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Suppose that we were asked to arrange the following in two
categories - distanee, mass, electric forwe, entropy, beauty,
melodly. 1 think there are the strongest grounds for placing
entropy alongside beauty and melody ...

Eddington A, The Nature of the Physical World, 1928.
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Preface

This book is intended to provide a coherent and succinct account of
information theory. In order to develop an intuitive understanding
of key ideas, new topics are first presented in an informal tutorial
style before being described more formallly. In particular, the equations
which underpin the mathematical foundations of information theory are
introduced on a need-to-know basis, and the meaning of these equations
is made clear by explanatory text and diagrams.

In mathematics, rigour follows insight, and not wvice versa. Kepler,
Newton, Fourier and Einstein developed their theories from deep
intuitive insights about the structure of the physical world, which
requires, but is fundamentally different from, the raw logic of pure
mathematics.  Accordiinglly, this book provides insights into how
information theory works, and why it works in that way. This is entirely
consistent with Shannon’s own approacth. In a famously brief boak,
Shannon prefaced his account of information theory for comtinuous
variables with these words:

We will not attempt in the continuous case to obtain our
results with the greatest gemerallity, or with the extreme
rigor of pure mathematics, since this would involve a great
deal of abstract measure theory and would obscure the
main thread of the analysis. ... The occasional liberties
taken with limiting processes in the present analysis can be
justified in all cases of practical interest.

Shannon C and Weaver W, 1949%)



In a similar vein, Jaynes protested that:

Nowadays, if you introduce a variable x without repeating
the incantation that it is some set or ‘Space’”X, you are
accused of dealing with an undefined problem ...

Jaynes ET and Bretthorst GL, 2003%5.

Even though this is no excuse for sloppy mathematics, it is a clear
recommendation that we should not mistake a particular species of
pedantry for mathematical rigowr. The spirit of this liberating and
somewhat cavalier approach is purposely adopted in this boalk, which
is intended to provide insights, rather than incantations, regarding how
information theory is relevant to problems of practical interest.

MatLab and Python Computer Code

It often aids understanding to be able to examine well-diocumented
computer code which provides an example of a particular calculation
or method. To support this, MatLab and Python code implementing
key information-theoretic methods can be found online. The code also
reproduces some of the figures in this boak.

MatLab code can be downloaded from here:
http://jim-stone.staff.sthefl aacult BRedd iféleory /InfoTheoryMatlak. html
Python code can be downloaded from here:

hitp://jim-stone staff.shef.ac.uk/BookInfoTheory/InfoTheoryPython Jutml

PowerPoint Slides of Figures

Most of the figures used in this book are available for teaching purposes
as a pdf file and as PowerPoint slides. These can be downloaded from
http://jim-stone staff.shef. ac.uk/BookInfoTheory/InfoTheoryFigures.html

Corrections

Please email corrections to j.v.stone@sheffield.ac.uk.
A list of corrections can be found at
http://jim-stone.staff.sihefl aaculdd Fdedd liftcdIeory /Correctioms. html
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Chapter 1

What Is Information?

Most of the fundamental ideas of science are essentially
simple, and may, as a rule, be expressed in a language
comprehensible to everyomne.

Einstein A and Infeld L, 1938.

1.1. Introduction

The universe is conventionally described in terms of physical quantities
such as mass and veloditly, but a quantity at least as important as
these is informatiem. Whether we consider computers®), evolution2 1,
physies'5, artificial intelligence®, quantum computation¥s, or the
braim 743, we are driven inexorably to the conclusion that their
behaviours are largely determined by the way they process informatiom.

Figure 1.1. Claude Shannon (1916-2001).



1 What Is Information?

In 1948, Claude Shannon published a paper called A Mathematical
Theory of Communication*8. This paper heralded a transformation in
our understanding of information. Before Shannon’s paperr, information
had been viewed as a kind of poorly defined miasmic fluid. But after
Shannon’s paper, it became apparent that information is a well-defined
and, above all, measurable quantiiy.

Shannon’s paper describes a subtle theory which tells us something
fundamental about the way the universe works. Howewver, unlike
other great theories such as the Darwin-Wallace theory of evolutiom,
information theory is not simple, and it is full of caveats. But we
can disregard many of these caveats provided we keep a firm eye on the
physical interpretation of information theory’s defining equations. This
will be our guiding principle in exploring the theory of informatiom.

1.2. Informatiom, Eyes and Evolution

Shannon’s theory of information provides a mathematical definition
of informatiom, and describes precisely how much information can be
communicated between different elements of a system. This may not
sound like much, but Shannon’s theory underpins our understanding of
how signals and noise are related, and why there are definite limits to
the rate at which information can be communicated within any system,
whether man-made or biologjicall. It represents one of the few examples
of a single theory creating an entirely new field of research. In this
regard, Shannon’S theory ranks alongside those of Darwin-Wallace,
Newtomn, and Einsteiin.

When a question is typed into a computer search engine, the results
provide useful information but it is buried in a sea of mostly useless
data. In this internet age, it is easy for us to appreciate the difference
between information and data, and we have learned to treat the
information as a useful ‘Signal’and the rest as distracting ‘fioise’> This
experience is now so commonplace that technical phrases like ‘Signal
to noise ratio’”are becoming part of everyday language. Even though
most people are unaware of the precise meaning of this phrase, they
have an intuitive grasp of the idea that ‘data’“means a combination of
{(useful) signals and ((useless) noise.



1.3. Finding a Route, Bit by Bit

The ability to separate signal from noise, to extract information from
data, is crucial for modern telecommunications. For example, it allows
a television picture to be compressed to its bare information bones and
transmitted to a satellite, then to a TV, before being decompressed to
reveal the original picture on the TV screemn.

This type of scenario is also ubiquitous in the natural world. The
ability of eyes and ears to extract useful signals from noisy sensory data,
and to package those signals efficiently, is the key to survivalSi. Indeed,
the efficient coding hypothesis3843% suggests that the evolution of
sense orgams, and of the brains that process data from those orgams, is
primarily driven by the need to minimise the energy expended for each
bit of information acquired from the environment. More generallly, a
particular branch of brain science, computational neuraescience, relies
on information theory to provide a benchmark against which the
performance of neurons can be objectively measured.

On a grander biological scale, the ability to separate signal from noise
is fundamental to the Darwin-Wallace theory of evolution by natural
selectiom. Evolution works by selecting the individuals best suited to
a particular environment so that, over many generations, information
about the environment gradually accumulates within the gene poall
Thus, natural selection is essentially a means by which information
about the environment is incorporated into DNA (dieaxyribonucleic
acid). And it seems likely that the rate at which information is
incorporated into DNA is accelerated by an age-old biological mystey;,
sex. These and other applications of information theory are described
in Chapter 9.

1.3. Finding a Route, Bit by Bit

Information is usually measured in bits, and one bit of information
allows you to choose between two equally probable alternatives. The
word bit is derived from binary digz£ (i.e. a zero or a one). However, as
we shall see, bits and binary digits are fundamentally different types of
entities.

Imagine you are standing at the fork in the road at point A in Figure
12, and that you want to get to the point marked D. Note that this
figure represents a bird’s-eye view, which you do not have; all you have

3



1 What Is Information?

is a fork in front of you, and a decision to make. If you have no prior
information about which road to choose then the fork at A represents
two equally probable alternatives. If I tell you to go left then you have
received one bit of informatiom. If we represent my instruction with a
binary digit (@2left and 1=niggit) then this binary digit provides you
with one bit of informatiom, which tells you which road to choose.

Now imagine that you stroll on down the road and you come to
another fork, at point B in Figure 1.2. Again, because you have no
idea which road to choose, a binary digit (I=night) provides one bit
of informatiem, allowing you to choose the correct road, which leads to
the point marked C.

Note that C is one of four possible interim destinations that you
could have reached after making two decisions. The two binary
digits that allow you to make the correct decisions provided two bits
of informatiom, allowing you to choose from four (equally probathlks)
possible alternatives; 4 happens to equal 2x 2= 22.

A third binary digit (I=mighit) provides you with one more bit of
informatiom, which allows you to again choose the correct road, leading
to the point marked D.4

Figure 1.2 How many roads must a man walk down? For a traveller who
does not know the way, each fork in the road requires one bit of information
to make a correct decisiom. The Gs and 1s on the right-hand side summarise
the instructions needed to arrive at each destimatiom; a left turn is indicated
by a @ and a right turn by a 1.

4



13. Findimg a Route, Bit by Bit

There are now eight roads you could have chosen from when you
started at A, so three binary digits (which provide you with three
bits of informatiom) allow you to choose from eight equally probable
alternatives; 8 happens to equal 2x 2x 2=23=8.

The decision taken at A excluded half of the eight possible
destinations shown in Figure 1.2 that you could have arrived at.
Similanly, the decision taken at each successive fork in the road halved
the number of remaining possible destinatioms.

A Journey of Eight Alternatives

Let’S summarise your journey in terms of the number of equally
probable alternatives:

If you have 1 bit of information then you can choose between 2
equally probable alternatives (i.e. 2'1= 2).

If you have 2 bits of information then you can choose between 4
equally probable alternatives (i.e. 22 =4)).

Finallly, if you have 3 bits of information then you can choose
between 8 equally probable alternatives (i.e. 23= 8).

We can restate this in more general terms if we use n to represent the
number of forks, and m to represent the number of final destinations.
If you have come to n forks, then you have effectively chosen from

m — 25 final destinations. an

Because the decision at each fork requires one bit of informatiom, n
forks require n bits of informatiom, which allow you to choose from 2f
equally probable alternatives.

There is a saying that “4 journey of a thousand miles begins with a
single step”? In fact, a journey of a thousand miles begins with a single
decision: the direction in which to take the first step.

Key paoiint. One bit is the amount of information required to
choose between two egually probable alternatives.




1 What Is Information?

Binary Numbers

We could label each of the eight possible destinations with a decimal
number between 0 and 7, or with the equivalent binary number, as
in Figure 1.2. These decimal numbers and their equivalent binary
representations are shown in Table 1.1. Counting in binary is analogous
to counting in decimall. Just as each decimal digit in a decimal number
specifies how many 1s, 10s, 100s (etc) there are, each binary digit in
a binary number specifies how many 1s, 25, 4s (etc) there are. For
example, the value of the decimal number 101 equals the number of
1005 (G.e. 102), plus the number of 105 G.e. 104), plus the number of 1s

@i.e. 107
(@ 100) + @x 1)+ @xI)) = I0L @2

Similanlly;, the value of the binary number 101 equals the number of 4s
@.e. 22), plus the number of 25 (.e. 24), plus the number of 1s G.e. 2%

AxH+OxD+@AxD = & @s3)

The binary representation of numbers has many advantages. For
instance, the binary number that labels each destination (e.g. QiL)
explicitly represents the set of left/right instructions required to reach
that destinatiom. This representation can be applied to any problem
that consists of making a number of two-way (d.e. binary) decisions.

Logarithms

The complexity of any journey can be represented either as the number
of possible final destinations or as the number of forks in the road which
must be traversed in order to reach a given destinatiom. We know that
as the number of forks increases, so the number of possible destinations
also increases. As we have already seem, if there are three forks then
there are 8 = 23 possible destinatioms.

Decimal 0 1 2 3 4 5 6 7
Binary 000 | 001 | 010 | @il | 100 | 101 | 110 | 111

Table 1.1. Decimal numbers and their equivalent binary representatioms.
6



13. Finding a Route, Bit by Bit

Viewed from another perspectiive, if there are m — 8 possible
destinations then how many forks n does this imply? In other words,
given eight destinatioms, what power of 2 is required in order to get
8? In this case, we know the answer is n = 3, which is called the
logarithm of 8. Thus, 3 = log28is the number of forks implied by eight
destinatioms.

More generallly, the logarithm of m is the power to which 2 must be
raised in order to obtain m; that is, m = 2f. Equivalemilly, given a
number m which we wish to express as a logarithmm,

n = logZm. @9

The subscript 2 indicates that we are using logs to the base 2 (all
logarithms in this book use base 2 unless stated otherwise). See
Appendix C for a tutorial on logaritiums.

A Journey of log2(8) Decisions

Now that we know about logarithms, we can summarise your journey
from a different perspectiive, in terms of bits:

If you have to choose between 2 equally probable alternatives
(G.e. 241) then you need 1{(= log22'1= log22) bit of informatiom.

1f you have to choose between 4 equally probable alternatives
(.. 22) then you need 2(= log222 = log24) bits of informatiom.

If you have to choose between 8 equally probable alternatives
(@.e. 2%) then you need 3(= log223 = log28) bits of informatiom.

More generallly, if you have to choose between m equally probable
alternatives, then you need n = log2m bits of informatiom.

Key poimt. If you have n bits of informatiom, then you
can choose from m = 2fH equally probable alternatives.
Equivalemntlly, if you have to choose between m equally probable
alternatives, then you need n = loggm bits of informatiom.




1 What Is Information?

1.4. A Million Answers to Twenty Questions

Navigating a series of forks in the road is, in some respects, similar to
the game of ‘20 questions’” In this game, your oppoment chooses a word
(wsually a noun), and you (fthe astute questiomer) are allowed to ask
20 questions in order to discover the identity of this word. Cruciily;,
each question must have a yes/no (i.e. binary) answer, and therefore
provides you with a maximum of one bit of informatiom.

By analogy with the navigation examplle, where each decision at a
road fork halved the number of remaining destinations, each question
should halve the number of remaining possible words. In doing so, each
answer provides you with exactly one bit of informatiom. A question to
which you already know the answer is a poor choice of questiom. For
example, if your question is, “Is the word in the dictionary?”; then the
answer is almost certaiinlly, “Yes!”; an answer which is predictafble, and
which therefore provides you with no informatiom.

Comvenselly, a well-chosen question is one to which you have no idea
whether the answer will be yes or no; in this case, the answer provides
exactly one bit of informatian. The cut-down version of ‘20 questions’~
in Figure 1.3 shows this more clearly.

Fish 0 00

Bird 001
Dog 010

Cat 011
ca 100

van 101
Truck1 10

Bus 111

Figure 1.3. The game of ‘20 questions’; here abbreviated to ‘8 questions’
Given an opponent who has one of eight words in mind, each yes/no question
halves the number of remaining possible words. Each binary number on the
right summarises the sequence of answers required to arrive at one word
{@o=0 and yes=ID).
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14. A Million Answers to Twenty Questions

In this game, your oppoment has a vocabulary of exactly eight words,
and you know which words they are. Your first question (QL) could be,
“Is it inanimatie?”; and the answer should halve the number of possible
words to four, leading you to your second question (Q2). If your second
question (Q2) is, “Is it a mammal?”] then the answer should again
halve the number of possible words, leading to your third question
(Q3). By the time you arrive at Q3, there are just two possible words
left, and after you have asked the third question (e.g. "Is it ‘€at’?”}),
your opponent’S yes/no response leads you to the correct answer. In
summany, you have asked three questioms, and excluded all but one out
of eight possible words.

More realisticallly, let’S assume your oppoment has the same
vocabulary as you do (mmost of us have similar vocahularies, so this
assumption is not entirely unreasomalbls). Specificallly, let’s assume
this vocabulary contains exactly 1,048,576 words. Armed with this
knowledge, each question cam, in principle, be chosen to halve the
number of remaining possible words. So, in an ideal world, your first
question should halve the number of possible words to 524,288. Your
next question should halve this to 262,144 words, and so on. By the
time you get to the 19th question there should be just two words left,
and after the 20th question, there should be only one word remaining.

The reason this works out so neatly is because 20 questions allow
you to choose from exactly 1,048,576 = 22P) equally probable words
(i-e. about one milliom). Thus, the 20 bits of information you have
acquired with your questioning provide you with the ability to narrow
down the range of possible words from about 1 million to just one. In
other words, 20 questions allow you to find the correct word out of
about a million possible words.

Adding one more question would not only create a new game, ‘21
questions’; it would also double the number of possible words (fo
about 2 million) that you could narrow down to one. By extensiom,
each additional question allows you to acquire up to one more bit of
informatiom, and can therefore double the initial number of words. In
principle, a game of ‘40 questions’~allows you to acquire 40 bits of
informatiom, allowing you to find one out of 24 z 042 words.
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In terms of the navigation example, 40 bits would allow you to
navigate 40 forks in the road, and would therefore permit you to
choose one out of about a trillion possible routes. So the next
time you arrive at your destination after a journey that involved 40
decisions, remember that you have avoided arriving at a trillion-minus-
one incorrect destinations.

1.5. Informatiom, Bits and Binary Digits

Despite the fact that the word bit is derived from binary digit, there is
a subtle, but vital, difference between them. A binary digit is the value
of a binary variable, where this value can be either a @ or a 1, but a
binary digit is not information per se. In contrast, a bit is a definite
amount of informattiizm. Bits and binary digits are different types of
entity, and to confuse one with the other is known as a category error

To illustrate this point, consider the following two extreme examplies.
At one extreme, if you already know that you should take the left-hand
road from point A in Figure 1.2 and I show you the binary digit 0
(=left), then you have been given a binary digit but you have gained
no informatiom. At the other extreme, if you have no idea about which
road to choose and I show you a 0, then you have been given a binary
digit and you have also gained one bit of informatiom. Between these
extremes, if someone tells you there is a 71% probability that the left-
hand road represents the correct decision and 1 subsequently confirm
this by showing you a 0, then this 0 provides you with less than one bit
of information ((because you already had some information about which
road to choess). In fact, when you receive my @, you gain precisely half
a bit of information {(see Section 5.8). Thus, even though I cannot give
you a half a binary digit, I can use a binary digit to give you half a bit
of informatiom.

The distinction between binary digits and bits is often ignored,
with Pierce’¥ book# being a notable exceptiom. Even some of the
best textbooks use the terms ‘bit’7and ‘binary digit’ “interchangealbily.
This does not cause problems for experienced readers as they can
interpret the term ‘Bit’“as meaning a binary digit or a bit’S worth of
information according to context. But for novices the failure to respect
this distinction is a source of genuine confusiom.

10
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Sadly, in modern usage, the terms bit and binary digit have
become synonymous, and MacKay (2008)% proposed that the unit
of information should be called the Shannem.

Key poimit. A bit is the amount of information
required to choose between two equally probable alternatives
(e-g. left/righit), whereas a binary digit is the value of a binary
variable, which can adopt one of two possible values (.e. 0/1).

1.6. Example 1: Telegraphy

Suppose you have just discovered that if you hold a compass next to a
wire, then the compass needle changes position when you pass a current
through the wire. If the wire is long enough to connect two towns like
London and Manchester, then a current initiated in London can deflect
a compass needle held near to the wire in Manchester.

You would like to use this new technology to send messages in the
form of individual letters. Sadly, the year is 1820, so you will have to
wait over 100 years for Shanmon’s paper to be published. Undeterred,
you forge ahead. Let'S say you want to send only upper-case letters, to
keep matters simple. So you set up 26 electric lines, one per letter from
A to Z, with the first line being A, the second line being B, and so on.
Each line is set up next to a compass which is kept some distance from
all the other lines, to prevent each line from deflecting more than one
COMPALS.

In Londom, each line is labelled with a letter, and the corresponding
line is labelled with the same letter in Manchester. For example, if
you want to send the letter D, you press a switch on the fourth line
in Londom, which sends an electric current to Manchester along the
wire which is next to the compass labelled with the letter D. Of course,
lines fail from time to time, and it is about 200 miles from London to
Manchester, so finding the location of the break in a line is difficult
and expemnsivve. Naturallly, if there were fewer lines then there would be
fewer failures.

With this in mind, Cooke and Wheatstone devised a complicated
two-needle system, which could send only 23 different lettets. Despite

1
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the complexity of their system, it famously led to the arrest of a
murdeiei. On the first of January 1845, John Tawell poisoned his
mistress, Sarah Hart, in a place called Salt Hill in the county of
Berkshiite, before escaping on a train to Paddington station in Londom.
In order to ensure Tawell’S arrest when he reached his destinatiom, the
following telegraph was sent to Londom:

A MURDER HAS GUST BEEN COMMITTED AT SALT
HILL AND THE SUSPECTED MURDERER WAS SEEN
TO TAKE A FIRST CLASS TICKET TO LONDON BY
THE TRAIN WHICH LEFT SLOUGH AT 742 PM HE IS
IN THE GARB OF A KWAKER ...

The unusual spellings of the words JUST and QUAKER were a result
of the telegrapher doing his best in the absence of the letters J, Q and Z
in the array of 23 letters before him. As a result of this telegram, Tawell
was arrested and subsequently hanged for murder. The role of Cooke
and Wheatistone’d telegraph in Tawell'S arrest was widely reported in
the press, and established the practicality of telegraphy.

In the 1830s, Samuel Morse and Alfred Vail developed the first
version of (what came to be known as) the Morse code. Because
this specified each letter as dots and dashes, it could be used to send
messages over a single line.

An important property of Morse code is that it uses short codewords
for the most common letters, and longer codewords for less common
lettexs, as shown in Table 1.2, Morse adopted a simple strategy to
find out which letters were most commam. Reasoning that newspaper

A e- J @aw- S eee
B -e0¢ [ K -0 - T -

C -e-90 |L o-00 U

D - M -- \%

E o N -o W oe- -
F ee-0¢ | O ——- X -

G --e P o | Y - -
H oo0ee | Q Z --

I ee R .

Table 1.2. Morse code. Common letters (e.g. E) have the shortest codewonds,
whereas rare letters (e.g. Z) have the longest codemomgs.

12
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printers would have only as many copies of each letter as were required,
he went to a printer’s workshop and counted the copies of each letter.
As a result, the most common letter E is specified as a single dot,
whereas the rare J is specified as a dot followed by three dashes.

The ingenious strategy adopted by Morse is important because it
enables efficient use of the communication channel (a single wire). We
will return to this theme many times, and it raises a fundamental
questiom: how can we tell if a communication channel is being used
as efficiently as possible?

1.7. Example 2: Binary Images

The internal structure of most images is highly predictalblle. For
exampllie, most of the individual picture elements or pixels in the image
of stars in Figure 1.4 are black, with an occasional white pixel, a
star. Because almost all pixels are black, it follows that most pairs
of adjacent pixels are also black, which makes the image’S internal
structure predictathle. If this picture were taken by the orbiting Hubble
telescope then its predictable structure would allow it to be efficiently
transmitted to Eartth.

Suppose you were in charge of writing the computer code which
conveys the information in Figure 1.4 from the Hubble telescope to
Earth. You could naively send the value of each pixel; let’s call this
method A. Because there are only two values in this particular image
(black and white), you could choose to indicate the colour black with
the binary digit 0, and the colour white with a 1. You would therefore
need to send as many (s and 1s as there are pixels in the image. For
examplle, if the image was 100 x 100 pixels then you would need to
send ten thousand Gs or 1s for the image to be reconstructed on Eartth.
Because almost all the pixels are bladk, you would send sequences of
hundreds of 0s interrupted by the occasional 1L It is not hard to see that
this is a wasteful use of the expensive satellite communication chanmnell
How could it be made more efficient?

Another method consists of sending only the locations of the white
pixels (method B). This would yield a code like [[(19,13), (22,30),-.. ]}
where each pair of numbers represents the row and column of a white
pixell.
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Figure 1.4. The night sky. Each pixel contains one of just two values.

Yet another method consists of concatenating all of the rows of
the image, and then sending the number of black pixels that occur
before the next white pixel (method C). If the number of black pixels
that precede the first white pixel is 13 and there are 9 pixels before
the next white pixel, then the first row of the image begins with

(OO . ., and the code for communicating this
would be [IB3®.... ]J which is clearly more compact than the 24 binary
digits which begin the first row of the image.

Notice that method A consists of sending the image itself, whereas
methods B and C do not send the image, but they do send all of the
information required to reconstruct the image on Earth. Cruciwilly,
the end results of all three methods are identical, and it is only the
efficiency of the methods that differs.

In fact, whether A, B, or C is the most efficient method depends on
the structure of the image. This can be seen if we take an extreme
example consisting of just one white pixel in the centre of the image.
For this image, method A is fairly useless, because it would require
10,000 binary values to be sent. Method B would consist of two
numbers, (30,50), and method C would consist of a single number,
5,050. If we ignore the brackets and commas then we end up with four
decimal digits for both methods B and C. So these methods seem to
be equivalent, at least for the example considered here.

For other images, with other structures, different encoding methods
will be more or less efficient. For examplle, Figure L5 contains just
two grey-levels, but these occur in large regions of pure black or pure

14
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Figure 1.5. In a binary image, each pixel has 1 out of 2 possible grey-levels.

white. In this case, it seems silly to use method B to send the location
of every white pixel, because so many of them occur in long runs of
white pixels. This observation makes method C seem to be an obvious
choice - but with a slight change. Because there are roughly equal
numbers of black and white pixels which occur in regions of pure black
or pure white, we could just send the number of pixels which precede
the next change from black to white or from white to blacgk. This is
known as run-length encodiing.

To illustrate this, if the distance from the first black pixel in the
middle row to the first white pixel (ithe girl’S hair) is 87 pixels, and
the distance from there to the next black pixel is 31 pixels, and the
distance to the next white pixel is 18 pixels, then this part of the image
would be encoded as [B57,81,18,...]. Provided we know the method
used to encode an image, it is a relatively simple matter to reconstruct
the original image from the encoded image-

1.8. Example 3: Grey-Level Images

Suppose we wanted to transmit an image of 100 x 100 pixels, in which
each pixel has more than two possible grey-level values. A reasonable
number of grey-levels turns out to be 256, as shown in Figure L6a. As
before, there are large regions that look as if they contain only one grey-
level. In fact, each such region contains grey-levels which are similar,
but not identicall, as shown in Figure 1.7. The similarity between nearby
pixel values means that adjacent pixel values are not independent of

15
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Number of pixels equal to x

0 50 150 200 250

100
Grey-level, x
(b)

Figure 1.6. Grey-level image. (@) An image in which each pixel has one
out of 256 possible grey-levels, between 0 and 255, each of which can be
represented by a binary number with 8 binary digits (e.g. 255=11111111).
{b) Histogram of grey-levels in the picture.

each other, and that the image has a degree of redundanzy. How can
this observation be used to encode the image?

One method consists of encoding the image in terms of the differences
between the grey-levels of adjacent pixels. For brewiity, we will call this
difference codimg. (More complex methods exist, but most are similar
in spirit to this simple methedl)) In principle, pixel differences could
be measured in any direction within the image, but, for simpliciity, we
concatenate consecutive rows to form a single row of 10,000 pixels,
and then take the difference between adjacent grey-levels. We can
see the result of difference coding by ‘Gn-camcatenating “the rows to
reconstitute an image, as shown in Figure 1.8a, which looks like a badly
printed version of Figure 16a. As we shall see, both images contain
the same amount of informatiom.

If adjacent pixel grey-levels in a given row are similar, then the
difference between the grey-levels is close to zero. In fact, a histogram
of difference values shown in Figure 1.8b shows that the most common
difference values are indeed close to zero, and only rarely greater than
463. Thus, using difference codiing;, we could represent almost every
one of the 9,999 difference values in Figure 1L8a as a number between
—63 and 463

In those rare cases where the grey-level difference is larger than #63,
we could list these separately as each pixel's location (@row and column

16
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(b) ©

Figure 1.7. Adjacent pixels tend to have similar grey-levels, so the image
has a large amount of redundamey, which can be used for efficient encodiimg,
(@) Grey-level image.  (b) Magnified square from a.  (¢) Magnified square
from b, with individual pixel grey-levels indicatexdl.

as 2x7 binary digits)), and its grey-level (8 binary digits). Most coding
procedures have special ‘housekeeping fragments of computer code to
deal with things like this, but these account for a negligible percentage
of the total storage space required. For simpficiity, we will assume that
this percentage is zero.

At first, it is not obvious how difference coding represents any saving
over simply sending the value of each pixel'S grey-level. However,
because these differences are between —63 and +63, they span a range
of 127 different values, i.e. [[-63, —62,...,0,...,62,63]. Any number
in this range can be represented using seven binary digits, because
7 = log 128 ((lleaving one spare value).

In contrast, if we were to send each pixel'3 grey-level in Figure 1.6a
individuallly, then we would need to send 10,000 grey-levels. Because
each grey-level could be any value between 0 and 255, we would have
to send eight binary digits (8 = log 256) for each pixel.

Once we have encoded an image into 9,999 pixel grey-level differences
(@i, d2, ... ,0558), how do we use them to reconstruct the original
image? If the difference d\ between the first pixel grey-level x\ and
the second pixel grey-level X3 is, say, d\ = Qg —x\) = 10 grey-levels
and the grey-level of x\) is 5, then we obtain the original grey-level of
X2 by adding 10 to xi; that is, X2 = x\ + d\ so 23 = 5+ 10 = 15. We
then continue this process for the third pixel (#3 = £2+ 42), ang8so on.
Thhus, provided we know the grey-level of the first pixel in the original
image (which can be encoded as eight binary digits)), we can use the
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-20 0 20 40 60
Grey-level differencs, d

@ (b)

Figure 1.8. Difference codimg (a) Each pixel grey-level is the difference
between adjacent horizontal grey-level values in Figure L&a (grey = zero
differencw).  (b) Histogram of grey-level differences between adjacent pixel
grey-levels in Figure 1.6a. Only differences between 463 are plottedl.

pixel grey-level differences to recover the grey-level of every pixel in
the original image. The fact that we can reconstruct the original image
(Figure 1.6a) from the grey-level differences (Figure 1.8a) proves that
they both contain exactly the same amount of informatiam.

Let’3 work out the total saving from using this difference coding
method. The naive method of sending all pixel grey-levels, which vary
between 0 and 255, would need eight binary digits per pixel, requiring
a total of 80,000 binary digits. Using difference coding we would need
seven binary digits per difference value, making a total of 70,000 binary
digits. Therefore, using difference coding provides a saving of 10,000
binary digits, or 125%.

In practice, a form of difference coding is used to reduce the amount
of data required to transmit voices over the telephone, where it is known
as differential pulse code modulatiom. Using the differences between
consecutive values, a voice signal which would otherwise require eight
binary digits per value can be transmitted with just five binary digits.

As we shall see in subsequent chapters, a histogram of data values
(eg- image grey-levels) can be used to find an upper bound for
the average amount of information each data value could comwey.
Accordiinglly, the histogram (Figure 1.6b) of the grey-levels in Figure
1L6a defines an upper bound of 7.84 bits/pixell. In contrast, the
histogram (Figure 1.8b) of the grey-level differences in Figure 18a
defines an upper bound of just 5.92 bits/piel.&

18
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Given that the images in Figures 1.6a and 1.8a contain the same
amount of informatiom, and that Figure 1.8a contains no more than $.92
bits/pixell, it follows that Figure 1.6a cannot contain more than 5.92
bits/pixel either. This matters because Shanmon’s work guarantees that
if each pixel’s grey-level contains an average of 5.92 bits of informatiom,
then we should be able to represent Figure 1.6a using no more than 5.92
binary digits per pixel. But this still represents an upper bound. In
fact, the smallest number of binary digits required to represent each
pixel is equal to the amount of information (imeasured in bits) implicit
in each pixel. So what we really want to know is: how much information
does each pixel contain?

