235

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

To display the list of the users the current user is following, the /friends route, showing in Listing 10-25, in the
App class calls the following method in the User class.

Listing 10-25. The /friends Route

friends route that shows connected users via FOLLOW relationship

get '/friends' do
@title = "Friends"
@following = following(neo, request.cookies[graphstoryUserAuthKey])
mustache :"graphs/social/friends"

end

The method shown in Listing 10-26 creates a list of users by matching the current user’s username with directed
relationship FOLLOWS on the variable user.

Listing 10-26. The following Method in the User Class

def following(neo,username)
cypher = " MATCH (user { username:{u}})-[:FOLLOWS]->(users) "+

RETURN users.firstname as firstname, users.lastname as lastname, " +
" users.username as username " +

" ORDER BY users.username"

results = neo.execute_query(cypher, u: username})

results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }

end
If the list contains users, it will be returned to the controller and displayed in the right-hand part of the page, as

shown in Figure 10-9. The display code for showing the list of users can be found in {PROJECTROOT}/ app/views/
graphs/social/friends.mustache and is shown in the code snippet in Listing 10-27.

Graph Story | Frierds

&« = practicalneodj-ruby/ friends

Soclal Graph

O
& Graph Story

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks.

Social Menu Search For Friends Current Friends
Jimi James Reamove
a John Baird Ramove

Lecnard Euler

Search
Mikola Tesla

Ay Opal Jorcan Remove

AAnCBY. Wy Philo Farnsworth Remove
Thomas Edison Remove

Figure 10-9. The Friends page

236

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Listing 10-27. The HTML Code Snippet for Displaying the List of Friends

<div class="col-md-3">
<h3>Current Friends</h3>
<table class="table" id="following">
{{#following}}
<tr><td>{{firstname}} {{lastname}}</td><td><a href="#" id="{{username}}"
class="removefriend">Remove</td></tr>
{{/following}}
{{*following}}
No friends :(
{{/following}}
</table>
</div>

To search for users to follow, the user section of App contains a GET route /searchbyusername and passes in
a username value as part of the path. This route executes the search_by user name method found in User class,
showing the second part of Listing 10-28. The first part of the WHERE clause in the method returns users whose
username matches on a wildcard String value. The second part of the WHERE clause in the method checks to make sure
the users in the MATCH clause are not already being followed by the current user.

Listing 10-28. The searchbyusername Route and service Method

search for users / returns collection of users as json
get '/searchbyusername/:username’ do

content_type :json

username=params| :username]

json :users => search_by user name(neo, request.cookies[graphstoryUserAuthKey],username)
end

search by user returns users in the network that aren’t already being followed
def search by user name(neo,currentusername,username)
username=username.downcase+" . *"
cypher = " MATCH (n:User), (user { username:{c}}) " +
" WHERE (n.username =~ {u} AND n <> user) " +
" AND (NOT (user)-[:FOLLOWS]->(n)) " +
" RETURN n.firstname as firstname, n.lastname as lastname, n.username as username"
results=neo.execute query(cypher, {:c => currentusername, :u => username})
results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
end

The searchByUsername in {PROJECTROOT}/app/public/js/graphstory.js uses an AJAX request and formats the
response in render SearchByUsername. If the list contains users, it will be displayed in the center of the page under
the search form, as shown in Figure 10-9. Otherwise, the response will display “No Users Found."

Once the search returns results, the next action would be to click on the “Add as Friend” link, which will call the
addfriend method in graphstory. js. This performs an AJAX request to the follow route, which then calls the follow
method in the User class. The follow method in User shown in Listing 10-29 will create the relationship between
the two users by first finding each entity via the MATCH clause and then using the CreateUnique clause to create the
directed FOLLOWS relationship. Once the operation is completed, the next part of the query then runs a MATCH on the
users being followed to return the full list of followers ordered by the username.

237

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Listing 10-29. The follow Route and follow service Method

follow a user & return the updated list of users being followed
get '/follow/:username' do

content_type :json

json :following => follow(neo,request.cookies[graphstoryUserAuthKey],params|:username])
end

the follow method in the User class
def follow(neo,currentusername,username)
cypher = " MATCH (useri:User {username:{cu}}), (user2:User {username:{u}}) " +
" CREATE UNIQUE useri-[:FOLLOWS]->user2 " +
WITH user1" +
MATCH (user1)-[f:FOLLOWS]->(users)" +
RETURN users.firstname as firstname, users.lastname as lastname, "+
" users.username as username " +
ORDER BY users.username"
results=neo.execute query(cypher, {:cu => currentusername, :u => username})
results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }

end

The unfollow feature for the FOLLOWS relationships uses a nearly identical application flow as follows feature. In
the unfollow method, shown in Listing 10-30, the controller passes in two arguments—the current username and
username to be unfollowed. As with the follow method, once the operation is completed, the next part of the query
then runs a MATCH on the users being followed to return the full list of followers ordered by the username.

Listing 10-30. The unfollow Route and unfollow service Method

unfollow a user & return the updated list of users being followed
get '/unfollow/:username’ do

content_type :json

json :following => unfollow(neo,request.cookies[graphstoryUserAuthKey],params[:username])
end

the unfollow method in the User class
def unfollow(neo,currentusername,username)
cypher = "MATCH (useri:User {username:{cu}})-[f:FOLLOWS]->(user2:User {username:{u}}) " +
" DELETE f " +
WITH user1" +
MATCH (user1)-[f:FOLLOWS]->(users)" +
RETURN users.firstname as firstname, users.lastname as lastname, "+
" users.username as username " +
ORDER BY users.username"
results=neo.execute query(cypher, {:cu => currentusername, :u => username})
results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
end

238

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content—sometimes referred to as user-generated content. In the case of this content, you will not be creating
connections between the content and its owner but creating a linked list of status updates. In other words, you are
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time,
and using a limited linked list is more efficient than getting all status updates connected directly to a user and then
sorting and limiting the number of items to return. In addition, it also helps to limit the number of relationships that
are placed on the User and Content entities. Therefore, the overall graph operations should be made more efficient by
using the linked list approach.

Getting the Status Updates

To display the first set of status updates start with the social route of the social section of grapstory.py. This method
accesses the get_content method within Content service class, which takes an argument of the current user’s
username and the page being requested. The page refers to set number of objects within a collection. In this instance,
the paging is zero-based, and so we will request page 0 and limit the page size to 4 in order to return the first page.
The get_content method in Content class shown in Listing 9-28 will first determine whom the user is following and
then match that set of user with the status updates starting with the CURRENTPOST. The CURRENTPOST is then matched on
the next three status updates via the [:NEXTPOST*0. .3] section of the query. Finally, the method uses a loop to add a
readable date and time string property—based on the timestamp—on the results returned to the controller and view.

Listing 10-31. The get_content Method in the Content Service Class

def get content(neo,username,skip)

cypher = " MATCH (u:User {username: {u} })-[:FOLLOWS*0..1]->f "+

" WITH DISTINCT f,u "+

MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p "+
RETURN p.contentId as contentId, p.title as title, "+
p.tagstr as tagstr, p.timestamp as timestamp, "+
p.url as url, f.username as username, f=u as owner "+
ORDER BY p.timestamp desc SKIP {s} LIMIT 4 "
results=neo.execute query(cypher, {:u => username, :s => skip})
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|

#convert the timestamp to readable date and time

e.merge! ("timestampAsStr" => Time.at(e["timestamp"]).strftime("%m/%d/%Y") +

"at "+
Time.at(e["timestamp"]).strftime("%1:%M %p"))
end
T
end

Adding a Status Update

The page shown in Figure 10-10 shows the form to add a status update for the current user, which is displayed when clicking
on the “Add Content” link just under the “Graph Story - Social Feed” header. The HTML for the form can be found in
{PROJECTROOT}/app/views/graphs/social/posts.mustache. The form uses the add_content function in graphstory. js
to POST a new status update as well as return the response and add it to the top of the status update stream.

239

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Graph Story | Soclal

€& c practicalneodj-ruby/ social
O Secial Graph
i’a@’f Story ==
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title

URL

Tags
Add Content

1960 NBA Draft - Gene Jordan Edit/ Delete
tags: nba :: Fosted by ajordan at 08 14

at 7:02 PM

Rob Base Decision Tree

tags: musie, funny = Poested by ptfarsworth at 05/18/2014 at 5:00 AM

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM

Next>> >

Figure 10-10. Adding a status update

The add_content route and add_content method are shown in Listing 10-32. When a new status update is
created, in addition to its graph id, the add_content method also generates a contentld, which performs using the
SecureRandom.uuid method.

Listing 10-32. add Route and save Method for a Status Update

add a status update - route
post '/posts/add' do
contentItem = JSON.parse(request.body.read)

save and return content
contentItem=add_content(neo,contentItem,request.cookies[graphstoryUserAuthKey])

json contentItem

end

The add_content method also makes the status the CURRENTPOST. determine whether a previous CURRENTPOST
exists and, if one does, change its relationship type to NEXTPOST. In addition, the tags connected to the status update
are merged into the graph and connected to the status update via the HAS relationship type.

240

www.it-ebooks.info

http://www.it-ebooks.info/

add a status

CHAPTER 10 - NEO4J + RUBY

update

def add_content(neo,contentItem,username)

tagstr=trim content tags(contentItem["tagstr"])

tags=tagstr.
time = Time.

cypher =

results=neo.

split(","
now.to_i

MATCH (user { username: {u}}) " +

CREATE UNIQUE (user)-[:CURRENTPOST]->(newLP:Content { title:{title}, url:{url}, " +
tagstr:{tagstr}, timestamp:{timestamp}, contentId:{contentId} }) " +

WITH user, newlLP" +

FOREACH (tagName in {tags} | " +

MERGE (t:Tag {wordPhrase:tagName}) " +

MERGE (newLP)-[:HAS]->(t) " +

)"+

WITH user, newlLP " +

OPTIONAL MATCH (newLP)<-[:CURRENTPOST]-(user)-[oldRel:CURRENTPOST]->(0ldLP)" +
DELETE oldRel " +

CREATE (newLP)-[:NEXTPOST]->(oldLP) " +

RETURN newLP.contentId as contentId, newLP.title as title, newlLP.tagstr as tagstr, " +
newLP.timestamp as timestamp, newLP.url as url, {u} as username, true as owner "

execute_query(cypher, { :u => username,
:title => contentItem["title"].strip,
:url => contentItem["url"].strip,
:tagstr => tagstr,
rtimestamp => time,
:contentId => SecureRandom.uuid,
:tags => tags })

r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|
#convert the timestamp to readable date and time

e.merge! ("timestampAsStr" => Time.at(e["timestamp"]).strftime("%m/%d/%Y") +
"at "+
Time.at(e["timestamp"]).strftime("%1:%M %p"))
end
T
end
Editing a Status Update

When status updates are displayed, the current user’s status updates will contain a link to “Edit” the status. Once
clicked, it will open the form, similar to the “Add Content” link, but will populate the form with the status update
values as well as modify the form button to read “Edit Content’, as shown in Figure 10-11. Clicking “Cancel” under the
heading will remove the values and return the form to its ready state.

241

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Graph Story | Social

« c practicalneodj-ruby/social =
{ Soclal Graph
rth Story B
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title 1950 NBA Draft - Gens Jordan
URL httpe//nba-draft-history.findthabest.com/L7778/Gena-Jordan
Tags nba
Edit Content

1860 NBA Draft - Gene Jordan Edit/ D
tags: nba :: Posted by ajordan at 08

Rob Base Decision Tree

tags: music, funny - Posted by ptfarsworth at 05/18/2014 at 5:00 AM

Most Requeste
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM

) of All Time

Next > >

Figure 10-11. Editing a status update

Similar to the add feature, the edit feature will use a route in the App as well as a function in graphstory. js,
which are edit and edit_content, respectively. The edit content route passes in the content object, with its content
id, and then calls the edit_content method in Content class, which is shown in Listing 10-33.

Listing 10-33. edit Route and Method for a Status Update

edit a status update - route
post '/posts/edit' do
contentItem = JSON.parse(request.body.read)
edit content
contentItem = edit_content(neo,contentItem,request.cookies[graphstoryUserAuthKey])

json contentItem
end

edit a status update
def edit_content(neo,contentItem,username)

tagstr=trim content tags(contentItem["tagstr"])

tags=tagstr.split(","
cypher = " MATCH (c:Content {contentId:{contentId}})-[:NEXTPOST*0..]-()-[:CURRENTPOST]-(user
{ username: {u}}) " +

" SET c.title = {title}, c.url = {url}, c.tagstr = {tagstr}" +

" FOREACH (tagName in {tags} | " +

" MERGE (t:Tag {wordPhrase:tagName}) " +

242

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

" MERGE (c)-[:HAS]->(t) " +
")+
RETURN c.contentId as contentId, c.title as title, c.tagstr as tagstr, " +
c.timestamp as timestamp, c.url as url, {u} as username, true as owner "
results=neo.execute_query(cypher, { :u => username,
:title => contentItem["title"].strip,
:url => contentItem["url"].strip,
:tagstr => tagstr,
:contentId => contentItem["contentId"],
:tags => tags })
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|
#convert the timestamp to readable date and time
e.merge! ("timestampAsStr" => Time.at(e["timestamp"]).strftime("%m/%d/%Y") +

"at "+
Time.at(e["timestamp"]).strftime("%1:%M %p"))
end
T
end

In the case of the edit feature, you do not need to update relationships. Instead, simply retrieve the existing node
by its generated String Id (not its graph id), update its properties where necessary, and save it back to the graph.

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates will contain a link to
“Delete” the status. Once clicked, it will ask if you want it deleted (no regrets!) and, if accepted, generate an AJAX GET
request to call the delete route and corresponding method in the Content class, shown in Listing 10-34.

Listing 10-34. Deleting a Status Update

delete post

get '/posts/delete/:contentId' do
delete_content(neo,request.cookies[graphstoryUserAuthKey],params[:contentId])

end

delete a status update
def delete content(neo,username,contentId)

cypher = " MATCH (u:User { username: {u} }), (c:Content { contentId: {contentId} }) " +
" WITH u,c " +
" MATCH (u)-[:CURRENTPOST]->(c)-[:NEXTPOST]->(nextPost) " +

WHERE nextPost is not null " +

CREATE UNIQUE (u)-[:CURRENTPOST]->(nextPost) " +

WITH count(nextPost) as cnt " +

MATCH (before)-[:NEXTPOST]->(c:Content { contentId: {contentId}})-[:NEXTPOST]->(after) " +

WHERE before is not null AND after is not null " +

CREATE UNIQUE (before)-[:NEXTPOST]->(after) " +

WITH count(before) as cnt " +

MATCH (c:Content { contentId: {contentId} })-[r]-() " +

DELETE ¢, r"

results=neo.execute_query(cypher, {:u => username, :contentId => contentId})
end

243

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

The Cypher in the delete method begins by finding the user and content that will be used in the rest of the query.
In the first MATCH, you can determine if this status update is the CURRENTPOST by checking to see if it is related to a
NEXTPOST. If this relationship pattern matches, make the NEXTPOST into the CURRENTPOST with CREATE UNIQUE.

Next, the query will ask if the status update is somewhere the middle of the list, which is performed by
determining if the status update has incoming and outgoing NEXTPOST relationships. If the pattern is matched, then
connect the before and after status updates via NEXTPOST.

Regardless of the status update’s location in the linked list, retrieve it and its relationships and then delete the
node along with all of its relationships.

To recap, if one of the relationship patterns matches, replace that pattern with the nodes on either side of the status
update in question. Once that has been performed, the node and its relationships can be removed from the graph.

Interest Graph Model

This section looks at the interest graph and examines some basic ways it can be used to explicitly define a degree of
interest. The following topics are covered:

e Adding filters for owned content
e Adding filters for connected content

e Analyzing connected content (count tags)

Interest in Aggregate

Using the /interest route, we retrieve all of the user’s tags and their friends’ tags by calling, respectively, the
user_tags and tags_in_network methods, which can be found in the Tag service class. This is displayed in
Figure 10-12 in the left-hand column.

Graph Story | Interest

o (e practicalneodj-ruby/interesttag=internet&userscontent=true

Interest Graph

%?' raph Story

Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

My Interests Graph Story - Interest Feed

ntarnat (2) nba (1) history (1)

rt: the wab (see wh
tags: internet, histol

at | did thera?)

Posted by ajordan at 0

Interests in my network

by ajordan at D&

Figure 10-12. Filtering the current user’s content

244

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

The display code is located in {PROJECTROOT}/ app/views/graphs/interest/index.mustache. The interest
route uses two queries, which are shown in Listing 10-36 and 10-37. The get_following_content_with_tag finds
users being followed, accesses all of their content, and finds connected tags through the HAS relationship type.

The get_user content_with_tag method is similar but is concerned only with content and, subsequently, tags
connected to the current user. Both methods limit the results to 30 items. As mentioned earlier, the methods return
an array of content and tags, which supports autosuggest plugin in the view and requires both a label and name to be
provided in order to execute. This autosuggest feature is used in the status update form as well as some search forms
found later in this chapter.

Listing 10-35. The interest Route

show tags within the user's network (theirs and those being followed)
get '/interest' do
@title = "Interest”

@tagsInNetwork = tags in network(neo,request.cookies[graphstoryUserAuthKey])
@userTags = user_tags(neo,request.cookies[graphstoryUserAuthKey])

if params[:userscontent] == "true"
@contents = get user content with_ tag(neo,request.cookies[graphstoryUserAuthKey],params[:tag])
else
@contents = get following content with tag(neo,request.cookies[graphstoryUserAuthKey],
params[:tag])
end

mustache :"graphs/interest/index"
end

Filtering Managed Content

Once the list of tags for the user and for the group she follows has been provided, then the content can be filtered
based of the generated tag links, which is shown in Figure 10-12. If a tag is clicked on inside of “My Interests” section,
then the get_user content_with_tag method, displayed in Listing 10-34, will be called.

Listing 10-36. Get the Content of the Current User Based on a Tag

def get user content with tag(neo,username,wordPhrase)
cypher = " MATCH (u:User {username: {u} })-[:CURRENTPOST]-1lp-[:NEXTPOST*0..]-p " +
" WITH DISTINCT u,p" +
" MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" +
" RETURN p.contentId as contentId, p.title as title, p.tagstr as tagstr, " +
p.timestamp as timestamp, p.url as url, u.username as username, true as owner" +
" ORDER BY p.timestamp DESC"
results=neo.execute_query(cypher, {:u => username, :wp => wordPhrase})
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|
#convert the timestamp to readable date and time
e.merge! ("timestampAsStr" => Time.at(e["timestamp"]).strftime("%m/%d/%Y") +

"at "+
Time.at(e["timestamp"]).strftime("%1:%M %p"))
end
T
end

245

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Filtering Connected Content

If a tag is clicked on the inside of the “Interests in my Network” section, then get_following content with_tag
method will be called, as shown in Listing 10-37. The second query is nearly identical the first query found in the
interest route, except that it will factor in the users being followed and exclude the current user. The method also
returns a collection of status updates based on the matching tag, placing no limit on the number of status updates to
be returned. In addition, it marks the owner property as true, because you've determined ahead of time you are only
returning the current user’s content. The results of calling this method are shown in Figure 10-13.

Listing 10-37. Get the Content of the User’s Being Followed Based on a Tag

def get_following_content_with_tag(neo,username,wordPhrase)

cypher = " MATCH (u:User {username: {u} })-[:FOLLOWS]->f" +

" WITH DISTINCT f" +

MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p" +
WITH DISTINCT f,p" +
MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} })" +
RETURN p.contentId as contentld, p.title as title, p.tagstr as tagstr, " +
p.timestamp as timestamp, p.url as url, f.username as username, false as owner" +
ORDER BY p.timestamp DESC"

results=neo.execute_query(cypher, {:u => username, :wp => wordPhrase})
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|

Graph Story | Interest

o c practicalneo4j-ruby/interest?tag=music&userscontent=false

Grth Story

Interest Graph

Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged contant. This could be expanded 10 show users with common
interests via tags.

My Interests Graph Story - Interest Feed

ntarnat (2) nba (1) history (1) Rob Base Decision Tree
2 tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM
Interests in my network

funr nusic (8) c. (5) internat (3)

Most Re ng of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 af 3.06 AM

From Hendrix to The Beatles
tags: music, funny :: Posted by ntesla at 04/20/2014 at 8:22 AM

World's Greatest Scientist: Hopaton Brown
tags: music, dub :: Posted by jiames at 04/18/2014 at 8:54 AM

Greatest Jazz Guitar of All Tima.
tags: music :: Posted by [james at 03

Hendrixi
tags: music, hendrix :: Posted by tedison at 11/27/2013 at 3:18 PM

Make sure to check out the High Lia

tags: music . Posted by leuler at 06/

A Day In The Life
tags: music :: Posted by jjames at 06

Figure 10-13. Filtering content of the current user’s friends
246

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

#convert the timestamp to readable date and time
e.merge! ("timestampAsStr" => Time.at(e["timestamp"]).strftime("%m/%d/%Y") +

"at "+
Time.at(e["timestamp"]).strftime("%1:%M %p"))
end
T
end

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the pre-populated set of products provided in the sample
graph. The code required for the console will reinforce the standard persistence operations, this section focuses on
the operations that take advantage of this model type, including:

e (Capturing consumption
e Filtering consumption for users

e Filtering consumption for messaging

Capturing Consumption

The process above for creating code that directly captures consumption for a user could also be done by creating
a graph-backed service to consume the webserver logs in real time, or by creating another data store to create
the relationships. The result would be the same in any event: a process that connects nodes to reveal a pattern of
consumption (Listing 10-38).

Listing 10-38. Consumption route to show a list of products and the product trail of the current user

add a product via VIEWED relationship and return VIEWED products
get '/consumption' do
@title="Consumption"

@products=get products(neo,0)
@next = true
@nextPageUrl="/consumption/1"

@productTrail = get product trail(neo,request.cookies[graphstoryUserAuthKey])

mustache :"graphs/consumption/index"
end

The sample application used the create_user view_and_return_views method in the Product class to first find
the product being viewed and then create an explicit relationship type called VIEWED. As you may have noticed, this
is the first relationship type in the application that also contains properties. In this case, we are creating a timestamp
with a date and string value of the timestamp. The query, shown in Listing 10-39, will check to see if a VIEWED
relationship already exists between the user and the product using MERGE.

247

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Listing 10-39. Add consumption_add Route and create_user_view_and_return_views Method

#add a product via VIEWED relationship and return VIEWED products
get '/consumption/add/:productNodeId' do

productNodeId to integer

productNodeId=params[:productNodeId].to i

#icreate or update the user view and
#ireturn the product trail as JSON
json :productTrail => create user view and_return_views(neo,
request.cookies[graphstoryUserAuthKey],
productNodeId)
end

the method to add a user view of a product and return all views
def create user view and return views(neo,username,productNodeId)

create timestamp and string display

time = Time.now

tsAsInt = time.to_i

timestampAsStr= time.strftime("%m/%d/%Y") +
"at " + time.strftime("%1:%M %p")

cypher = " MATCH (p:Product), (u:User { username:{u} })" +
" WHERE id(p) = {productNodeId}" +
" WITH u,p" +

MERGE (u)-[r:VIEWED]->(p)" +

SET r.dateAsStr={timestampAsStr}, r.timestamp={ts}" +
"WITHu " +

MATCH (u)-[r:VIEWED]->(p)" +

RETURN p.title as title, r.dateAsStr as dateAsStr" +
ORDER BY r.timestamp desc"

results=neo.execute_query(cypher, {:u => username,
:productNodeId => productNodeld,
rtimestampAsStr => timestampAsStr,
its => ts})

results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }

end

In the MERGE section of the query, if the result of the MERGE is zero matches, then a relationship is created with key
value pairs on the new relationship, specifically dateAsStr and timestamp. Finally, the query uses MATCH to return the
existing product views.

Filtering Consumption for Users

One practical use of the consumption model is to create a content trail for users, as shown in Figure 10-14. As a user
clicks on items in the scrolling product stream, the interaction is captured using create_user_view_and_return_
views, which ultimately returns a List of relationship objects of the VIEWED type.

248

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Graph Story | Consumpt

&« e practicalneodj-ruby/consumption

Gragh Story

Consumption Graph

This saction of the application demonsirates a way 1o view products via a scrolling list. When a user clicks on a product description, they are connected to the product via the
VIEWED relationship.

Consumption Menu Graph Story - Productsville

« Prod st Scroll down to show moar products

+ Consumption console
"Long Sleep” Portal Sleep Tank
wewed pmduc«ts See Product Description.
Items the current user has recently viewed.

"Wash Is My Copilot" License Plate Frame
“Long Sieep” Portal Sleep Tank

last viewed on: 08/04/2014 at 9:10 AM See Product Description...

iDuck - Bathtub Music

last viewed on: 08/02/2014 at 7:07 PM 10th Doctor Costume Pajama Set
“Wash Is My Copilot” License Plate Frame See Product Description...

last viewed on: 08/02/2014 at 6:32 PM

Eyn Case For Smartphones 11th Doctor Costume Pajama Set

last viewed on: 08/02/2014 at 6:32 PM See Product Description...

2014 Worldbuilders Fantasy Calend

last viewed on: 08/02/2014 at 4:56 PM 2014 Worldbuilders Fantasy Calendar
10th Doctor Costume Pajema Set See Product Description...

st viewed on: 08/01/2014 at 7:54 PM

Figure 10-14. The Scrolling Product and Product Trail page

In the consumption graph section, we take a look at the consumption route to see how the process begins inside
the controller. The controller method first saves the view and then returns the complete history of views using the get_
product_trail, which can be found in the Product class. The process is started when the createUserProductViewRel
function is called, which is located in graphstory. js.

Filtering Consumption for Messaging

Another practical use of the consumption model is to create a personalized message for users, as displayed in
Figure 10-15. In this case, you have a filter that allows the “Consumption Console” to narrow down to a very specific
group of users who visited a product that was also tagged with a keyword or phrase each user had explicitly used
(Listing 10-40).

249

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Graph Story | Consumpt

&« c practicalneo4j-ruby/consumption/console =
&7 Graph Story
Consumption Graph

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
relationship with products. In this way, the users are consuming “product views" via a keyword or phrase

NOTE: this is different than when a user enters a keyword or phrase as a tag with CONTENT in the social graph. While the connection could be made between a user's tagged
content, it is separate for the purpose of this example.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the tags: music with these users:
= ajordan
o anwray

= Produ

+ Consumption

The product Star Wars Mimobot Thumb Drives shares the tags: star wars with these users:
o anwray
e ajordan

The product Sound Splash Bl h W f Shower Speaker shares the tags: music with these users:
+ ajordan
o anwray

Figure 10-15. The consumption console

Listing 10-40. The consumption console Route and Methods to Get Connected Products and Users via Tags

displays products that are connected to users via a tag relationship
get '/consumption/console' do
@title="Consumption Console"

if params[:tag] & !params[:tag].empty?
@usersWithMatchingTags = get products_has_specific_tag and user_ users specific_
tag(neo,params|:tag])
else
@usershWithMatchingTags = get products has a tag and user users a matching tag(neo)
end

mustache :"graphs/consumption/console"
end

products that share any tag with a user
def get products has_a tag and user users_a matching tag(neo)
cypher = " MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) "+
" RETURN p.title as title , collect(u.username) as users, " +
" collect(distinct t.wordPhrase) as tags
results=neo.execute query(cypher)
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

250

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

products that share a specific tag with a user
def get products has_specific_tag and user users specific_tag(neo, wp)
cypher = " MATCH (t:Tag { wordPhrase: {wp} }) " +
"WITH t " +
" MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) " +
" RETURN p.title as title,collect(u) as u, collect(distinct t) as t "
results=neo.execute_query(cypher, {:wp => wp})
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin
e Filtering on location
e Products based on location

The example demonstrates how to add a console to enable you to connect products to locations in an ad hoc
manner (Listing 10-41).

Listing 10-41. Location Route for Showing Locations or Locations with Specific Product

show locations nearby or locations that have a specific product

get '/location' do
@title="Location"
#get their primary location
@mappedUserLocation=get user location(neo,request.cookies[graphstoryUserAuthKey])

was a distance param provided?
if(params[:distance])
#make the location query
1q = get_lq(@mappedUserLocation[0],params|[:distance].to_s)
was a product node id provided?
if(params[:productNodeId].empty?)
if no, just get locations of type 'business’
@locations=locations within distance(neo, 1q, @mappedUserLocation[0],"business")
else
#otherwise find locations that have this product
pnid=params|[:productNodeId].to i
@productnode=neo.get node(pnid)["data"]
@locations=locations within_distance with product(neo,lq,pnid, @mappedUserLocation[0])
end
end

mustache :"graphs/location/index"
end

251

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Search for Nearby Locations

To search for nearby locations (Figure 10-16), use the current user’s location, obtained with get_user_location, and
then use the locations within_distance. The Locations within_distance method in Location service class uses a
method called distance to return a string value of the distance between the starting point and the respective location
(Listing 10-42).

Graph Story | Lecation

&« [practicalneodj-ruby/location?product=&distance=10.00&productNodeld

Gragh Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance,

Location Graph

The user "ajordan” ives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near $900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles ¥ Search

Humphrey Oaks Store is 1.22 Miles Away
Burford: Store is 3.89 Mies Away

South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warlord Store is 6.20 Miles Away

Figure 10-16. Searching for Locations within a certain distance of User location

Listing 10-42. The locations_within_distance Method in the Location class

def locations within distance(neo, lq, mappedUserlLocation,locationType)
cypher = " START n = node:geom({1q}) WHERE n.type = {locationType} " +
" RETURN n.locationId as locationId, n.address as address, n.city as city, " +
" n.state as state, n.zip as zip, n.name as name, n.lat as lat, n.lon as lon"
results = neo.execute query(cypher, {:1q => 1q,:locationType => locationType})
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|
d = distance [e["lat"].to_f,e["lon"].to _f],[mappedUserLocation["lat"].
to_f,mappedUserLocation["lon"].to f]
e.merge! ("distanceTolLocation" => d.to s +

Miles Away")
end
r

end

252

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Locations with Product

To search for products nearby (Figure 10-17), the application makes use of an autosuggest AJAX request, which
ultimately calls the search method in the Product service class. The method, shown in Listing 10-43, returns an array
of objects to the product field in the search form and applies the selected product’s productNodeld to the subsequent
location search.

Graph Story | Lecation

= e practicalneodj-ruby/location?product =Adventure + Time+Finn%2 7s+Backpack&distance=10.00&productNodeld=281

Gragh Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph

Location Graph

The user "ajordan® lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5900 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles ; Search

The following have "A Time Finn's Bach

Humphrey Oaks Store is 1.22 Miles Away
Burford Store is 3.99 Mies Away

South Graham Store is 4.02 Miles Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store is 6.20 Miles Away

Figure 10-17. Searching for Products in stock at Locations within a certain distance of the User location.

Listing 10-43. The product_search Route and product_search Methods

return product array as json
get '/productsearch/:q' do

json product_search(neo,params[:q].to_s)
end

product_search method - located in the Product service class.
def product_search(neo,q)
g=q + ".*"
cypher = " MATCH (p:Product) WHERE lower(p.title) =~ {q}"+
" RETURN count(*) as name, TOSTRING(ID(p)) as id, p.title as label " +
" ORDER BY p.title " +
" LIMIT 5 "

253

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

results=neo.execute query(cypher, {:q => q})
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

For almost all cases, it is recommended that you do not to use the graphld because it can be recycled when its
node is deleted. In this case, the productNodeld should be considered safe to use, because products would not be in
danger of being deleted but only removed from a Location relationship.

Once the product and distance have been set and the search is executed, the Location route tests to see if a
productNodeld property has been set. If so, the locations_within_distance_with_product method is called from the
Location class, which is shown in Listing 10-44.

Listing 10-44. The locations_within_distance_with_product Method in the Location Class

def locations within distance with product(neo,lq,productNodeId, mappedUserLocation)
cypher = " START n = node:geom({lq}), p=node({productNodeId}) " +
" MATCH n-[:HAS]->p " +
" RETURN n.locationId as locationId, n.address as address, n.city as city, " +
" n.state as state, n.zip as zip, n.name as name, n.lat as lat, n.lon as lon"
results = neo.execute_query(cypher, {:1q => 1q, :productNodeId => productNodeId})
r=results["data"].map {|row| Hash[*results["columns"].zip(row).flatten] }
r.each do |e|
d = distance [e["lat"].to f,e["lon"].to f],[mappedUserLocation["lat"].
to_f,mappedUserLocation["lon"].to f]
e.merge! ("distanceTolLocation" => d.to_s + " Miles Away")
end
r
end

Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase node type. The intent graph also considers the products, users, locations, and tags that are connected based
on a purchase.

Products Purchased by Friends

To get all of the products that have been purchased by friends, the friends_purchase method is called from the
Purchase class, shown in Listing 10-46. The corresponding route is first shown in Listing 10-45.

Listing 10-45. Intent Route to Show Purchases Made by Friends

#purchases by friends
get '/intent' do
@title = "Products Purchased by Friends"
#get products purchased by Friends
@mappedProductUserPurchaselist =friends_purchase(neo,request.cookies[graphstoryUserAuthKey])
mustache :"graphs/intent/index"
end

254

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Listing 10-46. The friends_purchase Method in the Purchase Class

products purchased by friends
def friends purchase(neo,username)
cypher = " MATCH (u:User { username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p" +
" RETURN p.productId as productId, p.title as title, " +
" collect(f.firstname + + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +
" ORDER BY cfriends desc, p.title "
results=neo.execute_query(cypher, {:u => username})
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

The query shown in Listing 10-46 finds the users being followed by the current user and then matches those
users to a purchase that has been MADE which CONTAINS a product. The return value is a set of properties that identify
the product title, the name of the friend or friends, as well the number of friends who have bought the product. The
result is ordered by the number of friends who have purchased the product and then by product title, as shown in
Figure 10-18.

Graph Story | Products P

< c practicalneodj-ruby/intent

Gragh Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged contant. This could be expanded 1o show users with common
interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends

Product # Friends who purchased

by Friends
Purchased by Star Wars Mimobot Thumb Drives 3

w Friends Breaking Bad iPhone Cases

Doctor Who Beach Towal

Doctor Who Sonic Screwdriver Lamp

Doctor Who TARDIS Water Bottle

| Mever Finish Anyth

Jadi Academy Book

Lebowski Bowling Hoodie

Sound Splash Bluetooth Waterproof Shower Speaker
Star Trak Tribble Slippers with Sound

Star Wars Light-Up Lightsaber Pens

Star Wars Princess Leia Beach Towel

Figure 10-18. Products Purchased By Friends

255

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars
Mimobot Thumb Drives’; and then search for friends who have purchased this product (Figure 10-19). This is done via
the friends_purchase_by product route and method of the same name in Purchase service class, both of which are
shown in Listing 10-47.

Graph Story | Specific Pro. x

o (e practicalneodj-ruby/intent/specificProductsPurchasedBylUsersFriends

%?' raph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

Intent Menu Intent Graph - Specific Products Purchased by Friends
Star Wars Mimobot Thumb Drives Search
Product # Friends who purchased

Star Wars Mimobot Thumb Drives

Figure 10-19. Specific Products Purchased by Friends

Listing 10-47. The friends_purchase_by product Route and Method

specific product purchases by friends
get '/intent/friends_purchase_by product' do
@title = "Specific Products Purchased by Friends"
@producttitle = 'Star Wars Mimobot Thumb Drives'
@mappedProductUserPurchaselist = friends purchase by product(neo,request.
cookies[graphstoryUserAuthKey], @producttitle)
mustache :"graphs/intent/index"

end

a specific product purchased by friends
def friends purchase by product(neo,username,title)
cypher = " MATCH (p:Product) " +
" WHERE lower(p.title) =lower({title}) " +
"WITH p " +
" MATCH (u:User { username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +
ORDER BY cfriends desc, p.title "
results=neo.execute_query(cypher, {:u => username, :title => title })
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

256

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Products Purchased by Friends and Matches User's Tags

In this next instance, we want to determine products that have been purchased by friends but that also have tags used
by the current user (Listing 10-48). The result of the query is shown in Figure 10-20.

Listing 10-48. Product and Tag Similarity of the Current Users’s Friends.

friends bought specific products. match these products to tags of the current user
get '/intent/friends_purchase_tag similarity' do
@title = "Products Purchased by Friends and Matches User's Tags"
@mappedProductUserPurchaselist = friends purchase tag similarity(neo,request.
cookies[graphstoryUserAuthKey])
mustache :"graphs/intent/index"
end

Graph Story | Products P

o c practicalneo4j-ruby/intent/productsPurchasedBylisersFriendsAndMatchesTagsUsedByllser

%?' raph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends and Matches User's Tags

Product # Friends who purchased
Star Wars Mimobot Thumb Drives

Sound Splash Bluetooth Waterproof Shower Spaaker

Figure 10-20. Products Purchased by Friends and Matches User's Tags

Using friends_purchase tag similarity in the Purchase service class, shown in Listing 10-49, the application
provides the userld to the query and uses the FOLLOWS, MADE and the CONTAINS relationships to return products
purchases by users being followed. The subsequent MATCH statement takes the USES and HAS directed relationship
types to determine the tag relationships the resulting products and the current user have in common.

Listing 10-49. The Method to Find Products Purchased by Friends and Matches Current User’s Tags.

products purchased by friends that match the user's tags
def friends purchase tag similarity(neo,username)
cypher = " MATCH (u:User { username: {u} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +

" WITH u,p,f " +
" MATCH u-[:USES]->(t)<-[:HAS]-p " +
" RETURN p.productId as productId, p.title as title, " +
" collect(f.firstname + + f.lastname) as fullname, " +

t.wordPhrase as wordPhrase, " +

257

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © NEO4J + RUBY

count(f) as cfriends " +
" ORDER BY cfriends desc, p.title "
results=neo.execute_query(cypher, {:u => username})
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

Products Purchased by Friends Nearby and Matches User’s Tags

Finding products that match with a specific user’s tags and have been purchased by friends who live within a set
distance of the user is performed by the friends_purchase_tag similarity_and_proximity_to_location method, easily
the world’s longest method name, and is located in the Purchase class (Listing 10-50).

Listing 10-50. The friendsPurchaseTagSimilarityAndProximityToLocation Route

friends that are nearby bought this product. the product should also matches tags of the current
user
get '/intent/friends_purchase_tag similarity and proximity to_location' do
@title = "Products Purchased by Friends Nearby and Matches User's Tags"
@mappedUserLocation=get user location(neo,request.cookies[graphstoryUserAuthKey])
1q = get lq(@mappedUserLocation[0],"10.00")
@mappedProductUserPurchaselList=friends_purchase_tag similarity and_proximity to_
location(neo,request.cookies|[graphstoryUserAuthKey],1q)
mustache :"graphs/intent/index"
end

The friendsPurchaseTagSimilarityAndProximityToLocation route calls the friends purchase tag
similarity and_proximity to_location method shown in Listing 10-51.

Listing 10-51. The friends_purchase_tag_similarity_and_proximity to_location Method in Purchase

user's friends' purchases who are nearby and the products match the user's tags
def friends purchase tag similarity and proximity to location(neo,username,lq)
cypher = " START n = node:geom({1q}) " +
"WITH n " +
" MATCH (u:User { username: {u} })-[:USES]->(t)<-[:HAS]-p " +
" WITH n,u,p,t " +
" MATCH u-[:FOLLOWS]->(f)-[:HAS]->(n) " +
WITH p,f,t " +
MATCH f-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +
count(f) as cfriends " +
ORDER BY cfriends desc, p.title "
results=neo.execute_query(cypher, {:u => username, :1q => 1q})
results["data"].map {|row| Hash[results["columns"].zip(row)] }
end

The query begins with a location search within a certain distance, then matches the current user’s tags to
products. Next, the query matches friends based on the location search. The resulting friends are matched against
products that are in the set of user tag matches. The result of the query is shown in Figure 10-21.

258

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - NEO4J + RUBY

Graph Story | Products P

o c practicalneo4j-ruby/intent/productsPurchasedBylisersFriendsWholiveNearbyAndMatchesTagsUsedBylser =
7 Graph Story
2’ Graph Ston
Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches User's
Tags

Matches to friends who lve near 5900 Walnut Grove Road Memphis, TN 38120

Product # Friends who purchased

Star Wars Mimobot Thumb Drives

Figure 10-21. Products Purchased by Friends Nearby and Matches User's Tags

Summary

This chapter presented the setup for a development environment for Ruby and Neo4j and sample code using the
Neography driver. It proceeded to look at sample code for setting up a social network and examining interest within
the network. It then looked at the sample code for capturing and viewing consumption—in this case, product
views—and the queries for understanding the relationship between consumption and a user’s interest. Finally, it
looked at using geospatial matching for locations and examples of methods for understanding user intent within the
context of user location, social network, and interests.

The next chapter will review using Spring Data and Neo4j, covering the same concepts presented in this chapter
but in the context of the Spring Data driver for Neo4;.

259

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Spring Data Neo4j

This chapter will focus on using Spring Data Neo4j as well as creating a working application that integrates the five
graph model types covered in Chapter 3. As with other languages that offer drivers for Neo4j, the integration takes
place using a Neo4j server instance with Spring Data Neo4j (SDN) API and related libraries (henceforth referred to
collectively as SDN. The chapter will be divided into the following topics:

e Spring Data Neoj4 Development Environment
e Spring Data Neo4j API
e Developing a Spring Data Neo4j web application

In each chapter that explores a particular language paired with Neo4j, I recommend that you start a free trial on
www. graphstory.com or have installed a local Neo4;j server instance as shown in Chapter 2.

Tip To quickly setup a server instance with the sample data and plugins for this chapter, go to
graphstory.com/practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and
email support from Graph Story.

For this chapter, I assume that you have at minimum a good understanding of HTML, JavaScript, and CSS and of
Java web application development with Spring Web MVC. You will also need to understand the basics of configuring
the Apache Tomcat servlet container for your preferred operating system. To proceed with the examples in this
chapter, you will need to have Tomcat 7 installed and configured.

Do This If you do not have Apache Tomcat installed, please visit http://tomcat.apache.org/ and download
Tomcat version 7. The configuration steps of Tomcat are beyond the scope of this book, but the wiki section on the Apache
Tomcat site provides a detailed guide to guide you through more detailed configuration and optimization techniques.

I also assume that you have a basic understanding of the model-view-controller (MVC) pattern and some
knowledge of Java web frameworks that provide an MVC pattern. Because you are using Spring Data Neo4j, it makes
sense to take advantage of Spring Web MVC and other libraries in the Spring family. This chapter is focused on
integrating Neo4j into your Spring skill set and does not dive deeply into the best practices of developing with Spring
Web MVC or Spring libraries.

261

www.it-ebooks.info

http://www.graphstory.com/
http://tomcat.apache.org/
http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Spring Data Neo4j Development Environment

This section covers the basics of configuring a development environment preliminary to building out your first Spring
Data Neo4j web application.

Readme Although each language chapter walks through the process of configuring the development environment
based on the particular language, certain steps are covered repeatedly in multiple chapters. While the initial development
environment setup in each chapter is somewhat redundant, it allows each language chapter to stand on its own. Bearing
this in mind, if you have already configured Eclipse with the necessary plugins while working through another chapter,
you can skip ahead to the section “Adding the Project to Eclipse.”

IDE

The reasons behind the choice of an IDE vary from developer to developer and are often tied to the choice of
programming language. I chose the Eclipse IDE for a number of reasons but mainly because it is freely available and
versatile enough to work with most of the programming languages featured in this book.

Although you are welcome to choose a different IDE or other programming tool for building your application,
I recommend that you install and use Eclipse to be able to follow the SDN examples and the related examples found
throughout the book and online.

Tip If you do not have Eclipse, please visit http://www.eclipse.org/downloads/ and download the Indigo package
that is titled “Eclipse IDE for Java EE Developers.” The Indigo package is also labeled “Version 3.7.”

Once you have installed Eclipse, open it and select a workspace for your application. A workspace in Eclipse is
simply an arbitrary directory on your computer. As shown in Figure 11-1, when you first open Eclipse, the program
will ask you to specify which workspace you want to use. Choose the path that works best for you. If you are working
through all of the language chapters, you can use the same workspace for each project.

» | .
—echHpse

INDIGO

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to ute for this session

Workspace: | /some/path/tofyour/warkspace - Browse...

Use this as the default and do not ask again

Cancel 0K

Figure 11-1. Opening Eclipse and choosing a workspace

262

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Aptana Plugin

The Eclipse IDE offers a convenient way to add new tools through their plugin platform. The process for adding new
plugins to Eclipse is straightforward and usually involves only a few steps to install a new plugin—as you will see in
this section.

An Eclipse plugin named Aptana provides support for server-side languages like PHP as well as client-side
languages such as CSS and JavaScript. This chapter and the other programming language chapters use the plugin to
edit both server- and client-side languages. A benefit of using a plugin such as Aptana is that it can provide code-assist
tools and code suggestions based on the type of file you are editing, such as CSS, JS, or HTML. The time saved with
code-assist tools is usually significant enough to warrant their use. Again, if you feel comfortable exploring within
your preferred IDE or other program, please do so.

To install the Aptana plugin, you need to have Eclipse installed and opened. Then proceed through the
following steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one in Figure 11-2.

2. Paste the URL for the update site, http://download.aptana.com/studio3/plugin/install,
into the “Work With” text box, and hit the Enter (or Return) key.

3. Inthe populated table below, check the box next to the name of the plugin, and then click
the Next button.

4. Click the Next button to go to the license page.

5. Choose the option to accept the terms of the license agreement, and click the Finish
button.

6. You may need to restart Eclipse to continue.

Check the items that you wish to install.

Available Software
-

Work with: | Mtp://@ownload aptans com/studiod pluginupdate/ - Add.

Find mare softwars by working with the “Available Software Sites” preferences.

Name Version
o ¥ 10 Agtana Suadie 3

4 “pAptana Stucko 3 Plugn 3.4.2.201308081736-TWNSTEoCOERAI4.

Sabect ANl Deselect All 1 iter selacted

Details

Show oanly the latest versions of available saftware Hide items that are slready installed
+ Group items by categery What is alrgady installed?
Show only sofware appicable 10 T geL envisonment

 Contact a1 Lpdate sites during Install to And required software

[Cancel

Figure 11-2. Installing the Aptana plugin

263

www.it-ebooks.info

http://download.aptana.com/studio3/plugin/install
http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

LogWatcher

When working with applications, it is often helpful to have a way to view application output through server logs.
There are a few plugins available for Eclipse for this purpose, such as LogWatcher. With LogWatcher, you can watch
output for multiple files inside or outside of Eclipse as well as filters to highlight or skip over specific patterns. At
time of writing, the LogWatcher does not have an update URL for quick installation. To manually install LogWatcher,
visit http://graysky.sourceforge.net/ and follow the quick installation steps and setup the view to suit your
development environment.

Adding the Project to Eclipse

After installing Eclipse plugin, you will have met the minimum requirements to work with your project in the
workspace. To keep the workflow as fluid as possible for each of the language example application, use the project
import tool with Eclipse. To import the project into your workspace, follow these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4;j for Spring.” Unzip the archive file on to your computer.

2. InEclipse, select File » Import and type “project” in the “Select an import source” field.

3. Under the “General” heading, select “Existing Projects into Workspace”. You should now
see a window similar to the one in Figure 11-3.

Select
Create new projects from an archive file or directory. _E - E

Select an import source:

¥ (= General
|, Archive File
|5 Existing Folder as New Project
| Existing Projects into Workspace
| File System
LPreferences
» =0V
*=HE
* = Git
¥ = Install
* = Java EE
¥ (= Maven
¥ (= Plug-in Development
¥ (= Remote Systems
¥ (= Run/Debug
b (= Swdio
P (= Tasks

"?:.‘- Back Next > Cancel

Figure 11-3. Importing the project into Eclipse

4. Now that you have selected “Existing Projects into Workspace’, click the “Next » ” button.
The dialogue should now show an option to “Select root directory”. Click the “Browse”
button and find the root path of the “practicalneo4j-springdata” archive.

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 11-4.

264

www.it-ebooks.info

http://graysky.sourceforge.net/
http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 11 * SPRING DATA NEO4J

Import
Import Projects

Select a directory to search for existing Eclipse projects. f y

-
+) Select root directory: | /Vol i 4 Browse..
_J) Select archive file: Browse...
Projects:
T arscotainee A serinedats (Voluras Tdaciat oratcaimesl amindd

-spring Sebect All

Deselect Al
Refresh
o Copy projects into workspace
Working sets
(| Add project to working sets
Warking sets: Select
@ < Back Next > Cancel Finish

Figure 11-4. Selecting the project location

6. Once the project is finished importing into your workspace, you should have a directory
structure that looks like the one shown in Figure 11-5.
[{_. Project Explorer m =

b < Local Filesystem
¥ 7= practicalneodj-springdata
I A8 JAX-WS Web Services
» 'fi5 Deployment Descriptor: practicalneodj-springdata
» 7% Java Resources
P = JavaScript Resources
P (= neodj
b = src
» §=>WebContent
@ Connections

Figure 11-5. Snapshot of imported project

265
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Spring Web MVC

The Spring Web model-view-controller (SWMVC) is the Spring implementation of a model-view-controller (MVC)
framework. The aim of the framework is to help you quickly build out powerful web applications and APIs using only
what is absolutely necessary to get the job done. The SWMVC library and its dependencies are included with the
sample application and should not require any additional configuration beyond what is provided in this chapter to
run the application.

As with other MVC frameworks, one of the most important aspects of SWMVC is the handling of routing.
The use of annotations allows routing to be placed directly within the controller class. Listing 11-1 shows that the
HomeController uses the @RequestMapping annotation and sets its path as root. The home method is the default
method executed in this example. In addition to enabling you to see the mapping settings at a glance, it allows you to
configure and view the specific methods and results within the class file.

Listing 11-1. Example of a Controller and Its Annotations

@Controller
@RequestMapping("/")
public class HomeController extends GraphStoryController {

@RequestMapping(method = RequestMethod.GET)
public String home(Locale locale, Model model) {
// add page title
model.addAttribute("title", "Home");
// return page to display
return "/mustache/html/home/index.html";

The sample application will use a file named applicationContext.xml, which resides in the /WEB-INF directory.
I'will cover its configuration in the sample application section of this chapter.

Hosts File

To keep each chapter separated in terms of the webserver or container configuration, add a host name to your local
hosts file. The process for modifying the hosts file depends on your preferred operating system. For this chapter,
please add an entry to point 127.0.0.1 to practicalneo4j-spring.

Local Apache Tomcat Configuration

To follow the sample application later in this chapter, you need to configure your local Apache Tomcat to use the
workspace project in Eclipse as the document root. To do this, you need to modify the server.xml file, which can be
found at /TOMCAT-INSTALLATION-DIR/conf/server.xml, as shown in Listing 11-2. The most important changes are
adding a HOST and CONTEXT, as shown in the listing.

Note Using the method of pointing your HOST’s appbase to your project within the workspace is one way to “hot
reload” code changes. This method is very helpful for most developers because server startup and restart times can be a
significant drain on productivity. The process of “deploy and run” has its positive aspects, but the minutes add up quickly.

266

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Listing 11-2. Example of Annotation Configuration

<?xml version='1.0" encoding="utf-8'?>
<Server port="8005" shutdown="SHUTDOWN">
<!--
Listener and GlobalNamingResources excluded for brevity
-->
<Service name="Catalina">
<Connector port="8090" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443"
URIEncoding="UTF-8" useBodyEncodingForURI="true" />
<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" URIEncoding="UTF-8"
useBodyEncodingForURI="true"/>
<Engine name="Catalina" defaultHost="localhost">
<Realm className="org.apache.catalina.realm.LockOutRealm">
<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
resourceName="UserDatabase"/>
</Realm>
<Host name="practicalneo4j-java"
appBase="/path-to-workspace/practicalneoqj-springdata/liebContent”
unpackWARs="true" autoDeploy="true" >
<Context path="" docBase=""
aliases="/resources=/path-to-workspace/practicalneodj- springdata/llebContent/resources"
reloadable="true" swallowOutput="true" />
</Host>
</Engine>
</Service>
</Server>

Apache Tomcat and Apache HTTP

If you already have Apache HTTP installed (or some other webserver) and configured on port 80, you need to make
sure that you do one of the following:

e Ensure that Apache HTTP (or other service on port 80) has been stopped. You can then
configure and run Tomcat on port 80.

e Enable and configure ProxyPass in your virtual hosts file, as shown in Listing 11-3.
e Use the default Apache Tomcat port of 8080.
If you use Apache HTTP with many other projects and do not want spend time starting and stopping Apache
HTTP, I recommend the second option, which is shown in Listing 11-3.
Listing 11-3. Minimum Configuration for httpd-vhosts.conf

<VirtualHost *:80>
ServerName practicalneo4j-java
ProxyPreserveHost On

ProxyPass / http://practicalneo4j-spring:8080/
ProxyPassReverse / http://practicalneo4j-spring:8080/
</VirtualHost>

267

www.it-ebooks.info

http://practicalneo4j-spring:8080/
http://practicalneo4j-spring:8080/
http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Spring Data Neo4j

This section covers basic operations and usage of Spring Data Neo4j (SDN) with the goal of reviewing the specific
code examples before implementing it within an application. The next section will walk you through a sample
application with specific graph goals and models.

As for the other language drivers and libraries available for Neo4j, one goal of SDN is to provide a degree of
abstraction over the Neo4j REST API. In addition, the SDN provides many additional utility classes and methods that
might otherwise be required to be coded at some other stage in the development of your application.

Note Spring Data Neo4j is maintained by the undeniably awesome and helpful Michael Hunger and supported by a
number of great Spring Data Neo4j developers. If you would like to get involved with SDN, go to https://github.com/
spring-projects/spring-data-neo4j.

Each of the following brief sections covers concepts that tie either directly or indirectly to features and
functionality found within the Neo4j Server and REST API. If you choose to go through each language chapter, notice
how each library covers those features and functionality in similar ways but takes advantage of the language-specific
capabilities to ensure that the API is flexible and performant.

Important The code examples shown in this section are deliberately brief, being provided to familiarize you with
basic operations. For example, many of the examples make use of the Neo4jOperations class to perform operations.
Notwithstanding, Spring Data Neo4;j is an extremely rich library and provides additional classes and methods to handle
basic operations. To give you a sense of their scope, | expand on a selection of capabilities in the sample application.

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, which includes the most basic of graph concepts: the
node. Managing nodes and their properties and relationships will probably account for the bulk of your application’s
graph-related code.

In SDN, there are a few ways to manage creation and retrieval of nodes and relationships. This section covers
some basic methods, and the sample application provides some additional ways.

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 11-4. Creating a node

begins with setting up a connection to the database. As is the case with most Spring projects that use a database, the
configuration of the database properties can be set in a configuration file via XML. The sample application uses a file
named applicationContext.xml, which resides in the /WEB-INF directory. The next section of this chapter will cover
the configuration.

In addition, we will add the @Autowired annotation on the Neo4jOperations class. This instantiates the
Neo4jOperations bean for use inside each method in the class. The sample SDN project extends a parent Service class
in order to reuse the Neo4jOperations bean. Next, the properties are put into a Map, and then the Node can be saved
to the database using the createNode method and adding its Map parameter.

268

www.it-ebooks.info

https://github.com/spring-projects/spring-data-neo4j
https://github.com/spring-projects/spring-data-neo4j
http://www.it-ebooks.info/

CHAPTER 11

Listing 11-4. Creating a Node

import java.util.HashMap;
import java.util.Map;

import org.neo4j.graphdb.Node;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.neo4j.template.Neo4jOperations;

// class
public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public Node createNode(){
// create map
Map props=new HashMap<>();
props.put("id", 100);
props.put("name","firstNode");
Node node = neo4jTemplate.createNode(props);

return node;

Retrieving and Updating a Node

SPRING DATA NEO4J

Once nodes have been added to the database, you need a way to retrieve and modify them. Listing 11-5 shows one
way to find a node by its node id and update it. As mentioned earlier, there are a few ways to manage the retrieval of a

node and modify its properties.

Listing 11-5. Retrieving and Updating a Node

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void updateNode(){
// get the node
Node node = neo4jTemplate.getNode(10);

// update node properties

node.setProperty("firstname","Greg");

node.setProperty("lastname","Jordan");

neo4jTemplate.save(node);

www.it-ebooks.info

269

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
To remove a node, set a variable as a node object instance and then call the delete method for the node (Listing 11-6).
Listing 11-6. Deleting a Node

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void deleteNode(){
// get the node
Node node = neo4jTemplate.getNode(10);

// delete node
neo4jTemplate.delete(node);

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

Creating a Relationship

SDN offers a few methods to create relationships, one using the createRelationshipBetween method and another
using the getOrCreateRelationship method. The example in Listing 11-7 sets up the relationship using the
createRelationshipBetween method.

Listing 11-7. Relating Two Nodes

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void relateNodes(){
// retrieve the node by its node id value, in this case 10

Node greg = neo4jTemplate.getNode(10);

// retrieve the node by its node id value, in this case 1
Node jeremy = neo4jTemplate.getNode(1);

// populate & save the relationship (greg follows jeremy)
neo4jTemplate.createRelationshipBetween(greg, jeremy, "FOLLOWS", null);

270

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Note Both the start and end nodes of a relationship must already be established within the database before the
relationship can be saved.

Retrieving Relationships

Once a relationship has been created between one or more nodes, the relationship can be retrieved based on the
nodes relating to it. If no relationship exists, the relationship will be set to null (Listing 11-8).

Listing 11-8. Retrieving Relationships

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void retrieveRelationship(){
// retrieve the node by its node id value, in this case 10

Node greg = neo4jTemplate.getNode(10);

// retrieve the node by its node id value, in this case 1
Node jeremy = neo4jTemplate.getNode(1);

// retrieve the relationship (greg follows jeremy)
Relationship rel = neo4jTemplate.getRelationshipBetween(greg, jeremy,"FOLLOWS");

Deleting a Relationship

Once a relationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary. To remove a relationship, set it as a relationship object instance and then call the delete method for the
relationship (Listing 11-9).

Listing 11-9. Deleting a Relationship

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void deleteRelationship(){

// retrieve the Relationship by its Relationship id value, in this case 20
Relationship relationship = neo4jTemplate.getRelationship(20);

271

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

neo4jTemplate.delete(relationship);

//alternatively you could delete the relationship between two nodes

// retrieve the node by its node id value, in this case 10
Node greg = neo4jTemplate.getNode(10);

// retrieve the node by its node id value, in this case 1
Node jeremy = neodjTemplate.getNode(1);

neo4jTemplate.deleteRelationshipBetween(greg, jeremy, "FOLLOWS");

Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4;j 2.0 in
order to help in querying and can also function as a way to quickly create a subgraph.

Adding a Label to Nodes

In SDN, you can add one more labels to a node using LabelBasedStrategyCypherHelper. As shown in Listing 11-10,
the setLabelsOnNode function takes one or more labels as argument. You can return each of the labels on a node by
calling its getLabels function. The value used for the label should be any nonempty string or numeric value.

Listing 11-10. Adding Labels to a Node

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void addLabels(){

// retrieve the node by its node id value, in this case 10
Node greg = neo4jTemplate.getNode(10);

// array of labels
String[] labelArray = {"Admin","Developer"};

//setup CypherQueryEngine
CypherQueryEngine cqe = neo4jTemplate.getGraphDatabase().queryEngine();

// instantiate LabelBasedStrategyCypherHelper
LabelBasedStrategyCypherHelper lbsch = new LabelBasedStrategyCypherHelper(cqe);

// set the labels
1bsch.setLabelsOnNode(greg.getId(),new ArraylList<String>(Arrays.
asList(labelArray)));

272

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Caution A label will not exist on the database server until it has been added to at least one node.

Removing a Label

Removing a label uses similar syntax as adding a label to a node. After the given label has been removed from the
node (Listing 11-11), the return value is a list of labels still on the node.

Listing 11-11. Removing a Label from a Node

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public void removelLabel(){

// retrieve the node by its node id value, in this case 10
Node greg = neo4jTemplate.getNode(10);

greg.removelabel(DynamicLabel.label("Admin"));

Querying with a Label

To get nodes that use a specific label, use the method called getNodesWithLabel. This method’s returns value is an
iterable (Listing 11-12).

Listing 11-12. Querying with a Label

public class SDNServiceClass {

@Autowired
public Neo4jOperations neo4jTemplate;

public Iterable<Node> getNodesWithLabel(){
CypherQueryEngine cqe = neo4jTemplate.getGraphDatabase().queryEngine();
LabelBasedStrategyCypherHelper lbsch = new LabelBasedStrategyCypherHelper(cqe);
Iterable<Node> nodes = lbsch.getNodesWithLabel("Developer");

return nodes;

273

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Developing a Spring Data Neo4j Application

This section covers a few more items for configuring a development environment, preliminary to walking through the
Spring Data Neo4j application.

Preparing the Graph

To spend more time highlighting code examples for each of the more common graph models, we will use a preloaded
instance of Neo4j including necessary plugins, such as the spatial plugin.

Tip To quickly set up a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j.You will be provided with your own free trial instance, a knowledge base, and email support from Graph
Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to graphstory.com/
practicalneo4j, downloading the zip file containing the sample database and plugins, and adding them to your local instance.

Using the Sample Application

If you have already downloaded the sample application from www.graphstory.com/practicalneo4j for Spring Data
Neo4j and configured it with your local application environment, you can skip ahead to the “Spring Application
Configuration” section.

Otherwise, you will need to go back to the “Spring Data Neo4j Development Environment” section and set up
your local environment in order to follow the examples in the sample application.

In Eclipse (or the IDE you are using), open the file package . properties, which is located in the
com.practicalneo4j.graphstory.service, and edit the GraphStory connection string information. If you are using
a free account from graphstory.com, change the username, password, and URL in Listing 11-13 with the one provided
in your graph console on graphstory.com.

Listing 11-13. Database Connection Settings

rootNeo4jServiceUrl=https://username:password@theURL:7473

If you have installed a local Neo4j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, as in the example shown in Listing 11-14.

Listing 11-14. Database Connection Settings for Local Environment

rootNeo4jServiceUrl=http://localhost:7474

Once the environment is properly configured and started, you can go the local address
http://practicalneo4j-spring and you should see a page like the one shown in Figure 11-6.

274

www.it-ebooks.info

http://practicalneo4j-spring/
http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

800 Gragh Story | Home

€« c practicalneod)-spring/

Graph Story

The leading graph-as-a-service provider

Easy path to Social Most Interestmg Content is King
Quickly create an online community and help them nactions within your communities by What your customers read can tel ycu what to write -
connect ard share faster with Graph Story. Create a P‘clnﬂqvc' manage thair interests. and what not o write. h h your customars words with
Maps are a graph! Recommendations Wln at Starting

Graph Story is a next generation platform f r-rap—r:ih Relavant recommendations create sales! Graph Story GraphMyStartup belps your team see all the parts of
manage location information. jocatior i and will b your cust s understand and marage their your startup, keeps everyshing in one place, moving
et us do the work. recommendations o gc: more relevant results, forward and staying strong.

© Graph Story, Inc. 2014

Figure 11-6. The Spring Data Neo4j sample application home page

Spring Application Configuration

The Spring application configuration can be completed in one of two ways: (1) using a XML configuration or (2) by
using a Java-based configuration. In this section, I will review the XML configuration used for the sample application
and briefly cover the important settings.

First, each XML configuration will contain schema references required for the application and will depend
upon your application. The references have been removed in Listing 11-15, but they can be reviewed by opening the
application-context.xml file located in WebContent/WEB-INF directory of your project.

Listing 11-15. The applicationContext.xml Configuration File
<?xml version="1.0" encoding="UTF-8"?>
...bean references omitted for brevity...
<context:annotation-config/>
<context:spring-configured/>
<context:component-scan base-package="com.practicalneo4j.graphstory.controller"/>
<context:component-scan base-package="com.practicalneo4j.graphstory.service"/>

<mvc:annotation-driven/>

<!-- static web resources -->
<mvc:resources mapping="/resources/**" location="/resources/" />

275

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

<!-- used to check login before accessing certain pages -->
<mvc:interceptors>
<mvc:interceptor>
<mvc:mapping path="/social/**" />
<mvc:mapping path="/user/**" />
<mvc:mapping path="/interest/**" />
<mvc:mapping path="/consumption/**" />
<mvc:mapping path="/location/**" />
<mvc:mapping path="/intent/**" />
<bean class="com.practicalneo4j.graphstory.interceptor.SecurityInterceptor" />
</mvc:interceptor>
</mvc:interceptors>

<!-- get properties for use in the configuration -->

<bean id="projectPropertyConfigurer" class="org.springframework.beans.factory.config.

PropertyPlaceholderConfigurer">
<property name="location">
<value>classpath:/com/practicalneo4j/graphstory/service/package.properties</value>
</property>

</bean>

<!-- mustache.java -->
<bean id="viewResolver" class="com.practicalneo4j.graphstory.util.NMustacheViewResolver">
<property name="cache" value="false" />
<property name="templateFactory">
<bean class="com.practicalneo4j.graphstory.util.NMustacheJTemplateFactory" />
</property>
</bean>

<!-- DB Connection to Neo4j server -->
<bean id="graphDatabaseService" class="org.springframework.data.neo4j.rest.
SpringRestGraphDatabase" scope="singleton">
<constructor-arg value="${rootNeo4jServiceUrl}/db/data" index="0"/>
<constructor-arg value="${username}" index="1"/>
<constructor-arg value="${password}" index="2"/>

<!-- domain entity classes -->
<neo4j:config graphDatabaseService="graphDatabaseService" base-package="com.practicalneo4j.
graphstory.domain"/>

<!-- Package repositories -->
<neo4j:repositories base-package="com.practicalneo4j.graphstory.repository" />

<tx:annotation-driven mode="proxy"/>
</beans>

Next, the configuration applies context and mvc specific settings, such as the package location of the
application’s controllers. The MCV bean also sets the location for static assets, such as CSS, JavaScript, and images that
are used within the application. The mvc: interceptors reference can be used before each request to run specific
code prior to completing the request, such as check if a user is logged in before accessing certain pages in certain
paths. Following the interceptor, the projectPropertyConfigurer supplies the location for application properties,
and the viewResolver bean handles the integration with the Mustache templating language.