This is a hard questiom, but we can get an idea of the answer by
comparing the amount of computer memory required to represent the
image in two different contexts (for simplicity, we assume that each
pixel has eight binary digits)). First, in order to display the image
on a computer screem, the value of each pixel occupies eight binary
digits, so the bigger the picture, the more memory it requires to be
displayed. Second, a compressed version of the image can be stored on
the computer’d hard drive using an average of less than eight binary
digits per pixel (e.g. by using the difference coding method abawe).
Conseguemitly, storing the (@ompressed) version of an image on the hard
drive requires less memory than displaying that image on the screem.
In practice, image files are usually stored in compressed form with the
method used to compress the image indicated by the file name extension
(e-g- “ipeg’].

The image in Figure 1.6a is actually 344 by 299 pixels, where each
pixel grey-level is between @ and 255, which can be represented as eight
binary digits (fbecause 28 = 256), or one byte. This amounts to a total
of 102,856 pixels, each of which is represented on a computer screen as
one byte. However, when the file containing this image is inspected,
it is found to contain only 45,180 bytes; the image in Figure 1.6a can
be compressed by a factor of 228(= 10PRH6/45180) without any loss
of informatiom. This means that the information implicit in each pixel,
which requires eight binary digits for it to be displayed on a screem,2
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can be represented with about four binary digits on a computer’s hard
drive.

Thus, even though each pixel can adopt any one of 256 possible grey-
levels, and is displayed using eight binary digits of computer memany,
the grey-level of each pixel can be stored in about four binary digits.
This is impoutamt, because it implies that each set of eight binary digits
used to display each pixel in Figure 1.&a contains an average of only four
bits of informatiom, and therefore each binary digit contains only half
a bit of informatiom. At first sight, this seems like an odd result. But
we already know from Section 15 that a binary digit can represent half
a bit, and we shall see later (@specially in Chapter %) that a fraction
of a bit is a well-defined quantity which has a reasonably intuitive
interpretatiom.

1.9. Summary

From navigating a series of forks in the road, and playing the game
of ‘20 questions’; we have seen how making binary choices requires
information in the form of simple yes/no answers. These choices can
also be used to choose from a set of letters, and can therefore be used
to send typed messages along telegraph wires.

We found that increasing the number of choices from two (@orks in the
road) to 26 ((etters) to 256 (fpixel grey-levels) allowed us to transmit
whole images down a single wire as a sequence of binary digits. In
each case, the redundancy of the data in a message allowed it to be
compressed before being transmitted. This redundancy emphasises
a key poimt: a binary digit does not necessarily provide one bit of
informatiom. More impaontamitly, a binary digit is not the same type of
entity as a bit of informatiam.

So, what is information? It is what remains after every iota of natural
redundancy has been squeezed out of a message, and after every aimless
syllable of noise has been removed. It is the unfettered essence that
passes from computer to computer, from satellite to Earth, from eye
to brain, and (over many generations of natural selectiom) from the
natural world to the collective gene pool of every species.



Chapter 2

Entropy of Discrete Variables

Information is the resolution of uncertaiimity.
Shannon C, 1948.

2.1. Introduction

Now that we have an idea of the key concepts of information theainy,
we can begin to explore its inner workings on a more formal basis.
But first, we need to establish a few ground rules regarding probability,
discrete variables and random variabbles. Only then can we make sense
of entropy, which lies at the core of information theony.

2.2. Ground Rules and Terminology
Probability

We will assume a fairly informal notion of probability based on the
number of times particular events ocewur. For example, if a bag
contains 40 white balls and 60 black balls then we will assume that
the probability of reaching into the bag and choosing a black ball is
the same as the propartiom, or relative frequency, of black balls in the
bag (@.e. 60/100 = 0.6). From this, it follows that the probability of an
event {e.g. choosing a black ball) can adopt any value between zero and
one, with zero meaning it definitely will not ocowrr, and one meaning it
definitely will ocour. Finallly, given a set of mutually exclusive events
(such as choosing a ball, which has to be either black or white)), the
probabilities of those events must add up to one (e.g- 0.4+ 0.6 = 1).
See Appendix F for an overview of the rules of probalbiility.
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Experiment =Qt\ Outcome Random variable X
Coin flip A = head

Coin flip E3 11N

Beperiment —K Outcome \\ Random variable X

Figure 2.1. Random variables. A random variable translates the outcome of
an experiment to an outcome value. Top: flipping a coin yields a head, which
is mapped by the random variable X to the outcome value X(head) = 1,
usually written as X = 1 Bottom: flipping a coin yields a tail, which is
mapped to the outcome value X(tail)) = 0, usually written as X = Q.

Discrete Variables

Elements of a set that are clearly separated from each other, like a list
of integers, are called discrete, and the variables used to represent them
are called discrete variables. The distribution of probability values of a
discrete variable is called a probability functiom. 1t can be represented
as a bar graph, as in Figure 2.2,

In contrast, elements which are packed together so densely that there
is no space between them, like the points on a line, are represented by
continuous variables (see Chapter 5), which have distributions called
probability density functions (see Appendix D). We will usually refer
to both probability functions and probability density functions as
probability distributions in this text.

Random Variables

A random variable is used to refer to a special type of quantity; it can be
either discrete or continuous. The value of a discrete random variable
can be considered as a measurement made on a physical outcome of
an experiment in which the number of different possible outcomes is
discrete, for example as shown in Figure 2.1. In comtrast, the value
of a continuous random variable can be considered as a measurement

made on a physical outcome of an experiment in which the values of
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the possible outcomes are continuows, such as tempematune. The crucial
point is that these outcomes are subject to a degree of randommness.
The idea of a random variable was devised for historical reasons.
Although they share the name ‘Cariable’; random variables are not the
same as the variables used in algebira, like the x in 3x + 2 = 5, where
the variable x has a definite, but unknown, value that we can solve for.
A random variable is represented by an upper-case letter, such as
X_. An experiment consisting of a coin flip has two possible physical
outcomes, a head X)) and a tail xi, which define the alphabet

Ax = {xh.xt} @n

The sample space of the random variable X is the set of all possible
experiment outcomes. For example, if an experiment consists of three
coin flips then each time the experiment is run we obtain a sequence of
three outcomes (e.g. (xh, x1,#)), which is one out of the eight possible
sequences of three outcomes that comprise the sample space.

The value of the random variable is a mapping from the experiment
outcome to a numerical outcome value. Thus, strictly speaking, a
random variable is not a variable at all, but is really a function which
maps outcomes to outcome values. In our experimemt, this function
maps the coin flip outcome to the number of heads observed:

X(xp) - 1, 22
X(xt) = O. @3

Thus, a random variable (function) takes an argument (e.g. 2h or xt),
and returns an outcome value (e.g. 0 or 1). An equivalent, and more
conventiomall, notation for defining a random variable is

X = IO, if the outcome is a taill,

1  if the outcome is a head.
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For brevilty, the different possible values of a random variable can also
be written in terms of the outcomes,

X = zxh, @49
X = i, @5)

or in terms of the outcome values,

X = 1} 26)
X = 00 @)

In many experimemts, different physical outcomes have different
probabilities, so that different outcome values of X also have different
probahiliities. If the same experiment is repeated infinitely many times
then the frequency with which different values of X occur defines
the probability distribution p(X) of X. There are only two possible

outcomes for a coim, so p(X) consists of just two probabilities,

p(X) = {p(X = @B)pE:

which is usually written as

p(X) = {p@Eh).p(x)}. 9
1 1
0.9 0.9
0.8 0.8
do.7 ~0.7
Zo.6 Zo.s
k0.5 go.5
0.4 0.4
80.2 80.2
0.1 0.1 I
) head tail 0 head tail
Outcome Outcome
(a) (b)

Figure 22, The probability distributions of two coims. (a) Probability
distribution p(X) = {p(zh),p(%#t)} of a fair coin which lands heads up with
a probability of p(xn) = 0.5.  (b) Probability distribution of an unfair coin
which lands heads up with a probability of p(xn) = 0.9.
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Eor a fair coin both probabilities are equal to 0.5, i.6.

p(xh) = 05,  p@L)= Qs 2.10)

so the probability distribution is

PX) = {Pp(xh),p(xt)} @11)
= {0.5,05}, @12

as shown in Figure 2.2a. In contrast, if a coin is so badly bent that it
lands heads up 90% of the time then

p(zh)=09, p@E)= L 2.13)
and the probability distribution of this coin is (see Figure 2.2b)

P(X)

{r{zn),p(x)} (2.14)
{0.9,0.1}. 2.15)

It is worth noting that the probabilities associated with different
values of a discrete random variable like X vary continuously between
zero and one, even though the values of X are discrete.

The subtle distinction between an outcome x and an outcome value
X(x) is sometimes vital, but in practice we only need to distinguish
between them if the numbers of outcomes and outcome values are not
equal (e.g. the two-dice example in Section 3.5). For example, suppose
we roll a die, and we define the random variable X to be O when the
outcome is an odd number and 1 when the outcome is an even number,
so that

iff tthee curtoconee xx its 1,3, or 5,

iff thhee crtooonee xr its 241, wr 6.

IR thig cass, the Rumbe™sf guteames is six, But the pumber of suteoms
values i just twe:

Tn the majority of cases; Where We de net need o distinguish betwesn
gutesmes apd eutesme valuss, We Wil use the lewer case symbsl % to
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represent them botfh. The terms outcome and outcome value are unique
to this boalk.

All of this may seem like a lot of work just to set the value of a random
variable to 0 or 1, but these definitions are key to making sense of more

complicated scemarios. A brief tutorial on probability distributions is
given in Appendix D.

Key paimt. A random variable X is a function that maps
each outcome x of an experiment (e.g. a coin flip) to a number
X(x), which is the outcome value of x. If the outcome value
of x is 1 then this may be written as X = 1,0r as x = 1.

Information Theory Terminology

For historical reasoms, information theory has its own special set of
terms. We have encountered some of these terms before, but here, and
in Figure 2.3, we give a more detailed accomumt.

First, we have a source which generates messages. A message is an
ordered sequence of k symbols

8§ = (8¥r-nSH), (2.16)
Data s
Encoder Decider
x = g(s)

Figure 2.3. The communication channel. A message s is encoded as
codewords x before being transmitted through a channel, which may corrupt
the encoded message by adding noise 1j to produce outputs y = x + 1. A
receiver decodes the output y to recover inputs X, which are then interpreted

as a message S.
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where each symbol can be a number or a letter corresponding to
the value of a random variable. Notice that the entire sequence s is
represented by a letter in bold typefface, and its symbols are enclosed
in round brackets.

Each symbol is an outcome value of a random variable § which can
adopt any value from an alphabet of & (a@lpha) different symbals,

As = {si,...,sQ} @w)

The probability of each symbol being generated by the source is defined
by the probability distribution

) = {p(sl)v-"ﬁ?(ﬁa)}{’l)(Si) ..... p(sa)}@-ls)

where, by definition, the sum of p(s) values must add up to one,

a

Dortsy = - @19)
i=1
The summation symbol 3 is explained in Appendix B.

A communication channel is used to transmit data from its input to
its output. If these data are transmitted from input to output without
error then they have been successfully communizated. Before being
transmitted, each message s is transformed by an encoder, which we
can represent as a generic function #, into the channel tnput x = g(s),
which is a sequence of codewords

X = (@%-.,XR), @20)

where each codeword is the value of a random variable X which can
adopt any one of m different values from the codebook

Ax — {xi @2)

The probability of each codeword is defined by the probability
distribution

pX) = {p@&d,...,p(xm)} 2.22)
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2 Entropy of Discrete Variables

We may choose to transmit a message as it is, so that the message and
the transmitted codewords are identical (G.e. x = s). Howewver, several
symbols may be combined into a single codeword (see Section 3.4), or
the message may be compressed by removing its natural redundamey.
Conseguenitly, the number of codewords in an encoded message x = g(s)
may not match the number of symbols in the message s.

If the form of compression allows the message to be decompressed
perfectly then the compression is lossless (see Section 3.5), but if some
information is discarded during compression then the message cannot
be recovered exactlly, and the compression is lossy.

A code is a list of symbols and their corresponding codewonds. It can
be envisaged as a simple look-up table (e.g. Table 2.1).

In order to ensure that the encoded message can withstand the effects
of a noisy communication channel, some redundancy may be added to
codewords before they are transmitted {see Section 4.7).

Transmitting a message s encoded as the codewords x produces the
channel outputs
@1, —=2t)-

y = @23)

Each output is the value of a random variable Y, which can adopt any
one of m different values

Ay — {yii ==Pym}- @24)

If the channel is noisy then the output yj may be different from the
codeword Xj that was transmitted.8

Symbol Codeword Symbol Codeword
si = x\ = 000 s5=15 £5 = 100
=6 X2 = 001 sg = 18 £5 = 101
BsB=9 £3 = 010 s7=21 £7 = 110
84 =12 £4 = Qi s8=24 Xs=1111

Table 2.1. A code consists of a set of symbols (e.g. decimal numbers) or
messages which are encoded as codewords (e.g. binary numbers). Here, the
eight symbols are numbers which increase in steps of three, but, in principle,
they could be any eight numbers or any eight entities.
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The probability of each output is defined by the probability
distribution

P(¥) {p@i), .. plym)}- @)

Each output sequence y is interpreted as implying the presence of a
particular input sequence x. If this interpretation is incorrect (e.g. due
to channel noise) then the result is an error- For a given channel, the
mapping between messages and outputs, and vice versa, is provided
by a code. A code consists of a message, an encodkr, and a decoder
The decoder converts each output y to a ({possibly incorrect) message.
Channel noise induces errors in interpreting outputs; the error rate of
a code is the number of incorrect inputs associated with that codebook
divided by the number of possible inputs.

Channel capacity is the maximum amount of information which can
be communicated from a channel’s input to its output. Capacity can
be measured in terms of the amount of information per symbell, and if
a channel communicates n symbols per second then its capacity can be
expressed in terms of information per second (e.g. bits/%). The capacity
of a channel is somewhat like the capacity of a bucket, and the rate is
like the amount of water we pour into the bucket. The amount of water
(rate) we pour (transmit) into the bucket is up to us, and the bucket
can hold (@mmunicate, or transmit reliably) less than its capaciity;, but
it cannot hold more.

In order to be totally clear on this poiint, we need a few more details.
Consider an alphabet of & symballs, where a = 2 if the data is binany.
If a noiseless channel transmits data at a fixed rate of n symbols/s
then it transmits information at a maximum rate or channel capacity
of nloga bits/s, which equals n bits/s for binary data.

However, the capacity of a channel is different from the rate at which
information is actually communicated through that channel. The rate
is the number of bits of information communicated per second, which
depends on the code used to transmit data. The rate of a given code
may be less than the capacity of a chanmel, but it cannot be greatex;
the channel capacity is the maximum rate that can be achieved when
considered over all possible codes. For example, a code for binary datag
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2 Entropy of Discrete Variables

Binary digits transmitted

Noiseless Niwiisy
Channel Ciinaammas|

Figure 2.4. The channel capacity of noiseless and noisy channels is the
maximum rate at which information can be commumicated. If a noiseless
channel communicates data at 16 binary digits/s then its capacity is C = 10
bits/s. The capacity of a noiseless channel is numerically equal to the rate at
which it communicates binary digits, whereas the capacity of a noisy channel
is less than this because it is limited by the amount of noise in the chanmel.

in which @ and 1s occur equally often ensures that each binary digit
{symbell) conveys one bit of informatiom, but for any other code each
binary digit conveys less than one bit {(gee Section 2.4). Thus, the
capacity of a noiseless binary channel is numerically equal to the rate
at which it transmits binary digits, whereas the capacity of a noisy
binary channel is less than this, as shown in Figure 2.4.

Some of these definitions require a different interpretation for
continuous variables, and we may sometimes use non-bold letters to
represent messages, encoded messages and output sequences.Q

Key poiimit. A message comprising symbols s = (s,-.., st) is
encoded by a function x = g(s) into a sequence of codewords
x = (@,--.,xp), where the number of symbols and codewords
are not necessarily equal. These codewords are transmitted
through a communication channel to produce outputs y =
{#l.- ..., yn) which are decoded to recover the message s.




2.3. Shammom’s’ Desiderata

2.3. Shannon’s Desiderata

Now that we have a little experience of informatiom, we can consider
why it is defined as it is. Shannon knew that in order for a mathematical
definition of information to be useful it had to have a particular minimal

set of properties:

1L Comtiimmithy. The amount of information associated with an
outcome (e.g-a coin flip) increases or decreases continuously
(i.e. smoatthlly) as the probability of that outcome changes.

2 Symmetny. The amount of information associated with a
sequence of outcomes does not depend on the order in which
those outcomes occwr.

3 Maximal Value. The amount of information associated with a
set of outcomes cannot be increased if those outcomes are already
equally probafille.

4. Additiixee. The information associated with a set of outcomes
is obtained by adding the information of individual outcomes.

Shammon®) proved that the definition of information given below is the
only one which possesses all of these properties.

2.4. Informatiom, Surprise and Entropy

Suppose we are given a coim, and we are told that it lands heads up
9% of the time, as in Figure 2.2b. When this coin is flipped, we expect
it to land heads up, so when it does so we are less surprised than when
it lands tails up. The more improbable a particular outcome is, the
more surprised we are to observe it.

One way to express this might be to define the amount of surprise of
an outcome value x to be 1/(the probability of x) or 1/fp(%), so that the
amount of surprise associated with the outcome value x increases as the
probability of x decreases. Howewer, in order to satisfy the additivity
condition above, Shannon showed that it is better to define surprise
as the logarithm of 1/p(x), as shown in Figure 25. This is known as
the Shannon information of x. (A reminder of the logarithmic function
is provided in Appendix C.) The Shannon information of an outcome
is also called surprisal because it reflects the amount of surprise when
that outcome is observed.3
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log2 1/p(x)
(%)

w

Surprise

6 0.8 1

0 0.2 0.4 0.
P(x)

Figure 2.5. Shannon information as surprise. Values of x that are less
probable have larger values of surprise, defined as h(x) = log2(1/i(®))-

If we use logarithms to the base 2 then the Shannon information of
a particular outcome is measured in bits,

h{x) = logg— bits, 226)

where h is standard notation for Shannon informatiom. A general rule
for logarithms states that

log2 5 WEPB(R)); @z
so that Equation 2.26 is often written as
h(x) = —logzp(x) bits. (2.28)

We will usually omit the 2 subscript from log2 unless the base of the
logarithm needs to be made explicit.

Key Poimit. Shannon information is a measure of surprise. ]




2.4. Information, Surprise and Entropy
How Surprised Should We Be?

In order to be surprised, we must know which outcomes are more
surprising and which are less surprising. In other words, we need to
know the probability of the possible outcomes which collectively define
the probability distribution p(X) of the random variable X. Thus,
the Shannon information implicit in a given set of outcomes can only
be evaluated if we know the probability of each outcome. One way to
obtain this knowledge is to observe outcomes over a long period of time.
Using the observed outcomes, we can estimate the probability of each
outcome, and therefore build up an estimate of p(X)). But however it
is acquired, we need the probability distribution p(X) to evaluate the
Shannon information of each outcomir.

Entropy is Average Shannon Information

In practice, we are not usually interested in the surprise of a particular
value of a random variable, but we would like to know how much
surprise, on average, is associated with the entire set of possible values.
That is, we would like to know the average surprise defined by the
probability distribution of a random variable. The average surprise of
a variable X which has a distribution p(X) is called the entropy of
p(X), and is represented as H(X)). For convenience, we often speak of
the entropy of the variable X, even though, strictly speaking, entropy
refers to the distribution p(X) of X.

Before we consider entropy formallly, bear in mind that it is just the
average Shannon informatiom. For examplie, if we flip a coin n times to
produce the sequence of outcomes (&g,-..,xp) then the entropy of the
coin is approximately

n

HX) = lz:log 1

n 2 %8 o) @29

In order to explore the idea of entropy, we will consider examples
using two coins: a fair coim, and a coin which lands heads up 90% of
the time.3
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The Entropy of a Fair Coin

The average amount of surprise, unpredictabiliity, or uncertainty about
the possible outcomes of a coin flip can be found as follows. If a coin
is fair or unbiased then p(xf) = 0.5, as shown in Figure 2.2a, and the
surprise of observing a head is

h{zp ]%% pGh) (230)
log(V()5) @31
Lbit. @32)

Given that p(xt) =005, the surprise of observing a tail is also one bit. It
may seem obvious that the average surprise of this coin is also one bit,
but we will make use of some seemingly tortuous reasoning to arrive
at this conclusiom, because we will require the same reasoning for less
obvious cases.

We can find the average surprise by flipping the coin, say, 100 times,
measuring the surprise of each outcome, and then taking an average
over the set of 100 outcomes. Because each outcome has no effect on
any other outcome, these outcomes are independemit. If we flip a coin

H (bits)
o o o o o o o o o

Entropy,

0.1 0:2 0:3 ;4 0:5 0:6 0:7 0:8 0.9
Probability of a head (©oin bias)

. . . .
o = N W & Ul O N 0 W
o T T T T T T T T T

1

Figure 2.6. Graph of entropy H(X)) versus coin bias (probability p(xh) of a
head). The entropy of a coin is the average amount of surprise or Shannon
information in the distribution of possible outcomes (i.e. heads and tails),
and has a value of one bit for a coin with a bias of p(xh) = 0.5.
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100 times we would expect to observe a head roughly 50 times, and a
tail roughly 50 times. For the sake of argument, let’S assume that we
observe exactly 50 heads and 50 tails, so that the average amount of
surprise is

oo - |E®jiog(1 //p:(wm!ﬂ;l E-Lilog(1/p(s1)| e

(B x Jog(Wpxéttn)Nl + [0 x log(Wfx(act))]
160 k

which evaluates to

H(X) D5 x log(YP05H] + @5 x log(YPO5H) (235)

1Lbit per coin flip. {2.36)

In summeany, because the amount of surprise or Shannon information
provided by observing the outcome of each flip of this fair coin is one
bit, it follows that the average information H(X) of each flip is also
one bit.

Interpreting Entropy

There are several ways to interpret the notion of entropy, but one stands
out as being particularly accessiblie. In general, the entropy of a variable
is the logarithm of the number m of equally probable outcome values

H(X) = logmliiits. 2.37)

In the above example, there are m = 2equally probable outcome values,
so the entropy is confirmed to be

H(X) = log2 2.33)
= 1bit. (2.39)

Given that we are using logarithms with a base of 2, we can raise
both sides of Equation 2.37 to the power of 2 to confirm that we
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are dealing with

2fi(X) @40)
2 equally probable values. (2.41)

3
1]

Thus, the number 2 raised to the power of the entropy H(X)) yields the
number of equally probable outcome values which could be represented
by a variable with an entropy of H(X)).

Key Poimt. A variable with an entropy of H(X)) bits provides
enough Shannon information to choose between m = 2f}
equally probable alternatives.

The Entropy of an Unfair (Biased) Coin

If a coin is biased then the average amount of surprise or uncertainty is
less than that of an unbiased coim, as shown in Figure 2.6. For example,
if we know that the probability of a head is p(xp) = 0.9 then it is quite
easy to predict the result of each coin flip with a reasonable degree
of aceuracy (@ accuracy if we predict a head for each flip). If the
outcome is a head then the amount of Shannon information is

h{xh) log(IV( 9) @42

0.15 bits per head. 2.43)

On the other hand, if the outcome is a tail then the amount of Shannon
information is

h(xt) log(Ilv( 1) 249

= 3.32bits per tail (2.45)

Notice that more information is associated with the more surprising
outcome {@ tail, in this case).

We will follow the same line of reasoning used for Equation 2.36 to
find the average amount of surprise for a coin with bias p(xh) =009.
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24. Informatiom, Surprise and Entropy
If we flip this coin 100 times then we would expect to observe a head

90 times and a tail 10 times. It follows that the average amount of
surprise is

1|& 1 1
H(X) 196 ‘ glog;}@h—) #_glg%&t—) ' (2.46)

= Yol x kelioton)) + 10 x logOKREM))]. (@47)

Substituting p(x) = 0.9 and p(xt) = 0.1 yields

H(X) [0 bog(VP009) |- [DIx<Idg@(VAND]  (248)

0.469 bits per coin flip. (2.49)

The average uncertainty of this biased coin is less than that of an
unbiased coim, even though the uncertainty of one of the outcomes (@
tail) is greater for a biased coin (.32 bits) than it is for an unbiased
coin (@ bit). In fact, no biased coin can have an average uncertainty
greater than that of an unbiased coin (@ee Figure 2.6).

Because p(xh) = 0.9 and p(xt) = 0.1, Equation 2.48 can also be
written as

HX) p(xh)log{l/p(xh))+p{xt)log(Vfr(a))  (2.50)

0.469 bits per coin flip. (251

If we define a tail as x\ = xt and a head as X3 = X} then we can write
this more succinctly by summing over the two possible values of Xj to
obtain the same answer as above:

HX) =D @) l@g;——-;f @52)

= 0.469 bits per coin flip. (2.53)

As we will see later, an entropy of 0.469 bits implies that we could
represent the information implicit in, say, 1,000 flips (which yield 1,000
outcomes) using as little as 468 1000 x 0.469) binary digits.
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In this example, given that H(X) = 0.469 bits, the variable X could
be used to represent

2H &) 259
4D (@55)
1.38 equally probable values. (2.56)

At first sight, this seems like an odd result. Of course, we already know
that H(X) = 0.469 bits is the entropy of an unfair coin with a bias of
0.9. Nevertheless, translating entropy into an equivalent number of
equally probable values serves as an intuitive guide for the amount of
information represented by a variable. One way to think of this is that
a coin with an entropy of H(X) = 0.469 bits has the same entropy as
an imaginary die with 1.38 sides.

Entropy: A Summary

A random variable X with a probability distribution

pX) = &2.57)

has an average surprise (Shannon informatimm), which is its entropy

m 1
HOO = R rGIkgErny” (E2)
A succinct representation of this is

H(X) = Eflog(IV/(3)]] bits, (2.59)

where E is standard notation for the average or expected value (see
Appendix E).

2.5. Evaluating Entropy

Here, we show that we can either calculate the entropy of a variable
X from the probability of m different outcome values defined by a
probability distributiom, or estimate entropy from n outcome values
sampled from that probability distributiom, and that we obtain
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approximately the same value for entropy in both cases. Specifiicallly, as
our sample size n grows infinitely large (.e. n — 00), the value of the
estimate based on the sample converges to the entropy H(X)) calculated
from the underlying probability distributiom. Given that entropy is the
average Shannon information of a variable, readers unfamiliar with such
matters should read the brief tutorial in Appendix E on how to obtain
an average (e.g. entropy) from a distributiom.

Calculating Entropy From a Probability Distribution

If we have a die with eight sides, as in Figure 2.7a, then there are m —8
possible outcomes,

Ax = {1,2,3,4,5,6,7,8}. (2.60)

Because this is a fair die, all eight outcomes occur with the same
probability of p(x) = 1/8, which defines the uniform probability
distribution

PO = {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}  (261)

shown in Figure 2.7b. The entropy of this distribution can be evaluated
using the definition in Equation 2.58, i.e.

m=8 1

HX) = JIABxl (2.62)
2L A5 g g

= log8 (263)

= 3hits. @.64)

Because the information associated with each outcome is exactly three
bits, the average is also three bits and is therefore the entropy of X.
Given that X has an entropy of H(X)) = 3 bits, it can represent

m = 2 (2.65)
(2.66)
8 equally probable values. 267)
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More genetallly, given a die with m sides, the probability of each
outcome is p(¥f) = 1/m, so, according to Equation 2.58, the entropy
of an m-sided die is

Z Hep=r— log (2:68)

= log mhits, {2.69)

which confirms that entropy is the logarithm of the number of equally
probable outcomes.

We can also work back from the entropy H(X)) to the value of p(xi).
Substituting p(xi) = 1/m in 2.65 yields

X = 2.70)

so if a die has an entropy of H(X) bits then the probability of each
outcome is given by

e(xip=H(BLh x\ (2.711)2.71

Estimating Entropy From a Sample

If we throw a die n = 1,000 times then we have a sample of n outcomes
x = (®i, £2, ===£p), where each outcome is chosen from m different
possible outcomes. Given that the Shannon information of one outcome

Xj is
hx) = loglvpa)s @)

we can denote the average Shannon information of the finite sample x
as ft(x), which is calculated as

h(x) Ef: h(xj) bits @73)

1 L.
n gll%g 2G5 bits. @.74)
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If the sample size n is large then the entropy of the sample is
approximately the same as the entropy of the random variable X, i.e.

h(x) == H(X). 275)

Equation 2.74 is defined over n instances of x in a given sample, in which
two instances (@utcomes) may have the same value, whereas Equation
2.58 is defined over the m unique outcomes in X. Usually n >> m
{i-e. n is much greater than mj.

The definition of entropy in Equation 258 looks very different
from Equation 2.74, which is more obviously the average Shannon
information of a sample of outcome values. This is because Equation
2.58 is used to calculate entropy from a probability distribution of m
different outcome values, whereas Equation 2.74 is used to estimate
entropy from a sample of n outcome values chosen independently from
that distributiom.

Whether we calculate entropy from the known probability of each
value as in Equation 2.58, or from the average of a sample of values as
in Equation 2.74, it is important to note that entropy is the average
amount of Shannon information provided by a single value of a variablie

2.6. Properties of Entropy

In essence, entropy is a measure of uncertaiintyy. When our uncertainty
is reduced, we gain informatiom, so information and entropy are two
sides of the same coiin. However, information as conceived by Shannon

Outcome probability

Outcome value

(a) (b)

Figure 2.7. (a) An 8-sided die.  (b) The uniform normalised histogram
(probability distribution) of outcomes has an entropy of log 8 = 3 bits.

a1
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has a rather subtle interpretatiom, which can easily lead to confusiom.
Accordiinglly, it is worth a moment’s thought to consider the meaning
of information and entropy.