276

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Finally, the graphDatabaseService bean provides the location and authentication information for the graph
database, and the neo4j:config and neo4j:repositories settings set the entity package location and the package
location of repository interfaces, respectively.

Controller and Service Layers

All of the controllers in the sample application extend a parent controller called GraphStoryController. The
GraphStoryController provides access to the GraphStory bean, the GraphStoryInterface service, and a method
called currentuser, which allows for quick access to the currently logged-in user.

The GraphStory bean encapsulates the domain objects for the sample application and is primarily used for
convenience. This object will allow domain objects to be sent to the service layer and returned—in some cases—with
additional objects and properties.

The GraphStoryInterface service provides access to each of the individual service interfaces that support
persistence and other service-level operations on each of the domain objects. For example, if an exception is raised
in the service layer, such as a when attempting to create a User that matches an existing User’s username, then the
GraphStory object can be returned with message information, such as an error message, which can then be used to
determine the next part of the application flow as well as return messages to the view.

Head’s-Up Spring MVC and the front-end code, such as Mustache, help run the sample application, but extended
coverage of those concepts will be limited to the Social Graph section. In the Social Graph section, | will focus on the
non-obvious but important aspects of those concepts. As you go through the rest of the application, controllers as well
as the front-end code will use similar syntax—so they will be referenced but not listed in the chapter, because repetitive
coverage of that syntax would distract from the discrete, specific Spring Data Neo4j examples.

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany it. In particular, this
section looks at the following:

e The User Entity

e Sign-up and Login

e Updating a user

e Creating a relationship type through a user by following other users

e Managing user content, such as displaying, adding, updating, and removing status updates

Note The sample graph database used for these examples is loaded with data so that you can immediately begin
working with representative data in each of the graph models. In the case of the social graph—and for other graph
models, as well—you will login with the user ajordan. Going forward, please login with ajordan to see each of the
working examples.

277

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

User Node Entity

We will begin the social graph model by reviewing the code for creating a User node in the graph via the sign-up
process. Later in this section, I will briefly review the code to validate a user upon attempting to login. In each case,
the code contains brief validation routines to demonstrate the basics of running checks against data. In the case of
sign-up, the code will check to see if a User already exists with the same username.

Node Entities

To begin, open the User class located in the com.practicalneo4j.graphstory.domain package. First, you should
notice that the User class—as with each Node Entity—is annotated with @NodeEntity, as shown in Listing 11-29. You
can also use the @TypeAlias to specify the alias name, which could be helpful if or when refactoring occurs. Each of
the entities should have a @GraphId annotation to set the property that will contain the node’s ID.

Listing 11-16. The User Entity

@NodeEntity
@TypeAlias("User")
public class User {

@GraphId
private Long nodeld;

@Indexed
private String userId;

@Indexed
private String username;

private String firstname;
private String lastname;

@RelatedTo(type = GraphStoryConstants.MADE, direction = Direction.OUTGOING,
elementClass = Purchase.class)
private Purchase purchase;

@RelatedTo(type = GraphStoryConstants.USES, direction = Direction.OUTGOING,
elementClass = Tag.class)
private Set<Tag> tags;

@RelatedTo(type = GraphStoryConstants.HAS, direction = Direction.OUTGOING,
elementClass = Location.class)
private Set<lLocation> locations;

// getters and setters

Next, properties that require index lookups should use the @Indexed annotation. In most cases, simply setting
the annotation will suffice in order to do future lookups. However—as noted earlier in this chapter—it is also possible
to use the annotation property “unique=true” with @Indexed to help ensure no duplicates can be added to the index.
Node Entities in SDN are only allowed one unique index regardless of the type of index being used. In the case of a
unique index, the value is checked at creation time and re-uses the existing entity if the key-value pair already exists.

278

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

After the Node properties are created, the User class has a number of encapsulated domain objects that have the
@RelatedTo annotation. The @RelatedTo has a type, such as MADE, and a direction, such as OUTGOING or INCOMING, as
well as specifying the class on the other side of the relationship.

As suggested in the chapter on modeling, one way to think about directed relationships is by first constructing a
Cypher snippet or a short phrase to consider direction, such as “user-[:made]->purchase” or “a user made a purchase”.
In some cases, the relationship will be bidirectional, such as FOLLOWS. Although it is possible to analyze the
relationship without direction in this case, the direction serves as an expression of the relationship.

Spring Data Repositories

For each object type in the domain, the sample application has at least one corresponding Spring Data repository
interface. One of the intentions of the Spring Data repositories is to save you from coding methods for the most
commonly used data operations.

For the sample application, all of the repository interfaces are located in the
com.practicalneo4j.graphstory.repository package and extend the GraphRepository interface. By extending the
GraphRepository interface, the repositories will have access to a number of commonly used methods, such as a save
method. In addition, repositories can include (1) your own methods via a @Query annotation, which takes a Cypher
query as a property, and (2) the very handy and flexible derived finder methods.

Each of the derived methods begins with prefix, like findBy in the case of the finder methods, and then is
followed by the necessary properties, conjunctions, and operators to create a Cypher query. For example, the
findByUsername method, shown in Listing 11-17, will use the @Indexed field username to form a Cypher query as
start user=node:User(username = {0}) return user

In the case of the additional methods in UserRepository, you will use Cypher queries with parameters supplied
by the method. For example, the searchByUsername method in Listing 11-30 looks for users to follow based on a
search of the User entities. It performs a MATCH on the currentusername parameter, which is set via @Param("c").

The query also performs a wild card search using WHERE on the username, which is set via @Param("u"). This
part of the WHERE also ignores the user found in the MATCH currentusername part of the query. Finally, the query
also ignores all of the users the currentusername is already following by using the Boolean operator NOT and the
directional relationship of FOLLOWS.

Listing 11-17. The UserRepository Interface

public interface UserRepository extends GraphRepository<User> {
User findByUsername(String username);
@Query(

// match users and user by username via param 'c'

// where n.username WILDCARD on param 'u'

// but is not the current user

// and don't return users already being followed

// return list of users

" MATCH (n:User), (user { username:{c}}) " +

" WHERE (n.username =~ {u} AND n <> user) " +

" AND (NOT (user)-[:FOLLOWS]->(n)) " +

" RETURN n")

List<User> searchByUsername(@Param("c") String currentusername,
@Param("u") String username);

279

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

@Query("MATCH (user { username:{u}})-[:FOLLOWS]->(users) " +
" RETURN users " +
" ORDER BY users.username")

LinkedList<User> following(@Param("u") String username);

Sign-Up

The HTML required for the user sign-up form is shown in Listing 11-18 and can be found in the
{PROJECTROOT}/WebContent/mustache/html/home/index.html file. The important item to note in the HTML form is
that the bean name then property are used to specify what is passed to controller and, subsequently, to the service
layer for saving to the database.

Listing 11-18. Sign-Up HTML Form

<form class="navbar-form navbar-left" action="/signup/add" role="form" id="createaccountform”
method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="user.username" class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button> 8
</form>

Note The sample application creates a user without a password, but | am certainly not suggesting or advocating
this approach for a production application. Excluding the password property was done in order to create a simple sign-up
and login that helps keep the focus on the more salient aspects of SDN.

Sign-Up Controller

In the SignupController class, located in the com.practicalneo4j.graphstory.controller, you will use a method
called adduser to control the flow of the sign-up process, shown in Listing 11-19. The controller instantiates a
ModelAndView object, which returns properties to the view layer. Next, the GraphStoryInterface accesses the save
method of the UserInterface and returns a GraphStory object.

If no errors are returned during the save attempt, the request is redirected to a message view to thank the user for
signing up. Otherwise, the ModelAndView specifies the HTML page to return and the error messages that need to be
displayed.

Listing 11-19. Sign-Up Controller

@RequestMapping(value = "/signup/add", method = RequestMethod.POST)
public ModelAndView addUser(@ModelAttribute("graphStory") GraphStory graphStory) {

ModelAndView modelAndView;

try {
graphStory = graphStoryInterface.getUserInterface().save(graphStory);

280

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

// no errors occurred, so send to the thank you page
if (CollectionUtils.isEmpty(graphStory.getErrorMsgs())) {

modelAndView = new ModelAndView("redirect:/msg");
modelAndView.addObject("msg", "Thank you, " + graphStory.getUser().
getUsername());

// send the errors that occurred to the view

} else {
modelAndView = new ModelAndView("/mustache/html/home/index.html");
modelAndView.addObject("title", "Home");
modelAndView.addObject(graphStory.getErrorMsgs());

}
return modelAndView;
}
catch (Exception e) {
log.error(e);
return null;
}
}
Adding the User

Each domain object has a corresponding interface and implementation to manage the object. As a part of the
architecture, each interface is part of the main service layer created with the GraphStoryImpl class, which implements
the GraphStoryInterface. In addition, each of the implementation classes extends a class called GraphStoryService
in order to have access to commonly used beans and methods, such as the Spring Data repositories and the
Neo4jOperations class.

In this case, the UserImpl class implements the methods found in UserInterface, both of which are located in
the com.practicalneo4j.graphstory.service.main package. An abbreviated version of UserInterface is shown in
Listing 11-20.

Listing 11-20. UserlInterface

public interface UserInterface {

public GraphStory sawe(GraphStory graphStory) throws Exception;

Note This chapter does not dive into the details of the GraphStoryService and GraphStoryImpl classes, but both
of these service classes will be reused throughout the application. The GraphStoryImpl class is used for convenience in
order to have access to each specific interface by using a single service interface.

281

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

In the UserImpl class, you will notice several implemented methods to manage the User object. To add the User
object to the database, use the save method, which will first check to see if a username has already been added to the
database. If no user exists, then the user is saved to the database.

The UserImpl class, shown in Listing 11-21, will also use the @Service annotation to set the interface name as
well as provide its scope through the @Scope annotation. To save the user to the database, the application calls the
save method from UserRepository.

Listing 11-21. UserImpl

@Service("userInterface")
@Scope("prototype")
public class UserImpl extends GraphStoryService implements UserInterface {
static Logger log = Logger.getlLogger(UserImpl.class);
private User tempUser;
public GraphStory save(GraphStory graphStory) throws Exception {
// trxim and lower case the username
graphStory.getUser().setUsername(graphStory.getUser().getUsername()
.toLowerCase().trim());
// check to see if the username has already been taken
if (luserExists(graphStory.getUser())) {
graphStory.setUser (userRepository.save(graphStory.getUser()));

} else {
addExroxMsg(graphStory, "The username you entered already exists.");
}

return graphStory;

}

private boolean userExists(User user) throws Exception {
boolean userFound = false;
if (getByUserName(user.getUsername()) != null) {

userFound = true;
}

return userFound;

}

public User getByUserName(String username) throws Exception {

User u = userRepository.findByUsername(username);
return u;

282

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Login

This section reviews the login process for the sample application. To execute the login process, use the
LoginController and User, UserInterface, and UserImpl classes.

Login Form

The HTML required for the user login form is shown in Listing 11-22 and can be found in the
{PROJECTROOT}/WebContent/mustache/html/global/base-home.html file. Again, the important item to note in the
form is that the bean name and property are used to specify what is passed to controller and, subsequently, to the
service layer for querying the database.

Listing 11-22. The login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="user.usexname" class="form-control">
</div>
<button type="submit" class="btn btn-success">Sign in</button>
</form>

Login Controller

In the LoginController class, you will use a method called login to control the flow of the login process, as shown
in Listing 11-23. The controller instantiates a ModelAndView object and returns properties to the view layer. Next, the
GraphStoryInterface accesses the login method of the UserInterface and returns a GraphStory object.

If no errors are returned during the login attempt, a cookie is added to the response and the request is redirected
to the social home page, as shown in Figure 11-7. Otherwise, the ModelAndView specifies the HTML page to return and
the error messages that need to be displayed.

Graph Story | Social

L C practicalneodj-spring/social =
:
raot'“ Story
Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Add Content

BA Draft - Gene Jordan Edit/

tags: nba :: Posted by ajordan at 0

7:02 PM

Andrew M. Wray 1l Memor

tags: university of memphis, economics :: Posted by anwray at 06/01/2014 at 8:05 AM
Rob Base Decision Trea
tags: music, funny :: Posted by pifarsworth at 05/18/2014 at 5:00 AM

Next>> >

Figure 11-7. The Social Graph home page

283

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-23. login Controller

@RequestMapping(value = "/login", method = RequestMethod.POST)
public ModelAndView addUser(@ModelAttribute("graphStory") GraphStory graphStory, HttpServletResponse
response) {

ModelAndView modelAndView;

try {
graphStory = graphStoryInterface.getUserInterface().login(graphStory);
// no errors, user was found
if (CollectionUtils.isEmpty(graphStory.getErrorMsgs())) {
response.addCookie(graphStoryInterface.getHelperInterface().
addCookie(GraphStoryConstants.graphstoryUserAuthKey, graphStory.getUser().
getUsername()));
modelAndView = new ModelAndView("redirect:/social");
// user was not found
} else {
modelAndView = new ModelAndView("/mustache/html/home/message.html");
modelAndView.addObject("title", "Tell Yours");
modelAndView.addObject(graphStory.getErrorMsgs());
}
return modelAndView;
}

catch (Exception e) {
log.error(e);
return null;

Login Service

To check to see if the user attempting to log in is a valid user, the application uses the login method in UserImpl,
which implements in UserInterface. An abbreviated version of UserInterface is shown in Listing 11-24.

Listing 11-24. UserInterface with the login Method

public interface UserInterface {

public GraphStory login(GraphStory graphStory) throws Exception;

284

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

As shown in the UserImpl code in Listing 11-25, the result of the findByUsername method from the
UserRepository is assigned to the tempUser variable. If the result is not null, the result is set on the User object of the
GraphStory service bean. Otherwise, a message is added to the GraphStory bean through the inherited addErrorMsg
method and returned to the controller along with the original User object.

Listing 11-25. UserImpl

public class UserImpl extends GraphStoryService implements UserInterface {

private User tempUser;

@0verride
public GraphStory login(GraphStory graphStory) throws Exception {
tempUser = userRepository.findByUsername(graphStory.getUser().getUsername());

// user was found

if (tempUser != null) {
graphStory.setUser(tempUser);

}

// usexr was not found
else {
addExroxMsg(graphStory, "The username you entered does not exist.");

}
return graphStory;
}
} ces
Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as show in

Figure 11-8. In this example, you will simply add or update the first and last name of the user using an AJAX request
via PUT. If no errors were return during the login attempt, a cookie is added to the response and the request is
redirected to the social home page, as shown in Figure 11-8. Otherwise, the Mode1AndView specifies the HTML page to
return and the error messages that need to be displayed.

285

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Graph Story | User

€« C practicalneodj-spring/user

Social Graph

&%Graph Story

Social Graph - Friends

This section of the application shows how to update a user's settings.

Social Menu User Settings for ajordan
First Name Alvin
Last Name Jordan

Update User

Figure 11-8. The User Settings page

User Update Form

The user update form in {PROJECTROOT}/WebContent/mustache/html/graphs/social/user.html is similar in
structure to the other forms presented in the “Sign Up” and “Login” sections. One difference is that you have added
the value property to the input element as well as the variables for displaying the respective stored values. If none
exist, the form fields will be empty.

Listing 11-26. User Update Form

<form class="form-horizontal" id="userform">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname"
name="user.firstname"
value="{{user.firstname}}" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname"
name="user.lastname" value="{{user.lastname}}" />
</div>
</div>
<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update User</button>
</div>
</div>
</form>

286

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

User Controller

The UserController class contains a method called edit, which takes several arguments including a User object. The
User object is converted from a JSON string and returns a User object. The response could be used to update the form
elements, but the values are already set within the form. In this case, the application uses the JSON response to let the
user know whether the update succeeded or not.

Listing 11-27. UserController Edit Method

@RequestMapping(value = "/user/edit", method = RequestMethod.PUT)
public @ResponseBody User edit(Model model, @ModelAttribute("currentuser") User currentuser,
@RequestBody User jsonString) {

try {
if (jsonString != null) {
currentuser.setFirstname(jsonString.getFirstname());
currentuser.setlLastname(jsonString.getLastname());
currentuser = graphStoryInterface.getUserInterface().update(currentuser);
}
}

catch (Exception e) {
log.error(e);

}

return currentuser;
}
User Update Method

To complete the update, the UserController edit method calls the update method in UserImpl. Because the object
being passed into the update method simply modified the first and last name of the existing entity, the save method
can be used to update the properties in the graph.

Listing 11-28. The update Method in UserImpl
// UserImpl...

@0verride

public User update(User user) throws Exception {
user = userRepository.save(user);
return user;

Note Recall that each of the controllers and the front-end code make use of similar syntax. For this reason,
subsequent sections will not feature the controller and front-end code so as to focus on the Spring Data Neo4j aspects of
the application. The controllers and front-end code will be referenced but not listed directly in the sections.

287

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. The sample application uses the relationship type called FOLLOWS. By going to the “Friends” page within
the social graph section, you can see the list of the users the current user is following, search for new friends to follow,
add them, and remove friends the current user is following. The UserController contains each of the methods to
control the flow for these features, including friends, searchbyusername, follow and unfollow.

To display the list of the users the current user is following, the friends method in the UserController calls the
following method in UserImpl. The following method in UserImpl, shown in the first part of Listing 11-29, calls
the following method in the UserRepository, shown the second part of Listing 11-29. Each takes an argument of
username, which results in a LinkedList of users. If the list contains users, it will be displayed in the right-hand part
of the page, as shown in Figure 11-9. The display code for showing the list of users can be found in
{PROJECTROOT}/WebContent/mustache/html/graphs/social/friends.html.

Listing 11-29. The Respective Following Methods for UserImpl and UserRepository
// UserImpl

public List<User> following(String username) throws Exception {
LinkedList<User> following = userRepository.following(username);

return following;

}

// UserRepository
@Query("MATCH (user { username:{u}})-[:FOLLOWS]->(users) RETURN users " +

" ORDER BY users.username")
LinkedList<User> following(@Param("u") String username);

Graph Story | Frierds

« c practicalneodj-spring/friends

Soclal Graph

rapr‘ Story

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks.

Social Menu Search For Friends Current Friends
Jimi James Ramove
a John Baird Ae
Lecnard Euler Remove
Search
Mikola Tesla Ramove
Aline Wray Add as Friend Opal Jordan
Andrew Wray Add as Friend Philo Farnsworth
Thomas Edison Remove

Figure 11-9. The Friends page
288

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

To search for users to follow, the UserController uses the searchbyusername method, which calls the
searchByUserName method in UserImpl. The searchByUserName method requests the searchByUserName method in the
UserRepository, which is shown in the second part of Listing 11-30 and was also covered in more detail in Listing 11-17
of the “Spring Repositories” section. The searchByUserName method in UserRepository matches the current user and
then returns a List of users not already being followed by the current user and whose username matches on a wildcard
String value, which is created in the searchByUserName method in UserImpl.

Listing 11-30. The searchByUsername Method in UserImpl
// UserImpl

public List<User> searchByUsername(String currentusername, String username) throws Exception {
username = username.toLowerCase() + ".*";

LinkedList<User> users =
new LinkedlList<User>(userRepository.searchByUsexrname(currentusername, username));

return users;

}

// UserRepository

@Query(" MATCH (n:User), (user { username:{c}}) " +
" WHERE (n.username =~ {u} AND n <> user) " +
" AND (NOT (user)-[:FOLLOWS]->(n)) " +
" RETURN n")
List<User> searchByUsername(@Param("c") String currentusername, @Param("u") String username);

The searchByUsername in {PROJECTROOT}/WebContent/resources/js/graphstory.js uses an AJAX request
and formats the response in renderSearchByUsername. If the list contains users, it will be displayed in the center of
the page under the search form, as shown in Figure 11-9. Otherwise, the response will display “No Users Found” The
display code for showing the list of users found can be reviewed by opening the friends.html file in {PROJECTROOT}/
WebContent/mustache/html/graphs/social/.

Once the search returns results, the next action would be to click on the “Add as Friend” link, which will call the
addfriend method in graphstory.js. This will perform an AJAX request to the follow method in the UserController
and call followin UserImpl. The follow method in UserImpl, shown in Listing 11-31, will create the relationship
between the two users by first finding each entity via getByUserName and then use createRelationshipBetween
provided by the neo4jTemplate.

Listing 11-31. The follow Method in UserImpl

// UserImpl
public void fellow(String currentusername, String username) throws Exception {

User cu = getByUserName(currentusername);
User toFollow = getByUserName(username);

neo4jTemplate.createRelationshipBetween(neo4jTemplate.getNode(cu.getNodeId()),
neo4jTemplate.getNode(toFollow.getNodeId()), GraphStoryConstants.FOLLOWS, null);

289

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

The createRelationshipBetween method takes four arguments: the node of the current user, the node of the user
being followed, the String value of the relationship type, and, optionally, any properties that need to be added the
Relationship being created. In this specific example, you also will use the getNode method in neo4jTemplate, which
takes an argument of the node ID and returns a Node object.

Once the operation is completed, the controller requests the following method in UserImpl to return the full list
of followers ordered by the username.

The “unfollow” operation for the FOLLOWS relationships uses a nearly identical application flow as “follows”. In the
unfollow method, shown in Listing 11-32, the first step is to use the getByUsername to find each node in the expected
relationship. To remove the relationship, call deleteRelationshipBetween with three arguments—both nodes in the
relationship and the String value of the relationship. Once completed, the UserController executes the following
method and returns the current list of users being followed.

Listing 11-32. The unfollow method in UserImpl
// UserImpl

public void unfollow(String currentusername, String username) throws Exception {

User cu = getByUserName(currentusername);
User toUnfollow = getByUserName(username);

neodjTemplate.deleteRelationshipBetween(cu, toUnfollow, GraphStoryConstants.FOLLOWS);

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content—sometimes referred to as user-generated content. In the case of this content, you will not be creating
connections between the content and its owner but creating a linked list of status updates. In other words, you are
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time.
A modeled list is more efficient than getting all status updates connected to a user and then sorting and limiting the
return. With this relationship approach, you also help to limit the number of relationships that are placed on the User
and Content entities. Overall, the graph operations should be more efficient using this approach.

As shown in Listing 11-33, the User is tied the Content object through the CURRENTPOST relationship type as well
as a Content object connected to another Content object through the NEXTPOST.

Listing 11-33. The Content entity

@NodeEntity
@TypeAlias("Content")
public class Content {

@GraphId
private Long nodeld;

@Indexed
private String contentId;

private String title;
290

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

private String url;
private String tagstr;
private Long timestamp;

@Transient
private String userNameForPost;

@Transient
private String timestampAsStr;

@RelatedTo(type = GraphStoryConstants.HAS, direction =
Direction.OUTGOING, elementClass = Tag.class)
@JsonInclude(Include.NON NULL)

private Set<Tag> tags;

@RelatedTo(type = GraphStoryConstants.CURRENTPOST, direction =
Direction.INCOMING, elementClass = User.class)

@JsonIgnore

private User user;

@RelatedTo(type = GraphStoryConstants.NEXTPOST, direction =
Direction.OUTGOING, elementClass = Content.class)
@JsonIgnore

private Content next;

// getters and setters

Getting the Status Updates

To display the first set of status updates, start with the home method inside of the SocialController. This method
accesses the getContent method within ContentImpl, which takes an argument of the GraphStory bean, the current
user’s username, the page being requested, and the page size. The page refers to set number of objects within a
collection. In this instance the paging is zero-based, so we will request page 0 and limit the page size to 3 in order to
return the first page.

The MappedContentRepository contains a method that is also called getContent. This method, shown in the first
part of Listing 11-35, first determines whom the user is following and then matches that set of users with the status
updates starting with the CURRENTPOST. The CURRENTPOST is then matched on the next three status updates via the
[:NEXTPOST*0. .3] section of the query.

Listing 11-34. The getContent Method in ContentImpl

public GraphStory getContent(GraphStory graphStory, String username, Integer page, Integer pagesize)
{

Page<MappedContent> mappedContent = mappedContentRepository.getContent(username,
new PageRequest(page, pagesize, new Sort(Direction.DESC, "p.timestamp")));

291

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

// return the mapped content
graphStory.setContent(Lists.newLinkedList(mappedContent.getContent()));

// is there more content?
graphStory. setNext (mappedContent.hasNext());

return graphStory;

Mapped Query Results

Query Results are a convenient way to convert results from a Cypher query into POJO interfaces or objects. The
MappedContentRepository’s getContent method first determines the user via a MATCH, then whom the user is
following, and finally the list of status updates to be returned. Using a PageRequest, the query will be provided with a
page, page size, and the sort preference of the sub-graph that is created by the Cypher query.

Using the MappedContent object, the query will map discrete properties that are to be used. In addition to being
able to specify only what needs to be returned, the QueryResult is a more efficient way of reading from the graph. If
the query simply returned each status update as a node, it would require multiple calls to the database and result in a
much slower operation.

To create a QueryResult, you need to apply the @ueryResult annotation as well as @NodeEnity. Next, you need
provide @GraphId for the object and annotate each property with a @ResultColumn that specifies the alias or property
name used within the query. In cases in which you are using aliases for properties, be aware that the @ResultColumn
value must match, including case, exactly to the alias name.

Listing 11-35. The MappedContentRepository Interface and MappedContent Class

// MappedContentRepository
public interface MappedContentRepository extends GraphRepository<MappedContent> {

@Query(" MATCH (u:User {username: {u} }) " +

"WITHu " +

MATCH (u)-[:FOLLOWS*0..1]->f " +

WITH DISTINCT f,u " +

MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p " +

RETURN p.contentId as contentld, p.title as title, p.tagstr as tagstr, " +
p.timestamp as timestamp, p.url as url, f.username as username, f=u as owner ")
Page<MappedContent> getContent(@Param("u") String username, Pageable pageable);

}

// MappedContent

@QueryResult
@NodeEntity
public class MappedContent {

@GraphId
private Long nodeld;

292

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

@ResultColumn("contentId")
private String contentId;

@ResultColumn("title")
private String title;

@ResultColumn("url")
private String url;

@ResultColumn("tagstr")
private String tagstr;

@ResultColumn("timestamp")
private Long timestamp;

@ResultColumn("username"”
private String userNameForPost;

private String timestampAsStr;

@ResultColumn("owner")
private Boolean owner;

// getters and setters

Adding a Status Update

The page shown in Figure 11-10 shows the form to add a status update for the current user, which is displayed when
clicking on the “Add Content” link just under the “Graph Story - Social Feed” header. The HTML for the form can be
found in {PROJECTROOT}/WebContent/mustache/html/graphs/social/posts.html. The form uses the addContent

function in graphstory. js to POST a new status update and to return the response and add it to the top of the status
update stream.

293

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Graph Story | Soclal

« C practicalneo4j-spring/social

m

0
&% Graph Story

Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title

Add Content

1860 NBA Draft - Gene Jordan Edit / Dy

tags: nba :: Posted by ajordan at 08

Rob Base Dec 1 Tree

tags: music, y = Posted by ptfarsworth at 05/18/2014 at 5:00 AM
Most Requested Song of All Time

tags: music, serious :: Posted by ntesla at 04/24/2014 at 3.06 AM

Next>>>

Figure 11-10. Adding a status update

In the SocialController, you will use the add method to first check and see if any tags are being added. If so,
the tags are first saved individually through the saveTags method in TagsImpl (more on Tags in later sections), which
returns a SET of tags, which will be added to the Content object via setTags. Next, you will send the Content object to
the add method of ContentImpl along with a User object via currentuser.

The add method for ContentImpl is shown in Listing 11-36. When a new status update is created, in addition to its
graph id, the save method also generates a contentld, which is performed using the uuidGenWithTimeStamp method.
The save method will also make the status the CURRENTPOST, determines whether a previous CURRENTPOST exists, and,
if one does, changes its relationship type to NEXTPOST.

Listing 11-36. The add Method in ContentImpl

public Content add(Content content, User user) {
content.setContentId(uuidGenWithTimeStamp());
content.setTimestamp(new Date().getTime() / 1000);
content.setTagstr(removeTrailingComma(content.getTagstr()));
// has the user posted content before?
// if so, then get the "currentPost", remove that REL,
// set this post as CURRENTPOST by creating REL with user,
// then make currentPost the "next" post and save it all

Content currentPost = contentRepository.currentpost(user.getNodeId());

294

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

if (currentPost != null) {
neo4jTemplate.deleteRelationshipBetween(user, currentPost,
GraphStoryConstants.CURRENTPOST) ;
content.setUser(user);
content.setNext(currentPost);
content = contentRepository.save(content);

}
// ox is the first content post for this user?
else {

content.setUser(user);

content = contentRepository.save(content);
}

return content;

Editing a Status Update

When status updates are displayed, the current user’s status updates contain a link to “Edit” the status. Once clicked, it
opens the form, similar to the “Add Content” link, but it populates the form with the status update values and modifies
the form button to read “Edit Content’, as shown in Figure 11-11. As an aside, clicking “Cancel” under the heading
removes the values and returns the form to its ready state.

Graph Story | Social x

Lol c practicalneodj-spring/sccial

Social Graph

raok‘ Story

Social Graph
This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.
Social Menu Graph Story - Social Feed

Cancel

Title 1960 NBA Draft - Gena Jordan
UAL hitipz//nba-draft-history.findthebest.com/U'7778/Gene-Jordan
Tags nba
Edit Content

4 Draft - Gene Jordan

Posted by ajordan at

14 at 7:02 PM

tags: music, funny = Posted by pifarsworth at 05/18/2014 at 5:00 AM

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3.06 AM

Next > > >

Figure 11-11. Editing a status update

295

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

The edit feature, like the add feature, uses a method in the SocialController and a function in graphstory.js,
which are edit and updateContent, respectively. The edit method will first determine whether the tag set should
be updated, and then call the edit method in ContentImpl, which is shown in Listing 11-34. In the case of the edit
feature, you will not need to update relationships. Instead, you will simply retrieve the existing node by its generated
String Id (not graph id), update its properties where necessary, and save it back to the graph.

Listing 11-37. The edit Method for ContentImpl

public Content edit(Content content, User user) {
Content ¢ = contentRepository.findByContentId(content.getContentId());

// just update the essentials. it will NOT be re-ordered.
c.setTitle(content.getTitle());
c.setUrl(content.getUrl());

if (content.getTags() != null) {
c.setTags(content.getTags());
c.setTagstr(removeTrailingComma(content.getTagstr()));

}

content = contentRepository.save(c);
return content;

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates will contain a link to
“Delete” the status. Once clicked, it immediately (you wanted it gone, so no regrets!) generates an AJAX GET request
to call the delete method in the SocialController. This method then calls the delete method in ContentImpl, shown in
Listing 11-38.

The delete method in ContentImpl first determines where in the status update chain the provided status exists.
If the status was the CURRENTPOST, which the currentpost method in the ContentRepository interface returns, then
you need to “promote” the NEXTPOST in the chain to the CURRENTPOST relationship.

If the status is connected to CURRENTPOST, you need to remove the relationship, find the subsequent
NEXTPOST, and make it connected to the CURRENTPOST. If neither of these conditions exists, then the status is
further down the chain. So, you will remove its relationship to the NEXTPOST and then connect the status updates
that were previously on either side of the soon-to-be-deleted status update. Once the relationships have been
rearranged, the entity can be removed through the neo4jTemplate’s delete method.

Listing 11-38. Deleting a status update

public void delete(String contentId, User user) {

// find the content
Content content = getContentItem(contentId);

// get the CURRENTPOST
Content currentPost = contentRepository.currentpost(user.getNodeId());

296

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

// vas this content also the last post?
if (content.getContentId().equals(currentPost.getContentId())) {

// get the next post

// remove the rel between currentpost and profile
neodjTemplate.deleteRelationshipBetween(user, content,
GraphStoryConstants.CURRENTPOST);

// remove the rel between currentpost and next post
if (content.getNext() != null) {
Content nextPost = contentRepository.findOne(content.getNext().getNodeId());

neo4djTemplate.deleteRelationshipBetween(content, nextPost,
GraphStoryConstants.NEXTPOST);

// make nextpost the currentpost
neodjTemplate.createRelationshipBetween(
neo4jTemplate.getNode(user.getNodeId()), neodjTemplate.getNode(nextPost.
getNodeId()), GraphStoryConstants.CURRENTPOST, null);

/1 set the profile
nextPost.setUser(user);

// save it
contentRepository.save(nextPost);
}
}
// OK, then this is NEXT content
else
{

// is next to currentpost?
if (currentPost.getNext().getNodeId().equals(content.getNodeId())) {

// remove the rel between currentpost and the next to last content
neojjTemplate.deleteRelationshipBetween(currentPost, content,
GraphStoryConstants.NEXTPOST);

if (content.getNext().getNodeId() != null) {

// get the next content
Content newNextTolLastPost = contentRepository.findOne(content.
getNext().getNodeId());

// remove the rel between the now former next to last content and
// new next to last content
neojjTemplate.deleteRelationshipBetween(content,
newNextToLastPost, GraphStoryConstants.NEXTPOST);

297

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

// create rel bewteen the last content and

// now new next to last content
neodjTemplate.createRelationshipBetween(
neo4jTemplate.getNode(currentPost.getNodeId()),
neo4jTemplate.getNode(newNextToLastPost.getNodeId()),
GraphStoryConstants.NEXTPOST, null);

// set the next
currentPost.setNext(newNextTolLastPost);

// save it
contentRepository.save(currentPost);

} else {

Content previousPost = contentRepository.prevpost(content.getNodeId());

// remove the rel between prevpost and content
neodjTemplate.deleteRelationshipBetween(previousPost, content,
GraphStoryConstants.NEXTPOST);

if (content.getNext().getNodeId() != null) {
Content newNextPost =
contentRepository.findOne(content.getNext().getNodeId());

neojjTemplate.deleteRelationshipBetween(content, newNextPost,
GraphStoryConstants.NEXTPOST);

neodjTemplate.createRelationshipBetween(
neo4jTemplate.getNode(previousPost.getNodeId()),
neo4jTemplate.getNode(newNextPost.getNodeId()),
GraphStoryConstants.NEXTPOST, null);

// set the next
previousPost.setNext(newNextPost);

// save it
contentRepository.save(previousPost);

}

// delete the content
neodjTemplate.delete(content);

298

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Interest Graph Model

This section looks at the interest graph and examines some basic ways it can be used to explicitly define a degree of
interest. The following topics are covered:

e Interestin Aggregate
e Filtering managed content

e Filtering connected content

Tag Entity

Listing 11-39 displays the Tag entity, which will be used to determine a user’s interest and network of interest
based on users she follows. The tag entity also has incoming relationships with Users and Products, but the
relationship is defined using the other entities. It is not necessary to explicitly annotate the relationships on both
entities, because one implies the other.