Average information actually shares the same definition as entropy,
but whether we call a given quantity information or entropy usually
depends on whether it is being given to us or taken away. For example,
a variable may have high entropy, so our initial uncertainty about the
value of that variable is large and is, by definitiom, exactly equal to its
entropy- If we are then told the value of that variable them, on average,
we have been given an amount of information equal to the uncertainty
{emtropy) we initially had about its value. Thus, receiving an amount of
information is equivalent to having exactly the same amount of entropy

taken away.

Key poimt. The average uncertainty of a variable X is
summarised by its entropy H(X)). If we are told the value
of X then the amount of information we have been given is,

on average, exactly equal to its entropy.

Doubling the Number of Sides

If we double the number of sides on the die from eight to 16 then we
double the number of possible outcomes. Following the same line of
reasoning as in Equations 2.62-2.64, the entropy of outcome values is
H(X) = log 16 = 4 bits. Doubling the number of sides from eight to 16
increases the entropy from three to four bits, and therefore adds exactly
one bit (.e. log 2) to the entropy of the distribution of outcome values.

Key pointt. Doubling the number of possible values of a
variable adds one bit to its entropy.

Doubling the Number on Each Side

As we have just seemn, the entropy of a discrete random variable
X depends on the number of different outcome values and on the
probability of each outcome value. But it does not depend on the
particular outcome values that X can adopt. For examplie, we could
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double all the outcome values on an 8-siidied die to define the alphabet
Ax = {2,4,6,8,10,12,14,16}. However, each of these values would
still occur with the probability (1/8) defined in Equation 2.61, so the
entropy would still be H(X) = 3 bits. In contrast, doubling the values
of a continuous variable does change its entropy (®ee Section 5.5).

Key point. The entropy of a discrete variable depends
only on the probability distribution of its values. Changing
the values of a discrete variable does not change its entropy
provided the number of values stays the same.

2.7. Independemt and Identically Distributed Values

When a die is throwm, each outcome value is chosen from the same
uniform distribution of values. Additionally, it does not depend on any
other outcome, so values are said to be independent Outcome values
that are chosen independently from the same uniform distribution are
said to be independent and identically distributed, which is usually
abbreviated to iid

These considerations imply that the entropy of a sequence is given
by Equation 2.58 only if its values are chosen independently from the
same distribution (.. if they are iid). However, if consecutive values
are related (e.g. as in an English sentence) then they do not provide
independent informatiom. In this case, the elements of the sequence
are not iid, and the sequence has less entropy than the summed
(over-estimated) entropies of its individual elements calculated using
Equation 2.58.

If a source generates values chosen from an underlying distribution
which remains constant over time then the source is said to be
statiomany. Unless stated otherwise, all sources in this text are assumed
to be statiomamy.

2.8. Bits, Shannoms, and Bans

The maximum amount of information associated with a discrete
variable is the logarithm of the number m of equally probable values it
can adopt. Thus, because a binary variable can adopt m = 2 states, it
conveys up to n = 1 bit of informatiom.
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Howeverr, the translation from m possible values to an amount of
information depends on the base of the logarithm used to do the
translation (see Appendix C). If we used base 10 instead of base 2
then we would obtain a different answer, even though the underlying
amount of information would remain the same. By analogy, consider
an amount of water that can be expressed either as two pints or about
1.14 litres; the amount of water is the same in both cases, but the units
in which it is measured are different.

If we measure information using logarithms with the base e = 2.72
(@s used in natural logarithms) then the units are called nats. In
conttrast, if we measure information using logarithms with base 10 then
the units are called bans, named after the English town of Banbuy. The
ban was named during World War 1I by the British code-breakers of
Bletchley Park ((including Alan Turing), where the German code had to
be broken on a daily basis. Data were tabulated using special cards or
banburies printed in Banbuny, and the code-breaking method was called
Banbarismus®. Finallly, because the word bit is often mistakenly used
to refer to a binary digit (see Section 1.5), a less ambiguous name is
the Shannen®4, for which an appropriate abbreviation would be Sh.

2.9. Summary

Entropy is a core concept in information thesmy. But it is also quite
subtle and demands a sound grasp of probabillty, random variables
and probability distributions, which were introduced in this chapter.
After defining key technical terms, we considered entropy as the average
amount of surprise of a particular variable, like the flipping of a coin or
the throw of a die. Both of these were used as examples for calculating

entropy.



Chapter 3

The Source Coding Theorem

Gratiano speaks an infinite deal of nothing.
Shakespeare W, 1598.

3.1. Introduction

Most natural signals, like sounds and images, convey information in a
relatively dilute form, so that a large amount of data contains a small
amount of informatiom. There are two reasons why information is so
dilute in natural signals.

First, values that are close to each other tend to have similar values
(e.g. in images)), or to be related to each other (e.g. in Englflishh), so that
different signal values partially duplicate the information they carry.

A second, more subtle, reason involves the distribution of values in
a signal. The optimal distribution for a given communication channel
depends on the constraints that apply. For example, if a channel has
fixed lower and upper bounds then recoding an iid signal so that all of
its values occur equally often (.e. a uniform distributiom) guarantees
that each binary digit carries as much information as possible (.e. one
bit). Thus, for a channel with fixed bounds, the optimal distribution
is uniform.

Togetiher, these considerations suggest that a signal can be conveyed
through a communication channel most efficiently if (1) it is first
transformed to a signal with independent values, and (2) the values of
this transformed signal have a distribution which has been optimised
for that particular channell.
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(o)  cwme o

Figure 3.1. The discrete noiseless chanmel. Data in the form of symbois
from a source are encoded as codewords (e.g. binary numbers) before being
transmitted as inputs through a communication chanmel. At the other end,
a receiver decodes these codewords to recover the original message.

The source coding theorem is so called because it is really about
the coding of messages before they are transmitted through a
communication chanmnel, as in Figure 3.1. It states that messages can be
recoded as described above, but it does not state how such recoding can
be achieved. Howewer, once the theorem had been proved, researchers
began to search for, and soon found, coding schemes that were close to
the theoretical limits defined by Shannom.

Shannon’ theorem is remarkable because it not only applies to all
sequences in which elements are independemt, but also to structured
sequences like English text; that is, sequences which contain short-
range and long-range dependencies between their elements. But before
we can appreciate Shannon’s source coding theorem, we need to know
more about channel capadiity, which was introduced in Chapter 2

3.2. Capacity of a Discrete Noiseless Channel

The capacity C of a discrete noiseless channel is the maximum number
of bits it can communnicate, usually expressed in units of bits per second
or bits per symball Given that a binary digit can convey a maximum
of one bit, a channel which communicates at the rate of R binary digits
per second can communicate information at the rate of C = R bits/s,
its channel capacilty. Thus, channel capacity is numerically equal to the
number of binary digits communicated per second. Of course, if each
binary digit carries less than one bit then the channel communicates
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3.2. Capacity of a Discrete Noiseless Channel

information at a lower rate R < C bitsfs. In practice, to achieve
a rate R close to the channel capacity C' the transmitted codewords
{e.g. binary digits) must be used wiselly.

Consider a source which generates a stream of data in the form of
symbols si,s2,..., with an entropy of H{S) bits per symbal, and a
channel which transmits the corresponding encoded inputs #j,x2,...,
where each input consists of C binary digits. Each symbol could, for
examplle, consist of eight binary digits, where each binary digit carries
only half a bit of information (@s in the final part of Section 1.8);
in the absence of any encoding (.. 2j = s}), each input would carry
only C/2 bits of informatiom. To pre-empt the next section, Shannon’s
source coding theorem guarantees that for any message there exists an
encoding of symbols such that each channel input of C' binary digits can
convey, on average, close to C bits of informatiam.

This encoding process yields inputs with a specific distribution
p(X). The shape of this distribution determines its entropy H(X)
and therefore how much information each input carries. Thus, the
capacity of a channel is defined in terms of the particular distribution
p(X) which maximises the amount of information per input, i.e.

C = max H(X) bits per input. YD

This states that channel capacity C is achieved by the distribution
p(X) which makes H(X) as large as possiblle. If the channel transmits
one input per second {filor examplie) then we can state this in terms of
the number of bits per second,

C = max H(X) bits/s, 32
so that the maximum number of symbols communicated per second is
C/H(X) symbols/s. 33

It can be shown that a uniform distribution p(X) maximises H(X)).
An equivalent definition of capacity was given by Shamnon#8. He
defined the channel capacity of a noiseless channel as the logarithm
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3 The Source Coding Theorem

of the number N(t) of inputs (@mooded messages) that can be
communicated through the channel in a time interval £ given by

c

bits/s. @9

So s it appreadines iidfinity, tthe Lpgaridiom of the mumiber of encodisd
messages that can be conveyed per second approaches the channel
capacilty,. The reason for including the proviso “4s t approaches infinity””
is because some messages are encoded using extremely long codewords
which are averaged out when measuring over long time periods. If
we omit this nicety then the channel capacity is simply the logarithm
of the number of distinguishable encoded messages that could be
communicated each secomnd.

Note that this definition does not refer to the number of encoded
messages actually communicated per secomd, but to the number of
different encoded messages that could be communicated per secomd.

For example, you may be able to say one word per second, but you
choose each word from a vocabulary of about m = 1,000 words. If
we assume you are a channel then you could generate information at
a maximum rate of log 1000 = 9.96 bits/s which is, by definitiom, your
channel capagiity.

However, this capacity can only be achieved if (1) you generate
all words equally oftem, and (2) you generate words in ramdom order
(-e. the words are iid, see Section 2.7). If you do not generate all words
equally often then some words will be more frequent, making them less
surprising, so that they convey less Shannon information than others.
Similanlly, if you do not generate words in random order then some
words will be fairly predictablle; in a common phrase like thank you,
the word you is very predictalblee. By definition, predictable words are
unsurprising, and such words convey less Shannon information than
unpredictable words. Thus, any form of inequality in the frequency of
your words, or any form of redundancy in your words, means that you
would generate information at a rate which is less than your channel
capaciity.

We can check that the definition in Equation 3.4 accords with our
intuitions by using an example channel. Consider a channel that can
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convey nine binary digits per secomd. Each set of nine binary digits can
adopt one out of a total of N = 28 binary numbers, so the message that
is actually sent in one second is chosen from N = 28 different possible
messages that could have been sent. Similarlly, in t seconds, a total
of % binary digits can be sent, where this message is one out of 2%
different messages that could have been sent. According to Equation
34, tithe cpadity aff s dianrel wiiidh aommorcetes miie Hiany dijgits
per second is
C‘=—?2——=9t/t=93bFItW/$. @5)

In other words, if a channel conveys nine binary digits per second then
the maximum amount of information it can convey (d.e. its capacity) is
an average of nine bits per secomd..

We have not done anything new in this sectiom, except to define
what we mean by channel capadiity, and to check that it makes sense
intuitivelly. Next, we examine Shannon’s source coding theorem..

Key Poimt. The capacity C of a noiseless channel is the
maximum number of bits it can communicate per second,
and is numerically equal to the number of binary digits it
communicates per secomd.

3.3. Shannon’s Source Coding Theorem

Now that we are familiar with the core concepts of information theony;,
we can quote Shannon’s source coding theorem in full. This is also
known as Shannon’S fundamental theorem for a discrete noiseless
channel, and as the first fundamental coding theorem.

Let a source have entropy H ((hits per symball) and a channel
have a capacity C' ((bits per secomd]). Then it is possible to
encode the output of the source in such a way as to transmit
at the average rate C/H —e symbols per second over the
channel where e is arbitrarily small. It is not possible to
transmit at an average rate greater than C/H [fsymbols/A).
Shannon and Weaver, 1949%).

[Mext in square brackets has been added by the autihwr]
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Note that the Greek letter e {epsilom) is traditionally used to denote
a very small quantityy. In essence, Shannon’s source coding theorem
states that the messages from a source which generates information at
the rate of H bits/s can be encoded so that they can be transmitted
at a rate arbitrarily close to the capacity C of a channel, provided
H < C. To modern eyes, familiar with computters, this may seem to be
a circular argument. However, in Shannon’s day it was a revelatiom.

3.4. Calculating Information Rates

The channel capacity C is usually expressed in bits/s, and if the
channel is binary then this means that it communicates C binary
digits/s. The full capacity of the channel is utilised only if the outcome
values generated by the source are encoded such that each transmitted
binary digit represents an average of one bit of informatiom. In order
to reinforce our intuitions about channel capadiy, we consider two
examples below. For the present these examples involve rolling a die
because this avoids the problems associated with encoding variables
which are not iid.

Coding for an 8-Siided Die

Why would you want to construct a code for a variable with eight
possible values? For example, you might have a telephone voice signal
in which the amplitude of the signal at each millisecond is represented
as a decimal value between 1Land 8 This coarse amplitude guantisation
would be less than ideal, and (umlike die outcomes) the similarity
between consecutive values mean the signal is not iid, but we shall
ignore such niceties here.

As described in Section 2.5, if each outcome value generated by a
source is a number that results from rolling an 8-sided die then each
outcome value or symbol is between 1 and 8 Each of these symbols can
be encoded with exactly three binary digits ((because 3 = log 8). Each
of the eight possible symbols As = {si, ..., s} is equally probable, and
each outcome does not depend on any other outcome:, so the outcome
variable is iid and has a uniform probability distributiem. Given these
very particular conditions, each outcome S§j conveys exactly three bits,
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34. Calculating Information Rates

Symbol || Codeword
31=1 | xi =000
$2=2 || g2 =001
$3—3 £3 = 010
=4\ £=011
s5—5 £b = 100
se =6 || Xg= 101
87 =7 || £ = 110
sg=8 | z8=111

Table 3L Each outcome 8 from an 8-sided die has a value which can be
represented as a 3-digit binary codeword .

and therefore conveys an average of H = 3 bits/symball, which is (by
definition) its entropy.

If the channel capacity C is 3 bits/s then to communicate information
at the rate of 3 bits/s the source symbols must be encoded such that
each binary digit in each codeword x provides one bit of informatiom.
In this case, simply converting decimal to binary (@minus one) provides
the necessary encodiing, as shown in Table 3.1, where each symbol §j is
encoded as a codeword Xj in the form of a binary number.

Using this simple code, each outcome value §j from the roll of the die
is transmitted as a codeword Xj which is decoded at the other end of
the communication channell. For example, if the die shows & = 4 then
this is coded as the codeword X4 =Q111, which is decoded as 4 when it
is received at the other end of the communication channel. According
to Shannon’s source coding theorem, the maximum rate R at which
these symbols can be transmitted as codewords is

R = OM 3.6)

= _ 3bjwey fen]
3bits/dyisBeymbol

— Ibppbbblgs, 38)

and, because we know that each symbol (die outcome value) represents
three bits, this amounts to a communication rate of R = 3 bits/s.

In this case, encoding each decimal number into a binary number
allows information to be communicated at a rate equal to the channel
capaciity;, so this is called an efficient code.
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More generallly, we can work out the efficiency of a code by comparing
the average number of binary digits per codeword with the entropy
H(S) of the symbol alphabet. If the average number of binary digits
in each codeword is L(X) then the coding efficiency of this simple code
is

H{S) 3 bits/symbol
@ 3binary digits/symbol
1 bit/binary digit. (310)

The coding efficiency has a range between zero and ome, so the code
above is maximally efficient.

Coding for a 6-Sided Die

Now consider a more subtle examplie, in which the numbers si = 1 and
£ —6 are obtained from throwing a 6-sidled die, defining the alphabet

uz2B3456; @n)
{81 &2.63,554:5550). 312

According to Equation 269, each symbol fromaaddieobfmm=—606skides
provides an average of

H = log6 @13
= 258bits/symbuall, 3149

80 Shannon’'s source coding theorem guarantees that each symbol can
be encoded with an average of 2.58 binary digits, in principlie.

If the channel communicates one binary digit per second then in this
example the channel capacity is C = 1Lbit per secomd. Shanmon’s source
coding theorem states that it should be possible to find an encoding
which allows us to communicate information at a maximum rate of one
bit per second, or, equivalemtily;,

R = C/H @15)
Lbit/s

2 58 bits/symbol (@16)

0.387 symbols/s. 3.17)
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How can this be achieved in practice? As a first attempt, we could
encode each symbol using a simple binary code. This consists of coding
each symbol as a codeword of three binary digits, by using the first six
rows in Table 31. However, because our encoding uses three binary
digits per symbol (where each symbol carries 2.58 bits), this code has
a coding efficiency of only

H(S) 2.58 bits/symbol
LX) 3binary digits/symbol

0.86 bits/binary digit. @19

Because the channel allows us to transmit exactly one binary digit each
second, we end up with a communication rate of

C/H @20)
0.86 bits/s

258 bits/symbol @21)

0.333 symbols/s, @22

which is less than the maximum rate of R = 0.387 symbols/s in
Equation 3.17. This is well below the channel capacity (@ne bit or
0.387 symballg), so it is an inefficient code. Can we improve on this?

We can do better if we encode more than one symbol in each
codewand. Spexcificallly, if we send the outcome values of three throws at
a time then there are a total of 6 x 6 x@x = 216 possible combinations
of outcome values, and we can label each of these 216 combinations
with a number between 1 and 216.

Now, for any observed outcome value resulting from three die throws,
we can encode its label as a binary number. In order to represent 216
numbers, we need eight binary digits. This is because eight binary
digits provide 256 (= 2B) labels. Because we use eight binary digits
for each triplet of symbols @.e. three die outcome values)), we are using
8/3 2 2.66 binary digits per symbol. We know that, on average, there
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Figure 3.2. (@) A pair of dice.  (b) Normalised histogram of dice outcome
values shown in Table 3.2 has an entropy of 3.27 bits per outcome value.

are 2.58 bits/symbol ([Equation 3.14), so the coding efficiency is

H(S) _ 2.58 bits/symbol
L(X) 2.66 binary digits/symbol
= 0.970 bits/binary digit, @24

which is a substantial improvement on 0.86 bits/binary digit. Because
the channel allows us to transmit exactly one binary digit each second,

we end up with a communication rate of

0.970 bits/s
2.58 bits/symbol &%)
0.376 symbols/s, &26)

which is closer to the maximum rate of C/H — 0.387 symbols/s
in Equation 3.17 than was achieved from the simple binary code of

0.333 symbols/s in Equation 3.22.

Key Poimt. If each independently chosen value of a variable
represents a non-integer number of bits then an efficient
encoding can be obtained by combining several symbols in
a single binary codemondl.

3.5. Data Compiression

So far, we have been dealing mostly with variables that have uniform
distributions, but the importance of the ideas developed above only
becomes apparent for non-uniform distrilbuticms.
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The outcome of throwing a pair of 6-sidied dice is a pair of decimal
numbers, shown in Table 3.2. If we define the outcome value as the sum
of this pair of numbers then each outcome value is a number between
2 and 12. This defines an alphabet of m = 11 possible outcome values

ft

M

{2,8,4,5,6, 7,8,9,160,11,12}

{§i1.7 82,63, 84,65, 86,57, S, 89,810, sl-]!.};

(3.27)
@3.28)

represented by the symbols $i,,.. ., $1n, which occur with the frequencies
shown in Table 3.2. There are a total of 36 possible ordered pairs of die
outcomes, each occurring with equal probability (.e. 1/36). By dividing
each outcome frequency by 36 we obtain an outcome prohethiility, shown
in Figure 3.2b. Using Equation 2.59, we can then use these probabilities
to find the entropy

me=1i

1

— 329)

3.27 bits/symiball. (3-30)

Symbol | Sum Dice Ereq 14 h Code x
§1 2 11 1 0.08 | 5.17 10000
s2 3 1:2, 2.1 2 0.06 | 4.17 0116
§3 4 1:3, 31, 2:2 3 0.08 | 3.59 1001
84 5 2:8, 3:2, 1.4, 41 4 0.11 | 8.17 001
§5 6 2:4, 4:2, 1.5, 5:1, 8:3 5 0.14 | 2.85 161
6 7 34, 4:3, 2.5, 5:2, 1.6, 6:1 6 0.17 | 2.69 111
8t 8 3:5, 5:3, 2.6, 6:2, 4:4 5 0.14 | 2.85 116
S8 9 3.6, 6:8, 4:5, 5:4 4 0.11 | 3.17 016
o 10 4:6, 6:4, 5:5 3 0.08 | 3.59 060
§10 11 5:6, 6:5 2 6.06 | 4.17 01ii
s11 12 6:6 1 6.08 | 5.17 | 10001

Table 3.2. A pair of dice have 36 possible outcomes, with outcome values
between 2 and 12, which can be encoded as 11 codewonds.
Symib: symbol used to represent sum of dice values.
Sum: outcome value, total number of dots for a given throw of the dice.

Dice: pair of dice outcomes that could generate each symbal.

Ereq: number of different outcome pairs that couid generate each symibail.
p: the probability that the pair of dice generate a given symboi (freq/35).
h: surprisal of outcome value, h = plog(l/fp) bits.

Codie: Huffman codeword for each symbol (see Section 3.6).




3 The Source Coding Theorem

Even though some values are less frequent (@mnd therefore more
surprising) than others, the average amount of information associated
with the throw of two dice is 3.27 bits. So according to Shannon’s
source coding theoremn, we should be able to transmit each symbol
(value) using an average of no more than 327 binary digits/symibaeil.

Suppose we simply coded each of the 11 values as a binary codemwadl.
If we used three binary digits per outcome value then we could code
for 8 = 23 different outcome values (which is not enough), but if we
used four binary digits per outcome value then we could code for up
to 16 = 24 different outcome values (which is too many). Thus, using
this coding, we need at least four binary digits per symbol in order to
code for 11 different outcome values. However, because the codewords
for five of the outcome values would never be used, this is clearly not
an efficient code.

As before, we can work out exactly how efficient this code is by
comparing the average number of binary digits per codeward, L(X)),
with the entropy of Equation 3.30. If we use four binary digits per
codeword for each symbol then the average codeword length is L(X) =
4, and the coding efficiency is

H(S) 3.27 bits/symbol @31)
LX) 4.00 binary digits/symbol
= (.818 bits/binary digit. 332

As an aside, if the 11 outcomes were equally probable (@s if we had
an Il-siitled die) then the distribution of values would be uniform, and
the entropy would be

loglll = 3.46bits. (3.33)

In contrast, the distribution of the 11 outcomes from two dice is not
uniform, see Figure 3.2. Indeed, in order for a single die to have the
same entropy as two 6-siided dice (.e. 3.27 bits), it would have to have
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9.65 sides, because such a die would yield

m ZO @39)
2337 3.35)
9.65 equally probable values. (3.36)

Even though it is not physically possible to make such a die, it is an
intriguing idea.

To return to the topic of coding efficiency, can we get closer to the
lower limit of 3.27 binary digits/symbol defined in Equation 3.30? The
answer is yes, and one of the most well-known compression methods
for doing so is called Huffman coding.

3.6. Huffman Coding

Huffman codimg, invented by David Huffman in 1952, is one of many
methods for efficiently encoding the symbols in a message into a
corresponding set of codewords. A key property of a Huffman code
is that frequent symbols have short codewards, whereas rare symbols
have long codewords. The length of the codeword used to represent
each symbol matters because long codewords require the transmission
of more binary digits than short codewaonds. Consequenitlly, for messages
which consist of independent symbalis, the lossless compression achieved
by Huffman coding is close to the entropy of those messages, and if
messages are encoded in binary then (s and 1s occur with about the
same frequency.

Indeed, a reassuring property of Huffman codes (which is a type of
symbol code) is the source coding theorem for symbol codes®%

Given a discrete variable X with entropy H(X)), there exists
a symbol code in which the expected codeword length L(X)
of each codeword is greater than or equal to H(X) and is
less than H(X)) + 1 that is,

HX) < LX) <HX) + 1 @37)

Huffman coding is a lossless compression method, so an encoded
message can be decoded without any loss of informatiam.
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The details of Huffman coding are explained using the small example
in Figure 33. In essence, Huffman coding consists of finding the
two least probable symbeols, and then combining them to make an
imaginary composite symbell The two least probable symbols are then
replaced with the composite symball, whose probability is the sum of
the probabilities of its compamemts. This process is repeated (imcluding
composite symbaols) until there is just one symbol left. Each time two
symbols are combimed, the two paths between those symbols and the
new composite symbol are each labelled with a 1 (for each upper path)
or a 0 (for each lower patth), forming a tree that spreads from left to
right. When the tree is complete, the code for each symbol is obtained
by concatenating the binary numbers that lead to that symball, reading
from right to left.

In a Huffman code, not every codeword is short for every symball,
but the average codeword length is short, as shown by the Huffman
code for the dice outputs shown in Table 3.2. As before, we can work
out the efficiency of a Huffman code by comparing the average number
of binary digits per codeword L(X) with the entropy, which defines a
lower limit for L(X)). If the number of binary digits in the codeword
Xj is L(xi) then the average codeword length for a pair of dice is

m=11
T, K& ®38)
i=1
3.31 binary digits/symball 339

0.87 1
0.04~L__ 108 *|> 1.00
0.03»

0.02 0.05

Figure 3.3. Simple example of a Huffman code for five symbois (A-E), which

ocour with the probabilities shown on the left. Reading from right to left,
the final code is A = 1, B = 0il,C = 6106, D = 601, E = 000.

moom>»
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Here, L(X) is close to the theoretical minimum (@27 bits) defined by
the entropy of the original message in Equation 3.30, and the coding
efficiency of this Huffman code is

H(S) _ 3.27 bits/symbol
LO 3.31 binary digits/symbol
= 0.99 bits/binary digit. (341

Note that the difference between the average number of binary digits
in the Huffman code and the entropy of the original message is less
than one binary digit. Thus, the Huffman code not only satisfies the
optimality condition in Equation 3.37, but ({n this case) it also comes
close to the theoretical limit of one bit per binary digit-

A useful feature of Huffman codes is that they are prefix codes, which
means that the border between any two consecutive codewords is easy
to detect. This is because the n binary digits in each codeword are
always different from the first n binary digits in any other codewaud,
so that no codeword is the prefix of any other codewaidl.

Huffman Coding of Images

In Chapter 1, the grey-level differences shown in Figure 1.8a are derived
from the grey-levels in Figure 1L6a. A naive coding of the 127 heights in
the histogram of difference values shown in Figure 1.8b would require
7(x log 127) binary digits per histogram height. If we give the set of 127
histogram heights to the Huffman coding method then the resultant
codewords have an average length of L. = 597 binary digits, which is
just larger than the measured entropy H = 594 of the histogram of
grey-level differences. The coding efficiency of this Huffman code is

therefore
H(S) _ 5.94 bits/difference
LX) 5.97 binary digits/difference
= 0.99 bits/binary digit. (3.42)

However, recall that the figure of 5.94 bits/difference is itself an over-
estimate because it takes no account of the fact that nearby pixels
have similar grey-levels. So even though Huffman coding does a good
job of encoding pixel differences, it takes no account of, and does not
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attempt to remove, dependencies between nearby symbols in a message.
This is important when considering messages in which symbols are not
independemt, such as images and English text.

Huffman Coding of English Letters

Using the relative frequencies of letters in English shown in Table 3.3,
we can work out that English has an entropy no greater than H = 4.11
bits/lettmr. Note that this estimate includes a space character, which
we treat as an extra letter, making a total of 27 letters. For now,
we will ignore the non-iimtigpendence of letters, so we know that 4.11
bits is an over-estimate. Applying Huffman coding to these relative
frequencies, we find that they can be encoded using an average of 4.15
binary digits/lettmr, which gives a coding efficiency of 4.11/4.15 = 0.990
bits per binary digit.

Because 4.15 binary digits allow us to discriminate between about
18 equally probable alternatives (245 = 17.8), the 27 observed
unequal probabilities have about the same entropy as 18 equally
probable letters. This suggests that we could replace the 26 letters

Letter | Ereq (%) | Letter | Freq (%)
a 5.75 n 5.96
b 128 o 6.89
c 263 P 1.92
d 285 g 0.08
e 9.13 r 508
f 173 s 5.67
8 133 t 7.06
h 313 u 3
i 599 v 0.69
j 0.06 w 119
k 0.84 x 0.73
il 335 y 1.64
m 235 z 0.07
- -] SP 1928 |

Tabie 3.3. The frequency of each letter in English. These percentages imply
that if all letters were equiprobable and independent then each letter would
provide an average of 4.11 bits of information. Howewer, the nom-uniform
distribution of letters and the correlations between nearby letters in English
means that each letter comveys only about 1.3 bits. SP=space character,
treated as an extra letter. Data from MacKay (2003)33.
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of the alphabet (plus a space character) with 18 letters which occur
independently and with equal probafhiilify.

Naturallly, Shannon was aware of the problem of producing efficient
encodiings, but his own method, Shannon-Fano coding, was largely
superseded by Huffman coding. However, both Shannon-Fano and
Huffman coding are based on the assumption that the symbols in a
message are mutually independemt. But letters (Gymbols) in English
are not independemt, so the entropy of English must be less than the
estimate of 4.11 bits/letter given abowve.

Using a method based on our ability to predict the next letter in a
sequence of English text, Shanmon® estimated the entropy of English
to be about 1.3 bits/letter. Using the same logic as abowe, the fact that
248 = 246 implies that we could replace the conventional alphabet
with just three independemt, equally probable letters. Using purely
statistical methods like those in the next sectiom, it has been estimated
that there is an upper bound of 175 bits/lettterf.

3.7. The Entropy of English Letters

How can we estimate the entropy of a Shakespeare play? More
preciselly, given any sequence of letters where consecutive letters are
not independemnt, how can we estimate its entropy?

The short answer is that we express the probabilities of the letters in
terms of the probabilities of mutually independent blocks of letters, and
then use these in the standard definition of entropy (Equation 2.58).
The long answer below is a summary of Shanmnon’s proof for estimating
the entropy of messages in which symbols are not independemit.

English Entropy: Informal Accommt

In order to calculate the entropy of English, we need to know the
probability of each letter. Howewver, the probability of each letter
depends on the letter that precedes it, and the letter before that, and
so on, and on the letter that follows it, and the letter after that, and
so on. The probability of a letter is a conditional probability, because
its occurrence depends on (i.e. is conditional on) the identity of nearby
letters. In short, we need to take account of the context of each letter
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in order to estimate its conditional probatbility. Obtaining accurate
estimates of these conditional probabilities is extremely difficult.

In contrast, the relative frequency of each letter shown in Table 3.3
and Figure 3.4 is an unconditional probability. For clarity, we will use
the term relative frequency to refer to unconditional probabillities. The
entropy of a letter x is determined by its average Shannon informatiom,
where this average is taken over the set of conditional probabilities
implied by letters in the vicinity of x, and it can be shown that
the average Shannon information of a letter based on its conditional
probability is less than (or equal to) the average Shannon information
based on its relative frequeney. So if the entropy of a letter is estimated
based on letter frequencies alone then that estimate will be too large.