Listing 11-39. The Tag Entity

@NodeEntity
@TypeAlias("Tag")
public class Tag {

public Tag() {

}

public Tag(String wordPhrase) {
this.setWordPhrase(wordPhrase);
}

@GraphId
private Long nodeld;

@Indexed(unique = true)
private String wordPhrase;

@Transient
private Integer tagCount;

// getters and setters

Interest in Aggregate

Inside the view method of the InterestController, you will retrieve all of the use tags connected to a user and their
friends using the tagsInMyNetwork method found in the TagImpl class. This is displayed in Figure 11-12 in the left-hand
column. The display code is located in {PROJECTROOT }/WebContent/mustache/html/graphs/interest/index.html.

299

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Graph Story | Inerest

- c practicalneodj-spring/interestftag=internet&userscontent=true

Interest Graph

@
&7 Graph Story

Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

My Interests Graph Story - Interest Feed

Iinternat (2) nba (1) history (1) ~ P —
! Carf: the wab (see what | did thera?)

tags: internet, history :: Posted by ajordan at 06/23/2013 at 8:16 AM

Net neutr a3 called shakedown

tags: internet :: Posted by ajordan at 06/

Interests in my network

Figure 11-12. Filtering the current user’s content

Listing 11-40. TagImpl

public GraphStory tagsInMyNetwork(GraphStory graphStory) {

try {
graphStory.setTagsInNetwork(Lists.newLinkedList(
mappedContentTagRepository.tagsInNetwork(graphStory.getUser().getNodeId())));
graphStory.setUserTags (Lists.newLinkedList(
mappedContentTagRepository.userTags(graphStory.getUser().getNodeId())));

}

catch (Exception e) {
log.error(e);

}

return graphStory;

The tagsInMyNetwork method uses two methods inside MappedContentTagRepository, which is shown in
Listing 11-41. The tagsInNetwork finds users being followed, accesses all of their content, finds connected tags
through the HAS relationship type. Finally, the method returns an Iterable of MappedContentTag.

The userTags method is similar but is concerned only with content and, subsequently, tags connected to the
current user. Both methods limit the results to 30 items.

Listing 11-41. MappedContentTagRepository
public interface MappedContentTagRepository extends GraphRepository<MappedContentTag> {

@Query("START u=node({nodeId})" +
" MATCH u-[:FOLLOWS]->f " +
" WITH distinct f " +
" MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c " +

300

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

WITH distinct c " +

MATCH c-[ct:HAS]->(t) " +

WITH distinct ct,t " +

RETURN t.wordPhrase as name, count(ct) as count " +

ORDER BY count desc " +

SKIP 0 LIMIT 30")

Iterable<MappedContentTag> tagsInNetwork(@Param("nodeId") Long nodeld);

@Query("START u=node({nodeld})" +
" MATCH u-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c " +
WITH distinct c " +
MATCH c-[ct:HAS]->(t) " +
WITH distinct ct,t " +
RETURN t.wordPhrase as name, count(ct) as count " +
ORDER BY count desc " +
SKIP 0 LIMIT 30")
Iterable<MappedContentTag> userTags(@Param(“nodeId") Long nodeld);

}

The methods return MappedContentTag, which is located inside the MappedContentTagRepository interface.
Notice that the MappedContentTag uses two getter methods with the same result column: name. This is done to support
a specific autosuggest plugin in the view, which requires both a label and name to be provided in order to execute.
This autosuggest feature is used in the status update form and in some search forms presented later in this chapter.

Listing 11-42. The MappedContent Interface

@ueryResult

@JsonPropertyOrder (alphabetic = true)
@NodeEntity

public interface MappedContentTag {

@ResultColumn("count")
String getId();

@ResultColumn("name"
String getlabel();

@ResultColumn("name"
String getName();

Filtering Managed Content

Once the list of tags for the user and for the group she follows has been provided, the content can be filtered based
on the generated tag links, as shown in Figure 11-12. If one of the user’s tags is clicked, then the getContentByTag
method, displayed in Listing 11-43, will be called with the userscontent value set to true.

301

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-43. getContentByTag in ContentImpl
public List<MappedContent> getContentByTag(String username, String tag, Boolean getuserscontent) {

if (getuserscontent) {

return mappedContentRepository.getUserContentWithTag(username, tag);
} else {

return mappedContentRepository.getFollowingContentWithTag(username, tag);
}

In turn, this will call the getUserContentWithTag, shown in listing 11-44. Similarly to the query for the
getContent method in MappedContentRepository, the query for getUserContentWithTag returns a collection of
MappedContent items, but matches resulting content to a provide tag, via @Param("wp"), and places no limit on the
number of status updates to be returned. In addition, it marks the owner property as true, because we've determined
ahead of time we are only returning the current user’s content.

Listing 11-44. getUserContentWithTag in the MappedContentRepository

@Query("MATCH (u:User {username: {u} })" +
" MATCH u-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p " +
" WITH DISTINCT u,p " +
" MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} }) " +

RETURN p.contentId as contentld, p.title as title, p.tagstr as tagstr, " +

p.timestamp as timestamp, p.url as url, u.username as username, true as owner" +
" ORDER BY p.timestamp DESC")

List<MappedContent> getUserContentWithTag(@Param("u") String username, @Param("wp") String

wordPhrase);

Filtering Connected Content

If a tag is clicked on inside of the “Interests in my Network” section, then the getContentByTag method will be called
be with the userscontent value set to false. In turn, this will call the getFollowingContentWithTag method, shown
in Listing 11-45.

The query for the getFollowingContentWithTag method is nearly identical to the query found in
getUserContentWithTag, except it factors in the users being followed and exclude the current user. The method also
returns a collection of MappedContent items and matches resulting content to a provide tag, via @Param("wp"), placing
no limit on the number of status updates to be returned. In addition, it marks the owner property as false. The results
of calling this method are shown in Figure 11-13.

302

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 11-45. getFollowingContentWithTag in the MappedContentRepository

@Query("MATCH (u:User {username: {u} }) " +
"WITHu " +
MATCH (u)-[:FOLLOWS]->f " +
WITH DISTINCT f " +
MATCH f- [:CURRENTPOST]-1p-[:NEXTPOST*0..]-p " +
WITH DISTINCT f,p " +
MATCH p-[:HAS]-(t:Tag {wordPhrase : {wp} }) " +

ORDER BY p.timestamp DESC")

CHAPTER 11

RETURN p.contentId as contentId, p.title as title, p.tagstr as tagstr, " +
p.timestamp as timestamp, p.url as url, f.username as username, false as owner" +

SPRING DATA NEO4J

List<MappedContent> getFollowingContentWithTag(@Param("u") String username, @Param("wp") String

wordPhrase);
Graph Story | Interest =
= C [1 practicalneodj-spring/interest?tag=music&userscontent="false =
%F. Consumption Graph Locatior
% Graph Story
Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded o show users with common

Interests via tags.

My Interests Graph Story - Interest Feed
Internat (2) nba (1) history (1) Rob Base Decision Tree
e tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM
Interests in my network
funny (8) music (8) cats (5) intarnat (3)
graphs (2) cartoon (2] history (2) serious
(1) not sarcasm (1) dogs (1) dub (1)
hendrix (1) the dudea (1) painting (1) ccr

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:06 AM
From Hendrix to The Beatles
tags: music, funny :: Posted by ntesla at 04/20/2014 at 8:22 AM
(1)

World's Greatest Scientist: Hopeton Brown

tags: music, dub :: Postad by jlames at 04/18/2014 at 8:54 AM

Greatest Jazz Guitar of All Time. Debate over.
tags: music :: Posted by [james at 03/06/2014 at 10:08 AM

Hendrix
tags: music, hendrix :: Posted by tedison at 11/27/2013 at 3:18 PM

Make sura to check out the High Llamas
tags: music :: Posted by leuler at 06/23/2013 at 8:16 AM

A Day In The Lifa
tags: music :: Posted by jlames at 06/15/2013 at 9:16 AM

Figure 11-13. Filtering content of the current user’s friends

www.it-ebooks.info

303

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the prepopulated set of products provided in the sample
graph. The code required for the console reinforces the standard persistence operations, but I will focus on the
operations that take advantage of this model type, including:

e Capturing consumption
e Filtering consumption for users

e Filtering consumption for messaging

Product Entity

The Product entity is similar to the other entities that I have reviewed for this chapter, except that I have added an
indexType of FULLTEXT and specified the name for the index (Listing 11-46).

Listing 11-46. Product Entity

@NodeEntity
@TypeAlias("Product")
public class Product {

@GraphId
private Long nodeld;

@Indexed
private String productId;

private String title;
private String description;
private String tagstr;

@Indexed(indexType = IndexType.FULLTEXT, indexName = "productcontent")
private String content;

private String price;

@RelatedTo(type = GraphStoryConstants.HAS, direction =
Direction.OUTGOING, elementClass = Tag.class)

private Set<Tag> tags;

// getters and setters

304

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Capturing Consumption

You are creating code that directly captures consumption for a user, but the process could also be done by creating a
graph-backed service to consume the webserver logs in real time or another data store to create the relationships. The
result would be the same in either event: a process that connects nodes to reveal a pattern of consumption.

For the sample application, you used the createUserView method, shown in Listing 11-47, in ProductImpl to first
find the Product entity being viewed and then create an explicit relationship type called VIEWED. Notice that this is the
first relationship type in the application that also contains properties. In this case, you are creating a timestamp with
aDate object and String value of the timestamp. Use the getRelationshipBetween method of the neo4jTemplate to
determine if the relationship already exists.

Listing 11-47. The createUserView in ProductImpl

public void createUserView(User user, Long productNodeId) {

Product product = productRepository.findOne(productNodeId);

try {

Relationship r = neo4jTemplate.getRelationshipBetween(user, product,

GraphStoryConstants.VIEWED);

Long d = new Date().getTime() / 1000;

Date timestamp = new Date(d * 1000);

SimpleDateFormat dformatter = new SimpleDateFormat("MM/dd/yyyy");

SimpleDateFormat tformatter = new SimpleDateFormat("h:mm a");

String timestampAsStr = dformatter.format(timestamp) + " at " +

tformatter.format(timestamp);

if (r == null) {
Map<String, Object> map = new HashMap<String, Object>();
map.put("timestamp", d);
map.put("dateAsStr", timestampAsStr);
neodjTemplate.createRelationshipBetween(neo4jTemplate.getNode
(user.getNodeId()), neo4jTemplate.getNode(productNodeld),
GraphStoryConstants.VIEWED, map);

} else {
r.setProperty("timestamp"”, d);
r.setProperty("dateAsStr", timestampAsStr);
neodjTemplate.save(r);

}

}

catch (Exception e) {
log.error(e);
}

}

If the result of getRelationshipBetween is null, a map is created with key value pairs to create properties on the
new relationship, specifically timestamp and dateAsStr. Otherwise, you can use setProperty and specify the property
names and their respective values as arguments.

305

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Filtering Consumption for Users

One practical use of the consumption model is to create a content trail for users, as shown in Figure 11-14. As a user
clicks on items in the scrolling product stream, the interaction is captured using createUserView, which ultimately
returns a List of relationship objects of the VIEWED type called MappedProductUserViews, which are located in the
MappedProductUserViewsRepository.

Graph Story | Conswmpt

(]

L c practicalneodj-spring/consumption

Graph Story

Consumption Graph

This section of the application demonstrates a way 10 view products via a scrolling list. When a user clicks on a product description, they are connected to the product via the
VIEWED relationship.

Consumption Menu Graph Story - Productsville

Scroll down to show moar products

“Long Sleep"” Portal Sleep Tank
Viewed Products See Product Description...
Items the current user has recently viewed.

"Wash Is My Copilot" License Plate Frame
“Long Sleep” Portal Sleep Tank

last viewed on: 08/04/2014 at 8:10 AM Sae Product Description...

iDuck - Bathtub Music

last viewed on: 08/02/2014 at 7:07 PM 10th Doctor Costume Pajama Set
“Wash Is My Copilot” License Plate Frame Saee Product Description...

last viewed on: D8/02/2014 at 6:32 PM

Eyn Gase For Smartphones 11th Doctor Costume Pajama Set

last viewed on: 08/02/2014 at 6:32 PM Ses Product Description..

2014 il Fantasy C:

last viewed on: 08/02/2014 at 4:56 PM 2014 Worldbuilders Fantasy Calendar
10tk Bootor Costime Fajsma Sek See Product Description...

last viewed on: 08/01/2014 at 7:54 PM
Figure 11-14. The Scrolling Product and Product Trail page

In the ConsumptionController, take a look at the createUserProductViewRel method to see how the process
begins inside the controller. The controller method first saves the view and then returns the complete history of views
using the getProductTrail, which can be found in the MappedProductUserViewsRepository interface and is shown
in Listing 11-48. The process is started when the createUserProductViewRel function is called, which is located in
graphstory. js.

Listing 11-48. getProductTrail in the MappedProductUserViewsRepository

@Query("MATCH (u:User { username: {username} })-[r:VIEWED]->(p) " +
" RETURN p.title as title, r.dateAsStr as dateAsStr " +
" ORDER BY r.timestamp DESC ")
List<MappedProductUserViews> getProductTrail(@Param("username") String username);

306

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 * SPRING DATA NEO4J

@ueryResult
@NodeEntity
public interface MappedProductUserViews {

@ResultColumn("title")
String getTitle();

@ResultColumn("dateAsStr")
String getDateAsStr();

Filtering Consumption for Messaging

Another practical use of the consumption model is to create a personalized message for users, as displayed in
Figure 11-15. In this case, a filter allows the “Consumption Console” to drill down to a very specific group of users who
visited a product that was also tagged with a keyword or phrase each user had explicitly used.

Graph Story | Consumptic =

= C |1 practicalneodj-spring/consumption/console

Grth Story

Consumption Graph

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
redationship with products. In this way, the users are consuming “product views® via a keyword or phrase

NOTE: this is different than when a user enters a keyword or phrase as a tag with CONTENT in the social graph. While the connection could be made between a user's tagged
content, it s separate for the purpose of this exampie.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the tags: music with these users:
« ajordan
= anwray

The product Star Wars Mimobot Thumb Drives shares the tags: star wars with these users:
& anwray
= ajordan

The product Sound Splash Shower shares the tags: music with these users:
= ajordan
© anwray

Figure 11-15. The consumption console

307

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Both getProductsHasATagAndUserUsesAMatchingTag and getProductsHasTagAndUserUsesTag methods
in the MappedProductUserTagRepository interface return a List of MappedProductUserTag objects. The
getProductsHasATagAndUserUsesAMatchingTag does not require any arguments and will simply return the product
title as well as the user and tags that are a match. However, the getProductsHasTagAndUserUsesTag, which is shown
in Listing 11-49, requires a word/phrase as well as a username. In addition, this will result in a list of MappedProducts
as opposed to MappedProductUserTag.

Listing 11-49. The Products Matching User Tags Methods and the MappedProductUserTag Interface in the
MappedProductUserTagRepository Interface

// getProductsHasATagAndUserUsesAMatchingTag

@Query("MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) "o

" RETURN p.title as title, collect(u.username) as u, collect(distinct t.wordPhrase) as t ")
List<MappedProductUserTag> getProductsHasATagAndUserUsesAMatchingTag();

// getProductsHasTagAndUserUsesTag

@Query("MATCH (t:Tag { wordPhrase: {wp} }),(u:User { username: {username} }) " +

" WITH t,u " +

" MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u) " +

" RETURN ID(p) as nodeld, p.title, p.description, p.tagstr ")
List<MappedProduct> getProductsHasTagAndUsexUsesTag(@Param("wp") String wp, @Param("username"
String username);

// MappedProductUserTag

@QueryResult
@NodeEntity
public interface MappedProductUserTag {

@ResultColumn("title")
String getTitle();

@ResultColumn("u")
List<String> getUsers();

@ResultColumn("t")
List<String> getTags();

Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin
e Filtering on location
e Products based on location

The example demonstrates how to add a console to enable you to connect products to locations in an
ad hoc manner.

308

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Location Entity

The Location entity, shown in Listing 11-50, has an outgoing relationship to Product that allows a location to have
multiple products. In addition, the entity includes a @Transient value. Transient values are not persisted or managed

in the database but contain values that an entity could use for display or other purposes. In this case, you will use the
distanceTolocation property to display a String value of the location’s distance relative to the starting point in the search.

Listing 11-50. The Location Entity

@NodeEntity
@TypeAlias("Location")
public class Location {

@GraphId
private Long nodeld;

@Indexed
private String locationld;

private String name;

private String address;

private String city;

private String state;

private String zip;

private Double lat;

private Double lon;

@RelatedTo(type = GraphStoryConstants.HAS, direction =
Direction.OUTGOING, elementClass = Product.class)

private Set<Product> products;

@Transient
private String distanceTolocation;

// getters and setters

The User object also contains a relationship to Location via the HAS relationship type. User locations are
retrieved through the getUserLocation method, shown in Listing 11-51, which is located in the UserImpl class.

309

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-51. getUserLocation in UserImpl

public MappedUserlLocation getUserLocation(String currentusername) {
MappedUserLocation mappedUserLocation = null;

List<MappedUserLocation> mappedUserLocations = mappedUserLocationRepository.getUserLocation
(currentusername);

if (mappedUserLocations.size() > 0) {
mappedUserLocation = mappedUserLocations.get(0);

return mappedUserlLocation;

Search for Nearby Locations

To search for nearby locations (Figure 11-16), use the current user’s location, obtained with getUserLocation,

and then use the returnLocationsWithinDistance method. The returnLocationsiWithinDistance method in
LocationImpl (Listing 11-52) also uses a method called addDistanceTo to place a string value of the distance between
the starting point and the respective location.

Graph Story | Location

= o practicalneodj-spring/location?product=_&distance=10.00&productNodeld=

raoh - it o ot G

(]

Location Graph - Home

This section of the application shows a user’s location. Using the form, you can show stores with a cenain distance or search for proudcts with a certain distance.

Location Graph

The user "ajordan” lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5800 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles ¢ Search

Humphrey Daks Store is 1.22 Miles Away
Burfordi Store is 3.98 Miles Away

South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store is 6.20 Miles Away

Figure 11-16. Searching for Locations within a certain distance of User location

310

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 11-52. returnLocationsWithinDistance in the LocationImpl interface

CHAPTER 11

SPRING DATA NEO4J

public List<MappedLocation> returnLocationslWithinDistance(Double lat, Double lon, Double distance) {

List<MappedLocation> locations =

mappedLocationRepository.locationsWithinDistance(distanceQueryAsString(lat, lon,

distance));

// add the distance in miles to locations
addDistanceTo(locations, lat, lon);

return locations;

Locations with Product

To search for products nearby (Figure 11-17), the application makes use of an autosuggest AJAX request, which
ultimately calls the search method (Listing 11-53) in the MappedProductSearchRespository interface. The method,
shown in Listing 11-54, returns an array of MappedProductSearch objects to the product field in the search form. It

applies the selected product’s productNodeId.

Graph Story | Location

= o practicalneodj-spring/location’product=Adventure+ Time+Finn%2 7s+Backpack&distance=10.00&productNodeld=281

Gra — el comp st Gt oot Eraet i

(]

Location Graph - Home

This section of the application shows a user’'s location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

Location Graph
The user "ajordan” lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5800 Walnut Grove Road Memphis, TN 38120

Enter a few starting lefters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles ¥ Search

The fellowing lecations have "Adventure Time Finn's Backpack®
Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store is 3.99 Miles Away
South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4,12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store Is 6.20 Miles Away

Figure 11-17. Searching for Products in stock at Locations within a certain distance of the User location

www.it-ebooks.info

311

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-53. The Search Method to Find Products

public MappedProductSearch[] search(String q) {
q = q.trim().toLowerCase() + ".*";

return Iterables.toArray(MappedProductSearch.class, mappedProductSearchRespository.search(q));
}

Listing 11-54. The Search Method in the MappedProductSearchRespository

@Query(value = "MATCH (p:Product) " +
" WHERE lower(p.title) =~ {q} " +
" RETURN count(*) as count, TOSTRING(ID(p)) as productNodeId, " +
" p.title as name " +
" ORDER BY p.title LIMIT 5")

Iterable<MappedProductSearch> search(@Param("q") String q);

@ueryResult

@JsonPropertyOrder (alphabetic = true)
@NodeEntity

public interface MappedProductSearch {

@ResultColumn("productNodeId")
String getId();

@ResultColumn("name"
String getlabel();

@ResultColumn("count")
String getName();

}

In many cases, it is recommended not to use the graphld because it can be recycled when its node is deleted.
In this case, the productNodeld is safe to use, because products would not be in danger of being deleted but only
removed from a Location relationship.

Once the product and distance have been set and the search is executed, the LocationController tests to see if
a prouctNodeld property has been set. If so, the returnLocationsWithinDistanceAndHasProduct method is called
from LocationImpl, which in turn calls the returnLocationsWithinDistanceAndHasProduct method, shown in
Listing 11-55, from the MappedLocationRepository interface is called.

312

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Listing 11-55. The returnLocationsWithinDistanceAndHasProduct Method
public GraphStory returnLocationsWithinDistanceAndHasProduct(GraphStory graphStory, Double lat,
Double lon, Double distance, Long productNodeId) {

List<MappedLocation> locations = mappedLocationRepository.locationsWithinDistanceWithProduct
(distanceQueryAsString(lat, lon, distance), productNodeld);

// add the distance in miles to locations
addDistanceTo(locations, lat, lon);

graphStory.setMappedLocations(locations);
graphStory.setProduct(productRepository.findOne(productNodeId));

return graphStory;

Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase entity, shown in Listing 11-56. The intent graph also considers the products, users, locations, and tags that
are connected based on the Purchase entity.

In addition, each one of the following examples makes use of the MappedProductUserPurchase interface found in
the MappedProductUserPurchaseRepository, as shown in Listing 11-57.

Listing 11-56. The Purchase entity

@NodeEntity
@TypeAlias("Purchase")
public class Purchase {

@GraphId
private Long nodeld;

@Indexed
private String purchaseld;

@RelatedTo(type = GraphStoryConstants.CONTAINS, direction =
Direction.OUTGOING, elementClass = Product.class)
private Set<Product> products;

private Date timestamp;
// getters and setters

313

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-57. The MappedProductUserPurchase Interface

@QueryResult
@NodeEntity
public interface MappedProductUserPurchase {

@ResultColumn("productId")
String getProductId();

@ResultColumn("title")
String getTitle();

@ResultColumn("fullname")
List<String> getFullname();

@ResultColumn("wordPhrase")
String getWordPhrase();

@ResultColumn("cfriends")
Integer getCfriends();

Products Purchased by Friends

To get all of the products that have been purchased by friends, the friendsPurchase method is called from
PurchaseImpl, which then makes use of the friendsPurchase in the MappedProductUserPurchaseRepository. The
getProductsPurchasedByUsersFriends is shown in Listing 11-58.

The query in getProductsPurchasedByUsersFriends finds the users being followed by the current user and
then matches those users to a purchase that has been MADE which CONTAINS a product. The return value is a set of
properties that identify the product title and the name of the friend or friends, as well the number of friends who have
bought the product. The result is ordered by the number of friends who have purchased the product and then by
product title, as shown in Figure 11-18.

314

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © SPRING DATA NEO4J

Listing 11-58. The friendsPurchase Method

@Query("MATCH (u:User { userId : {userId} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +
" RETURN p.productId as productId, " +
" p.title as title, " +

collect(f.firstname + ' ' + f.lastname) as fullname, " +

null as wordPhrase, " +
count(f) as cfriends " +
" ORDER BY cfriends desc, p.title ")

List<MappedProductUserPurchase> friendsPurchase (@Param("userId") String userId);

Graph Story | Products Py x

= e practicalneodj-spring/intent

Grth Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This couid be expanded 10 show users with common
Interests via tags.

(]

Intent Menu Intent Graph - Products Purchased by Friends

Product # Friends who purchased
Star Wars Mimobot Thumb Drives
Breaking Bad iPhone Cases

Doctor Who Beach Towel

Doctor Who Senic Screwdriver Lamp

Doctor Who TARDIS Water Bottle

| Never Finish Anyth

Jedi Academy Book

Lebowski Bowling Hoodie

Sound Splash Bluetooth Waterproof Shower Speaker
Star Trek Tribble Slippers with Sound

Star Wars Light-Up Lightsaber Pens

Star Wars Princess Lela Beach Towel

Figure 11-18. Products Purchased by Friends

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars Mimbot
Thumb Drives’, and then search for friends who have purchased this product, as shown in Figure 11-19. This is done via
the friendsPurchaseByProduct method in PurchaseImpl, which then makes use of the friendsPurchaseByProduct in
the MappedProductUserPurchaseRepository interface, as shown in Listing 11-59.

315

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Graph Sory | Specific Pro

- practicalneodj-spring/intent/specificProductsPurchasedBylUsersFriends

@Ouraoh Stony

(]

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

Intent Menu Intent Graph - Specific Products Purchased by Friends

Star Wars Mimobot Thumb Drives Search

Product #t Friends who purchased

Star Wars Mimobot Thumb Drives 3

Figure 11-19. Specific Products Purchased by Friends

Listing 11-59. The friendsPurchaseByProduct Method

@Ouery("MATCH (p:Product) "
" WHERE lower(p t1t1e) =lower({title}) "

" WITH p "

" MATCH (u:User { userId : {userId} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, " +
p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +

"ORDER BY cfriends desc, p.title ")
List<MappedProductUserPurchase> friendsPurchaseByProduct (@Param("userId") String userId,
@Param("title") String title);

Products Purchased by Friends and Matches User’s Tags

In this next instance, we want to determine products that have been purchased by friends but also have tags that are
used by the current user. The result of the query is shown in Figure 11-20.

316

www.it-ebooks.info

http://www.it-ebooks.info/

Graph Story | Products P

- C practicalneodj-spring/intent/productsPurchasedBylUsersFriendsAndMatchesTagsUsedBylUser

@
&7 Graph Story

CHAPTER 11

SPRING DATA NEO4J

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common

interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends and Matches User's Tags

Product
Star Wars Mimobot Thumb Drives

Sound Splash Bluetooth Waterproof Shower Speaker

Figure 11-20. Products Purchased by Friends and Matches User’s Tags

Friends who purchased

Using friendsPurchaseTagSimilarity in PurchaseImpl, the method friendsPurchaseTagSimilarity is called,
which is located in the MappedProductUserPurchaseRepository and shown in Listing 11-60.

Listing 11-60. The friendsPurchaseTagSimilarity Method

@Query("MATCH (u:User { userId : {userId} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +

WITH u,p,f " +

MATCH u-[:USES]->(t)<-[:HAS]-p " +
RETURN p.productId as productId, " +
" p.title as title, " +

collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +

count(f) as cfriends " +
ORDER BY cfriends desc, p.title ")

List<MappedProductUserPurchase> friendsPurchaseTagSimilarity (@Param("userId") String userId);

Products Purchased by Friends Nearby and Matches User’s Tags

Finding products that match with a specific user’s tags and have been purchased by friends who live within a set
distance of the user is performed by friendsPurchaseTagSimilarityAndProximityTolLocation method, easily the

world’s longest method name and is located in PurchaseImpl.

The query starts with a location search within a certain distance, then matches the current user’s tags to products.
Next, the query matches friends based the location search. The resulting friends are matched against products that are

in the set of user tag matches. The result of the query is shown in Figure 11-21.

www.it-ebooks.info

317

http://www.it-ebooks.info/

CHAPTER 11 = SPRING DATA NEO4J

Listing 11-61. The friendsPurchaseTagSimilarityAndProximityTolLocation Method

@Query("START n = node:geom({1q}) " +

"WITH n " +

MATCH (u:User { userId : {userId} })-[:USES]->(t)<-[:HAS]-p " +
" WITH n,u,p,t " +

" MATCH u-[:FOLLOWS]->(f)-[:HAS]->(n) " +

WITH p,f,t " +

MATCH f-[:MADE]->()-[:CONTAINS]->(p) " +

RETURN p.productId as productId, " +

p.title as title, " +

collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +

count(f) as cfriends " +

ORDER BY cfriends desc, p.title ")
List<MappedProductUserPurchase> friendsPurchaseTagSimilarityAndProximityToLocation (@Param(“userId")
String userId, @Param("lq") String 1lq);

Graph Story | Products P

- c practicalneodj-spring/intent/productsPurchasedByUsersFriendsWhoLiveNearbyAndMatchesTagsUsedByUser

@
&5 Graph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches User's
Tags
Matches to friends who live near 5800 Walnut Grove Road Memphis, TN 38120

Product # Friends who purchased

Star Wars Mimobot Thumb Drives

Figure 11-21. Products Purchased by Friends Nearby and Matches User’s Tags

Summary

This chapter presented the setup for a development environment for Spring Data and Neo4j and sample code using
the Spring Data Neo4j driver. It proceeded to look at sample code for setting up a social network and examining
interest within the network. It then looked at the sample code for capturing and viewing consumption—in this case,
product views—and the queries for understanding the relationship between consumption and a user’s interest.
Finally, it looked at using geospatial matching for locations and examples of methods for understanding user intent
within the context of user location, social network, and interests.

The next chapter will review using Java and Neo4j, covering the same concepts presented in this chapter but in
the context of a Java driver for Neo4;j.

318

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Neodj + Java

This chapter focuses on using Java with Neo4j and reviewing the code for a working application that integrates the five
graph model types covered in Chapter 4. The Java integration takes place using a Neo4j server instance with the Neo4j
JDBC driver, henceforth referred to as Neo4j JDBC or simply NJDBC. This chapter is divided into the following topics:

e Java & Neo4j Development Environment
e Common operations using Java and Neo4j JDBC
e Developing a Java and Neo4j web application

In each chapter that explores a particular language paired with Neo4j, I recommend that you start a free trial at
www. graphstory.com or have installed a local Neo4;j server instance as shown in Chapter 2.

Tip To quickly setup a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4]. You will be provided with your own free trial instance, a knowledge base, and email support from Graph
Story.

For this chapter, I expect that you have at least a beginning knowledge of Java web application development and
a basic understanding of how to configure the Apache Tomcat servlet container for your preferred operating system.
You should be able to run the web application in other servlet containers, as well. To follow the examples in this
chapter, you will need to have Tomcat 7 or higher installed and configured.

Do This If you do not have Apache Tomcat installed, please visit http://tomcat.apache.org/ and download
Tomcat version 7. The configuration steps of Tomcat are beyond the scope of this book, but the wiki section on the Apache
Tomcat site provides a detailed guide to guide you through more detailed configuration and optimization techniques.

I also expect that you have a basic understanding of the model-view-controller (MVC) pattern as well as some
knowledge of Java web frameworks that provide an MVC pattern. There are, of course, a number of excellent Java
frameworks from which to choose, but I had to pick one. For the purposes of the application in this chapter, I chose
the Struts2 framework because of its stability, which helps keep the focus on the important aspects of this application
as it relates to NJDBC and Neo4;j. This chapter is focused on integrating Neo4j into your Java skill set and projects and
does not dive deeply into the best practices of developing with Java or Java web frameworks.

319

www.it-ebooks.info

http://www.graphstory.com/
http://tomcat.apache.org/
http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Java and Neo4j Development Environment

This section covers the basics of configuring a development environment preliminary to reviewing the Java and Neo4j
application presented in this chapter.

Readme Although each language chapter walks through the process of configuring the development environment
based on the particular language, certain steps are covered repeatedly in multiple chapters. While the initial development
environment setup in each chapter is somewhat redundant, it allows each language chapter to stand on its own. Bearing
this in mind, if you have already configured Eclipse with the necessary plugins while working through another chapter,
you can skip ahead to the section “Adding the Project to Eclipse.”