The Shannon information of a letter is related to how predictable it
is from its context. Cleanly, predicting the identity of a letter becomes
easier as the number of surrounding letters taken into account increases,
as shown in Figure 35. By implication, the uncertainty of a hidden
letter’s identity decreases as the number of surrounding letters taken
into account increases. When averaged over all letters, the degree of
uncertainty stops decreasing beyond some ‘Gncertainty horizon’; as in
Figure 36. At this point, the average uncertainty of each letter is equal
to the entropy of Engflisth.

0.2~ y —

Relative frequency
o

o 55

- )]

©
o
a
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Figure 3.4. Relative frequency of letters in Shakespeare’s Romeo and Juliet.
This distribution has an entropy of G\ = 4.12 bits/ilettor.
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3.7. The Entropy of Engfish Letters

Some mathematicians would complain that, strictly speaking, the
concept of entropy applies to an ensemble of English letter sequences,
rather than to any particular sequence. For example, the structure of a
particular sequence of letters depends on the first letter in the sequence,
which therefore affects the estimated entropy of that sequence. In order
to preclude such problems, the entropy of English is defined as the
entropy of an ensemblle, which consists of infinite number of sequences.
In practice, however, the entropy of any variable must be estimated
from a finite number of observatioms.

English Entropy: A More Formal Account

We are going to consider what happens to the dependence between
blocks of consecutive letters as we increase the number N of letters
in each block, and how this affects the uncertainty of letters in blocks
of different lengths. Shannon’s analysis included all possible blocks,
but for convenience we will assume that blocks consist of consecutive
and non-overlapping segments of text, as shown in Figure 3.7. This
simplification does not alter the results obtaiined.

If = Lthen the probability of each letter in each I-lletter block B is
estimated as its relative frequency. If these relative frequencies are used
to estimate the entropy of English H then the resultant approximation
is called G\.

If N = 2 then the identity of each letter in a block depends more
on the other letter in that block than on the letters in most other

ERUITE?

Ao
o Q(Kﬁ}

Figure 3.6, The predictability of letters should increase with increasing
context. By Randall Munroe, reproduced with permission from xked.com.
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bits/letter

G
N

L. 2 3 4.8 6 7 € 9 10
N letters

Figure 3.6. How the amount of entropy per letter Gn decreases as the
number N of letters taken into account increases, using a corpus of 70 million
characters?. Gy approaches the entropy H of English letters (dashed line)
as N increases.

blocks, because most other blocks are taken from unrelated parts of
the original text. As can be seen from Figure 3.8, 2-letter blocks are
not all equally probahblle. But if they were then each letter would be
as unpredictable with its partner as it is on its owm. So the fact that
2-]eltte bloldck wumr e oot lhl Egaaldil yo mroblalel d niplide s o e edcHetgtteisis
more predictable with its partner than it is on its own, which means
that the average uncertainty G4 of each letter in a 2-etter block is less
than the uncertainty of each letter considered on its own (.e. from its
frequency)). Simillarly, the uncertainty G3 of each letter’s identity in a
3lelgtte blolok Ksidekess than b e nceshinty=6 b éadthelaties Sdieetititynin
a 2-letter block.

P> @
y FH ES  wg
9 M hﬂle SP|W|0 | R|L|

Figure 3.7. As block size increases from (a) N = 1 to (¢) N = 3, the
ability to predict each letter from other letters in the same block increases.
Comsaypeently, the mean surprisal per letter decreases as block size increases.
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3.7. The Entropy of English Letters

In other words, it is easier to guess the identity of a hidden letter
if we know the identity of its immediate neighbouwrs, and the more
neighbours we know, the easier it is to guess. So, as the block length
N increases, the identity of each letter in a block depends less and
less on the letters in other blodks, which implies that blocks become
increasingly independent as the length of blocks is allowed to increase.

Now, supposing the identity of each letter in English does not depend
on any letter that is more than 10 letters away. In practice, the
dependency between nearby letters diminishes rapidly as inter-letter
distances increase, as shown in Figure 3.6. Once the block length has
grown to N = 10, the identity of every letter in a given block B
depends on other letters in that block and exactly two other blocks:
the previous block Bf=i, and the next block jBfc#i. All other blocks
contain letters which are more than 10 letters away from, and therefore
independent of, every letter in block B

If the original text is sufficiently long, and if there are a large number
of blocks, then the dependency between adjacent blocks just described
accounts for a tiny proportion of the overall dependency between all
blocks. Thus, the more blocks there are, and the longer each block is,
the smaller the dependency between blocks. By analogy;, it is as if each
block is one of a large number of independent super-symbols, and if the

Relative frequency

Figure 3.8. Relative frequency of pairs of letters in Romeo and Juiiet. Each
eolunmin represents the relative frequency of one ordered pair of letters.
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3 The Source Coding Theorem

blocks are independent then finding their entropy is relatively simple.
The only question is, how long do those blocks have to be to ensure
that they are independent?

The block length beyond which inter-letter dependence falls to zero
is called the correlation length Ng. Once the block length exceeds the
correlation length, it is as if all blocks are effectively independemt, so
increasing the block length N beyond Ng has a negligible effect on
the estimated entropy G .=At this point, Gy equals the entropy of
English; that is, Gn = H. This matters because Shannon’s theorems
are expressed in terms of infinite block lengths, but in practice these
theorems apply to any block length which exceeds the correlation length
of the sequence under consideratiam.

Key painit. As the number of letters in each block increases,
the average uncertainty of each letter decreases.

English Entropy: Formal Accoumt

If we take account of the relative frequency of each letter x then we
effectively have a block length of N = 1. In this case, our first order
estimate of the entropy of English H is

m=27 i
”;E; zzgg*).logm @43)
4.08 bits/letter, @44)

where we have included the space character as the 27th letter. The
estimates reported here are based on 70 million characters#¥; the value
of G, is based on slightly different frequency estimates from those listed
in Table 33.

Using a block length of N = 2 effectively takes account of the
dependencies between adjacent letters. Because there are 72%(E= 272)
distinct pairs of letters, we can consider these to be 729 distinct blocks
Bk = [[#i,7]), where k has a range from 1 to 729, and p(Bk) is the
relative frequency of a particular ordered pair of letters. For examplie,
if we take i = 3and j —5 then the 2-etter block is B — 3,38\ = [[ee],
and p([ce]) is the relative frequency of the block [fe]. These relative
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3.7. The Entropy of English Letters

frequencies can be used to obtain a second order estimate Gz of H,

G =2 Eé&iﬁ%/ 3'@*[3&» %

= m=729

» B — 34

I2Bitsd feeteer, @47)

where we have divided by two to take account of the fact that each
block contains two letters (wamember that G2 is the average Shannon
information per letten).

This is fine, as far as it goes, but what we really want to know is the
entropy of a letter Xj given all of the letters which affect the probability
of Xj. Thus, the figure of 3.32 bits/letter for the entropy of English
letters is still an over-estimate because it ignores any dependencies
which extend beyond two letters.

Such long-range dependencies can be taken into account if we use
blocks of N = 3 letters. In order to evaluate G3, the calculation is
based on 19,68%(= 273) distinct letter triplets:

G3 — (49
m=10 683
=  2.73bits/letter. (3.50)

Of course, some letter triplets are very common (e.g. and, the), and
these will dominate the weighted average of surprisal values implicit
in G3. In contrast, other letter triplets are rare (e.g. nud) in English,
and these contribute little to the estimate of entropy. More generallly;,
the key to understanding Shamnon’s source coding theorem is the fact
that a small proportion of possible letter sub-sequences are comunam,
whereas most other sub-sequences are practically non-existent.
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For any given block length N, the Nth order estimate of entropy is

27fi

Gy 2; p(By) log A;Ees Bjthy tetter. bits/lef8eF1(3.51

In principle, the process of calculating Gn for larger values of N can
be repeated indefinitellz Once we have taken account of dependencies
over all letter ranges up to the correlation length N¢, each probability
p(B) entered into the calculation is independent of almost all other
probabhillities. If all block probabilities are independent then Gng 15
the entropy per letter as measured in blocks of N¢ letters; therefore,
because G does not increase for blocks containing more than N¢ letters,
Grg is equivalent to the entropy of English, so Gng —H bits/lettar.
In practice, as N increases, the estimated entropy of English converges
to a value of about Gng = 1:8 bits/letter.

If the entropy of English is H = 1.8 bits/letter then Shannon’3 source
coding theorem guarantees that we should be able to communicate
letters using just over 1.8 binary digits per letter. Next, we consider
one simple method for achieving this.

Efficient Transmission of English

The correlation length of English text is almost certainly not greater
than Ng = 10 letters, and we will assume that N¢ = 10. The number
of possible I0-letter sub-sequences is about 200 million milliom,

me = 2D 382
& 206 x 104, (3.53)

and if all of these sub-sequences were equally probable then they could
be represented with

log206 x %2 = 47.5binary digits. @54)

At this point it is worth noting that, as part of the source coding
theoremn, Shannon proved that (see Section 3.8):

1. tie mest aommon sulb-sapuances comprise @ tiimy proportion of
the possible sub-sequences;
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2. these common sub-sequences occur with a collective probability
of about one;

3. each of these sub-sequences occurs with about the same
probeaibiility.

Spexificallly, the source coding theorem implies that the number of
{(egually probahile) 10-letter sub-sequences observed in practice is

mp = 21 (3.55)
= 262,144 (3.56)

so each I0-etter sub-sequence can be represented with only
log224%84® = 18 bimary digjiss. @57

In the case of English text, this implies that:

1. the most common N0Hetter sub-sequences comprise a tiny
proportion of all possible sub-sequences;;

2. these 262,144 most common 1®ktter sub-sequences occur with a
collective probability of about one;

3 each of these 262,144 sub-sequences occurs with about the same
probathiility.

Finallly, if 262,144 sub-sequences occur with about the same probahiility;,
and if these are the only sub-sequences that oceuir, then it follows that
each sub-sequence occurs with a probability of about 1/262,144. As
for the remainder, of which there are more than 205 million milliom,
Shannmon’s theorem implies that these sub-sequences occur with a
collective probability of about zero. Notice that, because each of
the 262,144 1@lstter sub-sequences {symbols) occurs with the same
probalhility, Huffman coding would provide no additional savings in
terms of the number of binary digits required to represent thetmn.

A correlation length of 10 letters implies that all 1@-Nstter sub-
sequences are mutually independemt. This implies that we could
transmit English text using the following simple strategy. First, use
a large corpus of text to rank each I0Hletter sub-sequence according
to its frequemoy. Next, identify the 262,144 most common I®Hsiter
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3 The Source Coding Theorem

sub-sequences, and allocate one codeword to each sub-sequence, where
each codeword is represented as 18 binary digits. In doing this, we
have effectively constructed a look-up table (@ codebusik) with entries
numbered from 1 to 262,144. If we want to transmit a message across
the world then the receiver must have a copy of this look-up tablie, but
if we are going to use this table often then the cost of transmitting
it to the receiver is relatively small. Next, we take the message to be
transmitted, break it up into consecutive 10-letter sub-sequences, and
use the look-up table to find the associated codewordis. Finally we send
the codeword in the form of 18 binary digits. When this codeword is
received, the receiver simply finds the codeword on their copy of the
look-up table to recover the original l0Hetter sub-sequence.

We have thus sent a message which looks as if it might require 47.5
binary digits for each 10-etter sub-sequence (@ee Equation 3.54), but
using only 18 binary digits per sub-sequence. Equivalemtlly, we have
sent a message which looks as if it might require 4.75 binary digits for
each letter, but using only 1.8 binary digits per letter.

Ironicallly, before Morse made use of the letter-by-letter code
described in Section 1.6, he had devised a system conceptually similar
to the one outlined above. Specificallly, he made a list of commonly
used phrases and assigned a number to each ome. For example, the
third phrase might be The 9pm train will be late. When he wanted
to transmit this message, he simply transmitted the number 3 as the
binary number 11 (gent as two dashes, for exampll). It is almost as if
Morse had recognised, long before Shanmon’s formal proofs existed, that
the number of possible messages far exceeds the number of messages
actually used, and that this is the key to efficient commumnicatiom.

As Shakespeare noted in Romeo and Juliet:

What's in a name? That which we call a rose
By any other name would smell as sweet.
Shakespeare W, 1597.

Indeed, for the purposes of communicatiom, it is not the name itself
that matters, but the number of different possible words from which
the name was chosem.
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Just as English consists of sequences of non-iimdiependent letters which
can be efficiently encoded as blocks of independent sub-sequences, so
images consist of sequences of non-imdiependent grey-levels which can
be efficiently encoded as (@quare) blocks of independent sub-sequences.
Thus, the line of reasoning applied to English text also applies to
images, and to most other natural sequences (e.g. music, movies, DNA)).

3.8. Why the Theorem is True

In essence, Shannon’s source coding theorem is based on the observation
that most events that could occur almost certainly do not, and those
that do, occur with about the same probability as each other. The
truth of Shanmon’s source coding theorem can be glimpsed from a type
of mathematical logic called a counting argumemtt, which is used here
to give a rough idea of Shanmon’s proaoff

Consider a source which generates messages, where each message
consists of n binary digits s = (8\,-.., sp). Crucizlly, we assume that
the source statistics are iid, so the probability P that each binary
digit equals 1 remains stable over time. This is not an unreasonable
assumptiom, because many practical examples of sources have a nice
stable probability profile (e.g. the probability of each letter in English
text does not change from year to year). In principle, the number
of different possilble messages of length n that could be generated by
this source is huge, specifiicallly, mpax = 2f. But, as we shall see, the
number m of different messages actually generated will almost certainly
be much, much smaller than mpax (G.e. m <«< mpax). So, in practice,
if we want to communicate information about the source messages then
we only have to worry about m of them. This is the key to Shannon’
source coding theoremn.

If n is large (i.e. messages are long) then all of the roughly m different
messages Si, ..., generated by the source will contain about nP
binary digits equal to 1. For example, if P = 1/8 = 0.125 and n =
8.000 then the most common messages generated will contain about
1,000 1s. More impaontamtly, as the messages are allowed to get longer,
the law of large numbers guarantees that almost all messages generated
will contain nP 1s.
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In fact, Shannon’s proof relies on the assumption that messages are
very long, but for the purposes of illustration we shall use a short
message. What is plausibly true for large values of n is less plausibly
true for small n, but the spirit of the Shannon’s proof applies to both
cases.

If n = 8 then each message looks like

s = (si,S2.93, $4, S5, 36, 57, S8), 352

with examples shown in Table 3.4. In principlie, the number of different
possible messages is mpax = 28 = 256. However, if P — 0.125
then nP = 1, so the most common messages generated contain
one 1, and there are exactly m — 8 such messages. We can work
out the probability that a message contains one 1 and seven @5 as
follows. The probability of a 1 in the first binary digit of a message
is P{ = 0.125, and the probability of a 0 in the second binary digit
is P = (1 —0.125) = 0.875, P3 = 0.875, and so on. Because these
probabilities are independemt, the probability that a message contains
one 1 and seven Os is not affiected by the order in which they occur (see

Message Codeword
S| 1,0, 0, 0|0 0|0 x1//{0;,0|0
s2 0|10 0|0 0|00 x2|0]0]|1
s38 00| 1L|O0|0|0|0|0 x3|0|1|0
s4 |00 0|10 0|0|0|| x4 1|11
s |00 0|0 L|0{0|0| x5| 1L|0|O0
s6 [0/ 0(/0|0|0;1L|0|0|x6| 1|01
s7 {0/ 0({0|0|0 0| 1L|0||x7||L|01|0
ss [0/ 0/0/0[oj0[O[1]xg[[R]0L]L

Not needed

sos6 || L[ L] L[1]1[1] 1] 1] Notneeded

Table 3.4. Why Shannon’s source coding theorem is true. Each message
(row) from a source contains n = 8 binary digits, so up to 2586 different
messages can be gemeratatl. If the probability that each binary digit equals
1is P = 1/8 then most messages comtain one 1, so there are effectively
only eight different messages, si,...,8s, which can be represented by eight
codewords xi, ... ,xz, each of which contains three binary digits.
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38. Why the Theorem is True
Appendix F), and is therefore

Pi X Pz X ... x Pg

0.125 x 0.8757 (@59)
0.049. (R60)

The actual value of this probability is less important than the fact that
its value is the same irrespective of where the 1 occurs in each message.
It follows that all of the m — 8 different messages 8i,...,38 (with
one 1 in each message) are generated with the same probalbiiiity, and
therefore they all have the same relative frequency p in the distribution
of messages; we do not yet know the value of this relative frequency;
but we do know it is the same for all eight messages. So far, we have
established two facts. Given n —8 and P = 0.125:

1. each of the m = 8 messages sil..., s generated contains one 1;
2. these messages have the same relative frequency p.

As noted above, these ‘facts’~are really only true for large values of n,
but we will continue to pretend they are also exactly true for the small
value of n used in this examplie.

We already know that the total number of possible messages is
migex = 256, and this includes messages with every possible number
of 1s. However, if we assume that only m = 8 different messages are
actually generated, and that each of these contains exactly one 1, then
the number of different messages generated is much smaller than the
number of possible messages.

In order to clinch the source coding argument, we need to review a
crucial observatiom. We know that if we have m = 8 equally probable
outcome values, such as the integers 1....., 8 then we can encode each
message as one of eight binary codewords xi, ..., Xg. And because we
only need eight such codewords, this means we only need

log 8 @61)
3 @62)

binary digits per codeword, i.e.
x = (&, -.- ,X3). (3.63)
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In other words, we can send m — 8 equally probable integers using
exactly nyy —3 binary digits per codeword. Of course, each outcome
value does not have to be an integer; it could just as easily be
represented as a message of eight binary digits, as shown in Table 34.
This means that we can encode each of the messages si, ..., s8with a
codeword of just three binary digits.

Because the m = 8 messages are generated with equal probafhillity,
and because we assume that they comprise all of the messages that
get generated in practice, it follows that the probability (imeasured as
relative frequency) of each message must be

p = I/m @649
0.125. @.65)

This should not be confused with Equation 360, which is the
probability that a message contains one 1.

If we have m —8 messages, each of which is generated with the same
probability p, then we know (firom Equation 2.69) that the entropy is

H = Eflog(Vp] (3.66)
= logm @67)
= 3 bits per message. (368)

Thus, even though the source could generate 256 different messages,
the S-titnary-diigit messages generated have, in practice, an entropy of
only H — 3 bits per message, and can be encoded with nw = H = 3
binary digits per codeward.

At this poiint, we should note two caveats. First, if P = 0.5 exactly
then m = mppax, and therefore m —2f and H = n bits. However, even
tiny deviations from P —Q0.5 ensure that m << mpax.

Second, the example above used nP = 1, but even if nP > 1 then
m < 2f (wnless P = 0.5). These caveats are more apparent from a
careful reading of the next sectiom, which is for readers who wish for
more technical details.
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Why Does the Source Generate Only m Distinct Messages?

The general reason that a source, which could generate mppgx = 2h
distinct messages, generates only m = 2fi messages, is as follows. The
number of distinct messages of length n which contain n\ 1s and ng
(s is just the number of different ways of distributing n) 1s and ng Gs
over n positions ((binary digits). This can be calculated as a binmomial
coefficiemtt, which is defined as

nl

Cail (369)

nitmo! '~

where n! = nx(n —1) x ==x 1. When considered over all values between
ni = 0 and n\ = n, the total number of possible distinct messages is

n

= - &

which is reassuring, given that we know there are 2f possible messages.

=0

For long messages, we can safely assume that almost all m messages
generated by the source contain nP 1s. It follows that the value of the
binomial coefficient is about zero (Cppj =« 0) unless n\ is equal to n/P.
So the number of distinct messages generated is approximately equal
to the number of messages that contain nP 1s,

> 7 €am €h,nP @7)
nj=0

m, 372

where comparison with Equation 3.70 implies that m <2h.

Next, we will find the logarithm of the number m, and, in so doing,
we will confirm that it is indeed the entropy of the source. This can be
achieved with the aid of Stirling’s appreximation, which states that if
n is large then Inm! z«n[{llmm) —1). This is defined in terms of natural
logarithms, so we begin with the natural logarithm of Equation 3.69:

InCpapi Inm! — Inmif! — Inmojl. 3.73)

()
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From Equation 3.72, we can assume that m = np?sg that Stirling’s
approximation yields

mm = nf@mn) = W=-m(rmi - Y-meeang)- 1] G749
= nlovn— nilmm —mQlnng — (m-(nli 4_;_%8» @7@

Given that n = ng + ni,, this can be rewritten as

Imm = @+ ni)lnn — nilnmi ~ AgiRRy B76)
= ni(l[r’m Ihnmil)) + mehmn- i pg) G
|
R 5
= ﬁ@pumllpl + polniy (). @79)

The final step involves the substitutions pi = rix/n and pg = ng/n,
where pi is the probability that each binary digit is equal to 1, and pg is
the probability that it is equal to 0. We can recognise Equation 3.79 as
the entropy of a message containing n binary digits, expressed in units
of nats ((because we used natural logarithms)). If we use logarithms of
base 2 then we can translate this into bits, and we find that the source
generates messages with an average of

n(milogg(l/pi) + Polog2(1/p6))

1
nzg pi log;’.— bits per message, (3.80)
Bi

log2m

which is the equation for the entropy of a binary number containing n
binary digits.

The preceding account is not a rigorous proof of Shanmon’s source
coding theoremn, but it conveys the key ideas which underpin the proofs
presented by Shannon and others.

3.9. Kolmogorov Complexity

As mentioned in Sectlon 3.3, we can interpret Shanmon’s source
coding theorem in terms of data compuessiom. This interpretation
was developed independently by the Russian mathematician Andrey
Kolmegorev((1933)28.  He defined algorithmic complegity to be the
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length of the shortest computer program capable of describing a given
object (e.g. a message).
Kolmogorov comypliegitsy.

For example, the first million digits of the number #, which begins
* = 265358979323846264338327950288419716939937510 ...
can be generated by a computer program containing many fewer than
one million binary digits. In fact, m can be obtained using one of several
methods, such as the Leibniz formula

Algorithmic complexity is now known as

1
= ﬂ*(i?ss ¥5= Mé:-ﬁ =

which can be written more succinctly as

@

<
1]

I T (383)

Using a computer program, this can be written as a simple ‘for’“loop,
which would generate the infinite digits of #. However, the shortest
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Figure 8.8. What if the Kolmogorov complexity of every objeet were zero?
By Randall Munree, reproduced with permission from xked.eom.
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program capable of generating # contains a smalll, finite, but unknown
number np of binary digits. If the shortest program contains  binary
digits then it must also contain np bits because, if it contains more
than np binary digits then each binary digit would convey less than 1
bit, which means that a shorter program must exist. Thus, the infinite
number of digits in m would have been compressed to np bits. This
implies that the apparently random, infinitely long sequence of digits
in # can be represented with just np binary digits. And, because the
Kolmogorov complexity of the number ir is the length of the shortest
program that can generate 7, it follows that the Kolmogorov complexity
of # is np bits. The link to Shamnon’s definition of information is
that the Kolmogorov complexity of a random sequence of digits is
approximately equal to the entropy of that sequence.

However, Kolmogorov complexity is non-compuatiaidile. This means
that there is no definite method or algorithm for finding the Kolmogorov
complexity of a given object or number, except by exhaustive search
@.e. trying out all possible computer programs)). For the example of
# considered above, this means that, irrespective of the brevity of the
program we devise in order to generate #, we can never be certain that
a shorter program does not exist.

3.10. Summary

Shannon’d source coding theorem is essentially about encoding
messages into codewords efficientlyy, which is really a form of data
compiession. In order to understand this theorem, we first examined
the idea of channel capadiity, the maximum rate at which information
can be communicated through a communication chanmel.  After
quoting Shannon’3 source coding theorem, we explored its relevance
to coding theory, and we found that some codes are not very
efficient, in the sense that each binary digit in an encoded message
represents much less than the theoretical upper limit of one bit of
informatiom. Finallly, we considered the transmission of data in which
symbols are not independemt, and found that they can be encoded
to obtain independent blocks of symballs. A key implication of this
is that Shannon’s source coding theorem applies to natural sequences
(e-g- English, images) with non-independent symbalks.
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Chapter 4
The Noisy Channel Coding Theorem

Uncertainty which arises by virtue of freedom of choice on
the part of the sender is desirable uncertaiintty. Uncertainty
which arises because of errors or because of the influence of
noise is undesirahle.

Weaver W, 1949.

4.1. Introduction

Shannon’s noisy channel coding theorem cannot be understood without
a firm grasp of mutual informatiom, so we will spend a substantial
portion of this chapter exploring this topic.

Mutual information is a general measure of association between
two variables, like the input and output of a communication channel
(Fgure 4.1). It has many properties that apply to both discrete and
continuous variables. So, by way of introductiom, we begin with a
general account that applies to both types of variables.

Given two variables X and Y, the mutual information [(X,Y)
between them is the average information that we gain about ¥ after
we have observed a single value of X. Because mutual information is
a symmetric quantiihy, it is also the average information that we gain
about X after we have observed a single value of Y. Equivalemitlly,
mutual information is the average reduction in uncertainty about X
that results from knowing the value of Y, and vice versa.

To give a less terse definitiom, the uncertainty we have about the
value of Y is initially summarised by its entropy H(Y). If X and
¥ are related then after observing a single value of X we have more
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Figure 4.1. A noisy comumunication chammel.

information about Y, and so our uncertainty about Y is reduced to
some value less than H(Y)). If we average across all possible values of
X and Y then after observing X our uncertainty about Y is reduced
by an amount which is the mutual information 7(X, Y) between X and
Y. The amount of residual uncertainty we have about the value of ¥
after observing a single value of X is the conditional entropy H(Y\X)).
Because we usually consider noise 7] as being added to the input as it
passes through the channel, this particular conditional entropy H(Y\X)
is also called the noise entropy, H(r]) = H(Y\X). And, because the
mutual information between two variables is symmetric, all of this
remains true if the roles of X and Y are swapped.

In order to appreciate the formal definition of mutual informatiom,
we first need to consider the entropy of joint distributions in the context
of a communication channel. The remainder of this chapter concerns
discrete variables.

4.2. Joint Distributions

Comsider a source which generates messages for transmission over a
noisy communication channel, as shown in Figure 4.1. At any point in
time, this source generates one of four different messages, each of which
consists of a single symbol. Each message could be an integer (@-3),
an English word, or even an entire boak, but, for simplicity, we assume
that each message is an integer (G.e. s\ =0, =1, 8= 2, 8= 3).
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If we wish to send one instance of each message through a noisy
communication channel, how many binary digits do we need? Well, we
know that if there is no noise, and if the messages are equally probable,
then we could simply encode each message as a different binary number
and send that, requiring a maximum of 2 = log 4 binary digits per
message. But the channel is noisy, which increases the number of binary
digits required to represent each message.

We are going to estimate mutual information from a sample of 128
input and output message pairs. For simplicifty, we assume that our
sampling process is perfect, inasmuch as the quantities we meastre from
our relatively small sample accurately reflect the underlying statistics
of the chanmnel.

The four distinct messages are represented by the alphabet

{0,1,2,3} As {0,1,2,3} (4.1)
{s1.52.,53,54}, @.2)

and they are generated by the source in unequal proportions as defined
by the probability distribution

p(S) = {Iwer) )pss))pmbs)) pcsa}. @3)

In this examplle, no special encoding of each message occurs before

transmissiom, so each symbol is represented as a binary codeweiid. Each
codeword can adopt one of my = 4 values

Ax == {400} } @4
= {=1,%2,%3 04}, @5

which occur with probabilities defined by the probability distribution

BEO = (ot mbed).mled)ntedh) . @6)

We are using a trivial encoding here, so p(X) = B(S)-
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I Yi X> [ % [ %[z #4] Sum ]

Yi 12 15| 2 | 0 29
V) 4 22, 10| 0 3B
ys 0 o2 4 35
iy 0|2 15| 12| 29
[ Sum [16]48] 48] 16 128 |

Table 4.1. €Counts of input values X and corresponding output values Y.

After being transmitted, each input emerges as a (possibly different)
output, which can adopt any one of my = 4 values,

Ay

{00,01,10,11} @
.20}, @.8)

which occur with probabilities defined by the probability distribution

p(Y) = {ply)miiz) mem).n4a)}: @9

Given that each codeword can adopt one of four possible values,
and that each output adopts one of four possible values (e.g. the
integers 1-4), there are 16 possible input/output pairs. The set of 16
input/output pairs can be represented as a set of four input or source
values X together with four corresponding channel output values ¥, as
in Table 4.1.

{ Yi =] X [ % [ x | € [ p(¥) |

yi 0.094 [ 0.117 | 0.016 | 0.00 || 0.227
V2 0.031 | 0164 | 0.078 | 000 | 0273
ys 0.00 | 0.078 | 0164 | 0.031 | 0.273
% 0.00 | 0.016 | 0.117 | 0.084 || 0.227
[ p™) [0125]0375[ 0375 [ 0125 [ 1 |

Table 4.2. Joint probability distribution p(X,Y)). The numbers in the table
margins are the marginal distributions p{X) and p(Y). The probability
p(xi,yj) in each cell is obtained by dividing the corresponding number in
Tabie 4.1 by 128.
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We can gain a visual impression of how accurately the communication
channel communicates information by recording a sample of, say, 128
encoded messages #i,... ,XiZ8, and their corresponding output values
24,..., UB2in a 4x 4 grid, as in Table 4.1. If we divide the frequency of
each pair (&, yj) by the total number of pairs (.e. 128) then we obtain
an estimate of the probability that X = X%j and Y = yi, as shown in
Table 4.2. Note that we have used the same subscript notation for the
elements in an alphabet and the elements in a message.

The probability that X = Xj and ¥ = yj is called the joimt probability
p(xi,y)- Each joint probability p(xi,y;) can be visualised as the ith
column and jith row of an n X n array, the joint probability distribution

fopiyi)  ppe i) wisdh i)
PK,Y) = P{x129) p(x229) P(x4, 26)
PxL2E) ppR3)) p(E3Yd Rpdyd
Py PERY) px3yd) pEAZ)

The entire joint probability distribution can be visualised as a three-
dimensional histogram of vertical columms, where the height of each
column reflects the value p(X,Y) of the probability assigned to each
input/output pair of values, as in Figure 4.2. For comvenience, we
assume that the input/output statistics of our sample given in Table
4.1 pexfisctly negpresent e wrdedbying joimt diistrilbution, even tirough
this would not usually be the case in practice.

There are two things worth noting here. First, as stated in the
Ground Rules (Section 2.2), the probabilities must sum to one. This
is because probabilities behave like proportions and just as we would
expect all 16 proportions to sum to one, so we would expect all 16
probabilities to sum to one. This is a defining feature of a probability
distributiom, as shown in Table 4.2. Second, even though the joint
distribution function p(X,Y) is a discrete distribution because the
random variables X and Y are discrete, each of the 16 probability
values it defines is represented by a continuous variable with a value
between zero and one.
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Entropy of the Joint Probability Distribution

The entropy of a joimt distribution is a straightforward generalisation
of the entropy of a single variable,

me My
= 1
HX)Y) = Zzp(z,,yj) log G @.10)
i=1 j=1 p\Zi, Yj
1 . 5
= E {log } bits per pair, (@n)
p(z,y)

where mx is the number of different values of X and my is the number
of different values of Y (as in Table 4.2). The term bits per pair
is used to emphasise the fact that the joint entropy H(X,Y) is the
average amount of Shannon information of each pair of values, where
this average is taken over all possible pairs.

Just as the entropy of a single variable (with finite bounds) can be
considered to be a measure of its uniformiity, so the entropy of a joimt
distribution is also a measure of its uniformity (provided X and Y lie
within a fixed range). If all possible pairs of values are equally probable
then this defines a uniform joint distributiom, known as a maximum
entropy joint distributiom. In comtrast, if some pairs of values occur

Figure 4.2 The discrete joint probability distribution p(X,Y). The
probability that an input/output pair has the particular combination of

values %j and yj is obtained by dividing the ijth cell in Table 4.1 by the
total number of pairs, 128.
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4.2. Joint Distributions

with a high probability and others occur with low probability then this
defines a joint distribution with lower entropy.

Marginalisation

In order to evaluate the mutual information between X and ¥, we need
to consider the distributions of X and Y. The distribution of X can
be obtained by summing each value of p(X,Y) over all possible values
of Y. For example, if we want the value of the distribution p(X) at
X = Xj then this is obtained by summing over all values of Y for the
fixed value of X = xp

B = oyl G1)
p=

This is equivalent to summing the values in the ith column of Table 4.2
over all rows. If we consider the value of p(xp) for all mx values of X

1 2 3 4
x Ply) E
o e e B e 8
© ¢+ = v N e W
b SR OSSN VR T ]
b ‘ e re—n,
-~ e -
T e~
3 e
- honduid
=it §
2 -P‘. ,’t | rrc—— T — e
A At < o~
—
—
n’*. b ——
s -~
1r 2 2 3 4

Figure 4.8. Visualising the joimt probability distribution. (a) Distribution of
input values is one of the marginal distributions p(X) of p(X,Y). (b) Joint
distribution p(X, Y) of 128 input/output pairs.  (c) The output distribution
is the other marginal distribution p(Y) of p(X, Y). Positions of points in (b)
have integer values, which have been jittered to make them visibike.
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then we obtain the marginal distribution,

my

BA) = Xl @13)
3=1

= {0.125,0.375,0.375,0.125}, “14)

as shown in Table 4.2 Similarlyy, the marginal distribution p(Y) is
obtained by summing over values of X,

PO = PpRETY) @15)
= {0.227,0.273,0.273,0.227}, (@.16)

as shown in Table 4.2. If we want the value of the distribution p(Y)
at a particular value Y = yj then this is obtained by summing over al|
values of X for the fixed value of Y = yj,

B = X Ber: S0

This is equivalent to summing the values in the jith row of Table 4.2
over all columns.

Statistical Independence

If X and Y are statistically independent then knowing the value of X
provides absolutely no information about the corresponding value of
Y, and vice versa. This implies that the probability of any two values
(e.g- % and yj) of X and Y occurring together is the same as the
probability of xy multiplied by the probability of yjx

p(xi,yj) = p(x)p(yj) if X and ¥ are independent. @.18)

When considered over all values of X and Y this implies that if two
variables are independent then the joint distribution is given by the
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product of its two marginal distributions:

pX.Y) = pCOWY). (@19)

Here, the product p(X)p(Y) is interpreted as an outer product, which
means that the zth column and jith row of the joint distribution p(X, Y)
is the product p(xi)p(yj)-

Given this definitiom, if two variables are independent then the
entropy of their joint probability distribution p(X, Y) can be rewritten
as the sum of their individual entropies,

H(X,Y) = E|log p(; y)] @20)
I 1
= &l p(w)p(y)] @
1 1

which can be rewritten as two summatiams,

my
H(X,Y) Zp (i) log +Zp (v Ig—) (4.23)
H(X) + H(Y) bits per outcome pair. (@.24)

Thus, if X and Y are independent then
H(X) + H(Y) —H(X,Y) = Obits per outcome pail. (4.25)

Eor examplle, if two dice are thrown then the value of each die does
not depend on the value of the other die, so they are independent (see
Section 3.6). Over many throws, the pairs X and Y of values could be
recorded in a 6 x 6 table representing the joint distribution of values.
Because all 36 pairs are equally probabike, this joint distribution p(X, ¥)
is uniform and has an entropy of

H(X,Y) log 36

5.17 bits per outcome paiir. “.26)
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The distribution of values for one die X yields the uniform marginal
distribution

p(X) = {1/6,1/6,1/6,1/6,1/6,1/6}, @27
which has an entropy of

log 6 (@.28)
259 bits per outconme. (4.29)

H(X)

Similarlly, the distribution of values for the other die yields the uniform
marginal distribution p(Y) = p(X)), which also has an entropy of
H(Y) = 2.59 bits per outcome. Because these marginal distributions
represent independent variables, the joint entropy H(X,Y) is the sum
of the entropies of the marginal distributioms:

H(X,Y) H{X) + H(Y)

5.17 bits per outcome paiir. “.30)

The use of the terms bits per outcome pair and bits per outcome are
not conventiomall, but are used here to stress precisely what the entropy
is referring to. We shall use the more conventional term bits for the
remainder of this chapter.

Key paiint. If X and Y are independent then the entropy of
the joint distribution p(X, Y) is equal to the summed entropies
of its marginal distributioms, H(X,Y) = H(X) + H(Y).

4.3. Mutual Information

Given a communication channel, the key question is this: what
proportion of the entropy in the output reflects information in the
input? In other words, how much of the entropy in the output is telling
us about the input, and how much is just noise? This question leads
naturally to the notion of mutual informatiom.

For a channel with inputs represented by the random variable
X and outputs represented by Y, the rate at which information is
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communicated is the mutual information between X and Y, which
depends on three entities:

1. the entropy H(X) of the input X;
2. the entropy H(Y) of the output Y;
3 the relationship between X and Y.

If the output distribution has high entropy then it has the potential
to provide a lot of information about input values. However, there is
no point in having high output entropy and low input entrompy, because
then the large variability in the output values would have little to do
with the corresponding small variations in input values.

Similarlly, there is no point in having high input entropy and low
output entropy, because then some of the variability in the input values
is effectively ‘hput noise’; inasmuch as it induces no corresponding
variability in the output.

Finallly, there is no point in having high input and high output
entropy if the inputs and outputs are mutually independemt. In this
case, all of the output entropy, which could be providing information
about the input, is just output noise.

In summany, to communicate as much information as possible
through a noisy channel:

1L the input entropy should be high;
2. the output entropy should be high;
3 the noise entropy should be low.

The relationships between input entropy, output entropy and mutual
information can be visualised from several equivalent perspectiives, as
shown in Figures 4.4-4.7.

The mutual information between X and Y is defined as

_ . p(zi, y;)
IXY) = 3 3 pley)les s @3

which is more easily understood as the mean or expected value (see
Appendix E) of the ratio

XYy = E[logM} bits. @3
p(z)p(y)
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We can separate the numerator and denominator of this ratio,

E[logp(e,i4) - (4.33)
EDogp(x,y)} EflogGedpetoNl. @)

I(X,Y)

where the final term can be rewritten as

Eflog(p(p(o)ll = Eflogr(all + Efloga)ll, (@.35)

so that

I(X,Y) = El[logp(s)9] —E[logadll —Ellognet)] (@.3%)
= Eflog(Vfx¢d)] + Eflog(V$9)ll - E[log(1/p(x, 2))] (4.37)
= H(X) + H{Y) - H(X, Y) hits. “.38)

Finallly, if we rearrange Equation 4.38 then we can see that the joint
entropy acts a kind of ‘Gontainer’for the various entropy compunsmis,
including mutual information

HOGY) = H(X) + HE)-1{EW). @39)

Key poinit. The mutual information between two variables
X and Y is the average reduction in uncertainty about the

value of X provided by the value of ¥, and vice versa.

Calculating Mutual Information

In order to reinforce our intuitive understanding of the ideas introduced
so far, we will work out the entropies associated with the distribution
defined in Table 4.2,

The entropy of the marginal distribution p(X) can be calculated from
Table 4.2 as

H(X) B poridog ) (@.40)
0.125 log(IYP01I25) +0) 375 log(IVOOIT5) +

0.375 log(IY(0375) +0125 log(V0125) (4.41)

1L81 bits. (@.42)
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Similarly;, the entropy of the marginal distribution p(Y) can be
calculated from Table 4.2 as

HEY) = Bpote) leg— “43)
= 0.227log(Y(D22T) + 0.273log(VPOZT3) +

0.2731og(IYD273) f 0.227 log(IYL022T) (4.44)

= 1.99 bits. (@.45)

The entropy of the joint distribution defined in Table 4.2 can be
calculated by substituting the 16 probabilities into Equation 4.11 to
give

H(X,Y) = 330bits. (4.46)

However, some of the entries in Table 4.2 are zero, so p(®j.yj) = O,
which implies a surprise value of infinity. To deal with such cases, we
define the product p(xi,yj) log(d/p(xi,yp) to be zero if p(xi,yj) = O.

We can immediately tell that X and Y are not independent because
the total entropy of the marginal distributions is larger than the entropy
of the joint distributiom,

]

H(X) + H(Y) 1.811 + 1.99 (4.47)

3.80 bits. (4.48)

Finallly, these results can be used to calculate the mutual informatiom,

I(X,Y) = MHEX)+HE9)-H(X,Y) (4.49)
= L8+ 19D- BEDhits (4.50)
=  (OT®its. (@.51)

Thus, on average, each value of X reduces our uncertainty about the
corresponding value of ¥ by about half of a bit, and vice versa.

When considered in terms of output entropy, this implies that
only 0.286 (.e. I(X,Y)/H(Y) = 0.500/1.99) of the output entropy is
information about the input, and the remainder is just channel noise.
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4.4. Conditiomal Entropy

An alternative way of viewing mutual information can be obtained by
considering the entropy of the output in relation to channel noise. If
we do not know the value of the input X then our uncertainty about
the output Y is given by its entropy H(Y). But if we do know the
value of X then our uncertainty about Y is reduced from H(Y) to a
quantity called the conditional entropy H(Y\X)), which is the average
uncertalnty in the value of Y after X is observed. The vertical bar in
H(Y\X) is read as ‘given’; so that H(Y\X) is the entropy of ¥ given
X. In other words, the reduction in uncertainty regarding X induced
by knowing Y is the difference between H(Y) and H(Y\X)),

I(X,Y) = H(Y) - HYX). (4.52)

Key poinit. The conditional entropy H(Y\X) is the average
uncertainty in Y after X is observed, and is therefore the
average uncertainty in Y that cannot be attributed to X.

We can prove Equation 4.52 as follows. From Section 4.3 we have

X 1oy .
_pixavyj)
” I .
(0.6)) y ) leg P (@.53)

According to the product rule (see Appendix F), p{x,y) = p(y\x)p(x),
where p(y\x) is the conditional probability that ¥ given that
We can use this to rewrite Equation 4.53 as

j=1 | = I

which in turn can be rewritten as the difference

8 557 - o L Bk

where the first term on the right is the entropy H(Y) and the final
term is the conditional entropy H (¥ |IX), yielding Equation 4.62.

N

X fmy 1
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By symmetiny, Equation 4.52 implies that

= HX)IOENXEY)H(X)-H(X\Y455)

where HCX\Y) is the average uncertainty we have about the value of
X after Y is obserwved. The conditional entropy H(X\Y) is the average
uncertainty in X after Y is observed, and is therefore the average
uncertainty in X that cannot be attributed to ¥.

Conditional Entropy and Noise

Given ttiett ttiee output ¥ iis equal to the imput X plus some channel
noise 77, we «an fiimd am expessiom for the emtropy of the channel noise
as follows. We begin by substituting

Y = X+, (4.56)
in Equation 4.52, which yields
I(X,Y) = HQ)-H([X + rNX). (@s7)

If the value of X is known then the uncertainty in X is zero, so it makes
no contribution to the conditional entropy H([X + M%), and therefore

I(X,Y) = HQY)-HE({¥)). (@.58)

However, the value of the noise M) is independent of the value of X, so
H@NX) = H(nj)), which allows us to rewrite Equation 4.58 as

I[(X,Y) = H(Y) - H)- (4.59)

Comparing this to Equation 4.52 implies that

HWX) = H@), (4.60)

so the entropy of the noise is the conditional entropy H(Y\X))-
Notice that we use the Greek letter 77 to represent a single value, and
an enlarged version 7] to represent the random variable.
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For the example given in Table 4.2, we can rearrange Equation 4.59
to calculate the entropy of channel noise as

H(g) = H(Y)—KeX,Y)) (4.61)
= 199 -00509 (@.62)
= 1481 bits. (4.63)

Key point. In a communication channel with input X and
output ¥ = X + 7, the conditional entropy H(Y\XX) is the
entropy of the channel noise H(Tj) added to X by the channell

Schematic Representations of Mutual Information

Historicallly, mutual information has been represented using Venn
diagrams, as shown in Figures 4.4a and 4.4b. The channels represented
in these two figures have identical input and output entropies, but
they differ in the amount of overlap. In both cases, the input entropy
is smaller than the output entropy because the channel adds some noise
to each input before it emerges as a corrupted outpuit.

The noisy channel implicit in Figure 4.4a has outputs which have
little to do with the corresponding inputs, so this channel does not
communicate data accuratelly. This can be seen from the relatively
large proportion H(Y\YX) of output entropy H(Y) which is just noise,

H(X\Y) H(X.Y)

IS

H(X) —H(Y) H(X) H(Y)

(a) (b)

Figure 4.4. Venn diagrams of mutual information I(X, ¥) between input X
and output Y. Each circle represents the entropy of one variable, and the
total area of the three labelled regions represents the joint entropy H(X, YY) =
I(X, Y) + HX\Y) + H(YYX). The input entropy and output entropy is the
same in (@) and (b), but the mutual information in (@) is smalller.
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4.5. Noise and Cross-Talk

and also from the relatively small proportion of output entropy which
is shared with the input entropy H(X)). This shared input/output
entropy is the mutual information I(X,Y)).

In contrast, the less noisy channel implicit in Figure 4.4b has outputs
which are largely determined by the corresponding inputs, so this
channel does communicate data fairly accuratelly. This can be seen
from the relatively small proportion H(Y\X) of output entropy H(Y)
which is just noise, and also from the relatively large proportion of
output entropy which is shared with the input entropy H(X)), giving
the mutual information [(X,Y)).

MacKay (2003)#% showed that some areas in these Venn diagrams
can become negative under certain circumstamees. A representation
which overcomes this problem is shown in Figure 4.5 (wsed in
Jessop (1995)%7 and MacKay (2008)%4). This representation stresses
the fact that the joint entropy acts as a container for all of the other
constituent entropies. So, for a given amount of joint entropy, the
amount of mutual information depends on the amount of overlap
between the input and output entropies.

4.5. Noise and Cross-Talk

In Chapter 2, we interpreted entropy in terms of the number of equally
probable input or output values. Shannon also used this interpretation
to give an intuitive understanding of the conditional entropies H(X\Y)
and H(Y\X)). In his proofis, Shannon showed that the inputs (@ncoded
messages) are all equally probablle, provided they are sufficiently long;

H(X,Y) joint entropy

H(Y) output entropy HX\Y)

H(Y\X) H(X) input entropy

KX, Y)

Figure 4.5. The relationship between the input entropy H(X), output
entropy H(Y)), joint entropy H(X,Y), mutual information I'(X,Y)), and the
conditional entropies H(X\Y) and H(Y\X).
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4 The Noisy Channel Coding Theorem

1f a communication channel is noisy then there is inevitably a degree
of eross-talk between input and output. Specificallly, each input Xi
could result in many different outputs (i,-.., yrylx), and each output
yj could be the result of many different inputs (i, ..., xmx]y), as shown
in the fan diagram of Figure 4.6. Shannon showed that the number myx
of different outputs which could be generated by each input is limited
by the channel noise

2HV) = 2n{y )’ #%9)

myX

Of coutse, noise can also affect the number mxly of different inputs that
could yield each output:

mJi-y = (465)

Number of possible inputs
for one output = 2HXY)

Outputs Y
'\
'y “ °
2H(X Y)
[ ]
Number of ° L Number of
inputs =2FEY) . L outputs = 2
®
[ ]
2 A0
v @
Inputs X 1

A
Number of possible outputs
for one input = 2HX)

Figure 4.6. A fan diagram shows how channel noise affects the number of
possible outputs given a single input, and vice versa. If the noise 7 in the
channel output has entropy (7)) = H(YYX) then each input value could
yield one of 2M({/I%" equally probable output values. Similanily, if the noise
in the channel input has entropy H(X\Y) then each output value could have
been caused by one of 2fi(X|}) equally probable input values.
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We refer to H(YYX) as the entropy of the channel noise because we
are usually interested in estimating the input from an observed output,
and the noise 7] added to the input by the channel has a direct effect
on our ability to estimate the input. Howewver, noise can also affect
our ability to estimate the output from an observed input. The extent
to which noise afffiects each of these estimates is captured by the two
complementary conditional entropies H(X\Y) and H(Y\X)).

An alternative, but equivalent, interpretation of this is depicted in
Figure 4.7. Because the channel adds noise, the output entropy is
usually larger than the input entropy, and this is reflected in the areas
of the shaded (@utermost) discs in Figures 4.7a and 4.7b. The mutual
information represented by the cross-hatched discs appears as part of
the input and output entropy (tthese discs have the same area in both
(@) and (b)). However, even though the amount of mutual information
within the input and output entropy is the same, the proportion of input
entropy occupied by the mutual information is relatively large, whereas
the proportion of output entropy occupied by the mutual information
is relatively smalll. Comnsequemtlly, the amount of input noise H(X\Y)
is small compared to the output noise H(Y\X)).

Output noise

Output
Input noise g‘n‘:‘g H(X) entropy H(YIX) entropy H(Y)
entropy H(X|Y) Py
W — -
Mutual information I(X,Y) Mutual information I1(X,Y)
@ (b)

Figure 4.7. Visualising mutual informatiom. The cross-hatched discs
represent the mutual information of the same channell. They are the same
size in (@) and (b), because they represent the same amount of mutual
informatiiom..
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4 The Noisy Channel Coding Theorem

Key peoint. The conditional entropy H(Y\X) is the
uncertainty of Y after X is observed, and the conditional
entropy H(X\Y) is the uncertainty of X after ¥ is observed.

4.6. Noisy Pictures and Coding Efficiency

In order to make these quantities more tangiblle, we will assume that
the input or source is represented by the binary image X shown in
Figure 4.8a, and the output Y is represented by the noisy version of
this image, shown in Figure 4.8b.

Because the channel is noisy, each pixel value has some probability
of being corruptedl. In this example, the channel is a binary symmetric
channel, in which there is a 10 probability that each source pixel will
be changed (either from O to 1, or vice versa) by the time it reaches
the output. The joint probabilities for the four possible input/output
pairs are shown in Table 4.3.

In the input image in Figure 4.8a, a proportion 0.724 of the pixels
are black (@), and 0.276 of them are white (1), so its entropy is

H{X) = p(@)g(@/p(@)xpQ)log(Wx(D) («.66)
= 0.724 x log(IV0724) + 0.276 x log(V(O2TE) (4.67)
= 0.851 bits/pixeil. (@.68)

Figure 4.8. (@) Binary image, in which each pixel is either black or white.
This is the input X to a communication channel. (b) Output ¥ of a noisy
communication channel, in which each pixel has had a 10% probability of
being changedl.
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In fact, because adjacent pixels tend to have similar values, this is
an over-estimate. So the estimate of 0.851 bits/pixels is really the
maximum entropy that these data could possess if data values were
independentt.

Similanlly, in the output image in Figure 4.8b, a proportion 0.679 of
the pixels are black, and 0.322 of them are white. If we again ignore
the correlations between neighbouring pixel values, its entropy is

H{YDE®D) log @YXl -(BOL)-+e1) Yo dWp (1)) (4-69)
= 0.679 x log(IVVGTI) + 0.322 x log(VNVI22) (4.70)
= 0.906 bits/pixel @)

Because we know the state of each input pixel and the corresponding
output pixel, we can work out the joint probability of each of the four
possible input/output pairs of pixel values (f.e. 00, 01, 10, 11), listed
in Table 4.3. These joint probabilities can then be used to estimate
the joint entropy of the pair of input/output images (i.e. the average
Shannon information per pair of input/output pixels),

JzJBgmg-— -y @72
p(0,0) log(1/»(0,0)) + p(0,1) log(1/»(0,1)) +
P(1, 0) log(1/p(L, B)) + p(1,1) log(1/p(1, 1)), (4.73)

2 2

H(X.,Y)

which evaluates to

XEY, Y)=  0.651 x log(1/0.65L)+ 0.073 x log(IVAOMT3) +
0.028 x log(IV/(DA2B) + 0.249 x log(VN24T) (4.74)
= L3 bits. (@.75)

State Input=0 Input=1
Output=0 | p(0,0) = 0.651 | p(Q,1) = 0.028
Outputt=1 | p(1,0) = 0.073 | p(1, 1) = 0.249

Table 4.3. Joint probabilities for corresponding pixels in input image X and
output image ¥ in Figure 4.8. Each cell represents
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4 The Noisy Channel Coding Theorem

We can now work out the mutual information of the input and output
images in Figure 4.8:

I(X,Y) HI(X) # BV - X, Y) (4.76)
0.851 +0.90%- 1.321 @.77)
0.436 bits. (@.78)

Thus, each value of the output ¥ reduces our uncertainty about the
corresponding value of the input X by about half of a bit.

Calculating Conditional Entropy

We can use the values calculated above to find the conditional entropy
H(X\Y). Before we observe an output our average uncertainty
about the value of the input X is H(X) = 0.851 bits. Rearranging
Equation 4.55 yields

HXY) = H(X)—I(X,Y) (@.79)
= 0851 - 0436 (@.80)
= 0415bits. (@.81)

Thus, after we have observed our average uncertainty about the
value of X is reduced by I(X,Y) bits, to 0.415 bits.

Rearranging Equation 4.52 yields an equation for the conditional
entropy H(YYX) based on output entropy and mutual informatiom,
which can be used with estimates based on our data:

HY\X) = &) - I(X.,V) (4.82)
= 09060436 @.83)
= QATOHits. (@.84)

As a check on our informal reasoning in Section 4.4, where we
concluded that H(Y\X) = H(r}), we can also calculate the entropy of
the noise added by the chanmel, and then compare it to the conditional
entropy H(Y\X)). Given that each pixel'’s state is flipped with a
probability p = 0.1 (or, equivalently, that 10% of pixel states are
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flipped)), this amounts to channel noise 7 with an entropy of

H(mD plog(/fp) + @ —W)lbg(L/(1 -))) (@.85)

0.1l0g(1/0.1) + 0.Dlg(L/D.9) (4.86)
0.332 + 0.137 (@.87)
0.469 bits. (@.88)

The small difference between Equations 4.84 and 4.88 is due to the
fact that the figure of 0.469 bits is based on the known probability that
a pixel’s value will get flipped, whereas the figure of 0.470 is estimated
from data which resulted from flipping pixel values. Just as we would
not expect two coin flips to always yield a head and a tail, so we should
not expect estimates based on data to be an exact match to estimates
based on the known underlying probabbillities.

Transmission Efficiency

Given that the output entropy is H(Y) = 0.906 bits and that the
mutual information is 7(X, ¥) = 0.436 bits, the proportion of output
entropy that is also shared by the input is (see Figure 4.7b)
(Y 043
H{Y) -~ 0906
= 048l (@.90)

(@.89)

This is one measure of how efficiently information is communicated
from input to output, and is defined here as the tramsmission efficieneyy.
A transmission efficiency of 0.481 means that almost half of the entropy
of the output depends on the input, and the remainder is due to noise
within the channel

4.7. Error Correcting Codes

The examples considered in Chapter 3 showed how it is possible
to remove redundancy from a message in order to find a compact
(effiicient) codimg. This is desirable for the noiseless channel assumed
for Shanmon’s source coding theorem. However, for Shannon’S noisy
channel coding theorem, removing redundancy makes the encoded
message vulnerable to the aimless effects of noise. For this reasom,
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4 The Noisy Channel Coding Theorem

it makes sense to add redundancy to the encoded message before it is
transmitted, and the particular form of redundancy added allows errors
intreduced during transmission to be detected and/or corrected. We
now consider a basic form of error correcting code.

The simplest forms of error correcting codes are called block codes.

As an example (firom Pierce (1961)%) of a block code, if we want to
communicate a message of 16 binary digits,

s=[110100110101100 0}, @9)

then we can add redundancy as follows. First, we arrange the digits
into a 4 x 4 grid,

EIESEIEY
|ojoj1 1]
|ojtjoj1]
[tjolojo]

then we check the parity within each row and columm, and finally, we
add an extra parity binary digit to obtain the encoded message

ENESCIEN Y
W\O\l\ﬂ\m\\
|

joj1jo1lo
j1]ololofl1
lojolnjuf-]|
Notice that if a row/column has an even number of 1s then we add
a parity digit of 0, otherwise we add a parity digit of 1. This adds an

extra row on the right-hand side and an extra column at the bottem.
In this augmented 5 x5 array, there are an even number of 1s in every
row and in every columm. If the communication channel only accepts
one binary digit at a time then we have to concatenate successive rows,
so the encoded message now has 24 binary digits,

x=[110110011001010100010®1 1j. (@.92)

But how does the addition of parity binary digits help to correct
transmission errors?
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Suppose the first binary digit of the original encoded message is
changed during transmissiom, so that the message received (with the
erroneous zero marked with an asterisk) is

|1 0 1|1
0|01 1|0
O|1,0|1||0

0001

(ojojujuf-]

In this corrupted message, the parity binary digits in the first row
and column no longer tally with the number of 1s. This error can
be detected easily because there is no longer an even number of 1s in
every row and columm. Note that this is true only for the first row and
columm, whereas all other parity binary digits do tallly. In other words,
the parity binary digits tell us there is an error, and they also tell us

where that error is, making it easy to correct the erroir.

The parity binary digit is often called a parity bit. However, because
the value of each parity binary digit is completely determined by the
values of the binary digits in the 4 x4 grid, each parity binary digit
provides zero bits of information in the encoded message. However, if
the message is corrupted within a communication channel then each
parity digit in the channel output can provide information about the
correct state of each binary digit in the message.

In this example, the number of extra parity binary digits was eigfhi,
for an original message of 16 binary digits, so we have increased the
number of binary digits communicated by a factor of 24/16 = 1.5.
More generallly, if we have a message of m = n x n binary digits
which is encoded in this way then the total number of binary digits
transmitted would be (n x n) + 2n, which increases the number of
binary digits transmitted by a factor of (n2+ 2n)/n2= 1+ 2/n. So
the parity overhead associated with this strategy shrinks fairly rapidly
as the length of the block code increases.

However, we need to remember that a 4 x 4 block code allows us to
correct one error in every 24 (i.e. 4 x4 + 8) binary digits transmitted,
whereas amn xm block code allows us to correct only one error in every
n2+2n binary digits transmitted. For example, if the block code length

103
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is defined by n = 20 then adding parity digits increases the number of
binary digits transmitted in each block from nx n = 400 to 440, which
is a factor of 440/400 = 1.1, and allows us to correct only one error in
every 440 binary digits transmitted. So, once again, there is a trade-
off between the robustness of the encoded message and the number of
extra binary digits required to make the message robust.

Redundancy is Goodl, and Bad

As we have seen from the examples above, data that contains redundant
values can be compressed by removing the redundamey. Additiomallly, if
some values occur more often than others then this implies that further
compression can be achieved by recoding data so that all recoded values
occur equally oftem. This reduces the amount of data to be transmitted,
but it also makes the data more prone to the effects of noise. Images
and language are both highly redundamt. This is good because it means
that most data values are implicit in the rest of the data, which makes
each data value robust with respect to the effects of noise. But it is
also bad, because we have to process relatively large amounts of data
to recover the relatively small amounts of information they contaiim.

4.8. Capacity of a Noisy Channel

The most general definition of channel capacity for any channel is

C — max I(X,Y) bits. 4.93
B(X)( Y) “.93)

This states that channel capacity C is achieved by the distribution p(X)
which makes the mutual information 7(X, Y) between input and output
as large as possithle. Using Equation 4.55, we can rewrite Equation 4.93:

C = max H(X) - HCX\Y) bits. @99

If there is no noise then H(X\Y) = Q, so this reduces to the definition
of channel capacity for noiseless channels (Equation 3.2).

4.9. Shannon’s Noisy Channel Coding Theorem

As discussed at the end of Chapter 1, all practical communication
channels are noisy. To take a trivial examplle, the voice signal coming
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out of a telephone is not a perfect copy of the speaker’s voice signall,
because various electrical components introduce spurious bits of noise
into the telephone system.

As we have seen, the effects of noise can be reduced by using error
correcting codes. These codes reduce errors, but they also reduce
the rate at which information is communicated. More generallly, any
method which reduces the effects of noise also reduces the rate at which
information can be commumnicated.

Taking this line of reasoning to its logical conclusion seems to imply
that the only way to communicate information with zero error is to
reduce the effective rate of information transmission to zero, and in
Shannon’s day this was widely believed to be true. Then Shannon
proved that information can be communicatedi, with vanishingly small
error, at a rate which is limited only by the channel capacity.

Before quoting Shannon’S theoremn, we should note that he used
the word ‘Equivocation’o mean the average uncertainty that remains
regarding the value of the input after the output is observed, i.e. the
conditional entropy H(X\Y)).

Now we give Shannon’s fundamental theorem for a discrete channel
with noise, also known as the second fundamental coding theorem, and
as Shanmen’s noisy channel coding theorem™x

Let a discrete channel have the capacity C and a discrete
source the entropy per second H. If H < C there exists
a coding system such that the output of the source can
be transmitted over the channel with an arbitrarily small
frequency of errors (or an arbitrarily small equivocatiin)).
If H > C it is possible to encode the source so that the
equivocation is less than H —C' ‘e where e is arbitrarily
small. There is no method of encoding which gives an
equivocation less than H —C.