IDE

The reasons behind the choice of an IDE vary from developer to developer and are often tied to the choice of
programming language. I chose the Eclipse IDE for a number of reasons but mainly because it is freely available and
versatile enough to work with most of the programming languages featured in this book.

Although you are welcome to choose a different IDE or other programming tool for building your application,
Irecommend that you install and use Eclipse to be able to follow the Java and Neo4j examples and the related
examples found throughout the book and online.

Tip If you do not have Eclipse, please visit http://www.eclipse.org/downloads/ and download the Indigo package
that is titled “Eclipse IDE for Java EE Developers.” The Indigo package is also labeled “Version 3.7.”

Once you have installed Eclipse, open it and select a workspace for your application. A workspace in Eclipse is
simply an arbitrary directory on your computer. As shown in Figure 12-1, when you first open Eclipse, the program
will ask you to specify which workspace you want to use. Choose the path that works best for you. If you are working
through all of the language chapters, you can use the same workspace for each project.

INDIGO

F .
—eclipse

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Chaese a workspace feider to use for this session

Workspace: | /some/path 1o your /workspace - Browse...

Use this as the defautt and do not ask again

Caresl oK

Figure 12-1. Opening Eclipse and choosing a workspace

320

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Aptana Plugin

The Eclipse IDE offers a convenient way to add new tools via their plugin platform. The process for adding new
plugins to Eclipse is straightforward and usually involves only a few steps to install a new plugin, as you will see in this
section.

A specific web-tool plugin called Aptana provides support for server-side languages like Java as well as client
languages such as CSS and JavaScript. This chapter and the other programming language chapters use the plugin to
edit both server- and client-side languages. A benefit of using a plugin such as Aptana is that it can provide code-assist
tools and code suggestions based on the type of file you are editing, such as CSS, JS, or HTML. The time saved with
code-assist tools is usually significant enough to warrant their use. Again, if you feel comfortable exploring within
your preferred IDE or other program, please do so.

To install the Aptana plugin, you need to have Eclipse installed and opened. Then proceed through the
following steps:

1. From the Help menu, select “Install New Software” to open the dialog, which will look like
the one in Figure 12-2.

2. Paste the URL for the update site, http://download.aptana.com/studio3/plugin/install,
into the “Work With” text box, and hit the Enter (or Return) key.

3. Inthe populated table below, check the box next to the name of the plugin, and then click
the Next button.

4. Click the Next button to go to the license page.

5. Choose the option to accept the terms of the license agreement, and click the Finish
button.

6. You may need to restart Eclipse to continue.

Available Software
-

Check the items that you wish to install.

Work with: | Mtp://@ownload aptans com/studiod pluginupdate/ - Add.

Find mare softwars by working with the “Available Software Sites” preferences.

Name Version
o ¥ 10 Agtana Suadie 3

4 “pAptana Stucko 3 Plugn 3.4.2.201308081736-TWNSTEoCOERAI4.

Sabect ANl Deselect All 1 iter selacted

Details

Show oanly the latest versions of available saftware Hide items that are slready installed
+ Group items by categery What is alrgady installed?
Show only sofware appicable 10 T geL envisonment

/| Contact all update sites during Install to find required software

? : Mt » Cancel

Figure 12-2. Installing the Aptana plugin

321

www.it-ebooks.info

http://download.aptana.com/studio3/plugin/install
http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

LogWatcher

When working with applications, it is often helpful to have a way to view application output through server logs.
There are a few plugins available for Eclipse for this purpose, such as LogWatcher. With LogWatcher, you can watch
output for multiple files inside or outside of Eclipse as well as filters to highlight or skip over specific patterns. At
time of writing, the LogWatcher does not have an update URL for quick installation. To manually install LogWatcher,
visit http://graysky.sourceforge.net/ and follow the quick installation steps and set up the view to suit your
development environment.

Adding the Project to Eclipse

After installing Eclipse plugin, you have met the minimum requirements to work with your project in the workspace.
To keep the workflow as fluid as possible for each of the language sample applications, use the project import tool
with Eclipse. To import the project into your workspace, follow these steps:

1. Go towww.graphstory.com/practicalneo4j and download the archive file for “Practical
Neo4;j for Java” Unzip the archive file on to your computer.

2. InEclipse, select File>Import and type “project” in the “Select an import source” field.

3. Under the “General” heading, select “Existing Projects into Workspace”. You should now
see a window similar to Figure 12-3.

Select
Create new projects from an archive file or directory. _E - E

Select an import source:

¥ (= General
|, Archive File
|5 Existing Folder as New Project
| Existing Projects into Workspace
| File System
LPreferences
= CVS
=40
= Git
-Install
= Java EE
= Maven
% Plug-in Development
= Remote Systems
= Run/Debug
= Studio
[=Tasks

Y Y Y Y Y Y YTYYYY

"?:.‘- Back Next > Cancel

Figure 12-3. Importing the project into Eclipse

4. Now that you have selected “Existing Projects into Workspace’, click the “Next >” button.
The dialogue should now show an option to “Select root directory”. Click the “Browse”
button and find the root path of the “practicalneo4j-java” archive.

5. Next, check the option for “Copy project into workspace” and click the “Finish” button, as
shown in Figure 12-4.

322

www.it-ebooks.info

http://graysky.sourceforge.net/
http://www.graphstory.com/practicalneo4j
http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

mport
Import Projects

Select a directory to search for existing Eclipse projects.

+) Select root directory: | /Volumes/MacMac/temp/practicalnecd] -java

_ Browse...
_) Select archive file: Browse
Projects:
v practicalneodj-java (/Volumes/MacMac/temp/practicalneodj-java) Select All
Deselect Al
_ Refresh
v Copy projects into workspace
Working sets
_| Add project to working sets
Working sets: Select...
©) _<back | [Next> _Cancel _

Figure 12-4. Selecting the project location

6. Once the project is finished importing into your workspace, you should have a directory

structure that looks similar to the one shown in Figure 12-5.

l;\:, Project Explorer £3

B g Local Filesystem

¥ 2= practi 4j-practicalneodj-j
I A2 JAX-WS Web Services
» ‘fiaDeploy Descriptor: practicalneod,

» 8 java Resources
=i JavaScript Resources
> =sre
b j=WebContent
@ Connections

Figure 12-5. Snapshot of imported project

323
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Apache Struts 2

Apache Struts 2 is a Java implementation of an MVC framework. The aim of the framework is to help you quickly
build out powerful web applications and APIs using only what is absolutely necessary to get the job done. The Struts 2
library and its dependencies are included with the sample application and should not require any additional
configuration to run the application.

As with other MVC frameworks, one of the most important aspects of Struts 2 is the handling of request routing.
Listing 12-1 demonstrates the basics of Struts 2 with the XML configuration option.

Listing 12-1. Example of struts.xml Configuration for a Package and Its Actions

<struts>
<package name="default" extends="struts-default">
<action name="Logon" class="mailreader2.Logon">
<result name="input">/pages/Logon.jsp</result>
<result name="cancel" type="redirectAction">Welcome</result>
<result type="redirectAction">MainMenu</result>
<result name="expired" type="chain">ChangePassword</result>
</action>
<action name="Logoff" class="mailreader2.lLogoff">
<result type="redirectAction">Welcome</result>
</action>
</package>
</struts>

However, the addition of annotations to Struts 2 has allowed request routing to be placed directly within the
controller class. Most of the sample code uses the annotation method to keep the configuration variables closer to the
action to which it is connected. As with the XML configuration, you can set up parent packages that set up top-level
configuration that can then be reused within child packages. In Listing 12-2, you will see that the “HomeAction” uses
the root namespace and extends the parent package that is named “practicalneo4j-struts-default” In addition to being
able to see the package and namespace settings at a glance, it allows you to configure and view the specific actions
and results within the class file.

Listing 12-2. Example of Annotation Configuration

@ParentPackage("practicalneo4j-struts-default")
public class HomeAction extends GraphStoryAction {

private static final long serialVersionUID = 1L;

@Actions({
@Action(value = "home", results = {
@Result(name = "success", type = "mustache", location = "/filepath")})
b
public String home() {
setTitle("Home");
return SUCCESS;

324

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Hosts File

To keep each chapter separated in terms of the webserver and container configuration, I recommend that you add
a host name to your local hosts file. The process for modifying the hosts file depends on your preferred operating
system. For this chapter, add an entry that points 127.0.0.1 to practicalneo4j-java.

Local Apache Tomcat Configuration

To follow the sample application found later in this chapter, you will need to configure your local Apache Tomcat
to use the workspace project in Eclipse as the document root. To do this, you will need to modify the server.xml file,
which can be found at /TOMCAT-INSTALLATION/conf/server.xml, as shown in Listing 12-3. The most important
changes are adding a HOST and CONTEXT as shown in the listing.

Listing 12-3. Example of Tomcat Configuration

<?xml version='1.0" encoding="utf-8'?>
<Server port="8005" shutdown="SHUTDOWN">
<!--
Listener and GlobalNamingResources excluded for brevity
-->
<Service name="Catalina">
<Connector port="8090" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443"
URIEncoding="UTF-8" useBodyEncodingForURI="true" />
<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" URIEncoding="UTF-8"
useBodyEncodingForURI="true"/>
<Engine name="Catalina" defaultHost="localhost">
<Realm className="org.apache.catalina.realm.LockOutRealm">

< Realm className="org.apache.catalina.realm.UserDatabaseRealm"
resourceName="UserDatabase"/>
</Realm>

<Host name="practicalneo4j-java"
appBase="/path-to-workspace/practicalneo4j-java/WebContent"
unpackWARs="true" autoDeploy="true" >
<Context path="" docBase=""
aliases="/resources=/path-to-workspace/practicalneo4j-java/WebContent/resources"
reloadable="true" swallowOutput="true" />
</Host>
</Engine>

</Service>

</Server>

Note Using the method of pointing your HOST’s appbase to your project within the workspace is one way to “hot
reload” code changes. This method is very helpful for most developers because server startup and restart times can be a
significant drain on productivity. The process of “deploy and run” has its positive aspects, but the minutes add up quickly.

325

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Apache Tomcat and Apache HTTP

If you already have Apache HTTP installed (or some other webserver) and configured on port 80, you need to make
sure that you do one of the following:

1. Ensure that Apache HTTP (or other service on port 80) has been stopped. You can then
configure and run Tomcat on port 80.

2. Enable and configure ProxyPass in your virtual hosts file, as shown in Listing 12-4.

3. Use the default Apache Tomcat port of 8080.

If you use Apache HTTP with many other projects and do not want spend time starting and stopping Apache
HTTP, I recommend the second option. A sample virtual host configuration is shown in Listing 12-4.

Listing 12-4. Minimum Configuration for httpd-vhosts.conf

<VirtualHost *:80>
ServerName practicalneo4j-java
ProxyPreserveHost On
ProxyPass / http://practicalneo4j-java:8080/
ProxyPassReverse / http://practicalneo4j-java:8080/
</VirtualHost>

Neo4j JDBC Driver

This section covers basic operations and usage of the Neo4j JDBC driver (NJDBC) with the goal of reviewing the small
code examples before implementing it within an application. The next section of this chapter walks through a sample
application with specific graph goals and models.

As for the other language drivers and libraries available for Neo4j, one goal of NJDBC is to provide a degree of
abstraction over the Neo4j REST API. In addition, NJDBC provides some additional enhancements that you might
otherwise be required write yourself at some other stage in the development of your Java application.

The Neo4j JDBC driver is maintained by the undeniably awesome and helpful Michael Hunger and supported by
a number of great Java graphistas. If you would like to contribute to the Neo4j JDBC driver, go to
https://github.com/neo4j-contrib/neo4;j-jdbc.

Each of the following brief sections covers concepts that tie either directly or indirectly to features and
functionality found within NJDBC and Neo4j Server. If you choose to go through each language chapter, notice how
each library covers those features and functionality in similar ways but takes advantage of the language-specific
capabilities to ensure the language-specific API is flexible and performant.

Managing Nodes and Relationships

Chapters 1 and 2 covered the elements of a graph database, which includes the most basic of graph concepts: the
node. Managing nodes and their properties and relationships will probably account for the bulk of your application’s
graph-related code.

326

www.it-ebooks.info

http://practicalneo4j-java:8080/
http://practicalneo4j-java:8080/
https://github.com/neo4j-contrib/neo4j-jdbc
http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Creating a Node

The maintenance of nodes is set in motion with the creation process, as shown in Listing 12-5. Creating a node begins
with setting up a connection to the database. Next, the properties are put into a Map, and then the Node can be saved to
the database.

Listing 12-5. Creating a Node

import static org.neo4j.helpers.collection.MapUtil.map;
// other imports

// class
public void createUserNode(){

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://1localhost:7474/");

// create map
HashMap<String, Object> userMap=new HashMap<String, Object>();
userMap.put("name", "Greg");

userMap.put("business","Graph Story");

Map<String, Object> params = map("1", userMap);

String query= " CREATE (user:User {1}) ";

final PreparedStatement statement = conn.prepareStatement(query);
for (Map.Entry<String, Object> entry : params.entrySet()) {

int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

Note The map keys (parameter index) that are passed into a prepared statement should use numbers and begin with
“{1}" and so on.

327

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Retrieving and Updating a Node

Once nodes have been added to the database, you need a way to retrieve and modify them. Listing 12-6 shows the
process for finding a node by its node id value and updating it.

Listing 12-6. Retrieving and Updating a Node

//class

public void updateNode() {
// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://1localhost:7474/");

Map<String, Object> params = map("1", "Greg", "2", "Greg", "3", "Jordan");
String query= " MATCH (user:User {name:{1}}) " +
" SET user.firstname={2}, user.lastname={3} " +
" RETURN user ";
final PreparedStatement statement = conn.prepareStatement(query);
for (Map.Entry<String, Object> entry : params.entrySet()) {

int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

// result contains user data, which can be mapped to bean

Removing a Node

Once a node’s graph id has been set and saved into the database, it becomes eligible to be removed when necessary.
To remove a node, set a variable as a node object instance and then call the delete method for the node (Listing 12-7).

Note You cannot delete any node that is currently set as the start point or end point of any relationship. You must
remove the relationship before you can delete the node.

328

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-7. Deleting a Node

public void DeleteNode() {
// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://1localhost:7474/");

Map<String, Object> params = map("1", “Greg”);

String query= " MATCH (user:User {name:{1}}) " +
" DELETE user ";

final PreparedStatement statement = conn.prepareStatement(query);

for (Map.Entry<String, Object> entry : params.entrySet()) {
int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

Creating a Relationship

To create a basic relationship, you need at a minimum one distinct node and to know ahead of time the name of the
relationship you would like to use. Listing 12-8 creates a relationship called FOLLOWS between two user nodes by
matching on their names and using CREATE UNIQUE to establish the relationship.

Note Both the start and end nodes of a relationship must already be established within the database before the
relationship can be saved.

Listing 12-8. Relating Two Nodes

public void CreateRelationship() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://1localhost:7474/");

Map<String, Object> params = map("1", "Greg", "2", "Jeremy");

329

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

String query= " CREATE UNIQUE (uil:User { name:{1}})-[r:FOLLOWS]->(u2:User { name:{2}}) " +
" RETURN 1 ";

final PreparedStatement statement = conn.prepareStatement(query);

for (Map.Entry<String, Object> entry : params.entrySet()) {
int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

Retrieving Relationships

Once a relationship has been created between one or more nodes, the relationship can be retrieved using the nodes
and the relationship type (Listing 12-9).

Listing 12-9. Retrieving Relationships
public void GetRelationshipsByName() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://localhost:7474/");

Map<String, Object> params = map("1", “Greg”, "2", “Jeremy”);

String query= " MATCH (ul:User { name:{1}})-[rel:FOLLOWS]->(u2:User { name:{2}}) " +
" RETURN rel ";

final PreparedStatement statement = conn.prepareStatement(query);
for (Map.Entry<String, Object> entry : params.entrySet()) {

int index = Integer.parselnt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

330

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Deleting a Relationship

Once arelationship’s graph id has been set and saved into the database, it becomes eligible to be removed when
necessary (Listing 12-10).

Listing 12-10. Deleting a Relationship

public void DeleteRelationship() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://1localhost:7474/");

Map<String, Object> params = map("1", “Greg”, "2", “Jeremy”);

String query= " MATCH (ul:User { name:{1}})-[rel:FOLLOWS]->(u2:User { name:{2}}) " +
" DELETE rel ";

final PreparedStatement statement = conn.prepareStatement(query);
for (Map.Entry<String, Object> entry : params.entrySet()) {

int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();
}
Using Labels

Labels function as specific meta-descriptions that can be applied to nodes. Labels were introduced in Neo4;j 2.0 in
order to support index querying and can also function as a way to quickly create a subgraph.

Adding a Label to Nodes

For existing nodes, you can add one more labels by using the SET clause. As Listing 12-11 shows, you first find the
node using the MATCH clause and then SET one (or more) labels.

Caution A label will not exist on the database server until it has been added to at least one node.

www.it-ebooks.info

331

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-11. Adding Labels to a Node
public void AddLabels() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://localhost:7474/");

// uses a Node Id for the param in the WHERE clause
Map<String, Object> params = map("1", 1);

String query= " MATCH (n) "+
" WHERE id(n) = {1} "+

SET n :Developer :Admin "+
" RETURN n “;

final PreparedStatement statement = conn.prepareStatement(query);

for (Map.Entry<String, Object> entry : params.entrySet()) {
int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

Removing a Label

Removing a label uses nearly identical syntax as adding labels to a node, except that you change the SET clause to a
REMOVE clause. After the given label has been removed from the node, the return value is the node (Listing 12-12).

Listing 12-12. Removing a Label from a Node
public void Removelabels() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://localhost:7474/");

// uses a Node Id for the param in the WHERE clause
Map<String, Object> params = map("1", 1);

String query= " MATCH (n) "+
" WHERE id(n) = {1} "+

" REMOVE n :Developer :Admin "+
" RETURN n ";

332

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

final PreparedStatement statement = conn.prepareStatement(query);

for (Map.Entry<String, Object> entry : params.entrySet()) {
int index = Integer.parseInt(entry.getKey());
statement.setObject(index, entry.getValue());

}

final ResultSet result = statement.executeQuery();

Querying with a Label

To get nodes that use a specific label, use a MATCH clause, similar to previous examples, and, in this instance, set a
LIMIT of 50 nodes to be returned (Listing 12-13).

Listing 12-13. Querying with a Label
public Iterable GetNodesByLabel() {

// Make sure Neo4j Driver is registered
Class.forName("org.neo4j.jdbc.Driver");

// Connect
Connection conn = DriverManager.getConnection("jdbc:neo4j://localhost:7474/");

String query= " MATCH (users:User) " +
" RETURN users " +
" LIMIT 50 ";

final PreparedStatement statement = conn.prepareStatement(query);

final ResultSet result = statement.executeQuery();

Developing a Java and Neo4j Application

This section covers the basics of configuring a development environment, preliminary to building out your first Java
and Neo4j application. Again, if you have not worked through the installation steps in Chapter 2, take a few minutes
to review the steps and configure your development environment before continuing.

Preparing the Graph

In order to spend more time highlighting code examples for each of the more common graph models, you will use
a preloaded instance of Neo4j including necessary plugins, such as the spatial plugin.

333

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Tip To quickly setup a server instance with the sample data and plugins for this chapter, go to graphstory.com/
practicalneo4j. You will be provided with your own free trial instance, a knowledge base, and email support from
Graph Story. Alternatively, you may run a local Neo4j database instance with the sample data by going to
graphstory.com/practicalneo4j, downloading the zip file containing the sample database and plugins, and adding
them to your local instance.

Using the Sample Application

If you have already downloaded the sample application from graphstory.com/practicalneo4j for Java and
configured it within your local application environment, you can skip ahead to the next section.

Otherwise, you will need to go back to the “Java and Neo4j Development Environment” section and set up your
local environment in order to follow the examples in the sample application.

Struts2 Application Configuration

Before diving into the code examples, you need to update the configuration for the Struts2 application. In Eclipse
(or the IDE you are using), open the file GraphStoryConstants. java, which is located in the com.practicalneo4j.
graphstory.util package, and edit the GraphStory connection string information. If you are using a free account
from graphstory.com, you will change the username, password, and URL in Listing 12-14 with the one provided in
your graph console on graphstory.com.

Listing 12-14. Database Connection Settings for a Remote Service, such as Graph Story

public static final String DEFAULT URL = " https:// username:password@theURL:7473";

If you have installed a local Neo4j server instance, you can modify the configuration to use the local address and
port that you specified during the installation, as in the example shown in Listing 12-15.

Listing 12-15. Database Connection Settings for Local Enviroment

public static final String DEFAULT URL = "http://localhost:7474";

Once the environment is properly configured and started, you can open a browser to the URL, such as
http://practicalneo4j-java, and you should see a page like the one shown in Figure 12-6.

334

www.it-ebooks.info

http://practicalneo4j-java/
http://www.it-ebooks.info/

ann

€ c

Graph Stery | Home

practicalneodj-java/

CHAPTER 12 © NEO4J + JAVA

Graph Story

The leading graph-as-a-service provider

Easy path to Social

Quickly create an online communizy and help them
connect and share faster with Graph Story. Create a

Maps are a graph!

Graph Story is a next generation platform for 8"[’]‘1 that
manage location information. K
let us do the work.

Most Interesting

Build special connect within your communities by
helping them manage their interests.

Recommendations

Helevan recommendations create sales! Graph Story
will halg ners understand and manage their
recommi S 10 get more relevant results.

Content is King

What your customers read can tell)OL what to write -
and what not to write. Match y 5 ords with
your own,

Wln at Star‘tlng

startup helps your team see all the parts of
your st artup, keeps everything in one place, moving
forward and staying strong.

© Graph Story, Inc. 2014

Figure 12-6. The Java sample application home page

Controller and Service Layers

In order to provide some common objects and methods at the controller layer, all of the action controllers in the
sample application extend a parent controller called GraphStoryAction. The GraphStoryAction controller provides
access to the GraphStory bean and the GraphStoryDAO service.

The GraphStory bean encapsulates the domain objects for the sample application and is primarily used for
convenience. This object will allow domain objects to be sent to the service layer and returned—in some cases—with
helper objects and properties, such as form and data validation messages to help users.

The GraphStoryDAO service provides access to each of the individual service classes that support persistence and
other service-level operations on each of the domain objects. For example, if an exception is raised in the service layer,
such as a when attempting to create a User that matches an existing User’s username, then the GraphStory object can
be returned with message information, such as an error message, which can then be used to determine the next part
of the application flow as well as return messages to the view.

335

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

ResultSetMapper

A common need in many data-driven applications is to take results from a query and map them back to domain
objects. To map database results back to the domain objects, you will use a specifically designed class called
ResultSetMapper. ResultSetMapper contains four public methods and one private method:

e maplLabelNodeToClass—This method takes a Map from a query result, a Class type and an
ObjectMapper to convert a single Label node into a domain object.

e mapResultSetToObject—This method takes a ResultSet and Class type and returns a List of
domain objects based on the Class type.

e mapResultSetTolListMappedClass—This method takes a ResultSet and Class type and
returns a List of mapped objects based on the Class type. Mapped objects typically consist of
a mix of properties that will be used for the view, such as a list of status updates.

e mapResultSetToMapped(Class—This method takes a Map and Class type and returns a single
mapped object based on the Class type. Again, a mapped object typically consists of a mix of
properties that will be used for the view, such as a list of status updates.

e query—this private method is used to convert a ResultSet into an Iterator of Map objects.

Head’s-Up Struts 2 and the front-end code, such as Mustache, help run the sample application, but | will limit
extended coverage of those concepts to the Social Graph section. In the Social Graph section, | will focus on the
non-obvious but important aspects of those concepts. As you go through the rest of the application, controllers as
well as the front-end code will use similar syntax, so they will be referenced but not listed in the chapter as repetitive
coverage of that syntax would distract from the discrete, specific Java and Neo4j examples.

Social Graph Model

This section explores the social graph model and a few of the operations that typically accompany it. In particular, this
section looks at the following:

e Sign-up and Login
e Updating a user
e Creating arelationship type through a user by following other users

¢ Managing user content, such as displaying, adding, updating, and removing status updates

Note The sample graph database used for these examples comes loaded with social data, so you can immediately
begin working with representative data in each of the graph models. In the case of the social graph—and for other graph
models, as well—you will login with the user ajordan. Going forward, please login with ajordan to see each of the
working examples.

336

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Sign Up

The HTML required for the user sign-up form is shown in Listing 12-16 and can be found in the {PROJECTRO0T}/
WebContent/mustache/html/home/index.html file. The important item to note in the HTML form is that the bean
name and property are used to specify what is passed to controller and, subsequently, to the service layer for saving
to the database.

Listing 12-16. HTML Snippet of Sign-Up Form

<form class="navbar-form navbar-left" action="/signup/add" role="form"
id="createaccountform" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="user.usexname" class="form-control">
</div>
<button type="submit" class="btn btn-success">Create Account</button> 8
</form>

Note While the sample application creates a user without a password, | am certainly not suggesting or advocating
this approach for a production application. | excluded the password property in order to create a simple sign-up and login
that helps keep the focus on the more salient aspects of the Neo4j JDBC library.

Sign-Up Action

In the sign-up action, simply pass the GraphStory bean to the SignUpAction’s add method, which in turn connects
to the service layer via the save method in the UserDAO class. The save method will also perform a look up on the
username passed in via the request to see if it already exists in the database using the userExists method found
in the UserDAO class. If no match is found, the username is passed on to the save query within the if statement
(Listing 12-17).

If no errors are returned during the save attempt, the request is redirected via redirectAction and a message is
passed to thank the user for signing up. Otherwise, the user is redirected back to the home view along with an error
message to inform the user of the problem.

Listing 12-17. The add Method in the SignUpAction

@Action(value = "add",
results = {

@Result(name = "success", type = "redirectAction", params = { "actionName",
"thankyou",
"namespace", "/" }),
@Result(name = "userExists", type = "mustache", location = "/mustache/html/home/
index.html")})

public String add() {

try {
graphStory = getGraphStoryDAO().getUserDAO().save(graphStory);

if (graphStory.getErrorMsgs().isEmpty()) {

337

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

setTitle("Thank you!");
return SUCCESS;

}
else {
setTitle("Home");
return "userExists";
}

}

catch (Exception e) {
log.error(e);
return ERROR;

Adding a User

In each part of the five graph areas covered in the chapter, the domain object, such as a User, will have a
corresponding DAO class to manage the persistence operations within the database. In this case, the UserDAO class
covers the management of the application’s user nodes by executing cypher queries.

To save a node and label it as a User, the save method, shown in Listing 12-18, makes use of the CREATE clause
by passing the user object through a convenience method called objectAsMap.
Listing 12-18. The save Method in the UserDAO Class

public GraphStory save(GraphStory graphStory) throws Exception {

// no user match, so proceed with the saving
if (userExists(graphStory.getUser()) == false) {

// give user an id
graphStory.getUser().setUserId(uuidGenWithTimeStamp());

cypher.iteratorQuery(" CREATE (user:User {1}) ", map("1",
objectAsMap(graphStory.getUser())));

} else {
graphStory.getErrorMsgs().add("The username you entered already exists.");

return graphStory;

Login

Next, I will review the login process for the sample application. To execute the login process, you will use the login
route and the UsexrDAO class. Before I review the controller and service layer, I will take a quick look at the front-end
code for the login view.

338

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Login Form

The HTML required for the user login form is shown in Listing 12-19 and can be found in the {PROJECTROOT}/
WebContent/mustache/html/global/base-home.html layout file. Again, an important item to note in the form is that
the bean name and property are used to specify what is passed to controller and, subsequently, to the service layer
for querying the database.

Listing 12-19. The login Form

<form class="navbar-form navbar-right" action="/login" role="form" method="post">
<div class="form-group">
<input type="text" placeholder="Username" name="user.usexname" class="form-control">
</div>

<button type="submit" class="btn btn-success">Sign in</button>

</form>

Login Action

The LoginAction controller is used to handle the flow of the login process, as shown in Listing 12-20. Inside
LoginAction, use the checkLogin method to check if the user exists in the database.

If the user was found during the login attempt, a cookie is added to the response and the request is redirected
via redirectAction to the social home page, shown in Figure 12-7. Otherwise, the route specifies the HTML page to
return and adds the error messages that need to be displayed back to the view.

Listing 12-20. The checkLogin Method in the LoginAction Controller

@Action(value = "login",
results = {
@Result(name = "success", type = "redirectAction", params = { "actionName",
"social", "namespace", "" }),
@Result(name = "loginfail", type = "mustache", location =
"/mustache/html/home/message.html™)

b))
public String checkLogin() {

try {
graphStory = graphStoryDAO.getUserDAO().login(graphStory);
if (noGraphStoryErrors()) {
response.addCookie(addCookie(GraphStoryConstants.graphstoryUserAuthKey,
graphStory.getUser().getUsername()));
return SUCCESS;
} else {

setTitle("Login Failed");
return "loginfail";

339

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

catch (Exception e) {

log.error(e);
return ERROR;
Graph Story | Social x
= e practicalneodj-java/sccial

(]

Grag“- Story

Social Graph

This section of the application demonstrates some of the commeon features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Add Content

BA Draft - Gene Jordan Edit

ba :: Posted by ajordan at 08/02

at 7:02 PM

Andrew M. Wray [l Memorial Scholarship

tags: university of memphis, economics :: Posted by anwray at 06/01/2014 at 8:06 AM
Rob Base Decision Tree
tags: music, funny = Posted by pifarsworth at 05/18/2014 at 5:00 AM

Next > > >

Figure 12-7. The Social Graph home page

Login Service

To check to see if the user values being passed through are connected to a valid user in the database, the application
uses the login method in the UserDAO class. As shown in the Listing 12-21, the result of the login method is assigned
to the tempUser variable.

If the result is not null, the result is set on the graphStory User object and returned to the controller layer of the
application.

Listing 12-21. The login Method in the UserDAO Class

private User tempUser;
public GraphStory login(GraphStory graphStory) throws Exception {
tempUser = getByUserName(graphStory.getUser());

if (tempUser != null) {
graphStory.setUser(tempUser);

} else {
addErrorMsg(graphStory, "The username you entered does not exist.");
}
return graphStory;
}
340

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Now that the user is logged in, they can edit their settings, create relationships with other users in the graph and
create their own content.

Updating a User

To access the page for updating a user, click on the “User Settings” link in the social graph section, as shown in
Figure 12-8. In this example, the front-end code uses an AJAX request via POST and will add or—in the case of the
ajordan user—update the first and last name of the user.

Graph Story | User x

« C practicalneodj-java/user

Social Graph

&5 Graph Story

Social Graph - Friends

This section of the application shows how to update a user's settings.

Social Menu User Settings for ajordan
First Name Alvin
Last Name Jordan
Update User

Figure 12-8. The User Settings Page

User Update Form

The user settings form is located in {PROJECTROOT}/WebContent/mustache/html/graphs/social/user.html and is
similar in structure to the other forms presented in the Sign Up and Login sections. One difference is that I have added
the value property to the input element and used Mustache variables for displaying the respective stored values. If
none exist, the form fields will be empty (Listing 12-22).

Listing 12-22. User Update Form

<form class="form-horizontal" id="userform">
<div class="form-group">
<label for="firstname" class="col-sm-2 control-label">First Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="firstname" name="usex.firstname"
value="{{ graphStory.user.firstname }}" />
</div>
</div>
<div class="form-group">
<label for="lastname" class="col-sm-2 control-label">Last Name</label>
<div class="col-sm-10">
<input type="text" class="form-control input-sm" id="lastname" name="user.lastname"
value="{{ graphStory.user.lastname }}" />
</div>

341

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

</div>
<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit" id="updateUser" class="btn btn-default">Update User</button>
</div>
</div>
</form>

User Action

The UserAction controller contains an edit method with the path /user/edit, which takes a JSON object as an
argument. You should note that the User object is converted from a JSON string and returns a User object as JSON. The
response could be used to update the form elements, but because the values are already set within the form there is
no need to update the values. In this case, the application uses the JSON response to let the user know if the update
succeeded or not via a standard JavaScript alert message (Listing 12-23).

Listing 12-23. The edit Method in the UserAction Class

@Action(value = "user/edit", interceptorRefs = {
@InterceptorRef(value = "cookie", params = { "cookiesName", "graphstoryUserAuthKey" }),
@InterceptorRef(value = "json", params = { "noCache", "true", "excludeNullProperties",
"true” }) },
results = {
@Result(name = "success", type = "json", params = { "noCache", "true" })

1)
public String edit() {

try {
if (graphStory.getUser() != null) {
graphStory.setUser(graphStoryDAO.getUserDAO()

.update(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey),
graphStory.getUser())

}
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;

342

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

User Update Method

To complete the update, the controller layer calls the update method in UserDAO class. Because the object being
passed into the update method did nothing more than modify the first and last name of an existing entity, you can use
the SET clause via Cypher to update the properties in the graph, as shown in Listing 12-24. This Cypher statement also
makes use of the MATCH clause to retrieve the User node.