In essence, Shannon's theorem states that it is possible to use a
communication channel to communicate information with a low error
rate e (@epsilom), at a rate arbitrarily close to the channel capacity of
€ bits/s, but it is not possible to communicate information at a rate
greater than C' bits/s
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The Noisy Typewriter

As an example of Shannon’d theorem in actiom, we can make use of
the noisy typewriter, shown in Figure 4.9. As its name suggests, the
noisy typewriter produces letters (outputs) that are unreliably related
to the (input) letter typed. Specifficallly, each typed letter produces one
of three letters that are near (@lphabeticallly) to the typed letter. For
example, if the letter B is typed then the output could be A, B or C,
and each of these outputs occurs with a probability of 1/3. Similarly, if
C is typed then the output could be B, C or D, and if D is typed then
the output could be C, D or E, and so on (@or reasons that will become
apparemnt, we use the space character as the 2th letter, and Z as the
27th letterr). The problem is that any output (e.g. C) could have been
produced by any one of three inputs (e.g. B, C, or D), so the inputs are
confusable given any particular outpunt.

However, we can make this particular noisy communication channel
communicate information without any error (i.e. with e = Q). If we
restrict the inputs to every third letter in the alphabet, starting at
B, then each input yields an output which is one of three letters.
But because each output triplet contains three unique letters (i.e. the
triplets are disjeiinit)), each input message gives rise to a non-confusable
set of output letters. The decoding method consists of a look-up table

Typedletter A B C D EE F G HHIIJJKKLLMMNNOP R ® B § U U W W YXSYPSRZ

I

Output Z ABCDEHRFGHIIJUJKLLMMNNP R ® B S D U W WYXY SPZZAA

AAAAAAAAA

Output ABCDEFGHIIJNKLLMUWNNOCP R®R B 30 UW WYXY BPzZZ

Typed letter

Figure 4.9. The noisy typewmiter. Top: Each typed letter yields one of three
possibie letters. For examplke, output € could have been produced by typing
B, € or D. Bottom: To ensure that outputs are not comfusable, we use
only every third letter in the alphabet. SP =space, which is treated as the
26th letter here.
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which maps each disjoint output triplet (e.g. A B, C]) to a unique
input (e.g. B). For example, if the channel output is

XEFZAEYXDU
then by using the look-up table we can recover the original message:
WE BE WET.

Note that we have rearranged the final triplet in our table to form [¥
SPACE Z], so that we have access to the space charactesr.

Using this code, there are nine possible inputs. If all inputs are used
equally oftemn, and if we type at a rate of one letter per second, then
the entropy of the channel input is

H(Adz9 log 9 (@.95)
= 37hits/s. (@.96)

Agaim, if all nine inputs are used equally often then all 27 outputs will
also occur equally oftem, so the output entropy is

H(Y) log 27 @9)

A4.7Bbits/s. (@.98)

For each typed letter, there are three equally probable outputs, so the
average uncertainty in Y given X is

H(Y\X) log 3 (4.99)

1L350bits/s, (4.100)

which we can recognise as the entropy of the channel noise M} From
these entropiies, we can work out that the mutual information is

HOL YY (@.101)
= 4.7%-1159 (4.102)
= 31T7bits/s. (4-.103)
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We can confirm this as follows. Using this code, transmission is free
of errors, so the average uncertainty H(X\Y) in the input given an
output is zero. This allows us to calculate the mutual information as

I(X)Y) = H(X)-HXN) (4.109)
= 3107-C00 (4.105)
= 3.17bits/s (4.106)

Also, we know that the mutual information cannot be larger than the
input entrapy, so if the mutual information is the same as the input
entropy then it follows that the channel capacity equals the input
entropy. In other words, of all the possible input distributions, the
uniform distribution of inputs used here is guaranteed to maximise
the mutual information of this particular channel, which (@ocording
to Equation 4.93) is the channel capacity C = 3.17 bits/s. In general,
provided the entropy of the noise distribution is fixed (e.g. a binary
symmetric channel)), a uniform input distribution is guaranteed to
maximise the mutual information of a discrete noisy chanmel.

We could object that this typewriter is not much use, because it has
only 9 letters. But, by using the code described above, we have turned
a noisy device into a reliable communication channel. Additiwailly,
if we treat this noisy typewriter as a communication channel then we
can encode any message we choose, and then transmit it through this
channel with 100% reliability. For example, if our message uses 27
equally probable letters then we need log 27 = 4.75 binary digits to
represent each letter. Thus, given that each typed letter represents
3.17 bits, we could use two typed letters to transmit each letter in our
message. In this way, we have effectively transformed a noisy typewriter
into a fully functional error-free communication channell

In this example, the error rate is zero. However, what makes the
noisy coding theorem remarkable is that Shannon proved the error rate
can be reduced to an arbitrarily small value for any data set.
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4.10. Why the Theorem is True

Describing Shanmon’g proof in detail would require more mathematical
tools than we have available here, so this is a brief summary which
gives a flavour of his proaif.

Consider a discrete or continuous channel with a fixed amount of
channel noise and capacity C. We have a set of N messages si, ..., S#
which have been encoded to produce inputs Xi,... ,xjy such that the
entropy H of these inputs is less than the channel capacity C. Now
imagine that we construct a bizarre codebook in which each randomly
chosen input x; gets interpreted as a fixed, but randomly chosen,
output yi. By chance, some outputs will get assigned the same, or
very similar, inputs, and vice versa, leading to a degree of cross-tallk.
Conseguenitily, when we use this codebook to decode outputs, we are
bound to misclassify a proportion of them. This proportion is the
error rate of the codeboaik. We then repeat this madness until we have
recorded the error rate of all possible codebauks.

Shannon proved that, provided H < €, when averaged over all
possible codebaalks, the average error approaches zero as the length
of the inputs x increases. Consequemitlly, if we make use of long inputs,
so that the average error rate e is small, then there must exist at least
one codebook which produces an error as small as e. Notice that if all
codebooks produce the same error rate e then the average error rate
is also e, but if just one codebook has an error greater than e then at
least one codebook has an error rate smaller than e.

As Pierce (1960)% notes, some people regard the logic which
underpins Shannon’ proof as weird, but such an outrageous proof also
gives some insight into the distinctive mind which created it.

Key poiimt. When averaged over all possible codebouks, if
the average error rate is e then there must exist at least one

codebook which produces an error as small as e.
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4.11. Summary

Mutual information is a subtle conecept, so it is important to understand
it propenfl. One way to think of it is as the average amount of
uncertainty in the value of one variable that is eliminated when the
value of another variable is knowm. When considered in terms of
communication channels, it is the amount of uncertainty in the value
of the input that is eliminated when the value of the output is knowm.

After an informal account of mutual informatiom, we considered the
inputs and outputs of a noisy channel for the case of a binary image
and represented its joint probability distribution in a 2 x 2 tablle. This
was used to calculate the entropies of the input, output, and joint
disteibutiom, which were then used to calculate the mutual information
of the noisy channell.

We also explored a simple form of error correcting code, which works
by adding redundancy to encoded messages. Howewver, we found that
such error correcting codes always require an increase in the total
number of binary digits, which reduces the amount of information per
binary digit transmitted.

We then examined Shannon’ noisy channel coding theorem. An
example of this theorem ‘fh action’*was provided in the form of a noisy
typewiiterr. Finally, we considered why Shanmon’s noisy channel coding
theorem is true.



Chapter 5
Entropy of Comtinuous Variables

All things physical are information-theoretic in origjim.
Wheeler J, 1990.

5.1. Introduction

So far, we have considered entropy and mutual information in the
context of discrete random variables {e.g. coin flipping). However,
we also need a definition of entropy for continuous random variables
(eg. tempaaturs)). In many cases, results obtained with discrete
variables can easily be extended to conmtinuous variables, but
information theory is not one of those cases.

Even though Shannon derived a measure of entropy for
continuous variables from the definition used for discrete variables,
MacKay (2008)% simply notes that the equation which defines
continuous entropy is illegal. Others effectively ignore the problem by
considering entropy only in the context of discrete variables. None of
these are very helpful if our data consist of samples from a continuous
variable, such as daily temperature or the heights of 5,000 people,
where we wish to estimate the entropy of these data (@s in Figure
51). Fortunatelly, there are ways to generalise the discrete definition
of entropy to obtain sensible measures of entropy for continuous
vanishlles 2545 2HHIR

In this chapter we will follow the historical development of entropy
for continuous variables. Thus, we begin with a seemingly innocuous
definition (which leads to infinities), before considering definitions
which allow entropy to be calculated.
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5.2. The Trouble With Entropy

To estimate the entropy of any variable, it is necessary to know the
probability associated with each of its possible values. For continuous
variables this amounts to knowing its probability density function or
pdf which we refer to here as its distribution {(see Appendices D and
E). We can use a pdf as a starting point for estimating the entropy
of a continuous variable by making a histogram of a large number of
measured values. However, this reveals a fundamental problem, as we
shall see below.

In order to make a histogram of any continuous quantity X, such as
human height, we need to define the width Ax of bins in the histogram.
We then categorise each measured value of X into one histogram bin,
as in Figure 51. Then the probability that a randomly chosen value of
X is in a given bin is simply the proportion of values of X in that bin
(see Appendix D). The entropy of this histogram is then given by the
average surprisal of its bins (tere indexed with i),

H(/XQ)E X (@rob X is in zth bin) x log Srob X Ts i &h bin” (5.1)(5.1)
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o

Figure 5.1. A histogram of n — 5,000 hypothetical values of human height
X, measured in inches. This histogram was constructed by dividing values
of X into a number of intervals or bins, where each bin has width Ax, and
then counting how many values are in each bim.
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where XA indicates that we are dealing with a continuous variable
which has been discretised using a histogram in which each bin has
a width equal to Ax. We have purposely not specified the number of
bins; in principlle, it can be infinite. In practice, it suffices to simply use
enough bins to include all of the values in our data set, as in Figure 5.1.

The probability that a randomly chosen value of X is in the ith bin
is given by the area a} of the ith bin, expressed as a proportion of the
total area A of all bins. A bin which contains n% values has an area
equal to its height rij times its width Ax,

at = 1jx Ax, 52)
so that
the probability that X is in the ith bin = aj/A, 5.3
where
A = Z: (G

In effect, the ith bin area in this normalised histogram is the proportion

Pi = di/A &5)

of the total histogram area. It will prove useful later to note that the
sum of these proportions (.. total area) of this normalised histogram
is necessarily equal to 1:

y pl.= i (5.6)
i
If the ith bin in this normalised histogram has height p(xi) and width
Ax then its area (lneight times width) can be obtained from

B p(xi) Ax, &.7)
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which allows us to rewrite Equation 5.1 more succinctly as
H(X2) = E;Pluogfj 8
i
Given that the probability P} corresponds to the area of the zth columm,
we can interpret the height p(xi) = Pi/Ax of the zth column as a
probability densityy. Substituting Equation 5.7 in Equation 5.8 yields

H{X%) = ATp(xi¥log —7—F— %9

However, given that the final term can be written as

— iR Hg &0

we can rewrite Equation 59 as

1
HX®) = ‘ * l%mg}a‘
where, according to Equation 5.6, the sum =1, so that
- 1
H{XA) ‘§3ﬁ(n) Ax log P—(’;s + log Ax G1)

Thus, as the bin width approaches zero, the first term on the right
becomes an integral, but the second term diverges to infinity:

+ oo k12

C s 1
H(X) L/J:-l p{x) log ) dx
And there’§ the rub. For a continuous variable, as the bin width Ax
approaches zero, so 1/Ax, and therefore log(1/4Av)), and therefore the
entropy of X, diverges to infinity.

One consequence of this is that the entropy of a continuous variable
increases with the precision of our measurements ((which determines
the bin width), as shown in Figure 52. This makes sense if we
bear in mind that increasing the precision of the measurements ought
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to increase the information associated with each measurement. For
example, being told that a table is measured as five feet wide and
that the device used to measure its width had a precision of 0.1 inch
provides more information than being told that the measurement device
had a precision of 41 inch. In practiee, it means that we must always
take account of the bin width when comparing the entropies of two
different continuous variables.

As we shall see in Section 6.4, the problem of infinities disappears
for quantities which involve the difference between two entropies, such
as mutual informatiom.

Key poiintt. The estimated entropy H (XA) of a (diiscretised)
continuous variable increases as the width of bins in that
variable’d histogram decreases.

5.3. Differential Entropy

Equation 5.12 states that the entropy of a continuous variable is infinite,
which is true, but not very helpfull If all continuous variables have
infinite entropy then distributions that are obviously different have the
same (finfinite) entropy.

A measure of entropy called the differential entropy of a continuous
variable ignores this infinity; it is defined as

= ha it(o= log—~ log —5.13)(5.13)
T——0s P
where the subscript dif denotes differential entropy (Glithough this is
not used where the intended meaning is unambigweus)). Thus, the
differential entropy is that part of the entropy which includes only the
‘nteresting’ “part of Equation 5.12.

Key poiimt. The entropy of a continuous variable is infinite
because it includes a constant term which is infinite. If
we ignore this term then we obtain the differential entropy

H@if(X) = Eflog(V¢§d)], the mean value of log(l/p{X)))-
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Calculating Differential Entropy

In practical terms, given a large sample of values from an unknown
distribution p(X)), how can we estimate the differential entropy of these
data? Our first step is to construct a histogram, on the assumption
that this is an approximation to an underlying continuous distribution
p(X)). Using this histogram., the differential entropy Hdif(X)) can then
be estimated from a discrete approximation to Equation 5.13:

~  HAif(A)AT B Fog— (5.169.14)

From Equation 5.7, we can substitute # = p(xi) Ax to obtain

HaJf(XA) = Eﬁ]og%” ®15)

» PPrlagy— + » PPl logher (5.16)

‘E L“%W’ - 108 5y 617

Prom Equation 58, we can recognise the first term on the right as
H/(XA), so that the differential entropy in Equation 5.13 can be
approximated as

~ H(Xigogtf(XA) -log— (5.18)

Estimates of differential entropy Hgif{XA) (calculated using
Equation 5.17) are shown in Figure 5.2 together with estimates of
entropy H (X R) (calculated using Equation 5.8), for comparisam.

Note that these data are drawn from a Gaussian distribution (see
Section 5.6 and Appendix G). This particular Gaussian distribution has
a standard deviation equal to one, which implies a differential entropy
of Hyif(X)) = 2.05 bits (see Equation 5.47). Thus, for the large data
set (of I million values) and the ‘feasonable’*bin widths in Figures 52b
and 5.2c, Equation 5.17 provides a good approximation to the known
value of differential entropy .
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5.3. Differential Entropy

Substituting Equation 5.14 in Equation 5.11, the discretised version
of X has a predicted entropy of

H(X2) = HEif(X) + log—-, ®19)

which is in good agreement with the values in in Figure 5.2.

An alternative approach consists of fitting a parametric function
(e.g. Gaussiam) to the data and then using an analytic expression to
find the differential entropy of the fitted function (e.g. Equation 5.47).
This parametric method is related to the more general kernel estimation
methods. For more recent advances, see Nemenman et al (2002)35.

h A

(@) Bin width = 1 (by Bin width = 0.5
HgJf(XR) = 2.104 bits HyJf(XR) = 2.062 bits
H(XR) = 2.104 bits H{X2) = 3.062 bits

(¢) Bin width = 0.1 (d) Haif(X) = 2.047 bits
Hgif (XR) = 2.047 bits
H(XAR) = 5.369 bits

Figure 5.2, (a-c) Effect of histogram bin width AX on the differentiai entropy
Half(XA) and entropy H(XA) of 1 million sampies from the Gaussian
distribution shown in (d), which has a variance of one and a differential
entropy Hdif(X) = 2.06 bits (see Equation 5.47). Hgif(XA) values were
estimated using Equation 5.17, and H(XA) values were estimated using
Equation 5.8.
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5 Entropy of Continuous Variables

5.4. Under-Estimating Entropy

This section can be skipped by readers unfamiliar with Bayes “rulle®®
{(see Appendix F). Whether a variable X is continuous or discrete, using
the relative frequency ({.e. proportiom) of observed values to estimate
the probability of that value yields biased estimates of entrapy. For
clarity, we will assume X is discrete and has m possible values, but the
analysis here applies to both discrete and continuous variables.

In this section only, we will use P} to represent the probability of the
zth value of X, and Pj to represent the estimated value (.e. relative
frequency) of Pi. For reasons we will not discuss, B} is called the
maximum likelimood estimate (MLE) of Pi. We will make a distinction
between the true entropy based on P} values

H(X) = B SRda— .20)
i=il 2

and the (maximum likelihood) estimate of entropy based on P} values

m -

Hmig(X) = B log ®2)
=1 £

Each estimate Pj implicitly assumes a uniform prior probability
distribution for P} values (.. all values of P} are a priori equally
probafiik)). However, because entropy is a logarithmic function of P},
this uniform prior imposes a non-uniform prior on entropy. In other
words, by assuming a uniform prior for P;, we implicitly assume that
some values of entropy are more probable than others, which is an
unwarranted assumption in this case.

It can be shown that the resultant biased estimate of entropy Hw e
based on Pj values tends to be smaller than the true entropy, and that
this bias is reduced by using a uniform prior distribution for entropy®.

Key poimit. If a variable X has entropy Fl, and if each value
of the probability distribution p(X) is estimated as a relative
frequency then the resultant estimated entropy Hwrg tends
to be smaller than H.




55. Prapentties aff Difftavartitd] Entroypy
5.6. Properties of Differential Entropy

Here, we explore what happens to the entropy of a continuous variable
X when it is transformed to another variable Y. In subsequent sections,
we shall see how this can be used to transform a variable X so that
each value of ¥ provides as much information as possifbile.

Entropy of Transformed Variables

Comsider two continuous variables X and ¥ which are related by a
function g:

y = G22)

If the function g is monotonic then each value of X gets mapped to a
unique value of ¥, and it can be shown that the entropies of X and Y
are related by

Hgif(¥) = HEif{X) + E(hyg\dY/dX], &23)
where the vertical bars indicate absolute value.

Multiplying by a Comnstamnt

The entropy of a discrete variable does not depend on the values of that
variable but only on the number of values and the probability that each
value oceurs.  For examplle, doubling all values of a die increases the
range of values (firom 1-6 to 2-12), but it does not alter the entropy of
the resultant histogram of observed values (see Section 2.5). However,
unlike a discrete variable, the entropy of a continuous variable does
depend on the range of values.

For example, if X is multiplied by a constant ¢ so that ¥ = ¢X then
the derivative

dy/dx = ¢, &24)
is constamt, and therefore

Eflog NavAX\  log [l 25)



5 Entropy of Continuous Variables
Substituting this into Equation 5.23,
Hgif®r) = + log |} itX+ log || bin.26)

For examplie, if Y = 2X then

dy/dX = 2, ®&27)
and therefore
Eflog [dy/a%] = 1, (5.28)
so that
Hgif(xX) = Hgif(X) + 10itt. (5.29)

Thus, even though Y is completely determined by X, ¥ comtains one
more bit of information than X. How can this be? This apparent
paradox is related to the difficulty in defining continuous entropy. If we
take a pragmatic approach and simply assume that finite measurement
precision translates to a fixed width of measurement ‘bins’“them, by
doubling the range of X, we have doubled the number of bins in the
measured range, giving one more bit of informatiom.

Key paoint. Multiplying a continuous variable X by a
constant ¢ changes the range of values, which changes the
entropy of X by an amount log |fc|.

Adding a Comstamt

If Y = X + c then the distribution p(Y) of ¥ values is the same as the
distribution p(X) of X values, but it is shifted along the x-axis by a
distance c so that p(Y) = p(X + c). As in the previous examples, we
evaluate the derivative

dy/dx @X + ¢)jdx (&.30)

L, &31)
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56. Maximum Entropy Distributions
and therefore
Eflog \dv/dX\] = O. G3)
Substituting this into Equation 5.23 implies that if ¥ = X + ¢ then
HGif(Y) = HEf(X) bits. E3)

Thus, adding a constant to X has no effect on its entropy.

Key poiinit. Adding a constant ¢ to a continuous variable X
has no effect on its entropy.

5.6. Maximum Entropy Distributions

The reason we are interested in maximum entropy distributions is
because entropy equates to informatiem, so a maximum entropy
distribution is also a maximum information distributiom. In other
words, the amount of information conveyed by each value from a
maximum entropy distribution is as large as it can possibly be.
This matters because if we have some quantity 5 with a particular
distribution p(S) and we wish to transmit S through a communication
channel, then we had better transform (@mncode) it into another variable
X with a maximum entropy distribution p(X) before transmitting it.
An example of how the fly’s eye does just this is given in Section 7.7.
Specificallly, given a variable S5, which we wish to transmit along a
communication channel by encoding 5 as another variable X, what
distribution should X have to ensure each transmitted value of X
conveys as much information as possible? For example, if S is the
outcome of throwing a pair of dice then the distribution of 5 is shown
in Figure 32b, which is clearly not uniformn. More impaoitamitlly, if
we simply encode the outcome values S between 2 and 12 as their
corresponding binary numbers X, then the distribution of @s and 1s
in the resultant set of codewords is far from uniformn. However, if
§ is encoded as a binary variable X using Huffman coding then the
distribution of Gs and 1s in the resultant set of codewords is almost
uniform (.. the proportion of Gs and 1s is about the same). Of all
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5 Entropy of Continuous Variables

the possible distributions of @s and 1s, the uniform distribution has
maximum entropy, and is therefore a maximum entropy distritbutiom.
Thus, Huffman coding implicitly encodes iid data as a maximum
entropy distributiom, which is consistent with the fact that it provides
almost one bit per binary digit (.e. it provides a fairly efficient cods).

In comntrast, for continuous variables, the distribution with maximum
entropy is not necessarily the uniform distributiom. We consider three
types of continuous variable, each of which has a different particular
constraint but is free to vary in every other respect. These constraints
are:

1 fixed upper and lower bounds;
2. fixed meam, with all values greater than or equal to zero;
3. fixed variance (e.g. powen)).

Each of these constraints is associated with a different maximum
entropy distribution. For the constraints above, the maximum entropy
distributions are (1) uniform, (2) exponemtizl, and (3) Gaussiam.

Entropy of a Uniform Distribution

Consider a random variable X with fixed upper and lower bounds,
distributed uniformly between zero and a so that the probability density

Figure 5.3. A uniform distribution with a range between zero and two has
an area of one (= 2 x 0.5), and an entropy of log 2 = 1 bit.
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5.6. Maximum Entropy Distributions

p(x) has the same value for all values of X , for example as in Figure 5.3.
The width times the height of p(X) must be one, so px) x a = 1,
and so the probability density function of a variable with a uniform
distribution is

p(x) = La. 39

The probability density p(x) of x is therefore equal to 1/a between zero
and a, and equal to zero elsewhere. By conventiom, a random variable
X with a uniform distribution which is non-zero between zero and a is
written as

X -~UA(6,8). (5-35)

The entropy of this uniform distribution is therefore

Haif(X) = / . p(x) log a dx (5.36)
= loga bits. ®.37)

This result is intuitively consistent with the entropy of discrete
variables. For example, in the case of a discrete variable, we know
from Equation 2.69 that doubling the number of possible outcome
values increases the entropy of that variable by one bit (j.e. by log 2
bits). Similarlyy, for a continuous variable, doubling the range of
continuous values effectively doubles the number of possible outcome
values (jurovided we are content to accept that this number is infinitely
large for a continuous variable) and also increases the entropy of that
continuous variable by one bit. Thus, if the range of X values is
increased from a to b = 2a then the entropy of ¥ = 2X should increase
by exactly one bit in relation to the entropy of X, i.e.

= loghb &3B)
= log2a (®.39)
= loga + Lbits, (®.40)

which is the expected result.
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More impartamilly, it can be shown#l that if a variable has a fixed
lower and upper bound (e.g. zero and a) then no probability distribution
can have a larger entropy than the uniform distribution.

Key poiintt. Given a continuous variable X with a fixed range
{e.g. between zero and two), the distribution with maximum
entropy is the uniform distributiomn.

An odd feature of the entropy of comtinuous distributions is that
they can have zero or negative entropy. For example, if X has a range
of a = 1 then Hgjf{X) = 0, and if a = Q5 then Hgif(X) = -1.
One way to think about this is to interpret the entropy of a uniform
distribution relative to the entropy of a distribution with an entropy of
Hgif (X)) = 0 (i.e. with a range of a = 1). If a = 2then this distribution
has an entropy which is Hgjf{X) = 1 bit larger than the entropy of a
distribution with a = 1. And if a = 0.5 then the distribution has an
entropy which is one bit smaller than that of a distribution with & — 1.
Similar remarks apply to the entropy of any continuous distributiom.

Entropy of an Exponential Distribution

An exponential distribution is defined by one parameter, which is
its meam, fi. The probability density function of a variable with an

P(x)
© ©o o ©o ©o o o o o
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Figure 54. An expomential distribution with a mean of p = 1 (imdicated by
the vertical dashed line) has an entropy of Hgif(X) = 1.44 bits.
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5.6. Maximum Entropy Distributions

exponential distribution is

P x>0
®4)
T <0,
X< 0,
as shown in Figure 5.4 for u = 1. convention, a random variable X

RN AN EHD SrigHR DAt B fTod- VB ORI 9Read GINAAEWMAtHRRISX
with an exponential distribution which has a mean of p is written as

X ~ exp(p). (5.42)

X~ exp(/i). G422

It can be shown?! that the entropy of an exponential distribution with

Héan pashowndl that the entropy of an exponential distribution with
mean p is

Hgif(X) = logep bits. (5.43)

More impantzmitly, if we know nothing about a variable except that it is
positive and that its mean value is p then the distribution of X which
has maximum entropy is the exponential distributiom.

Key poinit. Given a continuous positive variable X which
has a mean #, but is otherwise unconstrained, the distribution
with maximum entropy is the exponential distributiom.

Entropy of a Gaussian Distribution

A Gaussian distribution is defined by two parameters, its mean p and
its variance u, which is the square of its standard deviation e, so v = a2.
{(See Figure 5.5 and Appendix G.) The probability density function of
a variable with a Gaussian distribution is
1 =)
px) = —— G449

where the mean determines the location of the peak of the probability
distributiom, and the variance, which is the average squared difference
between x and the mean,

v Eile—m% (545)



5 Entropy of Continuous Variables

determines how spread out the Gaussian distribution is. By conventiom,
a random variable X with a Gaussian distribution which has mean fu
and variance v is written as

X ~ N(pW)- (&46)
It can be shown#l that the entropy of a Gaussian variable is

1/2 Hgl2f(@0=1/2log 27recr2  (5.47)

= 1/2log Zfre +lbogw (®48)
= 20H8folpg bitsits. 549)

Given that log 1 = 0, a Gaussian distribution with a standard deviation
of g = L has an entropy of 2.05 bits. If X is constrained to have a fixed
variance a2 (which equates to power in terms of physics) then it can
be shown#lL that no probability distribution has larger entropy than the
Gaussian distributiam.

Key poiinit. Given a continuous variable X which has a
variance o2, but is otherwise unconstrained, the distribution
with maximum entropy is the Gaussian distributiom.

B B = i o o o g e

Figure 55. A Gaussian distribution with a mean of p = 0 and a standard
deviation of a = 1 (mdlicated by the horizontal dashed ling), has an entropy
of Hdif = 2.05 bits.
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5.7. Makimg Sense of Differential Entropy

Why Information Looks Like Pure Noise

One particularly intriguing consequence of the final result above is that
in order for a signal to carry as much information as possiflle, it should
be indistinguishable from pure noise.

Most physical systems that generate a signal have limits defined by
the amount of available energy per second, which amounts to a power
limitatiom, and this, in turm, corresponds exactly to a limit on the
variance of a signall. We already know that a signal with a fixed variance
carries as much information as possible only if it is Gaussiam, which
is why it is desirable to make power-limited signals have a Gaussian
distributiom. Thus, when we measure some power-limited quantiity;,
like the voice on a telephome, we should recode it into a signal with
a Gaussian distribution in order to convey as much information as
possible for each watt of power expended. But what about the noise
that inevitably gets added to that signal?

Noise usually consists of a mixture of unwanted signals from other
sources, and the central limit theorem guarantees that such mixtures
tend to be Gaussian (see Appendix G). Comnseguentily, when our
recoded Gaussian signal gets corrupted by Gaussian noise, it yields a
(@ignal plus noise) measurement with a Gaussian distribution of values.

So, when a neurophysiologist measures the output of brain cells,
he does not complain if his recordings look like pure Gaussian
noise, because that is precisely what Shannon would predict of a
power-limited system which communicates information as efficiently
as possithlke.

5.7. Making Sense of Differential Entropy

Differential entropy is a peculiar concept, inasmuch as it appears to
have no meaning when considered in isolatiom. The fact that a variable
has a definite amount of differential entropy tells us almost nothing
of interest. In particullar, knowing the amount of differential entropy
of a variable does not place any limit on how much information that
variable can convey (fbecause each value of every continuous variable
can convey an infinite amount of information)). This stands in stark
contrast to the case for a discrete variable, where entropy determines
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5 Entropy of Continuous Variables

precisely how much information it can comvey. However, given that the
accuracy of every measurement is limited by noise, this measurement
noise places a strict upper limit on the information-carrying capacity of
all continuous variables. Thus, even though each value of a continuous
variable cam, in principle, convey infinite informatiom, the amount of
information it conveys in practice depends on the accuracy of our
measurements. In effect, measurement noise divides up the range of
probabilities of a continuous variable into a finite number of discrete
intervals; the number of intervals increases as the measurement noise
decreases. The exact consequences of this discretisation of continuous
variables by measurement noise will be examined in more detail in
Section 7.3.

Key poimit. Noise limits the amount of information conveyed
by a continuous variable and, to all intents and purposes,
transforms it into a discrete variable with m discriminable
values, where m decreases as noise increases.

5.8. What is Half a Bit of Information?

If a variable has a uniform distribution then one bit halves our range
of uncertainty about its value, just as it halves the number of possible
routes in Figure 1.2. However, we often encounter fractions of a bit.
So, what does it mean to have, say, half a bit of information?