Listing 12-24. The update Method in the UserDAO Class

public User update(String currentusername, User user) throws Exception {
Map<String, Object> userMap = null;

userMap = IteratorUtil.singleOrNull(cypher.iteratorQuery(
" MATCH (user:User {username:{1}}) " +
" SET user.firstname={2}, user.lastname={3} " +
" RETURN user",
map("1", currentusername, "2", user.getFirstname(), "3", user.getlastname())));

ResultSetMapper<User> resultSetMapper = new ResultSetMapper<User>();

return resultSetMapper.mapLabelNodeToClass(userMap, User.class, new ObjectMapper());

Connecting Users

A common feature in social media applications is to allow users to connect to each other through an explicit
relationship. In the sample application, use the directed relationship type called FOLLOWS. By going to the “Friends”
page within the social graph section, you can see the list of users the current user is following, search for new friends
to follow and add and remove friends. The UserAction controller contains each of the methods and routes to control
the flow for these features, specifically the routes named friends, searchbyusername, follow, and unfollow.

To display the list of the users the current user is following, the showFriends method, shown in Listing 12-23, in
the UserAction class calls the following method in UserDAO class. The following method, also shown in
Listing 12-25, creates a list of users by matching the current user’s username with the directed relationship FOLLOWS on
the variable user.

Listing 12-25. The showFriends Method in UserAction and the following Method in UserDAQO

// showFriends in UserAction
@Action(value = "friends",
results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/social/friends.html"),

H

public String showFriends() {

try {
setTitle("Friends");

343

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

graphStory.setFollowing(graphStoryDAO.getUserDAO()
.following(cookiesMap.get (GraphStoryConstants.graphstoryUserAuthKey)));

}

catch (Exception e) {
log.error(e);

}

return SUCCESS;
}

// following method in UserDAO
public List<User> following(String username) {

try
{
ResultSet resultSet = cypher.resultSetQuery(
" MATCH (user { username:{1}})-[:FOLLOWS]->(users) " +
" RETURN users " +
" ORDER BY users.username",
map("1", username));
ResultSetMapper<User> resultSetMapper = new ResultSetMapper<User>();
return resultSetMapper.mapRersultSetToObject(resultSet, User.class);
}

catch (Exception e) {
log.error(e);
return null;

If the List contains users, it will be returned to the controller and displayed in the right-hand side of the page,
as shown in Figure 12-9. The display code for showing the list of users can be found in {PROJECTROOT}/WebContent/
mustache/html/graphs/social/friends.html and is shown in the code snippet in Listing 12-26.

344

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Graph Story | Frierds

= C practicalneodj-java/friends

&7 Graph Story

Social Graph - Friends

This section of the application shows how to search for, add and remove friends from the user's networks.

Soclal Graph

Social Menu Search For Friends Current Friends
Jimi James Ramove
a John Baird Remove
Leonard Euler Remove

Search

Mikola Tesla

Aline Wray Add as Friend ey

Andrew Wray Add as Friend oo Famesort o
Thomas Edison Remove

Figure 12-9. The Friends page

Listing 12-26. The HTML Code Snippet for Displaying the List of Friends

<div class="col-md-3">
<h3>Current Friends</h3>
<table class="table" id="following">
{{#graphStory.following}}
<tr>
<td>{{firstname}} {{lastname}}</td>
<td>Remove</td>
</tr>
{{/graphStory.following}}
{{"*graphStory.following}}
No friends :(
{{/graphStory.following}}
</table>
</div>

To search for users to follow, the searchByUsername method contains a GET route /searchbyusername and passes
in a username value as part of the path. This route executes the searchNotFollowing method found in UserDAO class,
showing the second section of Listing 12-27.

The first part of the WHERE clause in searchNotFollowing returns users whose username matches on a wildcard
String value. The second part of the WHERE clause in searchNotFollowing checks to make sure that the users in the
MATCH clause are not already being followed by the current user.

Listing 12-27. The searchByUsername Route and Service Method

@Action(value = "searchbyusername/{username}",
results = {@Result(name = "success", type = "json")})
public String searchByUsername() {

try {

345

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

graphStory.setUsers(graphStoryDAO.getUserDAO()
.searchNotFollowing(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey),
graphStory.getUsername()

))s
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

// the searchNotFollowing method returns users NOT being followed already
public List<User> searchNotFollowing(String currentusername, String username) {
try
{

username = username.tolLowerCase() + ".*";

ResultSet resultSet = cypher.resultSetQuery(
" MATCH (users:User), (user { username:{1}}) " +

// where n.username WILDCARD on param 'u’
// but is not the current user
" WHERE (users.username =~ {2} AND users <> user) " +

// and don't return users already being followed
" AND (NOT (user)-[:FOLLOWS]->(users)) " +

" RETURN users" +

" ORDER BY users.username",

map("1", currentusername, "2", username));

ResultSetMapper<User> resultSetMapper = new ResultSetMapper<User>();
return resultSetMapper.mapRersultSetToObject(resultSet, User.class);
}
catch (Exception e) {
log.error(e);
return null;

The searchByUsername in {PROJECTROOT}/WebContent/resources/js/graphstory.js uses an AJAX request and
formats the response in renderSearchByUsername. If the list contains users, it will be displayed in the center of the
page under the search form, as shown in Figure 12-9. Otherwise, the response will display “No Users Found”.

Once the search returns results, the next action would be to click on the “Add as Friend” link, which calls the
addfriend method in graphstory.js. This will perform an AJAX request to the follow method in the UserAction
and calls the follow method in UserDAQO. The follow method in UserDAO, shown in Listing 12-28, will create the
relationship between the two users by first finding each entity via the MATCH clause and then by using the CREATE
UNIQUE clause to create the directed FOLLOWS relationship. Once the operation is complete, the controller then
requests the following method in UserService to return the full list of followers ordered by the username.

346

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-28. The follow Method in UserAction and follow Service Method in UserDAO

@Action(value = "follow/{username}",results = {@Result(name = "success", type = "json")})
public String follow() {

try {
graphStory.setFollowing(graphStoryDAO.getUserDAO()
.follow(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey),
graphStory.getUsername()
))s
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

// follow and return new list of following
public List<User> follow(String currentusername, String username) {

try
{
ResultSet resultSet = cypher.resultSetQuery(
" MATCH (useri:User {username:{1}}), (user2:User {username:{2}})" +
" CREATE UNIQUE useri-[:FOLLOWS]->user2" +
" WITH user1” +
" MATCH (user1)-[f:FOLLOWS]->(users)" +
" RETURN users " +
" ORDER BY users.username",
map("1", currentusername, "2", username));
ResultSetMapper<User> resultSetMapper = new ResultSetMapper<User>();
return resultSetMapper.mapRersultSetToObject(resultSet, User.class);
}

catch (Exception e) {
log.error(e);
return null;

The unfollow feature uses an application flow nearly identical to the follows feature. In the unfollow method,
shown in Listing 12-29, the controller passes in two arguments: the current username and username to be
unfollowed. Once completed, the unfollow route returns the updated collection of users being followed.

347

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-29. The unfollow Route and unfollow Method

// unfollow a user
@Action(value = "unfollow/{username}",results = {@Result(name = "success", type = "json")})
public String unfollow() {

}

try {
graphStory.setFollowing(graphStoryDAO.getUserDAO()

.unfollow(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey),
graphStory.getUsername()

));
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;

// unfollow (e.g. delete relationship) and return new list of following
public List<User> unfollow(String currentusername, String username) {

}

try
{
ResultSet resultSet = cypher.resultSetQuery(
" MATCH (useri:User {username:{1}})-[f:FOLLOWS]->(user2:User {username:{2}})" +
" DELETE " +
" WITH useri" +
" MATCH (user1)-[f:FOLLOWS]->(users)" +
" RETURN users " +
" ORDER BY users.username",
map("1", currentusername, "2", username));
ResultSetMapper<User> resultSetMapper = new ResultSetMapper<User>();
return resultSetMapper.mapRersultSetToObject(resultSet, User.class);
}
catch (Exception e) {
log.error(e);
return null;
}

User-Generated Content

Another important feature in social media applications is being able to have users view, add, edit, and remove
content, sometimes referred to as User Generated Content. In the case of this content, you will not be creating
connections between the content and its owner but creating a linked list of status updates. In other words, you will be
connecting a User to their most recent status update and then connecting each subsequent status to the next update
through the CURRENTPOST and NEXTPOST directed relationship types, respectively.

This approach is used for two reasons. First, the sample application displays a given number of posts at a time and

using a limited linked list is more efficient than getting all status updates connected directly to a user and then sorting
and limiting the number of items to return. Second, you will also help limit the number of relationships that are placed
on the User and Content entities. Overall, the graph operations should be more efficient using the linked list approach.

348

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Getting the Status Updates

To display the first set of status updates, start with the social route of the social section of the Java sample application
graphstory. This method accesses the getContent method within Content service class, which takes an argument

of the current user’s username and the page being requested. The page refers to set number of objects within a
collection. In this instance the paging is zero-based, so you will request page 0 and limit the page size to 4 in order to
return the first page.

The getContent method in Content class, shown in Listing 12-30, first determines whom the user is following
and then matches that set of users with the status updates starting with the CURRENTPOST. The CURRENTPOST is then
matched on the next three status updates via the [:NEXTPOST*0. .3] section of the query. Finally, the method uses
aloop to add a readable date and time string property—based on the timestamp—on the results returned to the
controller and view.

Listing 12-30. The getContent Method in ContentDAO Class

public GraphStory getContent(String username, int skip, GraphStory graphStory) {
try {

ResultSet rs = cypher.resultSetQuery(

" MATCH (u:User {username: {1} }) " +

"WITH u " +

" MATCH (u)-[:FOLLOWS*0..1]->f " +

WITH DISTINCT f,u " +

MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..3]-p " +

RETURN p.contentId as contentld, p.title as title, p.tagstr as tagstr, " +
p.timestamp as timestamp, p.url as url, f.username as username, f=u as owner " +
ORDER BY p.timestamp DESC " +

SKIP {2} LIMIT 4 ",

map("1", username, "2", skip));

ResultSetMapper<MappedContent> resultSetMapper =
new ResultSetMapper<MappedContent>();

graphStory.setContent(
resultSetMapper.mapResultSetTolListMappedClass(rs,MappedContent.class));

if (graphStory.getContent().size() >= 4) {
graphStory.setMorecontent(true);
if (skip == 0) {
graphStory.setContent(graphStory.getContent().subList(0, 3));
}

} else {
graphStory.setMorecontent(false);
}

catch (Exception e) {
log.error(e);
}

return graphStory;

349

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Adding a Status Update

The page shown in Figure 12-10 shows the form to add a status update for the current user, which is displayed when
clicking on the “Add Content” link just under the “Graph Story—Social Feed” header. The HTML for the form can be
found in {PROJECTROOT}/WebContent/mustache/html/graphs/social/posts.html. The form uses the addContent

function in graphstory. js to POST a new status update as well as return the response and add it to the top of the
status update stream.

Graph Story | Social

€& c practicalneodj-java/social

m

raol”‘. Story

Social Graph
This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.
Social Menu Graph Story - Social Feed

Cancel

Title

URL

Tags

Add Content

1860 NBA Draft - Gene Jordan Edit / Dy

tags: nba :: Posted by ajordan at 08,

02 PM

FAob Base Decision Tree
tags: music, funny :: Posted by pfarsworth at 05/18/2014 at 5:00 AM

Most Requeste g of All Time

tags: music, serious :: Posted by ntesla at 04/24/2014 at 3.06 AM

Next>>>
Figure 12-10. Adding a status update

The addContent method in SocialAction and the corresponding addContent method in ContentDAO are
shown in Listing 12-31. When a new status update is created, in addition to its graph id, the addContent method also
generates a contentld, which performed using the SecureRandom.uuid method.

The addContent method makes the status the CURRENTPOST and also determines whether a previous CURRENTPOST
exists, and, if one does, changes its relationship type to NEXTPOST. In addition, the tags connected to the status update
will be merged into the graph and connected to the status update via the HAS relationship type.

350

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-31. addContent Methods in SocialAction and ContentDAO

@Action(value = "posts/add", interceptorRefs = {
@InterceptorRef(value = "cookie", params = { "cookiesName", "graphstoryUserAuthKey" }),
@InterceptorRef(value = "json", params = { "noCache", "true", "excludeNullProperties",
"true" }) },
results = {
@Result(name = "success", type = "json", params = { "noCache", "true" })

1))
public String addContent() {
try {
if (graphStory.getStatusUpdate() != null) {
graphStory. setMappedContent (graphStoryDAO. getContentDAO()
.addContent(
graphStory.getStatusUpdate(),
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
}
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

//addContent method in ContentDAO
public MappedContent addContent(Content content, String username) {
Date timestamp = new Date();

String tagStr = trimContentTags(content.getTagstr());

Map<Str1ng, Object> contentMap = IteratorUtil.singleOrNull(cypher.iteratorQuery(
" MATCH (user { username: {1}}) "

CREATE UNIQUE (user)-[CURRENTPOST]->(newLP:Content { title:{2}, url:{3}, " +
tagstr:{4}, timestamp:{5}, contentId:{6} }) " +

WITH user, newLP, collect(distinct newlLP.tagstr) as tstr" +

FOREACH (tagName in {7} | " +

MERGE (t:Tag {wordPhrase: tagName })" +

MERGE (newLP)-[:HAS]->(t))" +

WITH user, newlP " +

OPTIONAL MATCH (newLP)<-[:CURRENTPOST]-(user)-[oldRel:CURRENTPOST]->(0ldLP)" +
DELETE oldRel " +

CREATE (newLP)-[:NEXTPOST]->(oldLP) " +

RETURN newLP.contentId as contentId, newLP.title as title, " +

newLP.tagstr as tagstr, " +

newLP.timestamp as timestamp, newLP.url as url, " +

user.username as username, true as owner ",
map("1", username, "2", content.getTitle(), "3", content.getUrl(), "4", tagStr, "s",

351

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

timestamp.getTime() / 1000, "6", UUID.randomUUID().toString(), "7",
taglist(tagStr))));
ResultSetMapper<MappedContent> resultSetMapper = new ResultSetMapper<MappedContent>();
return resultSetMapper.mapResultSetToMappedClass(contentMap, MappedContent.class);

Editing a Status Update

When status updates are displayed, the current user’s status updates will contain a link to “Edit” the status. Once
clicked, it will open the form, similar to the “Add Content” link, but will populate the form with the status update
values as well as modify the form button to read “Edit Content’, as shown in Figure 12-11. As with many similar UI
features, clicking “Cancel” under the heading removes the values and returns the form to its ready state.

Graph Stery | Social *
= = practicalneodj-java/sccial =

%‘r. Soclal Graph EIIEIEEREIE

) -
%' Graph Story

Social Graph

This section of the application demonstrates some of the common features of a social graph, such as connecting with other users as well as adding and reading posts.

Social Menu Graph Story - Social Feed

Cancel

Title 1960 NBA Draft - Gena Jordan
UAL hittpz//nba-draft-history.findthebest.com/U7778/Gene-Jordan
Tags nba
Edit Content
1960 NBA Draft - Gene Jordan

tags: nba :: Posted by ajordan af

Rob Base Decision Trea

tags: music, funny = Posted by ptfarsworth at 05/18/2014 at 5:00 AM
Most Requested Song of All Time
tags: music, serious .. Posted by ntesla at 04/24/2014 at 3.08 AM

Next>>>

Figure 12-11. Editing a status update

352

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

The edit feature, like the add feature, uses a route in the graphstory application and a function in graphstory. js,
which are edit and editContent, respectively. The editContent action passes in the content object, with its content
id, and then calls the editContent method in ContentDAO class, as shown in Listing 12-32.

In the case of the edit feature, you do not need to update relationships. Instead, you simply retrieve the existing
node by its generated String Id (not graph id), update its properties where necessary, and save it back to the graph.

Listing 12-32. editContent Methods in SocialAction and ContentDAO

@Action(value = "posts/edit", interceptorRefs = {
@InterceptorRef(value = "cookie", params = { "cookiesName", "graphstoryUserAuthKey" }),
@InterceptorRef(value = "json", params = { "noCache", "true", "excludeNullProperties",
"true” }) },
results = {
@Result(name = "success", type = "json", params = { "noCache", "true" })

1
public String editContent() {
try {
if (graphStory.getStatusUpdate() != null) {
graphStory. setMappedContent (graphStoryDAO.getContentDAO()
.editContent(
graphStory.getStatusUpdate(),
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
}
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

//editContent in ContentDAO
public MappedContent editContent(Content content, String username) {

String tagStr = trimContentTags(content.getTagstr());

Map<Str1ng, Object> contentMap = IteratorUtil.singleOrNull(cypher.iteratorQuery(

" MATCH (c:Content {contentId:{1}})-[:NEXTPOST*0..]-()-[:CURRENTPOST]-(user { username: {2}}) " +
" SET c.title = {3}, c.url = {4}, c.tagstr = {5}" +
" FOREACH (tagName in {6} | " +
" MERGE (t:Tag {wordPhrase:tagName}) " +
" MERGE (c)-[:HAS]->(t) " +

"+
RETURN c.contentId as contentId, c.title as title, c.tagstr as tagstr, " +
c.timestamp as timestamp, c.url as url, {2} as username, true as owner ",
map("1", content.getContentId(), "2", username, "3", content.getTitle(),

"4", content.getUrl(), "5", tagStr, "6", taglList(tagStr))));

ResultSetMapper<MappedContent> resultSetMapper = new ResultSetMapper<MappedContent>();
return resultSetMapper.mapResultSetToMappedClass(contentMap, MappedContent.class);

}

353

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Deleting a Status Update

As with the “edit” option, when status updates are displayed, the current user’s status updates will contain a link to
“Delete” the status. Once clicked, it asks if you want it deleted (no regrets!) and, if accepted, generates an AJAX GET
request to call the delete route and corresponding method in the ContentDAO class, as shown in Listing 12-33.

The Cypher in the delete method begins by finding the user and content that will be used in the rest of the query.
In the first MATCH, you can determine if this status update is the CURRENTPOST by checking to see if it is related to a
NEXTPOST. If this relationship pattern matches, make the NEXTPOST into the CURRENTPOST with CREATE UNIQUE.

Next, the query asks if the status update is somewhere the middle of the list, which is performed by determining
if the status update has incoming and outgoing NEXTPOST relationships. If the pattern is matched, connect the before
and after status updates via NEXTPOST.

Regardless of the status update’s location in the linked list, you will retrieve it and its relationships and then
delete the node along with all of its relationships.

To recap, if one of the relationship patterns matches, replace that pattern with the nodes on either side of the
status update in question. Once that is performed, the node and its relationships can be removed from the graph.

Listing 12-33. deleteContent Methods in SocialAction and ContentDAO

@Action(value = "/posts/delete/{contentId}",
results = {
@Result(name = "success", type = "json")

}
public String deleteContent() {
try {
graphStoryDAO. getContentDAO()
.deleteContent(
contentld,
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
)5
Map<String, Object> msg = new HashMap<String, Object>();
msg.put("Msg", "OK");
graphStory.setMessage(msg);
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

// deleteContent method in ContentDAO
public void deleteContent(String contentId, String username) {
cypher.iteratorQuery(
" MATCH (u:User { username: {1} }), (c:Content { contentId: {2} }) " +
" WITH u,c " +
" MATCH (u)-[:CURRENTPOST]->(c)-[:NEXTPOST]->(nextPost) " +
WHERE nextPost is not null " +
CREATE UNIQUE (u)-[:CURRENTPOST]->(nextPost) " +
WITH count(nextPost) as cnt " +
MATCH (before)-[:NEXTPOST]->(c:Content { contentId: {2}})-[:NEXTPOST]->(after) " +

354

www.it-ebooks.info

http://www.it-ebooks.info/

" WHERE before is not null AND after is not null " +
" CREATE UNIQUE (before)-[:NEXTPOST]-»>(after) " +

" WITH count(before) as cnt " +

" MATCH (c:Content { contentId: {2} })-[r]-() " +

" DELETE c, 1",

map("1", username, "2", contentId));

Interest Graph Model

CHAPTER 12 © NEO4J + JAVA

This section looks at the interest graph and examines some basic ways it can used to explicitly define a degree of

interest. The following topics are covered:
e Adding filters for owned content
e Adding filters for connected content

e Analyzing connected content (count tags)

Interest in Aggregate

Inside the interest method of the InterestAction class, you will retrieve all of the tags connected to a user and their
friends the tagsInMyNetwork method found in the TagDAO class. This is displayed Figure 12-12 in the left-hand column

on the page.

Graph Story | Interest

“« C practicalneodj-java/interesttag=internet&userscontent=true

Interest Graph

raoi”- Story

Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common

Interests via tags.

My Interests Graph Story - Interest Feed

nternet (2) nba (1) history (1)

Cart: the wab (see what | did thera?)

Interests in my network

Net neutrali d be called shaki

:: Posted by ajordan at 06/2

Figure 12-12. Filtering the current user’s content

tags: internet, history :: Posted by ajordan at 06/23/2013 at 8:16 AM

The markup is located in {PROJECTROOT }/WebContent/mustache/html/graphs/interest/index.html. The
tagsInMyNetwork method uses two queries, which are shown in Listing 12-34. The tagsInNetwork finds users being
followed, accesses all of their content, and finds connected tags using the HAS relationship type.

www.it-ebooks.info

355

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

The userTags method is similar but is concerned only with content and, subsequently, tags connected to the
current user. Both methods limit the results to 30 items. As mentioned earlier, the methods return an array of content and
tags, which supports the autosuggest plugin in the view and requires both a label and name to be provided in order to
execute. This autosuggest feature is also used in the status update form and search forms presented later in this chapter.

Listing 12-34. userTags and tagsInNetwork in the TagDAO Class

// returns just the current user’s tags
public List<MappedContentTag> userTags(String username) throws Exception {
ResultSet rs = cypher.resultSetQuery(

" MATCH (u:User {username: {1} })-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c " +
" WITH distinct c " +

MATCH c-[ct:HAS]->(t) " +

WITH distinct ct,t " +

RETURN t.wordPhrase as name, t.wordPhrase as label, count(ct) as id " +

ORDER BY id desc " +

SKIP o LIMIT 30",

map("1", username));

ResultSetMapper<MappedContentTag> resultSetMapper =
new ResultSetMapper<MappedContentTag>();

return resultSetMapper.mapResultSetToListMappedClass(rs, MappedContentTag.class);

}

// returns tags of the users being followed
public List<MappedContentTag> tagsInNetwork(String username) throws Exception {
ResultSet rs = cypher.resultSetQuery(
" MATCH (u:User {username: {1} })-[:FOLLOWS]->f " +
" WITH distinct f " +
MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-c " +
WITH distinct c " +
MATCH c-[ct:HAS]->(t) " +
WITH distinct ct,t " +
RETURN t.wordPhrase as name, t.wordPhrase as label, count(ct) as id " +
ORDER BY id desc " +
SKIP o LIMIT 30",
map("1", username));

ResultSetMapper<MappedContentTag> resultSetMapper =
new ResultSetMapper<MappedContentTag>();

return resultSetMapper.mapResultSetTolListMappedClass(rs, MappedContentTag.class);

Filtering Managed Content

Once the list of tags for the user and for the group she follows has been provided, the content can be filtered based
of the generated tag links, as shown in Figure 12-12. If a tag is clicked on inside of the “My Interests” section, the
getContentByTag method, displayed in Listing 12-35, is called with the isCurrentUser value set to true.

356

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-35. Get the Content Owned by the Current User Based on a Tag
public List<MappedContent> getContentByTag(String username, String tag, Boolean isCurrentUser) {
List<MappedContent> contents = null;

ResultSetMapper<MappedContent> mappedContentResultSetMapper = new
ResultSetMapper<MappedContent>();

try {

if (isCurrentUser) {
ResultSet rs = cypher.resultSetQuery(
"MATCH (u:User {username: {1} })" +
" MATCH u-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p " +
" WITH DISTINCT u,p" +
" MATCH p-[:HAS]-(t:Tag {wordPhrase : {2} })" +
" RETURN p.contentId as contentId, p.title as title, p.tagstr as tagstr, " +
" p.timestamp as timestamp, p.url as url, " +
" u.username as username, true as owner" +
" ORDER BY p.timestamp DESC",
map("1", username, "2", tag));
contents = mappedContentResultSetMapper

.mapResultSetTolListMappedClass(rs, MappedContent.class);
} else {
// this block is shown in Listing 12-34

}

}

catch (Exception e) {
log.error(e);

}

return contents;

}

Filtering Connected Content

If a tag is clicked on inside of the “Interests in my Network” section, the getContentByTag method is called with the
isCurrentUser value set to false, as shown in Listing (Listing 12-36)

The second query is nearly identical to the first query found in getContentByTag, except that it will factor in
the users being followed and exclude the current user. The method also returns a collection of items and matches
resulting content to a provided tag, placing no limit on the number of status updates to be returned (Figure 12-13). In
addition, it marks the owner property as false.

357

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-36. Get the Content of the User’s Being Followed Based on a Tag

public List<MappedContent> getContentByTag(String username, String tag, Boolean isCurrentUser) {

List<MappedContent> contents = null;
ResultSetMapper<MappedContent> mappedContentResultSetMapper = new
ResultSetMapper<MappedContent>();
try {
if (isCurrentUser) {
// this block is shown in Listing 12-33

} else {

ResultSet rs = cypher.resultSetQuery(

" MATCH (u:User {username: {1} })" +

"WITHu " +

" MATCH (u)-[:FOLLOWS]->f" +

WITH DISTINCT " +

MATCH f-[:CURRENTPOST]-1p-[:NEXTPOST*0..]-p" +

WITH DISTINCT f,p" +

MATCH p-[:HAS]-(t:Tag {wordPhrase : {2} })" +

RETURN p.contentld as contentId, p.title as title, p.tagstr as tagstr,

p.timestamp as timestamp, p.url as url, " +
f.username as username, false as owner " +
ORDER BY p.timestamp DESC",

map("1", username, "2", tag));

contents = mappedContentResultSetMapper
.mapResultSetTolListMappedClass(rs, MappedContent.class);

}

}
catch (Exception e) {

log.error(e);
}

return contents;

358

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Graph Story | Interest ®
L C [practicalneodj-java/interestitag=music&userscontent="false =
Sf L o b
@
% Graph Story
Interest Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded o show users with common
Interests via tags.

My Interests Graph Story - Interest Feed
Internat (2) nba (1) history (1) Rob Base Decision Tres
n tags: music, funny :: Posted by ptfarsworth at 05/18/2014 at 5:00 AM
Interests in my network
funny (8) music (8) cats (5) internet (3)
graphs (2) cartoon (2) history (2) serious
(1) not sarcasm (1) dogs (1) dub (1)
hendrix (1) the dude (1) painting (1) cor
(1

Most Requested Song of All Time
tags: music, serious :: Posted by ntesla at 04/24/2014 at 3:08 AM

From Hendrix to The Beatles
tags: music, funny :: Posted by ntesla at 04/20/2014 at B:22 AM

World's Greatest Scientist: Hopaton Brown
tags: music, dub :: Posted by james at 04/18/2014 at B:54 AM

Greatest Jazz Guitar of All Time. Debate over.
tags: music :: Posted by [james at 03/06/2014 at 10:08 AM

Hendrix
tags: music, hendrix :: Posted by tedison at 11/27/2013 at 3:18 PM

Make sura to check out the High Liamas
tags: music :: Posted by leuler at 06/23/2013 at 9:16 AM

A Day In The Life
tags: music :: Posted by jjames at 06/15/2013 at 9:16 AM

Figure 12-13. Filtering content of the current user’s friends

Consumption Graph Model

This section examines a few techniques to capture and use patterns of consumption generated implicitly by a user
or users. For the purposes of your application, you will use the prepopulated set of products provided in the sample
graph. The code required for the console reinforces the standard persistence operations, but I will focus on the
operations that take advantage of this model type, such as:

e (Capturing consumption
e Filtering consumption for users

e Filtering consumption for messaging

359

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Capturing Consumption

You are creating code that directly captures consumption for a user, but the process could also be done by creating a
graph-backed service to consume the webserver logs in real time or another data store to create the relationships. The
result would be the same in either event: a process that connects nodes to reveal a pattern of consumption

(Listing 12-37).

Listing 12-37. Show List of Products and Product Trail of Current User OR Return Snippet of Products

//show products and products VIEWED by user
@Action(value = "consumption/{pagenum}", results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/consumption/index.html"),
@Result(name = "page", type = "mustache", location =
"/mustache/html/graphs/consumption/product-list.html")
1
public String consumption() {
// returns a product list HTML snippet
if (pagenum != null) {

// set current page
Integer curpage = pagenum;

// get the list of products for this page
graphStory = graphStoryDAO.getProductDAO().getProducts(graphStory, curpage);

// increase the page count
curpage = curpage + 10;

// set the next page to call
graphStory.setNextPageUrl("/consumption/" + curpage.toString());

return "page";

} else {
setTitle("Consumption");

// retrieve the first page of products
graphStory = graphStoryDAO.getProductDAO().getProducts(graphStory, pageNumStart);

// set the product trail
graphStory.setProductTrail(graphStoryDAO.getProductDAO()
.getProductTrail(cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)));

// set the next page to call
graphStory.setNextPageUrl("/consumption/10");

return SUCCESS;

360

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Filtering Consumption for Users

One practical use of the consumption model is to create a content trail for users, as shown in Figure 12-14. As a user
clicks on items in the scrolling product stream, the interaction is captured using createUserView, which ultimately
returns a 1ist of relationship objects of the VIEWED type.

In the Consumption section, take a look at the createUserProductViewRel method to see how the process begins
inside the controller. The controller method first saves the view and then returns the complete history of views using
the getProductTrail method, which can be found in the Product service class. The process is started when the
createUserProductViewRel function is called, which is located in graphstory. js.

Graph Story | Consumptic =

]

- c practicalneodj-java/consumption

Gr’aph Story

Consumption Graph

This section of the application demonstrates a way 1o view products via a scrolling list. When a user clicks on a product description, they are connected to the product via the
VIEWED relationship.

Consumption Menu Graph Story - Productsville

Scroll down to show moar products

“Long Sleep"” Portal Sleep Tank
Viewed Products See Product Description...

Items the current user has recently viewed

"Wash Is My Copilot" License Plate Frame
“Long Sleep” Portal Sleep Tank

last viewed on: 08/04/2014 at 9:10 AM See Product pion...

iDuck - Bathtub Music

last viewed on: 08/02/2014 at 7:07 PM

"Wash Is My Copilot” License Plate Frame
last viewed on: 08/02/2014 at 6:32 PM

Eyn Case For Smartphones

last viewed on: 08/02/2014 at 6:32 PM
2014 i Fantasy C:

last viewed on: 08/02/2014 at 4:56 PM

10th Doctor Costume Pajama Set
last viewed on: 08/01/2014 at 7:54 PM

10th Doctor Costume Pajama Set

See Product Description...

11th Doctor Costume Pajama Set

See Product Description.

2014 Worldbuilders Fantasy Calendar

See Product Dascription...

Figure 12-14. The Scrolling Product and Product Trail page

For the sample application, you will use the addUserViewAndReturnProductTrail method in the ProductDAO
class to find the Product entity being viewed and then create an explicit relationship type called VIEWED. As you may
have noticed, this is the first instance of a relationship type in the application that contains properties. In this case,
you are creating a timestamp with a Date object and String value of the timestamp. The query, provided in
Listing 12-38, checks to see if a VIEWED relationship already exists between the user and the product.

If the result of the MERGE clause within query is returns zero matches, then a map is created with key value pairs to
create properties on the new relationship, specifically timestamp and dateAsStr. Otherwise, the query will update the
existing relationship properties to their new, respective values.

361

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-38. Methods to Add a userview for Product

@Action(value = "consumptionview/add/{productNodeId}", results = {
@Result(name = "success", type = "json")

1
public String addUserViewAndReturnProductTrail() {
try {
graphStory.setProductTrail(graphStoryDAQ.getProductDAO()
.addUserViewAndReturnProductTrail(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey), productNodeId
));

}

catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

// the method to add a user view in the ProductDAO class
public List<MappedProductUserViews> addUserViewAndReturnProductTrail(
String username, Long productNodeId) {

try {
Date timestamp = new Date(dateAslLong);
SimpleDateFormat dformatter = new SimpleDateFormat("MM/dd/yyyy");
SimpleDateFormat tformatter = new SimpleDateFormat("h:mm a");
String dateAsStr = dformatter.format(timestamp)
+ " at " + tformatter.format(timestamp);

ResultSet rs = cypher.resultSetQuery(
" MATCH (p:Product), (u:User { username:{1} })" +
" WHERE id(p) = {2}" +
" WITH u,p" +
" MERGE (u)-[r:VIEWED]->(p)" +
SET r.dateAsStr={3}, r.timestamp={4}" +
"WITHu " +
MATCH (u)-[r:VIEWED]->(p)" +
RETURN p.title as title, r.dateAsStr as dateAsStr" +
ORDER BY r.timestamp desc",
map("1", username, "2", productNodeId, "3", dateAsStr,
"4", timestamp.getTime()));

ResultSetMapper<MappedProductUserViews> resultSetMapper
= new ResultSetMapper<MappedProductUserViews>();
return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserViews.class);

}

catch (Exception e) {
log.error(e);
return null;

362

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Filtering Consumption for Messaging

Another practical use of the consumption model would be to create a personalized message for users, as displayed in
Figure 12-15. In this case, a filter allows the “Consumption Console” to drill down to a very specific group of users who
visited a product that was also tagged with a keyword (Listing 12-39).

Graph Story | Consumptic =

L c practicalneodj-java/consumption/console

Graph Story T e

Consumption Graph

(]

When a user searches for a product, they USE a keyword or phrase. In the example below, we match those keywords or phrases with the USES relationship to users and the HAS
redationship with products. In this way, the users are consuming “product views® via a keyword or phrase

NOTE: this is different than when & user enters a keyword or phrase as a tag with CONTENT in the social graph. While the connection could be made between a user’'s tagged
content, it is separate for the purpose of this example.

Consumption Menu Products that match Users via Tags

The product Music Modem shares the tags: music with thesea users:
= ajordan
o anwray

The preduct Star Wars Mimobot Thumb Drives shares the tags: star wars with these users:
= anwray
= ajordan

The product Sound Splash P Shower shares the tags: music with these users:
= ajordan
& ANWray

Figure 12-15. Consumption console shows products connected to users via tags

Listing 12-39. The consumption console Route and Methods to Get Connected Products and Users via Tags

// displays products that are connected to users via a tag relationship
@Action(value = "consumption/console", results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/consumption/console.html")
b

public String console() {
setTitle("Consumption Console");
graphStory.setUsersWithMatchingTags (graphStoryDAO.getProductDAO()
.getProductsHasATagAndUserUsesAMatchingTag());

return SUCCESS;
}

//tags that match products and users
public List<MappedProductUserTag> getProductsHasATagAndUserUsesAMatchingTag() {

363

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

try {
ResultSet rs = cypher.resultSetQuery(
"MATCH (p:Product)-[:HAS]->(t)<-[:USES]-(u:User) " +
" RETURN p.title as title, " +
" collect(u.username) as users, " +
" collect(distinct t.wordPhrase) as tags", null);
ResultSetMapper<MappedProductUserTag> resultSetMapper =
new ResultSetMapper<MappedProductUserTag>();
return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserTag.class);
}

catch (Exception e) {
log.error(e);
return null;

Location Graph Model

This section explores the location graph model and a few of the operations that typically accompany it. In particular, it
looks at the following:

e The spatial plugin
e Filtering on location
e Products based on location
The example demonstrates how to add a console to enable you to connect products to locations in an ad hoc
manner (Listing 12-40).
Listing 12-40. location Method for Showing Locations Nearby or Locations with Specific Product

// show locations nearby or locations that have a specific product
@Action(value = "location",results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/location/index.html")
1)

public String location() {
setTitle("Location");

try {
mappedUserLocation = graphStoryDAO.getUserDAO()
.getUserLocation(cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey));

if (distance != null) {
if (StringUtils.isNotBlank(productNodeId)) {

364

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

graphStory.setLocations(graphStoryDAO.getLocationDAO()
.returnLocationsWithinDistanceAndHasProduct(
mappedUserLocation.getlat(),
mappedUserLocation.getlon(),
distance,
Long.valueOf(productNodeld)

));

graphStory.setProduct(graphStoryDAO
.getProductDAO() .getProductByNodeId(Long.valueOf(productNodeld)));
} else {
graphStory.setLocations(graphStoryDAO.getLocationDAO()
.returnLocationsWithinDistance(
mappedUserLocation.getLat(),
mappedUserLocation.getLon(), distance)

)5

}
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;

Search for Nearby Locations

To search for nearby locations, as shown in Figure 12-16, use the current user’s location, obtained with
getUserLocation, and then use the locationsWithinDistance method. The returnLocationsWithinDistance
method in the LocationDAO class uses a method called addDistanceTo, which returns a string value of the distance
between the starting point and the respective location (Listing 12-41).

Listing 12-41. The returnlLocationsWithinDistance Method

public List<MappedLocation> returnLocationsWithinDistance(Double lat, Double lon, Double distance) {

try {
ResultSet rs = cypher.resultSetQuery(
"START n = node:geom({1}) WHERE NOT(has(n.type)) " +
" RETURN n.locationId as locationId, n.address as address, " +
" n.city as city, n.state as state, n.zip as zip, " +
n.name as name, n.lat as lat, n.lon as lon",

map("1", distanceQueryAsString(lat, lon, distance)));

ResultSetMapper<MappedLocation> resultSetMapper =
new ResultSetMapper<MappedLocation>();

List<MappedLocation> locations = resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedLocation.class);

365

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

// add the distance in miles to locations
addDistanceTo(locations, lat, lon);

return locations;

}
catch (Exception e) {

log.error(e);
return null;

Graph Story | Location x

- 5 practicalneodj-java/location’product=_&distance=10.00&productNodeld=
&
% Graph Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a ceriain distance or search for proudcts with a certain distance.

(]

Location Graph

The user "ajordan” lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5800 Walnut Grove Road Memphis, TN 38120
Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles % Search

Humphrey Oaks Store is 1.22 Miles Away
Burfordi Store is 3.88 Miles Away

South Graham Store is 4.02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store is 6.20 Miles Away

Figure 12-16. Searching for Locations within a certain distance of User location

Locations with Product

To search for products nearby, as shown in Figure 12-17, the application makes use of an auto-suggest AJAX request,
which ultimately calls the search method in the ProductDAO service class. The method, shown in Listing 12-42, returns
an array of objects to the product field in the search form and applies the selected product’s productNodeld to the
subsequent location search.

For almost all cases, it is recommended not to use the graphld as it can be recycled when its node is deleted.
In this case, the productNodeld is safe to use, because products would not be in danger of being deleted but only
removed from a Location relationship.

366

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-42. Search for Products

@Action(value = "/productsearch/{q}",results = {@Result(name = "success", type = "json")})
public String productSearch() {

try {
graphStory. setMappedProductSearch(graphStoryDAO
.getProductDAO().search(q));
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;
}

// search method in ProductDAO
public MappedProductSearch[] search(String q) {

q = q.trim().toLowerCase() + ".*";

try {

ResultSet rs = cypher.resultSetQuery(

"MATCH (p:Product) " +
" WHERE lower(p.title) =~ {1} " +
" RETURN count(*) as name, TOSTRING(ID(p)) as id, " +
" p.title as label " +
" ORDER BY p.title LIMIT 5",
map("1",));
ResultSetMapper<MappedProductSearch> resultSetMapper =
new ResultSetMapper<MappedProductSearchs();
List<MappedProductSearch> mappedProductSearchResults =
resultSetMapper.mapResultSetTolListMappedClass(rs, MappedProductSearch.class);
MappedProductSearch[] mappedProductSearch = new
MappedProductSearch[mappedProductSearchResults.size()];

return mappedProductSearchResults.toArray(mappedProductSearch);
}
catch (Exception e) {

log.error(e);

return null;
}

367

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Once the product and distance have been set, the search can be executed and the location method tests to see if
a productNodeld property has been set. If so, the returnLocationsWithinDistanceAndHasProduct method is called
from LocationDAO service, as shown in Listing 12-43.

Listing 12-43. The returnLocationsWithinDistanceAndHasProduct Method

public List<MappedLocation> returnLocationsWithinDistanceAndHasProduct(
Double lat, Double lon, Double distance, Long productNodeId) {

try {
ResultSet rs = cypher.resultSetQuery(
" START n = node:geom({1}), p=node({2}) " +
" MATCH n-[:HAS]->p " +
" RETURN n.locationId as locationId, n.address as address, " +
" n.city as city, n.state as state, n.zip as zip, " +
" n.name as name, n.lat as lat, n.lon as lon",
map("1", distanceQueryAsString(lat, lon, distance), "2", productNodeld));
ResultSetMapper<MappedlLocation> resultSetMapper =
new ResultSetMapper<MappedLocation>();
List<MappedLocation> locations = resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedlLocation.class);
// add the distance in miles to locations
addDistanceTo(locations, lat, lon);
return locations;
}
catch (Exception e) {
log.error(e);
return null;
}
}
368

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Graph Story | Location 3

- = practicalneodj-java/location’product=Adventure+ Time+Finn¥%27s+Backpack&distance=10.00&productNodeld=281
&
@ : hS
%y Graph Story

Location Graph - Home

This section of the application shows a user's location. Using the form, you can show stores with a certain distance or search for proudcts with a certain distance.

]

Location Graph

The user "ajordan® lives at 5900 Walnut Grove Road Memphis, TN 38120

Use the form below to search for store locations near 5900 Walnut Grove Road Memphis, TN 38120

Enter a few starting letters to autosuggest products and find out which stores have the product in stock.

Distance 10 Miles §¥ Search

The fellowing locations have " Time Finn's

Humphrey Oaks Store s 1.22 Miles Away
Burfordi Store is 3.99 Miles Away

Soutn Graham Store is 4,02 Mies Away
Bartlett Woods Store is 4.12 Miles Away
Poplar Store is 5.48 Miles Away
Lichterman Store is 5.49 Miles Away

Warford Store Is 6.20 Miles Away

Figure 12-17. Searching for Products in stock at Locations within a certain distance of the User location

Intent Graph Model

The last part of the graph model exploration considers all the other graphs in order to suggest products based on the
Purchase node type. The intent graph also considers the products, users, locations, and tags that are connected based
on a Purchase.

Products Purchased by Friends

To get all of the products that have been purchased by friends, the friendsPurchase method is called from
PurchaseDAO class, which is shown in Listing 12-45. The corresponding route is shown in Listing 12-44.
Listing 12-44. Purchases made by Friends Route

@Action(value = "intent", results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/intent/index.html")
1)
public String intent() {

setTitle("Products Purchased by Friends");

369

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

try {
graphStory. setMappedProductUserPurchaselist(graphStoryDAO
.getPurchaseDAO() . friendsPurchase(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
graphStory.setUser(graphStoryDAO
.getUserDAO() . getByUserName(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;

The query finds the users being followed by the current user and then matches those users to a purchase that
has been MADE which CONTAINS a product. The return value is a set of properties that identify the product title, the
name of the friend or friends, as well the number of friends who have purchased the product. The result, as shown in
Figure 12-18, is ordered by the number of friends who have purchased the product and then by product title
(Listing 12-45).

Listing 12-45. FriendsPurchase Method

public List<MappedProductUserPurchase> friendsPurchase(String username) {

try {
ResultSet rs = cypher.resultSetQuery(
"MATCH (u:User { username : {1} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +
" RETURN p.productId as productId, " +
" p.title as title, " +

collect(f.firstname + ' ' + f.lastname) as fullname, " +

null as wordPhrase, " +
count(f) as cfriends " +
" ORDER BY cfriends desc, p.title ",

map("1", username));

ResultSetMapper<MappedProductUserPurchase> resultSetMapper =
new ResultSetMapper<MappedProductUserPurchase>();

return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserPurchase.class);

}

catch (Exception e) {
log.error(e);
return null;

370

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Graph Story | Products Pu. =

- e practicalneodj-java/intent

Grth Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expandad o show users with common
Inerests via tags.

]

Intent Menu Intent Graph - Products Purchased by Friends

Product # Friends who purchased

ts Purchased by Friends
" srehased by Star Wars Mimobot Thumb Drives
srehased by Friands Breaking Bad iPhone Cases
rs Tags
urchased by Friends
1 Matches Users Tags

Doctor Who Beach Towel

Doctor Who Senic Screwdriver Lamp

Dector Who TARDIS Water Bottle

| Never Finish Anyth

Jedi Academy Book

Lebowski Bowling Hoodie

Sound Splash Bluetooth Waterproof Shower Speaker
Star Trek Tribble Slippers with Sound

Star Wars Light-Up Lightsaber Pens

Star Wars Princess Lela Beach Towel

Figure 12-18. Products Purchased by Friends

Specific Products Purchased by Friends

If you click on the “Specific Products Purchased By Friends” link, you can specify a product, in this case “Star Wars
Mimobot Thumb Drives’, and then search for friends who have purchased this product, as shown in Figure 12-19. This
is done via the friendsPurchaseByProduct method in Purchase service class, which is shown in Listing 12-46.

Listing 12-46. FriendsPurchaseByProduct Route and Method

@Action(value = "intent/friendsPurchaseByProduct",results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/intent/index.html")

H
public String friendsPurchaseByProduct() {

setTitle("Specific Products Purchased by Friends");
setShowForm(true);

try {

if (StringUtils.isBlank(producttitle)) {
producttitle = "Star Wars Mimobot Thumb Drives";
}

371

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

graphStory. setMappedProductUserPurchaselist(graphStoryDAO.getPurchaseDAO()
.friendsPurchaseByProduct(
producttitle,
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)

));
graphStory.setUser(graphStoryDAO.getUserDAO()
.getByUserName(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
}
catch (Exception e) {
log.error(e);
}

return SUCCESS;
}
// a specific product purchased by friends
public List<MappedProductUserPurchase> friendsPurchaseByProduct(String title, String username) {
try {
ResultSet rs = cypher.resultSetQuery(
"MATCH (p:Product) " +
" WHERE lower(p.title) =lower({1}) " +
"WITH p " +
“ MATCH (u:User { username : {2} })-[:FOLLOWS]-(F)-[:MADE]->()-[:CONTAINS]->(p) " +
" RETURN p.productId as productld, " +
" p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +
null as wordPhrase, count(f) as cfriends " +
"ORDER BY cfriends desc, p.title ",
map("1", title, "2", username));

ResultSetMapper<MappedProductUserPurchase> resultSetMapper =
new ResultSetMapper<MappedProductUserPurchase>();

return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserPurchase.class);

}
catch (Exception e) {

log.error(e);
return null;

372

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Graph Story | Specific Proc =

€« C [practicalneodj-java/intent/specificProductsPurchasedByUsersFriends =
@ Interest Graph umption Graph Location Graph Intent Graph

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Specific Products Purchased by Friends

Star Wars Mimobot Thumb Drives Search

Products Purchasad by Friands
Specific Products Purchased by
Friends

Products Purchased by Friends
and Matches Users Tags Star Wars Mimobot Thumb Drives 3
Products Purchased by Friends

Nearby and Malches Users Tags

Product # Friends who purchased

Figure 12-19. Specific Products Purchased by Friends

Products Purchased by Friends and Matches User’s Tags

In this next instance, you will want to determine products that have been purchased by friends but also have tags that
are used by the current user (Listing 12-47). The result of the query is shown in Figure 12-20.

Graph Story | Products Pu. =

“« C [practicalneodj-java/intent/productsPurchasedByUsersFriendsAndMatches TagsUsedBylUser =
@ Social Graph Intarast Graph Consumption Graph Location Graph Intent Gray:
Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends and Matches User's Tags
Product # Friends who purchased
» Products Purchasad by Friands
« Specific Products Purchased by Star Wars Mimobot Thumb Drives 3
_ :;:ﬁs Purehased by Friands Sound Splash Bluetooth Waterproof Shower Speaker

and Matches Users Tags
Products Purchased by Friends
Nearby and Maiches Users Tags

Figure 12-20. Products Purchased by Friends and Matches User’s Tags

373

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

Listing 12-47. Product and Tag Similarity of the Current Users’s Friends

@Action(value = "intent/friendsPurchaseTagSimilarity",results = {
@Result(name = "success", type = "mustache", location = "/mustache/html/graphs/
intent/index.html")
1)
public String friendsPurchaseTagSimilarity() {
setTitle("Products Purchased by Friends and Matches User's Tags");

try {

graphStory. setMappedProductUserPurchaselist(
graphStoryDAO.getPurchaseDAO()
.friendsPurchaseTagSimilarity(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
))s

graphStory. setUser(graphStoryDAO.getUserDAO()
.getByUserName(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));
}

catch (Exception e) {
log.error(e);
}

return SUCCESS;

Using friendsPurchaseTagSimilarity in PurchaseDAO service class, shown in Listing 12-48, the application
provides the userld to the query and uses the FOLLOWS, MADE and the CONTAINS relationships to return products
purchases by users being followed. The subsequent MATCH statement takes the USES and HAS directed relationship
types to determine the TAG connections the resulting products and the current user have in common.

Listing 12-48. The Method to Find Products Purchased by Friends and Matches Current User’s Tags

public List<MappedProductUserPurchase> friendsPurchaseTagSimilarity(String username) {
try {

ResultSet rs = cypher.resultSetQuery(
"MATCH (u:User { username : {1} })-[:FOLLOWS]-(f)-[:MADE]->()-[:CONTAINS]->p " +
" WITH u,p,f " +

MATCH u-[:USES]->(t)<-[:HAS]-p " +

RETURN p.productId as productId, " +

" p.title as title, " +

collect(f.firstname + ' ' + f.lastname) as fullname, " +
t.wordPhrase as wordPhrase, " +

count(f) as cfriends " +

ORDER BY cfriends desc, p.title ",

map("1", username));

374

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

ResultSetMapper<MappedProductUserPurchase> resultSetMapper =
new ResultSetMapper<MappedProductUserPurchase>();

return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserPurchase.class);

}

catch (Exception e) {
log.error(e);
return null;

}

Products Purchased by Friends Nearby and Matches User’s Tags

Finding products of friends nearby who have purchased a product that also matches a user’s tags is done by the
friendsPurchaseTagSimilarityAndProximityTolLocation method, easily the world’s longest method name and is
located in the PurchaseDAO class (Listing 12-49).

Listing 12-49. The friendsPurchaseTagSimilarityAndProximityToLocation Method in the IntentAction Class

@Action(value = "intent/friendsPurchaseTagSimilarityAndProximityTolLocation", results = {
@Result(name = "success", type = "mustache", location =
"/mustache/html/graphs/intent/index.html")

b))

public String friendsPurchaseTagSimilarityAndProximityTolLocation() {

setTitle("Products Purchased by Friends Nearby and Matches User's Tags");

try {

mappedUserLocation = graphStoryDAO.getUserDAO()
.getUserLocation(
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
);

graphStory.setUser(graphStoryDAO. getUserDAO()
.getByUserName (
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)
));

graphStory. setMappedProductUserPurchaselist(graphStoryDAO.getPurchaseDAO()
.friendsPurchaseTagSimilarityAndProximityTolLocation(
mappedUserLocation.getlat(),
mappedUserLocation.getlon(),
new Double("10.00"),
cookiesMap.get(GraphStoryConstants.graphstoryUserAuthKey)

));

375

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

}

catch (Exception e) {
log.error(e);

}

return SUCCESS;

The action method calls the friendsPurchaseTagSimilarityAndProximityToLocation method shown in
Listing 12-50. The query begins starts with a location search within a certain distance, then matching the current
user’s tags to products. Next, the query matches friends based the location search. The resulting friends are matched
against products that are in the set of user tag matches. The result of the query is shown in Figure 12-21.

Graph Story | Products P

(1]

“« C practicalneodj-java/intent/productsPurchasedByUsersFriendsWhoLiveNearbyAndMatchesTagsUsedByUser

Graph Story

Intent Graph

This section of the application shows interest via a user's tagged content and the user's network of friends tagged content. This could be expanded to show users with common
Interests via tags.

Intent Menu Intent Graph - Products Purchased by Friends Nearby and Matches User's
Tags
Matches to friends who live near 5800 Walnut Grove Road Memphis, TN 38120

Product # Friends who purchased

Star Wars Mimobot Thumb Drives

Figure 12-21. Products Purchased by Friends Nearby and Matches User's Tags

Listing 12-50. friendsPurchaseTagSimilarityAndProximityToLocation Method in the PurchaseDAO Class

public List<MappedProductUserPurchase> friendsPurchaseTagSimilarityAndProximityTolLocation(Double
lat, Double lon, Double distance, String username) {
try {
ResultSet rs = cypher.resultSetQuery(
"START n = node:geom({1}) " +
"WITH n " +
" MATCH (u:User { username : {2} })-[:USES]->(t)<-[:HAS]-p " +
WITH n,u,p,t " +
MATCH u-[:FOLLOWS]->(f)-[:HAS]->(n) " +
WITH p,f,t " +
MATCH f-[:MADE]->()-[:CONTAINS]->(p) " +
RETURN p.productId as productId, " +
p.title as title, " +
collect(f.firstname + ' ' + f.lastname) as fullname, " +

t.wordPhrase as wordPhrase, " +

count(f) as cfriends " +

376

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © NEO4J + JAVA

" ORDER BY cfriends desc, p.title ",

map("1", distanceQueryAsString(lat, lon, distance), "2", username));
ResultSetMapper<MappedProductUserPurchase> resultSetMapper =

new ResultSetMapper<MappedProductUserPurchases();

return resultSetMapper
.mapResultSetTolListMappedClass(rs, MappedProductUserPurchase.class);

}

catch (Exception e) {
log.error(e);
return null;

}

Summary

This chapter covered using the Neo4j JDBC driver with examples of how to add and update nodes, create relationships
and remove relationships, and add and remove labels on existing nodes. In addition, it presented sample code for
creating features and functions around the Social, Interest, Consumption, Location, and Intent graphs.

377

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Apache configuration, 223
Apache HTTP server, 169
Aptana plugin, 170-171, 217

B

Bottle Application Configuration, 180

C

Connecting users
HTML Code Snippet, 345
searchByUsername, 346
searchNotFollowing method, 346
service method, 347
showFriends Method, 343
status updates, 349
addition, 350-352
deletion 354
edition, 352-353
unfollow route and method, 348
UserAction, 343
user-generated content, 348
Consumption graph model, 32-33, 200-204
capturing, 153-155, 247-248, 305, 360
filtering consumption for messaging, 249-250
filtering consumption for users, 248-249
filtering, messaging, 363
filtering, users, 361-362
product entity, 304
sample graph, 359
Cypher
compatibility, 40
CREATE query statement, 18
Label type, 45
MATCH clause, 18, 45
Neo4j database, 39

nodes, 39

Optional Match, 46
Return clause, 43
SET statement, 19
Skip and Limit clauses, 44
SQL, 39, 41-43
START clause, 18, 47
status updates, 44
transactions, 39
users array, 39

Using clause, 44
With statement, 44
Writing clause, 47-48

D

Database administrator (DBA), 23
Data importation
Cypher, 50-51
Load CSV (see Load CSV)
production data source, 49
synchronizations, 50
Data modeling
applications, 24
components, 24
database platform, 23
visual representations, 23

E

Eclipse IDE, 170

Eclipse plugin
import, 172
project location, 173

Eclipse tool, 219

Entity-Relationship (ER) model
attributes, 25-26
cardinality, 25
connections/associations, entities, 25

379

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Entity-Relationship (ER) model (cont.)
directed connections, 30
entities, 24
mutual connections, 29-30
with Neo4j, 26

F

Filtering consumption

messaging, 156-157

users, 155-156
Follow route and service method, 238
The friends page, 236

G, H

Graph preparation
sample application, 131
slim application configuration, 132
Graphs
bar chart, 5
databases and Neo4j, 7-8
FlockDB, 3
indexes, 7
Key-value stores, 8
Konigsberg problem, 4
labels, 6
mathematical structure, 5
nodes and edges, 6
NoSQL databases, 3
traversal, 7
web and mobile application, 3

IDE
Eclipse and workspace, 170
programming language, 170
Integrated development environment (IDE), 216
Intent graph, 35-36
Intent graph model, 208-212
friends and matches user’s tags, 257, 317-318
friends and user’s tags products, 373-375
nearby friends and matches user’s tags, 258-259
nearby friends and user’s tags, 166-167
nearby friends and user’s tags products, 375-377
products purchased
by friends, 162-163, 314-315, 369-371
products purchased, friends and user’s tags, 165
public static function, 164
purchased products, 254-255
purchase node type, 162
specific products purchased
by friends, 163, 256, 315-316, 371-372

380

Interest graph model, 100

in aggregate, 150-151, 244-245, 299-301, 355-356
aggregation, 197-198
filtering connected content, 152-153,

198-199, 246-247, 302-303, 357-358
filtering consumption for users, 306-307
filtering consumption, messaging, 307-308
filtering managed

content, 151, 198, 244-245, 301-302, 356
tag entity, 299

J, K

Java and Neo4;j
Apache Struts 2, 324
Apache tomcat and HTTP, 326
Apache tomcat configuration, 325
controller and service layers, 335
Eclipse plugin, 322-323
graph preparation, 333
hosts file, 325
IDE, 320
login (see Login process)
LogWatcher, 322
plugin platform, 321
ResultSetMapper, 336
sample application, 334
Struts2 framework, 319
web application, 319

Java development kit (JDK), 13

L

Labels, 178, 180
nodes, 272
nodes addition, 130, 331
querying, 131, 273, 333
removal, 130, 273, 332

Labels function
addition, 227
querying, 227
removal, 227

Load CSV
current status, 55
Cypher statement, 52
Match command, 56
Next relationship, 56
nodes, 53
performance and design, 54
PHP Script, 53
status updates, 54
unique index, 52
user favorites, 57-58
User nodes, 52

www.it-ebooks.info

http://www.it-ebooks.info/

Local Apache webserver, 174
Location graph, 34-35
Location graph model, 204-208
ad hoc manner, 364
entity, 309-310
locations with product, 160-161
name, 158
nearby locations, 310-311, 365-366
operations, 251
product, 253, 366-369
public static function locations, 159
with products, 311-312
route, 157, 251
search, nearby locations, 158, 252
user location, 159
Login process
action, 339-340
controller, 283-284
form, 135, 137, 232-233, 283, 339
route, 135-136, 232
service, 137, 233, 284-285, 340
Log Watcher, 172

Maven plugin
Eclipse, 62-63
IDE, 60
import source, 62
license agreement, 62
mZ2e project, 60
Neo4j plugins, 64
repositories, 60
SLF4], 61
workspace, 62
Mobile graph, 34
Model-view-controller (MVC), 169

N,O

Neo4j
components, ER model, 26
directed relationships, 27
modeling constraints, 28
mutual/bidirectional relationship, 28
Neo4j and Ruby
Aptana plugin, 217
graph preparation, 228
HTTP server and Passenger, 215
IDE, 216
nodes and relationships (see Nodes)
project import tool with Eclipse, 219-221
sample application, 228

Sinatra web framework (see Sinatra web framework)

INDEX

Neo4j database

browser, 15
installation, 11, 14
JDK, 13

license and feature list, 13
Linux/Unix, 14
Mac 0SX, 14
requirements, 12
time and effort, 11
versions, 12
web-based shell, 15
Windows, 14

Neo4j JDBC Driver (NJDBC)

language-specific API, 326
node
creation, 327
removal, 328-329
retrieving and updating, 328
relationship
creation, 329-330
deletion, 331
retrieval, 330
sample application, 326

Neo4j + .NET

adding label nodes, 76
adding status update, 96-97
adding user, 83, 85
adding visual studio, 72
capturing consumption, 104-105
connecting users, 91-93
consumption graph model, 104
controller and service Layers, 80
creating node, 73
creating relationship, 75
debugging, 77
deleting relationship, 75
deleting status update, 99
developing application, 77
development environment, 71
editing status update, 97-99
filtering connected content, 103
filtering consumption

messaging, 107-108
filtering consumption users, 105-106
filtering managed content, 102-103
friends and matches

user’s tags, 116-118
getting status updates, 94-95
graph, 77
installing visual studio, 71
intent graph model, 112-113
interest

aggregate, 100, 102
graph model, 100

381

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Neo4j + .NET (cont.)

labels, 76
location

entity, 108-110

graph model, 108
login, 85

controller, 86

form, 85, 87

service, 87-88
managing nodes, 73
Neo4jClient, 72-73
Neo4jModule and Ninject, 79-80
.NET application configuration, 78
node entities, 81
product

entity, 104

locations, 111-112
products purchased by friends, 113-114
removing label, 76
removing node, 74
retrieving and updating node, 74
retrieving relationship, 75
sample application, 77
search locations, 109-110
Sign-Up, 81-82
Sign-Up controller, 82-83
social graph model, 80-81

specific products purchased by friends, 114-115

tag entity, 100
updating user, 88-89
user controller, 90
user-generated content, 93-94
user node entity, 81
user update
form, 89
method, 90
view models, 95
Neo4jPHP
graph goals and models, 126
node
creation, 126-127
removal, 127-128
updating and retrieving, 127
relationship
creation, 128
deletion, 129
relationships, 129
Neo4j server and PHP
addition, Eclipse plugin, 122-123
Apache HTTP server, 119
Aptana Plugin, 121
composer, 124
graph preparation (see Graph preparation)
IDE, 120
MVC pattern, 119

382

Neography, 223

Nodes
creation, 175-176, 224
deletion, 177
relationship deletion, 178
relationships creation, 177
removal, 176, 224
retrieval and updating, 176, 224
retrieving relationships, 178

PQ

Plugin development
API, 67
fine-grained control, 67
functionality, 59
IDE, 59
installation, 59
JAXRS packages, 68
Maven Plugin, 60-64
security plugins, 65-66
serverPlugin class, 64-65
Py2neo
features and functionality, 175
language drivers and libraries, 175
Python with Neo4j
application, 170
GET Route, 174
graph preparation, 180-181
login process, 183-185
micro framework, 174
social graph model, 182-183
User Settings, 185-190

R

Relationship
creation, 225
deletion, 226
retrieving, 226

S, T
Sign-up
adding, user, 281-282
Signup Controller class, 280-281
Sinatra application configuration, 229
Sinatra web framework
database connection, 221
micro framework, 221
Slim PHP
local apache configuration, 125
micro framework, 125
Social graph, 28-30
Social graph model

www.it-ebooks.info

http://www.it-ebooks.info/

connecting users, 235, 237-238
sign up, 133, 230, 337-338
sign-up route, 133-134, 230
user addition, 134-135, 231, 338
Social media applications, 187
Spring Data Neo4j (SDN)
Apache Tomcat and HTTP, 267
Aptana Plugin, 263
configuration, 275-277
connecting users, 288-290
controller and
service layers, 277
deleting, relationship, 271
Eclipse plugin, 264-265
graph preparation, 274
hosts file, 266
IDE, 262
language drivers
and libraries, 268
language-specific capabilities, 268
local Apache Tomcat, 266
login (see Login section)
LogWatcher, 264
MVC pattern, 261
node
creation, 268-269
entity, 278
removal, 270
relationship creation, 270
relationship retrieval, 271
retrieving and updating, node, 269
sample application, 274-275
social graph model, 277
SWMVC (see Spring Web
model-view-controller (SWMVC))
user node entity, 278
user updating, 285
Spring data repositories, 279-280

Spring Web model-view-controller (SWMVC)

Controller, 266

HomeController, 266
Status updates

addition, 239-240

controller and view, 239

deletion, 243

edition, 241-242

get_content method, 239

Structured Query Language (SQL)
Delete command, 43
Insert and Create, 41
Select and Start/Match, 41-42
Set command, 42
Update command, 42
Struts2 application configuration, 334-335

uv
User-generated content
addition, status updates, 144, 294-295
CURRENTPOST and NEXTPOST, 143
deleting status updates, 148-149
editContent method, 147
editing status updates, 146, 295-296
mapped query Results, 292-293
public static function, 148
sample application, 290
status update deletion, 296, 298
status updates, 143-144, 291
User-Generated Content
Content class, 194
description, 191
status updates
addition, 192-193
deleting, 196
description, 191
editing, 192, 194
User settings
action, 342
connecting users, 140-141, 143
edit route, 139
form, 341-342
front-end code, 138
sign up and login sections, 138
update method, 139, 343
User update
controller, 287
edit Route, 235
form, 234-235, 286
method, 235, 287

W, X,Y,Z

Web Server Gateway Interface, 174
wsgi_module, 169

www.it-ebooks.info

INDEX

383

http://www.it-ebooks.info/

Practical Neo4j

Greg Jordan

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

Practical Neo4j

Copyright © 2014 by Gregory Jordan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0023-0
ISBN-13 (electronic): 978-1-4842-0022-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Jeff Olson

Developmental Editor: Robert Hutchinson

Technical Reviewers: Kenny Bastani, Jeremy Kendall, Brad Montgomery, Daniel Prichett, Brian Swanson

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando

Copy Editor: Laura Lawrie

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Dedicated to my beautiful wife, Rachel, and our three amazing boys,
Gregory, Samuel, and Andrew

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

=T o Xv
About the AUtROrccommimm e —————————————_ xvii
About the Technical REVIEWErScccsssssmsssssssssssssmssssssssssssssssssssssssssssssssssssssansnsassssnsnsansas Xix
ACKNOWIEAdgMENLSccuiiriiiisssssnnennnnnesssssssssssssnsseessssssssssssnnnseesssssssssnnnnnssesssssssssnnnnnnnsssssssnnn Xxi

Part 1: Getting Started...........ccosccmnnincnnnnn s 1

Chapter 1: Introduction to Graphs.........cccciniseemmmmisssnnmmmsssnnmmssssness s ——————————— 3
(6T Vo] (TSRS 4
(CT 1ol D7 L Lo T2 -SSR 6
Nodes and RelationShiPScveeerrirnenerirnesesersee e s s s s s nesan e nnnsns 6
10 3 (2 7
Relational Databases and NEO4jc.cccerrererrcrin s n e s ne s 7
NOSQL @NU NEOAeeerereririr s s s s e s s n s sr s n s n e n e sn e nn e nn e nsnn e nnennnnnennnnnnnas 8
BT 1111 SRR 9
Chapter 2: Up and Running with Ne04j.......cursuemmmmmmmmmsssssssssssnnssmsssssssssssssnsssssssssssssssnsnssnnss 11
NBOA ...eeeeeieeret s s s e s e e s a e e r e e Re e s R e e Re R e e AR R e e nRe R AR R e e Re e e R e EnRe e e e 11
Requirements and InStallation ... —————— 11
REQUIFBMENTS ... e e e 12
L1270 1 12