We can find out what a fraction of a bit means by copying the recipe
we use for whole bits. For clarity, we assume that the variable X
has a uniform distribution and that we know nothing about which
value X has. For example, the distribution of the 8-siified die shown
in Figure 2.7b has an entropy of three bits, which corresponds to an
initial uncertainty range of 1 or 100%. If we are given H = 2 bits
of information about the value of X then this reduces our range of
uncertainty by a factor of 2fi = 22 = 4, so our uncertainty about the
value of a variable is one quarter as big as it was before receiving these
two bits. Because the die has eight sides, this would mean that we
now know the outcome is one of only two possible values (.e. 1/4 of
8). More generallly, if we treat our initial uncertainty as 1 (or 100%)
then this implies that our residual uncertainty is U = 1/4 (or 25%), as

128



8. Whatis Hdlfa Bit of Information?

a) Alterreeebiingd@ dbitesUs25866

Residual
uncertainty

b) ARterreeeniirigdl bibjtlUs856860

Residual uncertainty

c) Alterreeebiinggl @2abibitls#1 %0

e N |

Residual uncertainty

Figure 5.6. Residual uncertainty U. If we have no information about the
location of a point on a line of length 1 then our initial uncertainty is J = 1.
(2) After receiving 2 bits, we know which quarter contains the peint, but we
do not know where it is within that quarter, so U = 1/4.  (b) After receiving
1 bit, we know which half contains the poimt, so our residual uncertainty is
U =1/2. (c) After receiving 1/2 a bit, we know the point lies within a
region containing 0.71 of the line, so our residual uncertainty is U = 0.71.

shown in Figure 5.6. Note that the term residual uncertainty is unique
to this boak.

Initiallly, our uncertainty spanned the whole line, which has a length
of one. After receiving two bits, the region depicting the residual
uncertainty has a length of 0.25. The precise location of this region
depends on the particular information received, just as the particular
set of remaining destinations in the navigation example in Section 1.3
depends on the information received.
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The recipe we have just used applies to any number of bits H, for
which the residual uncertainty is

U =2-f, (®.50)

as shown in Figure 5.7. So, if we have H = 1 bit then our residual
uncertainty is

U = 21 &.51)
= 12, (552

which means that our residual uncertainty is half as big as it was before
receiving this one bit.

Equation 5.50 applies to any value of H, including fractional values.
It follows that if we receive half a bit (H = 1/2) then our residual
uncertainty is

U = 2=% 5.53)
0.71 &59)

times as big as it was before receiving half a bit.

Residual uncertainty, U
o o o o o o o o o
=] [l N w > wm N ~J [+ ] O Lond

o

0.5 1 1.5
Amount of information received (bits)

Figure 5.7. Residual uncertainty U after receiving different amounts of
information H, where U = 2=f.
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58. What is Half a Bit of Information?

Let’'s keep this half a bit of informatiom, and let’s call our residual
uncertainty U\ = 0.71. If we are given another half a bit then our new
residual uncertaiinty, which we call U2, is our current uncertainty [}
reduced by a factor of 0.71. Thus, after being given two half bits, our
new residual uncertainty is

U, = orxUy (5.65)
0.5.05. (5.56)

So, as we should expect, being given two half bits yields the same
residual uncertainty (0.5) as being given one bit.
Finallly, the residual uncertainty for one quarter of a bit is

0 2~ 1/4 {5510
= O (5.58)

In other words, after receiving onequyasatécofod bibitgurunnoertainiytysis
0.84 times what it was before receiving it.

The Uncertain Table Length

The table I am sitting at has a length x that has been chosen from a
warehouse in which the distribution of table lengths is uniform, with
a range between zero and 10 feet. Let'S assume that your initial
uncertainty about where x lies in this range is 100% or 1. If I tell
you that my table is less than five feet long then 1 have halved your
uncertaiimtty, which amounts to one bit, and therefore leaves you with a
residual uncertainty of IJ —0.5. If I then tell you my table is less than
2.5 feet long then 1 have again halved your uncertaimiy, which amounts
to another bit, and which leaves you with a residual uncertainty of
U = 025. This is fairly straightforward, as we know that two bits
should reduce your uncertainty by a factor of four (.e. from 1 to 0.25).

Now, let’s start over and make this scenario more interesting. What if
1 tell you that my table is less than 7.1 feet long? Then your uncertainty
is 0.71 = 7.1/10 times as large as your initial uncertainty of 1, and so
your residual uncertainty is U = 0.71 or 71%. It turns out that this
reduction in uncertainty from 100% to 71% is the result of being given
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5 Entropy of Continuous Variables

half a bit of informatiom, because these particular numbers have been
chosen to coincide with the residual uncertainty after receiving half
a bit (see Equation 5.54). Thus, half a bit of Shannon information
reduces uncertainty to 0.71 of its previous value.

Key Poimt. An initial uncertainty of U = 1.0 is reduced to
U = 285 = (.71 after receiving half a bit of informatiom, and
to U = 2=H after receiving H bits.

5.9. Summary

The trouble with entropy for continuous variables is that it is infinitely
large. Even though this is not very useful, it is not really surprising.
Unlike a discrete variable, a continuous variable has a value which is
chosen from an uncountably infinite number of possible values. It
follows that the value of a continuous variable is implicitly specified
with infinite precisiom, and we have found that such precision carries
with it an infinite amount of Shannon informatiom. We also found that,
in practice, this need not diminish the utility of entropy, provided we
take account of the precision of the measurements used when estimating
differential entropy.

We encountered three distributioms, each of which has maximum
entropy under different conditioms. The dual nature of information and
entropy once again became apparent as it emerged that one particular
maximum entropy distribution (the Gaussiam) is indistinguishable from
pure noise. Finallly, in order to provide an intuitive understanding of
entropy, we considered what a fraction of a bit means, and used the
example of half a bit to derive a formal measure (residual uncertaimnty)
related to fractional numbers of bits.



Chapter 6

Mutual Informatiom: Comtinuous

The fundamental problem of communication is that of
reproducing at one poimnt, either exactly or approximasiely;,
a message selected at another poiimnt.

Shannon C, 1948.

6.1. Introduction

In this chapter, we explore information in the context of a
communication channel which communicates the values of continuous
variables. This will involve revising material from previous chapters on
discrete variables in the context of continuous variables.

A continuous channel is depicted in Figure 6.1. The definition of
mutual information for continuous variables is the same as previously
given for discrete variables

I(X,Y) = H(X) + HY)-H{KY)) bits. ©1)

In the context of continuous variables, the mutual information
between channel input and output determines the number of different
inputs that can be reliably discriminated from a knowledge of the
outputs. Spediifiicallly, the mutual information is the logarithm of the
number m of input values which can be reliably discriminated from
a knowledge of the output values (I = log m), where this number is
limited by the noise in the channel. Because mutual information is
symmetric (ie. /(X,Y) = I(Y,X))), m is also the logarithm of the
number of output values which can be reliably discriminated from a
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Figure 6.1. The noisy continuous chammel. A signal s is transformed by an
encoding function X = g(s) before being transmitted through the chammel,
which corrupts X by adding noise #/to produce the output y = x 4f 7

knowledge of the input values. Shannon proved that the number m has
an upper bound ragax, for which C' = log napgx is the channel capaciity.

An important property of mutual information is that it is sensitive to
the strength of association between two variables, but it is essentially
‘Blind’"to the nature of that relationship (e.g. whether it is linear or
nom-lineair). If two variables are related to each other then it does not
matter how complex or subtle their relationship is, mutual information
will give an exact value for the strength of the associatiom, measured
in bits. We will return to this topic in Section 6.5.

Equation 6.1 will be derived from a formal definition of mutual
information. However, the bulk of this chapter will be dedicated to
understanding mutual information in a more intuitively appealing form
involving conditional entropy (iimtraduced in Section 4.1), which cannot
be understood without having some familiarity with joint distributions
of continuous variables.

Key paint. Mutual information is the logarithm of the
number of input values which can be reliably discriminated
from a knowledge of the output values.




6.2.. Joint Distributions

6.2. Joint Distributions

If the channel inputs X and outputs Y are correlated then a scattergram
of their corresponding values looks like the dots on the ground plane in
Eigure 6.2, where dot density is represented in Figure 6.4a. A non-zero
correlation implies that if we know the value of X then we also know
something about the corresponding value of Y, and vice versa. How
much we know depends on the magnitude of the correlation between
X and Y.

As previously described for discrete variables, if X and Y are
independent then knowing the value of X tells us absolutely nothing
about the corresponding value of ¥, and vice versa; examples of this
are shown in Figures 6.3 and 6.5. In other words, the value of X is not
predictable from the corresponding value of ¥, and vice versa.

The joimt probability density of x and y is written as p(x,y). If
we ignore the distinction between probability density p{x,y) and
probability then our notation becomes less rigorous, but more readable
{see Appendix D). Accordimgly, if X and Y are independent then
the probability of observing the pair (x,¥) is just the product of the
probability that X —x and the probability that ¥ —y; speciificailly;,
p(x,%) = p(x) p(y). Because this is true for all values of X and Y,
it follows that if X and Y are independent then the joiint probability
distribution p(X,Y) is the outer product (see Section 4.2) of the
probability distributions p(X) and p(Y),

PEX.Y) = pCOn(Y)- ©2)

This is usually described as the joint probability distribution p(X,Y)
being factorised into the two probability distributions p(X) and p(Y)),
where p(X) and p(Y) are the marginal probability distributions of the
joint probability distribution p(X,Y)).

Marginalisation

By analogy with discrete variables, the marginal probability
distributions of the joint distribution p(X,Y¥) can be obtained using
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6 Mutual Information: Continuous

integration:
= 3
p() /: L ©3)
) = | sy ©4)

For examplle, the joint distribution p(X,Y) shown in Figure 6.2 has a
marginal distribution p(X) shown on the left-hand back plane and a
marginal distribution p(Y) shown on the right-hand back plane.

Differential Entropy of Joint Distributions

The differential entropy of the joint probability distribution p(X, Y) is
a generalisation of the differential entropy of a single variable

T

Hgif(X,Y) dxmeso dy )P(x,y)logT&})f dx (65)
log — | bits.
’og p(x;y)._' l €6

o)
0 3 0

55

Figure 6.2. Joint probability density function p(X, Y) for correlated Gaussian
variables. The standard deviation of Y is oy = 1, the standard deviation
of X is ¢x = 2, and the correlation between X and ¥ is p = 6.8. The
probability density p(z, y) is indicated by the density of points on the ground
plane at (x,y). The marginal distributions p(X) and p{Y) are plotted on the
side axes. These marginal distributions have been rescaled to have the same
height as the joimt pdf in this and subsequent figures.
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6.2. Joint Distributions

The limits of integration (§.e. #00) and the subscript difwill be omitted
from now on.

Note that the problem of infinities encountered for any distribution
of a single comtinuous variable (Section 5.3) also applies to any joint
distribution of variables, and it is ‘Solved’In a similar manmnet, by simply
ignoring the infinities. For brevilyy, we will use the term ‘oint entropy’~
to refer to ‘Joimt differential entropy’=

The joint entropy H(X.Y) can be considered as a measure of the
overall variability of the variables X and Y, or equivalemtly, as a
measure of dispersion of the joint probability distribution p(X, ).

If X and Y are independent then the differential entropy of the joint
probability distribution is equal to the sum of the differential entropies
of its marginal distributiomns,

H(X) + H(Y) lf./l M iS5 Bk ®7
BN % 5 B S &

E ©.9)

log——‘ +E|]

p(%)

0og @J

0.154

px.y) -

Figure 6.8. Joint probability density function p(X,Y) for independent
Gaussian variables. Because X and Y are indepemdent, p(X,Y) is the
product of its marginal distributions, p(X,Y) = p(X)(Y). The standard
deviations are the same as in Figure 6.2.
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6 Mutual Information: Continuous

1t follows that if X and Y are independent then there is no difference
between the differential entropy of the joint distribution and the total
differential entropy of its marginal distributioms,

H(X) + H(Y) - H{X.Y) = Obits. ©10)

Mutual Information and Marginal Distributions

For continuous variables, mutual information is defined as

I(X,Y) Jf _f p{x, (6.1111)

D% 59009

This can be rewritten as

[(X.y) = —

/ £ p@gp;iy ydx  (612)

log

log @13

'°gp<—x>J*E @\‘E ;{mﬂ

X

(a) (b)
Figure 6.4. Bird's-eye view of joimt probability density functioms, (&)

Correlated variables shown in Figure 8.2.  (b) Indepemdent variables shown
in Figure 6.3. Lighter areas indicate regions of higher probability demsity.
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6.3. Conditional Distributions amd Entropy

which can be recognised as the sum of the entropies of the two marginal
distributions minus the entropy of the joint distributiem,

XYY = H(X) + HE)-HKY)) bits. ®.14)

By analogy with the discrete case, [(X,Y) is the average amount of
information conveyed by each input about each output value received.
Because mutual information is symmetric, it is also the average amount
of information conveyed by each output about each input value.
However, this formulation of mutual information is arguably less
accessible than formulations that involve the conditional entropies,
which is the interpretation developed in the remainder of this chaptes.

6.3. Comnditiomal Distributions and Entropy

Here, we explore the idea of conditional entropy, which demands that
we first define conditional probability distributioms.

Conditiomal Probability Distributions

If we take aslice through a joint probability distribution then we obtain
a cross-sectiom, as shown in Figure 6.6. If this cross-section is taken
at x\ —1L then the resultant shape defines the probability of obtaining

Figure 6.5. Uniform joimt probability density function p(X,Y) for two
variables, both of which have uniform probability distributions. These
variables are indepemdlant..



6 Mutual Information: Continuous

different values of Y, given that X = x\\ that is, it defines the cross-
section p(xi,Y¥)). From the product rule {(see Appendix F), we know
that

{xi,Y)= jpie, ) ©15)

where the vertical bar stands for ‘fiven that’> The distribution of ¥
given that X —x\ is therefore

) = §/v.=) (6.16)

which is a conditional probability distributiom. Thus, p(Y\x\) is a scaled
version of the slice in Figure 6.6, where the scaling factor is 1/p(xi))-
The value of p(xj) is given by the height of the marginal probability
distribution at X = x\, which can be obtained by marginalisation
(d.e. by integrating over ¥),

p(xi) == Jy ®17)

Figure 6.6. Conditiomal probability distribution p(Y\x}) of the correlated
variables shown in Figure 6.2. The cross-section p(¥,x1) (solid curwe)
represents the probability (density) of different values of ¥ for a specific given
value of X — x\ = 1 and is a scaled version of the conditiomal distribution
p(YIxi)). The marginal distribution p(X) is a dashed curve and the density
p(xi) is the height of p(X) at X = xi, as indicated by the solid vertical line.
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6.3. Conditional Distributions and Entropy

However, for our purposes, the value of p(xi) is immaterial, because
it simply serves as a scaling factor which ensures that the distribution
p(¥)xi) has unit area (@nd is therefore a probability distributiio)).

Simillanily, if we had chosen to take a slice parallel to the x-axis at
Y = yi then we would obtain a cross-section which is proportional to
the conditiomal probability distribution p(X\yi), with a scaling factor
of I/p(yi) in this case, as shown in Figure 6.7.

Conditional Entropy

Given a joint probability distribution p(X, E), the conditional entropy
H(Y\X) is our average surprise when we are told the value of ¥
given that we already know the value of X. In fact, p(X, F) has two
conditional entropies H(Y\X) and H(X\Y)), which can be summarised
as follows:

1L A slice through p(X,Y) at X = x\ defines a one-dimensional
distribution p(Y\xi) with entropy H{Y\x\). The conditional
entropy H(Y\X) is the average entropy of all such slices through
p(X, ¥), where this average is taken over all values of X. See
Figure 6.6.

OX‘ /0

&8

Figure 6.7. Conditiomal probability distribution p(J0\yi) of the correlated
variables shown in Figure 6.2. The cross-section p(X,yi) (solid curwe)
represents the probability (density) of different values of X for a specific given
value of ¥ —3\ = 1.5 and is a scaled version of the conditional distribution
p(X\yi)- The marginal distribution p(Y) is a dashed curve, and the density
p(yi) is the height of p(Y) at Y —yi, as indicated by the solid vertical line.
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6 Mutual Information: Continuous

2. A slice through p(X,Y) at ¥ — 3\ defines a one-dimensional
distribution p(X\yi) with entropy H(X\yi). The conditional
entropy H(X\Y) is the average entropy of all such slices through
p(X,Y)), where this average is taken over all values of ¥. See
Figure 6.7.

Now let’¥ back up a little, and derive an expression for H(Y\X)),
beginning with a single slice through p(X,Y) at X = x\. This slice
is a scaled version of the conditional probability distribution p(¥|xi),
where the entropy of p(Y\x\) is related to the amount of spread or
dispersion it has,

H(Y|z)) = /y plylz1) log #I) dy. ©618)

If we consider the mean dispersion of the family of conditional
probability distributions defined by p{¥Y\x{) for different values of X
then we obtain the conditional entropy H (Y ||X),

HONX) = / p(2)H(Yz) d. ©6.19)

This is the average uncertainty in ¥ given a value of X, when this
average is taken over all values of X. If we substitute H(Y\x) from
Equation 6.18 into Equation 6.19 then we get

HY|X) = /l_p(r) [/yp(yrr)logp—(;—u—)dy} dz, (6.20)

where PlvOPPOE PsyXhasthat

H(Y|X) = / / p(x,y)logp—(;r) dzdy (6.20)
yvJzx '
1 '
= E{]ng——(yix)] bits, 6.22)

where this expectation is taken over all values of X and Y.
Similarly, the conditional entropy HCX\Y) is

HXY) = logH pCxg Yotz Hits. (6.2306.23)

Jy J%
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Both of these conditional entropies will prove useful shorrtlly.
Notice that, usually, HCX\Y) % H(Y\X). For example, the joint

probability distribution in Figure 6.2 implies a family of conditional
probability distributions p(¥Y\X) which have large widths or variances
(@ee Figure 6.6) but conditional probability distributions p(X\Y) that
have small variances (gee Figure 6.7), and the mean variance of each of
these two families is reflected in the corresponding conditional entropies

H(Y\X) and H{XY)).

6.4. Mutual Infonmattiion amd Conditional Emtropy

In order to proceed, we first need to show that mutual information can
be expressed as

I(X,Y) = HQ@)- H\X) bits, 6.249)
as shown in Figures 6.8 and 6.9. Given that
I(X,Y) —// (z,y) log 25— da dy,
iix ¥] * X y)’\ 1?{"9) ixdv*

and that p{x,y) = p(y\x)p(x), we can substitute this into Equation
6.25 to obtain

= I(XA,YDX: _ s JJ"p(ﬁ(Zﬁ) log 6.26
which can be rewritten as the difference

*(X ,,Y):j \] plog Wieg dx ddgx dy

. 1
- f; /gm,,y)mgﬁ dxdy,  (627)

where we can recognise (firom Equation 6.21) that the second term on
the right is H(YYX) and that the first term is the entropy of ¥ , because

)} )} ,m)lhmTy dx dy = \]oég— dgy=HH{}Y)), (©6.28)
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6 Mutual Information: Continuous

s0
I(X,Y) = H(Y) - H(Y\X) bits, 6.29)

which establishes the result stated in Equation 6.24.
If we simply swap the variables Y and X then, by symmetny, we have

I(X,Y) = H(X) - H(X\Y) bits. (6.30)
Both of these results will prove useful shortlly.

No Infinity

Notice that both H(X) and H(X\Y) in Equation 6.30 include the
infinite constant first encountered in Equation 5.12. Howewver, because
this constant has the same value in H(X) and H(X\Y)), it cancels out
when we subtract one from the other. Thus, the definitions of mutual
information for both discrete and continuous variables do not contain
any infinities.

Next, we consider mutual information from two perspectives: the
input and the outpuit.

The Information That ¥ Provides About X

The mutual information I(X,Y) between X and Y is the difference
between the average uncertainty H(X) we have about X before an
output Y is observed, and the average uncertainty HCX\Y) after Y
is observed (Equation 6.30); it is the reduction in uncertainty in X
induced by observing ¥, and is therefore the amount of information
gained about X after observing Y.

Because a reduction in uncertaiimty, from H(X)) to H(X\Y)), amounts
to an increase in certainty, the amount of information gained about X
after observing Y is

I(X,Y)) = H[X) — H(X\Y) bits, (&31)

which, according to Equation 6.30, is the mutual information between
X and Y. In summany, the mutual information can be expressed as
the difference between what we know about X before observing F,

144



64. Mutual Information and Conditional Entropy

and what we know about X after observing Y. It is also the amount
of output entropy that is exclusively related to the input entropy and
therefore not related to the noise in the input.

Mutual Information Cannot Be Negative

On average, observing an output reduces uncertainty about the input
{even though certain outputs may increase uncertaiimty). Indeed, it can
be shown (see Reza (196)#1) that the entropy of X given ¥ cannot
be greater than the entropy of X,

HAXY) < H(X) bits, 6.32)

with equality only if X and ¥ are independemt. From Equation 6.30,
it follows that mutual information is positive, unless X and ¥ are
independent, in which case it is zero.

The Information That X Provides About ¥

The mutual information between X and ¥ can also be expressed as the
difference between the amount of uncertainty H(Y) we have about ¥
before an input X is observed, and the amount of uncertainty H(Y\X)
after X is observed (Equation 6.29).

Given that our uncertainty is reduced by an amount H(Y\X) from
an initial value of H(Y), it follows that the amount of information we
have gained about Y is

IX,Y) = H(Y) - BY}X) bits 633

Thus, the mutual information can be expressed as the difference
between what we know about Y before observing X, and what we know
about Y after observing X. It is also the amount of input entropy that
is exclusively related to the output entropy and therefore not related
to the noise in the output.

Mutual Informatiom, Conditional Entrapy, and Joint Entropy

So far, we have established three expressions for mutual informatiom,
each of which can be interpreted as follows. First, we have

IX,Y) = HX) - bits. ©39)
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6 Mutual Information: Continuous

Secomnd,
I(X,Y) = H(Y) - H(Y\X) bits. ©3%)

And third,
I(X,Y) = H{X)+H(Y) - H(X,Y) bits. (6.36)

From these, a little algebra yields a fourth expression

I(X,y) = HXY)-{HKEY) + HYX)). ©37)

This is the portion of the joint entropy H(X,Y)) that is left over once
we have removed [FA(X\Y) + H(Y|IX)], which is the entropy H(X\Y)
due to noise in X plus the entropy H(YYX) due to noise in ¥.

If we rearrange Equation 6.37 then we obtain

H{X,Y) = I(X,Y)+H{XY) + HY\X). (6.38)

In other words, the joint entropy H (X, Y) acts as an ‘@ntropy container’~
which consists of three disjoint (i.e. non-overlapping) subsets, as shown
in Figures 6.8 and 6.9:

1. the conditional entropy H(X\Y) due to noise in X, which is the
entropy in X which is not determined by ¥;

2. the conditional entropy H(Y|IX) due to noise in ¥, which is the
entropy in ¥ which is not determined by X;

HICX.Y)

H(X) <“«—H(Y)

Figure 6.8. Mutual information between related variables X and ¥. Each
circle represents the entropy of one variabie.
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3. the mutual information 7(X, Y), which is the entropy ‘Shared’*by
X and F, and which results from the co-dependence of X and Y ..

Finallly, Equations 6.34-6.36 imply that the conditional entropies can
be obtained as

HRXY) ==H(X,¥Y)-H{{Y) (6.39)
HYX) ==H(X,¥)- H(X), (6.40)

which will prove useful shortily. These two equations imply that

H(X,Y) == H(X)+H{ ) ©41)
H(X,Y) == H(Y) + HCAY)), ©42)

which is called the chain rule for entropy.

Key poiinit. The mutual information is that part of the joint
entropy H(X,Y) that is left over once we have removed the

part [HI(X\Y) + H(Y\X)] due to noise.

6.5. Mutual Information is Invariant

Within formally defined limits, the mutual information between two
variables is invariant with respect to transformations of those variables,
where the term invariant means that the amount of mutual information
is unaffiected by such transformatioms.

H(X,Y) joint entropy

H(Y) output entropy

H(X) input entropy

H(YXYX) conditional I(X,Y) HX\Y) cond.

Figure 6.9. The relationship between the input entropy H(X)), output
entropy H(Y)), joimt entropy H(X,Y)), mutual information I(X,Y), and the
conditiomal entropies H(X\Y) and H(Y\X).
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6 Mutual Information: Continuous

If two variables X and Y have mutual information [(X,¥) then using
a function £ to transform X to another variable X” and a function g
to transform Y to another variable Y,

X £(X) 643)
y - 89 o

has no effect on mutual informatiom, so J(X",Y") = I(X, ¥). This is
true provided the functions f and g are invertible, which implies that
the value of X can be recovered from X" and the value of ¥ can be
recovered from Y". For example, if the function f maps each value of
X to logX, so that X* = logX, then X" can be recovered from X
(by using X = 2X ). But if the function f maps all values of X to a
constant X" = k then X" cannot be recovered from X.

As stated earlier, the reason this matters is because it ensures that
no matter how complex the relationship between X and ¥ appears to

H”

be, mutual information can be used to measure the precise strength (in
bits) of the association between X and ¥. To illustrate this, suppose
that a medical study discovers that the mutual information between
the prevalence of diabetes X and sugar intake measured in grams Y is
I(X,Y) = 2 bits. If another study measures the prevalence of diabetes
X and sugar intake as ¥* = Y2 (or even as ¥' = log(Y)) then the
mutual information between X and ¥* would still be equal to 2 bits.

Indeed, no matter how complex the relationship between diabetes
and sugar intake is, mutual information gives a precise measurement
of how closely they are related. We cannot make such strong claims
for more conventional measures of associatiom, such as correlation (®ee
Section 7.6).

6.6. Kullback-Leibler Divergence and Bayes

Kullback-Leibler divergence (KL-dfivergence) is a general measure of
the difference between two distributions, and is also known as relative
entropy. Given two distributions p(X) and g(X) of the same variable
X, the KL-diivergence between these distributions is

Dicc(p(X)llax)) = [ plo)log 2_((3 i (@45
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KL-diivergence is not a true measure of distance because, usually,
B g 1 GOONGCAY) .46)

Note that Dk (p(OWHCX)) > 0, unless p = g, in which case it is equal
to zero.

The KL-divergence between the joint distribution p(X,Y) and the
joint distribution [fX)p(Y)N obtained from the outer product of the
marginal distributions p(X) and p(Y) is

O IO OO = mm,qg)m%% dy dx., (6.47)

which we can recognise from Equation 6.25 as the mutual information
between X and Y.

Thus, the mutual information between X and Y is the KL-diivergence
between the joint distribution p(X,Y) and the joint distribution
ME)p(Y))} obtained by evaluating the outer product of the marginal
distributions p(X) and p(Y).

Bayes’Rule

We can express the KL-diivergence between two variables in terms of
Bayes Tule (@ee Stone (201:B)22 and Appendix F). Given that p(x,y) =
p(\y)p(y), mutual information can be expressed as

Ji; o) log (6.48) (6.48)

Ixyy = log

where the inner integral can be recognised as the KL-diivergence
between the distributions p{X\y) and p(X)),

DKLGCAWIDD) = !i p(y)log — dz,  (6.49)

PAX)

where p{X\y) is the posterior distribution and p(X) is the prior
distribution. Thus, the mutual information between X and Y is

IXy) = Ji”"" DKLEON)WCO) dy.  (6:50)
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6 Mutual Information: Continuous

which is the expected KL-diivergence between the posterior and prior,

= IOY)= Ey [0K31( 6.

where this expectation is taken over values of ¥.

6.7. Summary

In this chapter, we considered information in terms of continuous
variables. To do this, we explored how joint distributions can be
used to define and visualise marginal and conditional distributioms, and
the entropies of those distributioms. The mutual information between
continuous variables, in contrast to the entropy of continuous variables,
turns out to have a perfectly sensible interpretatiom, which does not
involve any infinities. We considered how each input value conveys
information about a corresponding output value, and vice versa, and
how this is reduced by the presence of channel noise. Finallly, we defined
the KL-diivergence between two variables, and considered how it can
be interpreted in terms of mutual information and Bayes' Tule.



Chapter 7
Channel Capacity: Continuous

Information is a fundamental physical quantityy, obeying
exact laws.
Deutsch D and Marletto C, 201444,

7.1. Introduction

In this chapter, we consider precisely what form of input distribution
P(X) of a continuous variable maximises the rate at which information
can be communicated through a noisy chanmel. After defining channel
capadiity, we find that the input distribution which provides the
maximum communication rate depends on the nature of the channel
under consideratiom. In common with discrete variables, we also find
that the error rate shrinks rapidly as the message length increases.

7.2. Channel Capacity

The general definition of channel capacity given in Equation 4.93 is
C — max I(X,Y) bits, ((AM
where [(X,Y) is the mutual informatiom, which is (Equation 6.29)

IX,Y) = H{Y)-HI\ bits. @2

So we can rewrite Equation 7.1 as
Cc = nz;:))c H{Y) - H(Y\X) bits. 7-3)
P
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We proceed by identifying the input distribution which maximises
information transmission under two different constraimts:

Constraint 1: The output has a fixed variance and infinite range.

Constraint 22 The output has a finite range.

In physical terms, Constraint 1 could correspond to the sound signal
conveyed by a cable into a loudspeaker with a specific wattage (power),
because power equates to variance. In contrast, Constraint 2 could be
the output of a camera photoreceptor (@ne per image pixel) which has
a fixed lower limit of zero volts, and a fixed upper limit of five volts.
In both cases, we wish to sculpt the input distribution p(X) so that it
can convey as much information as possilblle.

7.3. The Gaussian Channel

A Gaussian channel is one in which the noise has a Gaussian
distribution (see Appendix G). If a channel output has fixed variance
then we know (firom Section 5.6) that its entropy can be maximised
by ensuring it has a Gaussian distributiom. Here, we address the
question: what form should the input distribution p(X) adopt in order
to maximise the mutual information between the input and output of
a channel? So far, we know two relevant facts:

i. The noise added to signal X as it passes through the channel is

n = Y —X bits; @4

2. The mutual infonmation between imput X amnd output ¥ iis

I(X,Y) = H(Y) - HY\X) bits, @5

where, according to Equation 4.60, H(Y\X) = H@]) is the
channel noise, so

I(X,Y) = H(Y) - H[r) bits. @)
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7.3. The Gaussian Channel

Using Equation 7.6, we can rewrite the channel capacity defined in
Equation 7.3 as

C = max H(Y) - H(m)bits. @

In trying to maximise the mutual informatiom, we cannot reduce the
noise entropy, which is a fixed property of the channel. So, we are left
with trying to make the entropy of the output Y as large as possiblk.

We know from Section 5.6 that if the variance of a distribution is
fixed then the distribution that has maximum entropy is Gaussiam. It
can be shown?! that the sum of two independent Gaussian variables is
also Gaussiiam,, so if we want p(Y) to be Gaussian then we should ensure
that p(X) is Gaussiam, because ¥ = X +7} So, p(X) must be Gaussian
in order to maximise H(X)), which maximises H(Y)), which maximises
I(X,Y)), which coincides with the channel capacity of C bits. Thus, if
input, output, and noise are all Gaussian then the average amount of
information communicated per output value is the channel capacity

H(Y) —H() @38

= Chits. @.9)

I(X,Y)

This result is an informal proof of Shanmen’s continuous noisy channel
coding theogrem for Gaussian channels. We now make use of this to
express channel capacity in terms of the variance of the Gaussian input,
output, and noise.