- 1 13
INSTANAHON ... s 14
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

THE NEOAJ BrOWSETccerererererserses st s ses st se st st st e e s et st se s e e se s sn e sa e sn s e e s s sn e sn e sn e nn s n s 15
INErOAUCING CYPREE ... sr e e r e a e a e s r e sr e r e r e nn e nn e snennennennennnnnnns 17
L0 (T LRSS 18
] ;1 OSSOSO 18
12 RSOSSN 18
SBL rvuureeeuseestueesuseesssses s s s s R a R AR R SRR R SRR RS R R R AR AR R AR R AR AR p e 19
BT 1111 PSSR 19

Part 2: Managing Your Data with Neo4j..........ccccccnmnnmssnssesmmnmmnnmssssssssssnnnnnns 21

Chapter 3: Modelingccuvemmemmssmsssmssmsssmssmsssssssssssssss s s s s s s ssnsssnsssmssnnsnnnsnnnsn 23
Data MOUEIINGcoueeeeeeeeece e sresr e r e sr e sr e sn e s n e sn e er e srennenn e snennenrennnnnnnnnns 23
Data MOeliNg OVEIVIBW......cccccciuiiereere e a s e bbb e R e s ae e e e R et Re e nesnnnennnanas 23
Why Is Data Modeling IMPOrant?...........ooeercrrere e s e r s s r e s s e p e 23
Data Model COMPONENTScccoiieiieir et se e e s s e e e R et Re e ne e s nennnanns 24
Entity-RelationShip MOUEL.........co.oc e s e e s b e e nn e 24
ENEIEIES .. ——————— 24
T (0] 1] 1] 1RSSR 25
ALTIDULES ..o 25
Challenges in Using Entity-Relationship Modeling with Neo4j ... 26
Modeling With NEOA ..ot s 26
Modeling RelatioNSNIPScccovvieeiiierireecrirre s e e nenp s 27
MOdeling CONSTIFAINTS.......cccccvirierecrceire e s se e e s e e e e et ae e aesesae e naens 28
MOOEIING USE CASEScruerererererserersessessessessessessessessessessessessesssssssssssssssssssnsssssnssnsssssssssssssssssanns 28
ST L= o] 28
T T =T =] R 30
LT 1T T o110 = o R 32
LI T2 1 0 3 T o R 34
11 =] 1 1 - R 35
BT 111 1= TSRS 37
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 4: QUErYiNg......ccusesssesmsssssssssssasssassssssssssssssssssnsssnssssssssssnsssnsssnssssssnsssnsssnsssnsssnssnnss 39
CYPNEE BASICS......ciueieerieirerieriessesse s ssesse e ssesaessesaessssaessesaesaesnessesaesaesaesaesaena e s e nnenaenaesaenaennennnsannnns 39
L 2 T 0] LTSRS 39
L0010 L 117 40
ES 0 (03] o 2T S 4
INSERT @NA CREATE.......couseeueesseesessssesssesssssssssssssessssssssssssesssnssssssssnsssssssssssssesssnssssssssessssessssssssesssnssssnssssssssesssness M
SELECT @Nd START / MATCH........omruumeeseesssessesssssssssssssesssnssss M
UPDATE @GN0 SETeuuvvueesseessesssnessessssessssssssssssessssssssssssessssesssnssssessssssssssssnssssesssnssssssssessssssssessssssssssssssssssssssesssness 42
DELETE ...vvvuoevusesssessseesssesssessssesssssssessssessssssssnssssesssnssssssssessssesssnssssssssnssssesssnssssesssnssssssssessssssssnssssessnssssnsssnssssnsssnees 43
CYPREE ClAUSES....ccveruerrerrersersersersessessessesssssesaessesssssssssssssssssssassassassassassasssssssssessssssssssassasssssasssssaens 43
312 (1] 43
WITH, ORDER BY, SKIP, @00 LIMIT.......ccoeruurrreerssnsssnns 44
L1 o RSO TR SRR 44
2T [0 L] 3T 45
1= (1 3PS TPR 45
OPLIONAL IMALCH ... s R R e e Re e s s Re e e e s Re e e nenpnnn s 46
WHBIE ...ttt e s s e R e e e s R e e e e R e e e e e R e Re e A e A e AR e e e R e Re e e A e Re e e s nRe e e e nReRnnnes 46
SEAM...vuoeverreseeses st bbb s a R R R R AR AR AR 47
L3 47
2 PP 47
REMOVEovuueesmeessnesssessssesssessssssssssssessssssssnssssessssssssssssessssesssnssssssssnssssssssnssssesssnssssssssessssesssmssssesssnsssssssnssssnsssness 48
SUMMEATY ...t e e e R e Re e e e Re e e e R e e e Re e e e e Re e nRe e e e ene e nanas 48

Chapter 5: Importing from Another Data Source..........cccuscemmmnssmnnmnsssssnnsnsssssssssssssssnennss 49

IMPOrt CONSIARIALIONScveeieeerccee e e sa s e e ne e naeas 49
e 111 0] SRS 50
TeSt DA With CYPRET ... e e ne e e s s nnn e e 50
Test Data With LOAU CSV........ocrererre ettt sa s e s se s s s s e st e p e e 51

E3 111 1P S 58
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 6: Extending Ne04jcccerrrssmmmsssnsmssssnsssssnsssssnsssssssesssnsessansesssnsesssnsesssnsssssnnsssnns 59
Plugin Development Environment for NE04j........ccceeevererereesersesse e sss s sssses e ssssnsssssnsssssenns 59
IDE ..evueeveeeeesusesssssessssesssssesssses s s s s bR s bR SRR AR AR AR R AR R AR AR AR R e 59
MAVEN PIUGIN ...ttt s R e R e e b e Re e e s e Re e e s s Re e e nenpnnn s 60
Setting Up Maven PrOJECTScocouiiieierecc sttt se e sa e e s s sttt se s et sae e naes 62
0T TR TeT VT g o[0T 1 RS S 64
SECUNTY PIUGINSeveeeieeirereeiserss e et sa s s e se s n e s et a e ae e e ene e nnens 65
Unmanaged EXTENSIONS.........coeieeeiereccrre e sse e s ssesaessesnesnesnssn s sn s sn s sn s sn s sa e sr e nn e nnennennnns 67
R3] 1P 7S 68

Part 3: Developing with Neodjccccccmmrnnssssseemmnnmmssssssssssssnsnsssssssssssssnnness 69

Chapter 7: Neo4j + .NET.........ccccuvcemsmmsmmsemmsmmmssssssmsssssssmsssssssssssssssssssssssssssnsssnsssnsnnnsnnnssnnas 4
.NET and Neo4j Development ENVIrONMENt...........cccovriririrsensenscr s ses e sesnnnns 4l
Installing Visual Studio EXPress fOr WED..........cccovreerrniescsnsescssssse s sesss s sessssssssssessssenes 4l
T T 08T | SRS 72
Managing Nodes and RelationShiPScccvurvererererereenererereresseressersesessesessessssessesessesessessssesassessssessssessssassssesaens 73
ST LR 76
0100 o T R 77
Developing a .NET Neo4j Applicationccccvererseisnsensssses s ssssessessss e ssssnssnsssssnssnssnnnnnns 77
Preparing the Graph..........cococceccsiresr e se e e e e R e e Re e Re e nnenrnnnas 77
Lo TH E L C T Vo) T T OSSR 80
I 1 SO STR SRS 85
UPAALING @ USEE ...ttt s e s e e s bbb s e s b e R et R e e e R e ndeRe e e e e e R et e Re e eRennnnenenanes 88
User-Generated CONENT ..o s 93
INTErESt Graph MOUELcveeeeeceer e e a e s 100
Consumption Graph MOGEIcoevererinene e sa e a e s a e a e e e e b e s 104
LoCAtioN Graph MOGEL..........coeeeeeercr e s e s a e e e b e e e e e e e e e e e e e e et e na e e e e e e e s 108
INTENT GrAPh MOUEL ... e a e e e s e s 112
1111 1= 2SSOSR 118

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 8: Neo4j + PHPccccvimnsmmissmssmsssmss s s sssssssssss s s ssssssnsssssssnssssssnssnsnsnnnns 119
PHP and Neo4j Development ENVironment............cocoocvvvvrcrcsscnscn s sss e e 120
IDE ...oeeeeeesesessessessess s s s AR AR AR 120
Adding the ProjECt t0 ECIIPSE.....cccevrurreerirerreiesiressse e ssse e ss s e ss s sss s e s ssssssssssnssnnnnns 122

0] 11010 LT TP 124
SIM PHP ...ttt s s s s s s bbb 125
NEOAJPHP.......ceeeeeeeet ettt r e a s e s r e R e e Re e e Re e n e e e ae e e nennnnnnns 126
Managing Nodes and RelationSiPscccveerereriererrereeseresereseresessersesessesesassassessssessesssssssssessssessssesssssssesasaens 126
USING LADEIS ..v.vesicisiiisssss st 129
Developing @ PHP and Neo4j AppliCationccccveversensessessensesses s sesssssessesssssnssesssssnssnsssssennes 131
Preparing the Graph........c.ccecs s r e e e e e e s a et p e e R e s e et s a e e ene e e Rennnanas 131
SOCIAl GrAPN MOGEL........oeeeeceecte e e sa e e s e e e e e e e e e e e e e sa e e e na e e e naenaenaennens 133

I 1 PSR STRSRSR SRS 135
UPAALING @ USEE ..ottt sn e s a e s e s bbb e e e R et R e e e Re e e Re R et e R e e eRe e nRenennnan 138
User-Generated CONENT ... s 143
INTEreSt Graph MOUELcveeeeee e e s e sa e e e s 149
Consumption Graph MOGEIcoererieiinencre e sr s e sa e e s e e b e s 153
LoCAtioN Graph MOGEL.........coeiueeecc e a e a e s a e s r e s e b e sa e e e s 157
Intent Graph MOGEI ... ———————————————— 162
1111 1= 2SSOSR 167
Chapter 9: Neo4j + PYthon........ccccccuminnmemmnmmssssnmmmsssssmmssnsnssss 169
Python and Neo4j Development Environment............ccocvvrvrcrcrsnscscssesses e 170
IDE ...oeeeeeesesessessessess s s s AR AR AR 170
Adding the ProjECt t0 ECIIPSE......ccceurureeerererreieseressseses e ses s e s s e sesssss s s sssssssssssssnssnsnens 172
Bottle Web Framework fOr PYthON ..o 174
Local APache CONFIQUIALION..........ccoceureierererresesesirse s e s e e e as s e s nnnns 174

g 74 1 T TSSOSO 175
Managing Nodes and RelationSiPsccveeerereriererrereeseresereseresessessesessesessssassessssessesssssssssessssessssesssssssesasaens 175
ST I L 178

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Developing a Python and Neo4j AppliCation...........ccccveverereensresns s ses s e sesseenes 180
Preparing the GIaPN........cccccrerrererererersssersesesseseseresesaesessesesssssssesassessssessesassssassessssesssssssssssessssessssessessssenanaens 180
Yoo V=T 8 (0o [182
T 1 183
1 o F LT T T O 185
User-Generated CONTBNT ... s 191
1T L= A= 0] 10T O 197
Consumption Graph MOGEIccveererrererrererere s s reree s e ssere e s s sse e ssesesassa s e sae e sa e e sae e saesassesassesasnenasnananns 200
LOCAtioN GIraph IMOGEL........ccceveeerererererereeserseserseserseres e raesessesessesassesassesaesessesasaesassesassesasnessssssesssserassesssnsnsesansens 204
101 =T 6= o] 11 - O 208

BT 1] 11 12 ST SRS 213

Chapter 10: Neodj + RUDY.......ccousemmsmmssmsnsmssmmsssmssmssssssssssssssssssssssssssssnssssssssssnsssnssnsnsnnnns 215

Ruby and Neo4j Development ENVironmentcoooeeecececcccse s ses s s e e e 216
IDE ...eeeeeeseeeesesseas s s st s e EAE A E R AR AR E AR E s 216
Adding the Project 10 ECIIPSE.......ccciierirereire e se s st a s e b e s e e s p e a e e nennnnas 219
Sinatra Web Framework for RUDY ... s 221

Lo 00 T 223
Managing Nodes and RelationShipscoveeeeerireeencrernesesesese e ssssssessssssnns 224
USING LADEIS ...ttt e s s e e e e e e e b e e e e e e e e R e e Re e nae e 226

Developing a Ruby and Neo4j AppliCation...........cccverererenesnessesses s sss s e s sessessssnes 228
Preparing the GIaPN........ccccceerrererrerersersssersesessesessessssessesessesessessssessssessssessessssssassessssesssssssssssessssessssesssssssesansens 228
Yoo V=T 8 (0o [230
T 1 231
1 o F LT T T O 234
User-Generated CONTBNT ... s 239
1T L= A= 0] 10T O 244
Consumption Graph MOGEIccveererrererrererere s s reree s e ssere e s s sse e ssesesassa s e sae e sa e e sae e saesassesassesasnenasnananns 247
LOCAtioN GIraph IMOGEL........ccceveeerererererereeserseserseserseres e raesessesessesassesassesaesessesasaesassesassesasnessssssesssserassesssnsnsesansens 251
101 =T 6= o] 11 - O 254

BT 1] 11 12 ST S RS 259

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 11: Spring Data NEo04jccuseursesmsemssmsssssssssasssasssnssssssssssssssnsssssssnssssssasssnsnsnsns 261
Spring Data Neo4j Development ENVIroNmMeNtccoovercrcrcscscs s sessenens 262
IDE ...oeeeeeesesessessessess s s s AR AR AR 262
Adding the ProjECt t0 ECIIPSE.....cccevrurreerirerreiesiressse e ssse e ss s e ss s sss s e s ssssssssssnssnnnnns 264
SPHNGWED MV ...ttt e st Re e A Re e e s R e e e e R e e e e nnans 266
HOSES FilB ... 266
Local Apache Tomcat ConfigUration...........oeceeeeerieescnerineseseris e r s 266
Apache Tomcat and APACHE HTTP ..ot nn s 267
SPring DAta NEOA]cceeveeerirersir sttt a s e a s e sn s sa s a e sn e e sn e nn e sn e sn e sn e nnenns 268
Managing Nodes and RelationSiPscccveerereriererrereeseresereseresessersesessesesassassessssessesssssssssessssessssesssssssesasaens 268
ST L 272
Developing a Spring Data Neo4j Application............cccveensnennicnnsne s sss s 274
Preparing the Graph........c.ccecs s r e e e e e e s a et p e e R e s e et s a e e ene e e Rennnanas 274
Using the Sample APPlICALION..........ccveerrriicrrrr e e e e e e e 274
Spring Application ConfigUration ..o e nr e nn e 275
Controller and SErviCe LAYEIScccccerereirerrerre e sse s ssesssssessesassnesssssssssssssssssssssssssssssssssnssnes 277
S0CIaAl GrAPN MOTEL.........ceeeeeceree ettt e e e e e R e e e s e e e nnans 277
USEE NOAE ENILY ...t a e n e 278
070 01 278
SPring Data REPOSITOMIES ...vcveuecrerreecrerieesere s se s e e e s e e s e e e nnns 279

E 04 OSSO 280
0o TP 283
UDAALING @ USEI ...t e s s e e s e e e e s e R e e s e Re e e e s ne s e nensannns 285
CONNECHING USEIS.....cucoeeeeerueererssseesessssessesessesssesessssssesssss s s e sssasssessssesssessssessssssssasssssssssssssnsssessnsssssssessnsssnsansnes 288
User-Generated CONENT ..o 290
INtereSt Graph MOGEL ..o e ena e enn e 299
ConsSUMPLoN GIraPh MOUELceceeeeereeririreeesere s e e e e e s ae e nnnnnns 304
LOCALION GIrAPN MOEL.........coceerereecireeeesere et ensn s e nn e 308
INEENT GFAPN MOE ... e e a e e e npenn s 313

R 111 P2 2SR 318
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 12: Neo4j + JaVacsssssmmssmssmsssssmsssmssssssssssssmssssssssssssssssssssssssnssssssnssnsnnsnnnnans 319
Java and Neo4j Development ENVIronmeNt............ccocvvrcrvrrncncnscs s ses s e 320
IDE ...oeeeeuesesessessessess st s s AR 320
Adding the ProjECt t0 ECIIPSE.....ccceurereeerererreesestsseeses e ses s e s se e s ss s ss s e e sssssssssssnssannnns 322
APACHE STTULS 2.t e e e e R e e R e e e s R e e e e s 324

3 0ES 3 T 325
Local Apache Tomcat ConfigUration..........coueceeeeererescnirnescserseseses e r s 325
Apache Tomcat and APACHE HTTP ..ot nn s 326
NEOAj JDBC DIIVENererererereriesser s ses st st et st st st se st st sa s sa s s sa e sa e sn e sa s snesa e sn e sa e s e nnn s 326
Managing Nodes and RelationShiPsccvererereriererrereesereseresesesessersesessesessesessessssessesssssssssessssessssessssssssnanaens 326
0T T T 331
Developing a Java and Neo4j AppliCationc.cvcvcrvnsssessesss s 333
Preparing the Graph........c.cccccerere s s r e s s e e e s s a e e p e e R e e e e e R e e e ne e e Rennnnnan 333
Using the Sample APPlICALION..........ccveerrriicrrrr e e e e e e e 334
Controller aNd SEIVICE LAYEIS........covurueerereirniesesisssesesesss e sesss s e sesss s s st sss s e e st s s s s sssssesessssssssessssssssssssssnsnes 335

T L S 1= o] 0] 336
S0CIAl GrAPN MOGEL........coeeeeceece e s e saenaeaennens 336

I 1 PSRRI 338
UPAALING @ USEE ...ttt sn e r e s e e st b e e e e e e e R et R e e e Re e e Re e et e R e e eRe e nRenenanan 341
CONNECLING USEIS....ccueceiuerecrresise s s e e sese e ss e se s se e s se e s s s e s e e Re e s Re e e e eR e e e R e e e Re e e RenE e e nRe e eRe e nnenenanes 343
INTEreSt Graph MOUELcveeeeee e e s e sa e e e s 355
Consumption Graph MOGEIcoerererinene e e sa e a e s a e a e e e e e e e s e s 359
LoCAtioN Graph MOGEL.........coeiueeecc e a e a e s a e s r e s e b e sa e e e s 364
INTENT GrAPN MOUEL ... e e e e s e e e e e e e e e e e e e e e e ne e e e e e e e s 369
1111 1= 2SSOSR 377
INA@X eiiueriiesrimsssnnsnsns s sn s s s n s —————— 379

Xiv

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

The modern world is awash with data. But it’s no longer merely gray, pithy views of payroll or accounting information;
now it also represents moments in lives, transportation, healthcare, recreation, and finance.

The volume and intricacy of data we are presented with today is wildly different from the data we worked with
even just a few decades ago. This means that databases are changing, too.

To wit, in the last decade, we've seen the emergence of a new category of data store under the banner of
“NoSQL,” whose motivation is to deal with the substantially increased performance demands and dataset sizes of
modern applications. To achieve these goals of scale and performance, most NoSQL databases have given up on the
relational database notion of building and querying a high-fidelity model. Instead, most NoSQL databases optimize
for the symmetric storage and retrieval of individual, disconnected items known as “aggregate data” With most
NoSQL stores, it’s an easy task to store a customer document and retrieve it, to store a shopping basket and get it back,
or to store a vote and count it.

However, for queries of any reasonable complexity, most NoSQL stores switch to a compute-centric approach.
To analyze data in depth, subsets are extracted from the store and pumped through some compute infrastructure
(typically a MapReduce framework). From the results of that computation, insight arises.

However, connected data poses manifest difficulties for typical NoSQL databases, which manage documents,
columns, or key-value pairs as disconnected aggregates. To create a connected worldview using these stores, we as
application developers must denormalize data and fake connections within an inherently disconnected model. In
turn, renormalizing and reifying connections at query time are vastly more expensive than in a native graph database.

In contrast, graph databases embrace connected data and make querying it rapid and inexpensive—and, dare
I say, also pleasurable. Whereas relational databases choke on intermediate sets as data volumes grow and NoSQL
stores demand ever-more-elaborate external processing support, graph databases crunch through connected data
with the greatest of ease.

This is of great importance because the most interesting questions we want to ask our data require us to
understand the things that are connected and the many different meaningful ways in which those things are
connected. Graph databases such as Neo4j offer the most powerful and performant means for generating this kind of
insight in real time. And since most data is connected, it really is true that graphs are eating the world right now.

While Neo4j has come to prominence alongside other popular NoSQL stores, it is fundamentally dissimilar
to them. Neo4j provides traditional database-like support (including transactions) for highly-connected data and
orders of magnitude better performance than relational databases. Across numerous domains as varied as social,
recommendations, telecoms, logistics, datacenter management, careers management, finance, policing, and
geospatial, Neo4j has demonstrated it’s the de facto choice for managing complex interconnected data.

Because Neo4j is by far the most popular graph database, it’s the one that most developers encounter. First
contact with a relatively new technology such as Neo4j can be overwhelming. There are new tools, APIs, query
languages, and data modeling to be learned, along with performance tuning, bullet-proof deployments, and new
terminology. And let’s not forget a whole host of graph theory from nearly 300 years of history!

But don’t be daunted. Switching to graphs and Neo4j isn’t hard, and with books of the caliber of Practical Neo4j
at hand as your guide, you'll be building and querying graphs in no time.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD

Practical Neo4j provides both general and specific guidance based on Greg Jordan’s vast Neo4j experience.
The general guidance pertaining to graph modeling in comparison to familiar SQL helps provide a great platform
for new Neo4j developers to understand the graph paradigm, and it provides a reference even for experienced folks.
The specific guidance and extensive worked examples in a variety of programming languages provide a rich basis for
developers to build directly upon. The result is a rounded view of Neo4j across the systems development lifecycle for a
variety of platforms.

As a Neo4j contributor and author, I am extremely pleased with Practical Neo4j's breadth and depth. Greg is one
of the most experienced Neo4j users around, and it’s exciting to see his expertise captured for a wide audience.

—Dr. Jim Webber
Chief Scientist
Neo Technology

xvi

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Greg Jordan has been creating software for more than 15 years with a focus on
content systems and mobile applications. He is an avid speaker as well as writer on
the topic of graph databases and has been working with Neo4;j since version 1.5.
Greg holds two Master’s degrees, is a Ph.D. candidate, and resides in Memphis,
Tennessee.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewers

Kenny Bastani is a passionate technology evangelist and and open-source software
advocate in Silicon Valley. As an enterprise software consultant, he has applied a
diverse set of skills needed for projects requiring a full-stack web developer in agile
mode. As an entrepreneur, he has managed the software development life cycle of
many high-volume and high-availability web applications using the .NET technology
stack.

As a developer evangelist for the popular database Neo4j, Kenny has supported
developers from globally recognized companies who have inserted the NoSQL graph
database product inside their technology stack. As a passionate blogger and open-
source contributor, Kenny engages a community of passionate developers who are
looking to take advantage of newer graph processing techniques to analyze data.

Jeremy Kendall is a PHP Developer, open-source contributor, founder and former
organizer of Memphis PHP, new father, and amateur photographer. Jeremy has been
developing for the web in PHP since 2001, and he has a passion for learning, teaching,
open source, and best practices. He currently lives in his hometown of Memphis,
Tennessee, and is the CTO and Lead Developer for Graph Story.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE TECHNICAL REVIEWERS

XX

Brad Montgomery is a software developer and entrepreneur in Memphis, Tennessee.
He has worked predominantly on web-based products and is the cofounder of

Work for Pie—a company that believes that it can find a better way for companies to
recruit software developers. Brad believes in an agile-inspired approach to work, and
he prefers open-source tools. He has built a number of products using Python and
Django, although he fully believes in using the right tool for the job (whether that’s
Python, Ruby, Javascript, C, or a bash script). Brad lives in Bartlett, Tennessee, with
his wonder wife and two amazing daughters (both of whom are growing up way too
quickly).

Daniel Pritchett got his start building financial reports for Fortune 100 companies.
He has worked in corporate IT and in consulting application development in
Memphis, Tennessee. As a consultant with Rails Dog, Daniel is now focusing on
building online stores customized to enable interesting business models. He will
happily talk with you about fitness or ukuleles if you catch him at a local meetup.

Brian Swanson is the leader of the Memphis .Net User Group, Cofounder of
GiveCamp Memphis, and Co-Chairman of the Memphis Technology Foundation.

He embraces all things that help make Memphis, Tennessee, a better place. He’s been
programming for 25-plus years, and he still continues to learn new things. Brian is

an avid runner of marathons and ultramarathons and anything else that gets him
outdoors and away from the computers that he spends so much time on.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

I'would like to thank my technical reviewers: Jeremy Kendall, Brian Swanson, Brad Montgomery, Daniel Pritchett, and
Kenny Bastani.

A big thank you to the wonderful editors and team at Apress, especially Rita Fernando and Jeff Olson.

I'would also like to thank the entire team at Neo Technology, the Neo4j driver developers, especially Michael
Hunger, Tatham Oddie, Josh Adell, Nigel Small, and Max De Marzi, as well as the entire Neo4j community. Thank you
to Emil Eifrem for providing a great presentation at ApacheCon and kickstarting the journey.

Finally, thank you to Jason Gilmore for the introduction to Apress and advice along the way.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Part 1: Getting Started
	Chapter 1: Introduction to Graphs
	Graph Theory
	Graph Databases
	Nodes and Relationships
	Labels
	Traversal

	Indexes

	Relational Databases and Neo4j
	NoSQL and Neo4j
	Summary

	Chapter 2: Up and Running with Neo4j
	Neo4j
	Requirements and Installation
	Requirements
	Versions
	Java
	Installation
	Windows
	Linux/Unix
	Mac OSX

	The Neo4j Browser
	Introducing Cypher
	Create
	Start
	Match
	Set

	Summary

	Part 2: Managing Your Data with Neo4j
	Chapter 3: Modeling
	Data Modeling
	Data Modeling Overview
	Why Is Data Modeling Important?
	Data Model Components
	Entity-Relationship Model
	Entities
	Relationships
	Attributes
	Challenges in Using Entity-Relationship Modeling with Neo4j

	Modeling with Neo4j
	Modeling Relationships
	Modeling Constraints

	Modeling Use Cases
	Social Graph
	Interest Graph
	Consumption Graph
	Location Graph
	Intent Graph

	Summary

	Chapter 4: Querying
	Cypher Basics
	Transactions
	Compatibility

	SQL to Cypher
	INSERT and CREATE
	SELECT and START / MATCH
	UPDATE and SET
	DELETE

	Cypher Clauses
	Return
	WITH, ORDER BY, SKIP, and LIMIT
	Using

	Reading
	Match
	Optional Match
	Where
	Start

	Writing
	SET
	REMOVE

	Summary

	Chapter 5: Importing from Another Data Source
	Examples
	Test Data with Cypher
	Test Data with Load CSV
	Creating a Unique Index
	Creating Relationships
	Loading the Relationships

	Adding the Content Using a Linked List
	Loading the “Current” Status
	Loading the “NEXT” Status

	Adding User Favorites

	Summary

	Chapter 6: Extending Neo4j
	Plugin Development Environment for Neo4j
	IDE
	Maven Plugin
	Installing the SLF4J Plugin
	Installing the Maven Plugin

	Setting Up Maven Projects

	Neo4j Server Plugins
	Security Plugins
	Unmanaged Extensions
	Summary

	Part 3: Developing with Neo4j
	Chapter 7: Neo4j + .NET
	.NET and Neo4j Development Environment
	Installing Visual Studio Express for Web
	Adding the Project to Visual Studio

	Neo4jClient
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label

	Debugging

	Developing a .NET Neo4j Application
	Preparing the Graph
	Using the Sample Application
	.NET Application Configuration
	Neo4jModule and Ninject
	Controller and Service Layers

	Social Graph Model
	User Node Entity
	Node Entities
	Sign-Up
	Sign-Up Controller

	Adding a User

	Login
	Login Form
	Login Controller
	Login Service

	Updating a User
	User Update Form
	User Controller
	User Update Method
	Connecting Users

	User-Generated Content
	Getting Status Updates
	Using View Models
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Tag Entity
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Product Entity
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Location Entity
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User’s Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Chapter 8: Neo4j + PHP
	PHP and Neo4j Development Environment
	IDE
	Aptana Plugin

	Adding the Project to Eclipse
	Composer
	Slim PHP
	Local Apache Configuration

	Neo4jPHP
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label
	Querying with a Label

	Developing a PHP and Neo4j Application
	Preparing the Graph
	Using the Sample Application
	Slim Application Configuration

	Social Graph Model
	Sign Up
	Sign-Up Route
	Adding a User

	Login
	Login Form
	Login Route
	Login Service

	Updating a User
	User Update Form
	User Edit Route
	User Update Method
	Connecting Users

	User-Generated Content
	Getting the Status Updates
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User’s Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Chapter 9: Neo4j + Python
	Python and Neo4j Development Environment
	IDE
	Aptana Plugin
	Log Watcher

	Adding the Project to Eclipse
	Bottle Web Framework for Python
	Local Apache Configuration

	Py2neo
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label
	Querying with a Label

	Developing a Python and Neo4j Application
	Preparing the Graph
	Using the Sample Application
	Bottle Application Configuration

	Social Graph Model
	Sign-Up
	Sign-Up Route

	Adding a User

	Login
	Login Form
	Login Route
	Login Service

	Updating a User
	User Update Form
	User Edit Route
	User Update Method
	Connecting Users

	User-Generated Content
	Getting the Status Updates
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User’s Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Chapter 10: Neo4j + Ruby
	Ruby and Neo4j Development Environment
	IDE
	Aptana Plugin

	Adding the Project to Eclipse
	Sinatra Web Framework for Ruby
	Local Apache Configuration

	Neography
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label
	Querying with a Label

	Developing a Ruby and Neo4j Application
	Preparing the Graph
	Using the Sample Application
	Sinatra Application Configuration

	Social Graph Model
	Sign Up
	Sign-Up Route
	Adding a User

	Login
	Login Form
	Login Route
	Login Service

	Updating a User
	User Update Form
	User Edit Route
	User Update Method
	Connecting Users

	User-Generated Content
	Getting the Status Updates
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User's Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Chapter 11: Spring Data Neo4j
	Spring Data Neo4j Development Environment
	IDE
	Aptana Plugin
	LogWatcher

	Adding the Project to Eclipse
	Spring Web MVC
	Hosts File
	Local Apache Tomcat Configuration
	Apache Tomcat and Apache HTTP

	Spring Data Neo4j
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label
	Querying with a Label

	Developing a Spring Data Neo4j Application
	Preparing the Graph
	Using the Sample Application
	Spring Application Configuration
	Controller and Service Layers
	Social Graph Model
	User Node Entity
	Node Entities
	Spring Data Repositories
	Sign-Up
	Sign-Up Controller
	Adding the User

	Login
	Login Form
	Login Controller
	Login Service

	Updating a User
	User Update Form
	User Controller
	User Update Method

	Connecting Users
	User-Generated Content
	Getting the Status Updates
	Mapped Query Results
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Tag Entity
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Product Entity
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Location Entity
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User’s Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Chapter 12: Neo4j + Java
	Java and Neo4j Development Environment
	IDE
	Aptana Plugin
	LogWatcher

	Adding the Project to Eclipse
	Apache Struts 2
	Hosts File
	Local Apache Tomcat Configuration
	Apache Tomcat and Apache HTTP

	Neo4j JDBC Driver
	Managing Nodes and Relationships
	Creating a Node
	Retrieving and Updating a Node
	Removing a Node
	Creating a Relationship
	Retrieving Relationships
	Deleting a Relationship

	Using Labels
	Adding a Label to Nodes
	Removing a Label
	Querying with a Label

	Developing a Java and Neo4j Application
	Preparing the Graph
	Using the Sample Application
	Struts2 Application Configuration

	Controller and Service Layers
	ResultSetMapper
	Social Graph Model
	Sign Up
	Sign-Up Action

	Adding a User

	Login
	Login Form
	Login Action
	Login Service

	Updating a User
	User Update Form
	User Action
	User Update Method

	Connecting Users
	User-Generated Content
	Getting the Status Updates
	Adding a Status Update
	Editing a Status Update
	Deleting a Status Update

	Interest Graph Model
	Interest in Aggregate
	Filtering Managed Content
	Filtering Connected Content

	Consumption Graph Model
	Capturing Consumption
	Filtering Consumption for Users
	Filtering Consumption for Messaging

	Location Graph Model
	Search for Nearby Locations
	Locations with Product

	Intent Graph Model
	Products Purchased by Friends
	Specific Products Purchased by Friends
	Products Purchased by Friends and Matches User’s Tags
	Products Purchased by Friends Nearby and Matches User’s Tags

	Summary

	Index