From Equation 547, we know that if the noise has varjance vy =
then its entropy is

1
H@) — 5 log 2mevy bits. @10)
Similarlly, if the input has variance vx =  then its entropy is
H(X) = - log2nevx bits. (@11)



7 Channel Capacity: Continuous

At this poimt, we make use of a general result which states that if
two independent Gaussian variables X and 7 have variances vx and vy
(respectively) then a third variable Y = X + 7] is also Gaussian and
has a variance of

vy — Uy ‘hvlqj-‘ (?*12)

The entropy of Y is therefore

HY) = iIb@@ke’vy (7.13)

- log ZAe(vx + vy) bits. @14)

For example, if the signal and noise both have the same variance then

the output variance is twice the input variance, so the noise adds half

a bit to the entropy of the output; that is, H(Y) = H(X) + 1/2 hit.
Substituting Equations 7.11 and 7.14 into Equation 7.8 yields

1 1
3 log ZFE{(x + vy) — 3 log 2meur, (@15)

;— log ——‘-l;;f— w (@.16)

Vzr K)
i) e o
i log Qltl-&)
Because the variance of any signal is equal to its power, the input
signal power is P = vy, and the noise power is N = v)- Substituting

these equations into Equation 7.17 allows the capacity of this Gaussian
channel to be written as Shannon’s well-known equation

¢ 51@%@#5@ bt = 7E.

where the ratio of variances P/N is the signal to noise ratio (SNR).



7.3. The Gaussian Channel

1200 - -
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Channel capacity (bits/s)

1 2 3
Signal to noise ratio, P/N

Figure 7.1. Gaussian channel capacity and signal to noise ratio P/N. If a
signal is sampled at rate of 1,800 values per second then the channel capacity
is C = 500log(Q + P/N) bits/s. If noise power is fixed then increasing signai
power has diminishing returns in terms of channel capadity.

It will prove useful to note that this can be expressed in terms of the
ratio between the standard deviations of channel outputs and noise:

ll.po _@”*7 @19)

2 10 v,
1 L w (ZQKD
log 5 bits. (@21)

For discrete variables, C is the maximum (@verage) mutual
information per symbal, but because we are now dealing with
continuous variables, one symbol corresponds to a single input value
for a given channel. Thus, for Gaussian X, ] and Y, the mutual
information between the input and output is equal to the channel
capacity of C bits per transmitted value in Equations 7.18 and 7.21.
This implies that the number of different equiprobable input values
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7 Channel Capacity: Continuous

which can be discriminated using a single output value is

m = 2 @.22)
ay @.23)
@i

Thus, channel noise effectively discretises the continuous Gaussian
output distribution into a discrete distributiom.

Equation 7.23 represents a fundamental result. It shows precisely
how the number of input values that can be discriminated increases
as the signal to noise ratio in the channel increases (see Figure 7.1).
However, the proof of this assumes that the codewords are very long,
like the ones considered next.

Key poiimt. Channel noise effectively discretises a comtinuous
Gaussian output distribution into a discrete distributiom.

Long Messages

So fhariinttiss ctiagytar wee haaveccorsiiteel ssigdée D ixpput Aot tputt padiss of f
values. In order to understand the next section regarding error rates,

we need to consider codewords and messages which consist of more

than a single value. Accordiinglly, we now take each encoded message x

to be a vector of n values,

X = (i,-.. (@24)

and we assume that each value corresponds to one message symbal, so
that message length and codeword length are the same. Each encoded
message is corrupted by noise 7 as it passes through the channel, so each
value Xj is associated with a corresponding output value yi = Xj + 15
where the received output y is a vector of n values,

y = (@o— (25)
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which is a noisy version of the encoded message

y = @ +rlg,-.-,Xp +1p) (@26)
= (Xi,...2xn¥CH2)s. . ) @.27)
= X+ @28

where 1j is a vector of noise values

Vo= —p- @29

If each of these vectors has a mean of zero then their variances are

n

n n
vy = ,ll T, vy= %Zn? vy = %ny (7.30)
i=1 i=1 i=1

where P = vx and N = wy.

In effect, Shannon’d noisy channel coding theorem is based on a
counting argument which shows that if the n values in each encoded
message have a Gaussian distribution with input variance vx, and if
the channel noise is Gaussian with variance 7}, then the maximum
number of equally probable input vectors xij,...,xp which can be
reliably discriminated from observing the corresponding outputs is

n
m = 2nC=<&)
On

so the amount of information provided by each output vector y about
the input vector x is

logm = log2h€. @.32)
= nC @33)
= nlog B bits. 7.39)

For examplee, if vx = 15 and vy = 1 then vy = 16, giving oy = 4 and
C = 2 bits per output value. If n = 4 then the maximum amount of
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information that can be recovered about each input vector x is

nC = mllog? (@.3)
N

= 4loga (7.36)

= @ Hitss, @.37)

so the number of discriminable inputs Xii,..., xm is
m = 28= 256. (7.38)

In practice, n would be much larger than four, which is used here only
for illustration purpeses.

If we rearrange Equation 7.32 and express it in terms of signal to
noise ratio then we have

nC = -log él-’-— bits. (7.39)

Given that we want to transmit as much information as possible for
each watt of power expended, should we increase the number n of
values in each input vector x, or should we increase the signal power
P by increasing the amplitude of each value in x?

Cleardly, doubling n doubles the length of x, which doubles the power
required to transmit x, but it also doubles the amount of information
transmitted. In comtrast, doubling the signal power P increases, but
does not double, the amount of information transmitted, as can be seen
from Figure 7.1. Thus, given a choice between increasing the number
n of values transmitted and increasing the amplitude of transmitted
values (§.e. signal power P), we should increase n. Although we have
not covered the topic of signal bandwidth in this boalk, the above result
implies that if we have a choice between boosting signal power and
increasing the bandwidth then we should increase the bandwidith.

7.4. Error Rates of Noisy Channels

The presence of noise in a channel means that we cannot be certain
about which of the m possible input vectors was sent. However,
Shannon proved that the probability of making an error regarding
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74. Error Rates of Noisy Channels

which input was sent falls rapidly as the number of values in each input
vector increases. An informal summary of his theorem is as follows.

If a source has entropy R, then it possible to encode the
output of the source and transmit it over a continuous
noisy channel which has capacity C with an error rate
that approaches zero as the length n of encoded messages
approaches infinity, provided R is less than C.

For more extensive treatmemts, see Shannon and Weaver (194D)
(Theorem 21), Reza (I9G1)#A (Section 9-17), or MacKay (200B)%
(Section 11.3).

Shannon also provided a proof that applies to any continuous
channel. This states that the probability of decoding an output y
as the wrong encoded message is

iy = 8 (—) (R - J),PAG\,?.@)

where P is the signal power, N is the noise power, and is the
cumulative distribution function (cdf) of a Gaussian functiomn. For
readers unfamiliar with cdfs, the general form of ® can be seen in
Figure 7.6a and in Figure G.1b in Appendix G .

The main thing to notice about Equation 7.40 is that the difference
R —C is negative (i.e. R < C), because Shannon’s noisy channel coding
theorem implies that we should not attempt to make R > C. Thus,
for fixed values of P and N (j.e. for a given signal to noise ratio), the
argument of decreases in proportion to the square root of the message
length n, so the probability of error decreases rapidly and approaches
zero as n approaches infinity. Despite the apparent complexity of
Equation 7.40, we can set the values of its parameters to plausible
values and then plot P(errar) as a function of message length n, as in
Figure 7.2. This shows that, even though the source rate R is within
1% of the channel capacity (i.e. R/C = 0.99), the probability of error
rapidly approaches zero even for modest message lengtihs.

(i7"



7 Channel Capacity: Continuous

1

4

0 1000 2000 3000 4000
Message length, n

Figure 7.2. The probability P(error) of decoding an output y incorrectly for
a continuous channel plotted as a function of message length n, according to
Equation 7.40. The input variance is P = 10, the noise variance N = 1L The
input entropy is R = 0.99 bits per input value, which is close to the channel
capacity C = 1 bit. Thus, despite running at almost full capagity, the error
rate approaches zero for message lengths greater than n = 4,660.

7.5. Using a Gaussian Channel

So far, we have seen how each output can be used to discriminate
between many possible inputs, but we have not yet considered how
this can be used for communication in generall.

For example, if we wished to transmit a human voice (which is not
Gaussiam) as an analogue signal then we could transform it into a
Gaussian signal before transmissiom, and it would then be decoded
by the receiver to recover the original voice sigmal. The nature of
this transformation is qualitatively similar to an example which will be
presented in Section 7.7, where the transformation is from a Gaussian
distribution to a uniform distributiom.

We could protest that we need to have infinite accuracy, which
implies infinite informatiom, in order to read a channel output which
is the value of a continuous variable. However, we can never read
the channel output with 100% accuracy because, no matter what
instrument we use to measure the output (e.g. a voltmet®r)), its accuracy
is finite; noise in the voltmeter’s output limits the accuracy of the
reading. When observing the voltmeter’s output, the effect of voltmeter

160



7.5. Using a Gaussian Channel

noise is indistinguishable from the effect of additional channel noise.
We therefore combine channel noise with voltmeter noise to obtain the
overall noise level, which limits our ability to discriminate inputs in
exactly the same way as extra channel noise. Thus, whether noise
originates in the channel, the voltmeter, or both, the overall effect is to
reduce the number of discriminable inputs.

If we do want to use this channel to send individual messages then
we can construct a look-up table consisting of m rows, numbered from
one to m, with each row consisting of two sections: a codeword x: of
n values, and a message s%, so that the whole table defines a complete
codebook of m messages. For the example considered in Section 7.3, we
found that C —2 bits, so if each codeword consists of n = 20 Gaussian
values then each codeword specifies one out of

m = 1€ (7-42)
= 2P messages, 742
which is about 104 messages. For illustratiom, the possible forms of

two codewords are shown in Figure 7.3. The error rates for such short
codewords would be quite high, but this could be remedied simply by

Figure 7.8. Schematic representation of two Gaussian codewords, xi and
Xz. Each codeword consists of n = 20 values, where each value is chosen
randomly from a Gaussian distribution with a variance of vx = 15. If the
channel noise has a Gaussian distribution with a variance of = 1 then each
codeword specifies one out of about 102 messages, and therefore conveys 40
bits of information.
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7 Channel Capacity: Continuous

using longer codewords. If we want to send a message, say §3, in the
third row, then we transmit the codeword xs. If the codewords are
sufficiently long then we are almost guaranteed that our codeword will
be correctly classified by the receiver.

In practiee, the hardest part of this operation is finding m codewords
which are discriminable, because Shannon’s theorem states that such
codewords exist but does not specify how to find them. Practical
methods for constructing codewords which can transmit almost 2R€
different messages with negligible error rates do exist (@ee Cover and
Thomas (U98I1)14), but are beyond the scope of this introductory text.

7.6. Mutual Information and Correlation

Correlation is a standard statistical measure of the dependence between
two variables X and ¥. As an examplle, a person’d height X and
weight Y usually increase together and are therefore correlated. The
correlation coefficient between X and Y is represented with the Greek
letter p (¥ho), and is defined as

Ellmy =0y = 9

GxQy

@43)

Figure 7.4. Mutuai information and correlation. The (Gaussiam) variables
X and Y have a correlation of p = (.866, and a mutual information of
I(X,Y) = .00 bit (using Equation 7.45).
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Figure 7.5. Mutual information and correlation for two Gaussian variables.
As the correlation approaches ome, the mutual information approaches
infinity (Equation 7.45).

where x is the mean value of X, y is the mean value of ¥, and ox and
oy are the standard deviations of X and ¥, respectively (see Glossaiy)).
Given n values of X and n corresponding values of ¥, the correlation
coefficient is estimated as

n

1 n

p == Tﬂaxsq&féi Qﬁkﬁﬁb

If X and ¥ are drawn from a Gaussian distributiom, as in Figure 7.4,
and have a correlation of p then it can be shown#l that the mutual
information between X and Y is

= 0.5log{fé?:bitg.5|ogA-A2 HiTs45)

as shown in Figure 7.5. Equation 745 can be rearranged to obtain
correlation in terms of mutual informatiom,

) = VIZEGY), @46

For examplle, if X and Y have a correlation of p —0.866, as in Figure
7.4, then this implies that their mutual information is [(X,Y)) = 1 bit
per value.

(7.4



7 Channel Capacity: Continuous

Correlation can be viewed as a special version of mutual informatiom.
It follows that X and Y can have a large mutual information and a
correlation of zero (e.g. if they are not Gaussimm)), but they cannot have
a large correlation and zero mutual informatiom.

7.7. The Fixed Range Channel

We will consider two complementary versions of the problem of how
to maximise information transmission through a fixed range channel
(.e. a channel whose outputs lie between fixed lower and upper limits).

First, we provide an informal solution to the problem of identifying
the input distribution that maximises mutual informatiom. Given that
the channel outputs lie between fixed limits, we already know (from
Section 56) that the output distribution with maximum entropy is
the uniform distribution. Thus, in order to communicate as much
information as possible, the output distribution must be uniform. It
follows that if the noise distribution has a particular known form then
we should modify the input distribution to complement this, so that
the output distribution is uniformm.

Second (@nd this represents the bulk of this sectiom), we provide a
solution to the following problem: if our messages have a distribution
p(S) then how should we encode them in order to communicate as much
information as possible?

As before, we have some channel inputs x and outputs y, each of
which is a noisy version of x. Spexiifiicailly,

Y = x+mn, (747

where 77 is noise. Suppose we have some data, in the form of values
of an observed variable 5, which we wish to encode as channel inputs
in such a way that the channel communicates as much information as
possifblle. The data are encoded using a continuous encoding function,
g, which maps each observed value s to a corresponding unique channel
input value x,

R’
[

EW @48)
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7.7. The Fixed Range Channel

The fact that each value s gets mapped to a unique input value
x effectively defines the encoding function # to be a monotonic
function (i.e. one that always increases or decreases, like Figure 7.6a,

or Figure G.1b in Appendix G).
Thus, the channel input g(s) and output y are related by

y = 69+ (r40)

We proceed using the following line of reasoning. Provided the noise
is negligiblle, maximising the entropy of the output ¥ maximises the
mutual information between the input X and output ¥. It follows
that an encoding function g which maximises the input entropy also
maximises the output entropy, and therefore maximises the mutual
information between the input and output. Matters will be greatly
simplified if we simply assume the noise is almost zero.

Maximising Mutual Information by Maximising Entropy

Given that /(X, Y) varies as a function of g, when 7(X, Y) is as large as

possiblke, the slope of 7(X, Y) with respect to g must be zero. It follows
that, if we want to find that particular g which maximises (X, Y)
then we need to find a form for g which makes the derivative (&lope) of

I1(X, Y) with respect to g equal to zero, i.e.

ar¢e,y)
89(S) (#-50)

Given our zero-noise assumptiom, Equation 7.7 implies that I(X,¥) —

H(Y), so

ar(x,y) aH((Y) )
dg{s)) - RN

If follows that the form of g that maximises the output entropy H(Y)
is also guaranteed to maximise the mutual information /(X, Y). For a
channel with bounded output values {e.g. O to 1), the distribution p(Y)
with maximum entropy is the uniform distribution (see Section 5.6).
Therefoire, to maximise the mutual informatiom, we need to find a form
for the function g that makes the distribution p(Y) uniformn.
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Even though it makes intuitive sense, it is an abuse of notation
to define the denominator of a derivative to be a a functiom,
like OH(Y)/dx($). In practice, g could be an S-shmped or
sigmoidal function (@s in Figure 7.6a), parameterised by a variable
a which determines how steep it is. For example, it could be
the cumulative distribution function of a Gaussian distribution with
standard deviition o, as shown in Figure 7.6a and in Figure G.1b in
Appendix G:

g(s) = - /9 e'%‘aﬁ dt. (@52)
oV2T Ji=—

Once we have defined g in terms of a ‘Steepness’”parameter a, we

can rewrite the derivative AH(Y)/dw(S) = AH(Y)/da. In this case,

assuming a mean of (i = 0, the ‘Steepness’parameter a can be adjusted

to maximise H(Y) and therefore I(X,¥)).

Thus, in order to find a value for o that maximises 7(X, Y)), all we
need to do is to find a value for a that maximises H(Y). This is
an important insight because it implies that the particular function g
that maximises the entropy of the output ¥ also maximises the mutual
information between the input X and the output ¥. In other words,
if we want to communicate as much information as possible through a
channel then we should adjust the function g so that X, and therefore
Y, has maximum entropy. Moreover, if Y has a finite bound then
we know that H(Y) has maximum entropy when ¥ has a uniform
distributiom.

Key poinit. Given that Y = X + 7 where X = g(S), and
that the noise is negligible, maximising the mutual information
between the bounded input X and the output ¥ amounts to
finding a form for g which makes p(X) uniform.

Entropy of a Transformed Variable

We will explore how changing the function g which encodes observed
values s as input values x affects the entropy of X, and how this is
related to the mutual information between X and Y.
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7.7. The Fixed Range Channel

The question we seek to answer is this: given that the probability
distribution of 5 is fixed, what form should the encoding function g
take to ensure that the channel outputs ¥ convey as much information
as possible about the channel inputs X = g(S)? In other words, how
should g be adjusted so as to maximise the mutual information between
X and ¥? In order to answer this question we need to know how the
entropies of 5 and X are related, given that Y = g(S) + 7). As above,
we assume almost zero noise, so that

v = x+17 @53)
g(s) + 1 @54)
9, (@55)
and therefore
H(Y) = H(X) + H() (@.56)
H(X) bits. @57

Thus, we can maximise the mutual information by finding a mapping
function g that maximises the entropy of the input X = g{5).

Entropy of Related Variables

We will be juggling with probability distributions in this section so, to
keep track of them, we introduce some new notation: the distribution
of X will be denoted by px{(X), where the subscript x identifies this as
the distribution of x values; similar notation is used for other variables.

A monotonic increasing function x = g(s) (Figure 7.6a) transforms
the variable S with a distribution ps(S) (Figure 7.6b) to a variable X
with a uniform distribution (Figure 7.6¢). As we saw in Section 5.5,
the general rule for transforming pa(s) to px(x) is

ps(s)
({370 et

where the vertical bars indicate absolute value. We can omit the
vertical bars because the function g is a cdf, and therefore its slope
dg(s)/ds is always positiixe.

Px(%) @58)
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For convenience, we define the probability distribution

)

dx/ds (@.59)
dg{s)/ds, (7:60)

1l

which could take any form, in principle, but let'S assume it looks
something like the Gaussian distribution ps(S) in Figure 7.6b.
Substituting Equation 7.60 in Equation 7.58 yields

Q) = Peld) RO = (1.81)

0) Probability density p(x)

(1)

Cumulative density g(s) —
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Figure 7.6. How (a) an encoding function maps (b) Gaussian distributed
S values to (c) a uniform (maximum entropy)) distribution of input values
X . The encoding function which ensures p(X) is uniform (and therefore has
maximum entropy) is the cumulative distribution function of p(S).-
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From this, we can see that changing the form of g affects £(S), whieh
affiects the form of px(X). As a reminder, the entropy of X is

R _Lr
H) = j et X @.62)

Substituting Equation 7.61 into 7.62 and noting that dx = §(3) ds
allows us to rewrite the integral with a change of variables from x to s:

RO = 7o @(%@%355 @

r
i

Esls)log

PM Sy N(:(s)gg" @64)

which can be rewritten as

HeK) = J(-\pz(S)m""% + (7.65)

H{S) + E[log/(s) (@.66)

This states that the entropy of X is given by the entropy of 5 plus the
mean value of the slope of the encoding function g which maps S to X
(@nd tallies with Equation 5.23).

Which Encoding Function Maximises Entropy?

We know that the entropy H(X) is maximised if all values of X are
equally probahlle, which implies that px(X) is a uniform distributiom,
which, in turm, implies that all values of px(X) are the same. Using

Equation 7.61, we can rewrite —— in Equation 7.62 as the ratio
L] = A4 4
px{) i ),

We can now see that this ratio must be constant in order to maximise
the entropy of X. Given that both pg(s) and f(s) are probability
density functions (i.e. with areas that sum to one), this ratio can be
constant only if ps(s) = f(®). What does this equality imply about the
encoding function g?



7 Channel Capacity: Continuous

Well, we know that the derivative of the encoding function is f(s) =
dg(s)/ds. The integral of f(s) yields another function g(s) which is, by
definitiom, the cumulative distribution function of £(s),

o(s) = / £(t) dt, @69)

where t is used as a dummy variable. Similarly, the cdf of the
probability distribution ps(s) is

ey = /t pa(t) dt, @:69)

which is the encoding function that guarantees that X has a uniform
(maximum entropy) distributiom. Therefore, if the encoding function
g(s) is adjusted such that its derivative dg(s)/ds has the same
magnitude as p3(s) then g(s) = ¢*(9).

In summary, if we want to ensure that each encoded value x of
observed value s carries as much information as possible then we must
ensure that the encoding function g(s) is the same as the cdf g*(s) of
probability distribution ps{s).

7.8. Summary

In previous chapters, we defined entropy and mutual information for
discrete variables which correspond to tangible everyday objects like
letters of the alphabet. However, it is less obvious how to interpret
entropy and mutual information for continuous variables because these
correspond to insubstantial quantities like energy and power; in effect,
we have constructed abstract measures of intangible quantities.

Unless we are careful, this begins to look as if we are performing ill-
defined operations on non-existent objetts. But we are not, because we
can make sense of the increasingly abstract nature of these quantities
at every stage if we maintain contact with the physical interpretation of
the underlying equations. And, as we have seen, all of these equations
have well-defined physical interpretations because, ultimatelly, they are
all based firmly in the world of physics.



Chapter 8

Thermodymamic Entropy and
Information

Our imagination is stretched to the utmost, not, as in
fiction, to imagine things which are not really there, but
just to comprehend those things which are there.
Feynman R, 1967.

8.1. Introduction

Entropy has been defined at least twice in the history of sciemce.
First, it was defined in physics as thermodynamic entropy by
Boltzmann (1872) and Gibbs (1878), and later it was defined in
mathematics by Shannon (1948)#8. Shannon’s information entropy is a
measure of informatiom, whereas thermodynamic entropy is a measure
of the number of states a physical system (like a jar of gas) can adopt.

These two different conceptualisations of entropy do not seem to be
obviously related. But they are, and the relationship between them
matters because thermodynamic entropy can be used to measure the
energy cost of Shannon’s information entropy. If this were not true then
it would be possible to use a hypothetical being, known as Meswell'S
demon, to run power stations on pure informatiom.

8.2. Physics, Entropy and Disorder

In the world of physics, thermodynamic entropy is often interpreted in
terms of the amount of disorder of a system. On this topic, there is no
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8 Thermodynamic Entropy and Information

better introduction than that given by one of the most lucid physicists,
Richard Feynmam. In order to set the sceme, Feynman is considering
the space inside a closed jar containing gas, as shown in Figure 81

So we now have to talk about what we mean by disorder
and what we mean by order. ... Suppose we divide the
space into little volume elements. If we have black and
white molecules, how many ways could we distribute them
among the volume elements so that white is on one side and
black is on the other? On the other hand, how many ways
could we distribute them with no restriction on which goes
where? Clearnlly, there are many more ways to arrange them
in the latter case. We measure “disorder™”by the number
of ways that the insides can be arranged, so that from the
outside it looks the same. The logarithm of that number of
ways is the entropy. The number of ways in the separated
case is less, so the entropy is less, or the “disorder™’is less.
Feynman R, 1964415,

More formallly, each arrangement of molecules defines a unique
microstate. However, if we swap the positions of two black molecules
then the container looks the same from outside, so both of these
different microstates give rise to the same appearance or macrostittz.
In reality, each macrostate corresponds to some global parameter,
such as tempenaftune. Each temperature corresponds to a particular
distribution of molecule speeds. Cleanlly, if we swap the speeds of any

Figure 8.1. There are many more ways to arrange the molecules of gas in a
jar if (a) their positions are unrestricted than if (b) all white molecuiles have
to stay in one half and all black molecuies have to stay in the other haif.
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two molecules then the overall distribution of speeds is unaffected, so
the temperature remains the same. And every time we repeat this
swap, we generate a new microstate. So, as before, each macrostate
corresponds to many microstates. Crucially, there is no reason to
suppose that molecule A has speed Si whilst molecule B has speed
52, rather than vice versa. In other words, all microstates that are
consistent with a single macrostate are equally probathlie.

In physics, the entropy of a macrostate is proportional to the log of
the number of microstates consistent with that macrostate. However,
some macrostates have more microstates than others. To see this, we
can replace each white molecule above with a fast moleculle, and each
black molecule with a slow one, as in Figure 8.2. We can now see that
some macrostates can be obtained by many different arrangements of
fast and slow molecules, whereas others can be obtained with only a
small number of arrangements of fast and slow moleculles.

For example, with no restriction on which molecule goes where
(Figure 82a), there are many more arrangements than if all the fast
molecules have to stay in one half of the jar and all the slow molecules
have to stay in the other half (Figure 82b). That is, there are many
more ways to swap the speeds of two molecules if we are allowed to
choose each molecule from anywhere in the jar, rather than having to
choose both molecules from within the same half of the jar.

———

@ ®

Figure 8.2. In physics, a macrostate determines some global parameter such
as temperatre, which depends on the distribution of speeds of gas moleculles,
but not on their positions or directions of travel. Here, the length of each
arrow indicates the speed of a molecule. If each moiecule can be (a) anywhere
in the jar, then this macrostate has many more microstates than if each
molecule is restricted to (b) one half of the jar.
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Placing all the fast molecules in one half causes that half to have a
high temperaiturre, and causes the other half to have a low temperature.
So if we swap the speeds of two molecules within one half then this has
no effect on temperatuie, because those molecules have the same speed.
But if we swap the speeds of two molecules from different halves then
this reduces the temperature in one half, and raises it in the other.

By definitiom, all microstates consistent with a given macrostate are
equally probabble, so it follows that macrostates with many microstates
are more likely than macrostates with just a few microstates. For our
jar of gas, this implies that macrostates in which both halves have an
equal number of fast and slow molecules, as in Figure 83, are much
more probable than macrostates in which one half has all the fast
molecules (o it is hot) and the other half has all the slow molecules
(o it is cold).

As we shall see, the highly probable macrostate in Figure 8.2a has
high entropy, whereas the improbable macrostate in Figure 82b has
low entropy.

Key paoiinit. Each macrostate is consistent with many equally
probable microstates. So, macrostates with many microstates
are more probable than macrostates with few microstates.

8.3. Information and Thermodymamic Entropy

Let’S return to the history of entropy. As a first step, we can check to see
if the definitions of thermodynamic entropy and Shannon’s information
entropy are at least syntactically similar.
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Figure 8.3. Two microstates from an ensembie with the same macrostate.
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As a reminder, Shannon’d information entropy is

m

H

gy &

where m is the number of possible values that x can adopt. It will
be useful to note that if there are a total of W possible outcomes or
microstates (which are, by definition, equally probahis) then p(xf) =
1/W. For example, W could be the number of sides of a die. If we
substitute this into Equation 8.1 then an equivalent definition is

w
=, &3
= logVF ®3

For comparisom, here is Boltzmann’s entropy®®, which is defined in
terms of natural logarithms:

S = kinWy ®4)

where W is the number of (eguiprobable) microstates a physical
system can adopt, and k is Boltzmann's constamt, k = 1.38 x 10~%3
joules/degyres, where temperature is measured using the Kelvin (K)
scale. (The Kelvin scale begins at absolute zero, so OK is -273>C.)

Note the syntactic similarity between Shanmon’s information entropy
H in Equation 83 and the thermodynamic entropy S in Equation 84.
Finallly, Gibbs’Jgeneralisation2 of Boltzmann’s entropy is

5 k g P In —— pm) joules/degee, (®5)

where m is the number of macroscopically distinguishable physical
configurations that the system can adopt. This somewhat terse
definition should become clear in Section 8.4. Again, note the syntactic
similarity between Shannon’s information entropy in Equation 8.1 and
the thermodynamic entropy in Equation 85.
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8.4. Ensembles, Macrostates and Microstates

Just as the temperature of a gas (imacrostate) is the same for many
different arrangements of molecules (imicrostates)), so, for a pair of
dice, the summed outcome values are the same for different pairs of
individual outcomes (@s we saw in Section 3.5). In physics, the set of
all microstates that yield the same macrostate is called an ensemble of
microstates.

We can identify each of the 11 summed dice outcomes with a
macrostate, and each pair of dice values with a microstate. In both
cases (diice or gas), an ensemble of microstates corresponds to a single
macrostate (@mmmed dice dots or tempenatune)).

Notice that every one of the microstates in an ensemble is equally
probablle, but that certain macrostates (e.g. summed dice value 7)
are generated by many microstates, whereas other macrostates are
generated by only a small number of microstates (e.g. summed dice
value 2). Because all microstates are equally probable, it follows that
a macrostate generated by many microstates is more probable than a
macrostate generated by only a small number of microstates.

In general, entropy is given by the logarithm of the number of possible
microstates. However, if each microstate corresponds to exactly one
macrostate then entropy is also given by the log of the number of
possible macrostates. For example, an Ilisiited die would have 11
equally probable macrostates (outcomes). Because each of the 11
macrostates corresponds to one microstate, the entropy is given by
the log of the number of possible macrostates, log 11 = 3.46 bits. We
can reverse this logic to confirm that 346 bits implies 2345 = m
equally probable macrostates. More interestingly, we can apply the
same reasoning to a variable with unequal macrostate probafbiiliities.

In the case of the two dice considered above, even though the
macrostates (i.e. the summed dots) are not equally probahle, these dice
have the same entropy as a single die with 2337 = 9.65 sides. Even
though such a die is not physically possilblle, it corresponds to a system
with 9.65 equally probable microstates. More generally, if a variable
with unequal macrostate probabilities has an entropy of n bits then it
behaves like a system which can adopt 2 equally probable microstaites.
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8.5. Pricing Informatiom: The Landauer Limit

In this sectiom, we define an absolute lower limit to the amount of energy
required to acquire or transmit one bit of information #0, which is known
as the Landauer limitt. The value of this lower limit was first proposed
by von Neumann ((1961), and was developed by Landauer (1961)%).

Consider a jar of gas with a particular thermodynamic entropy S.
We can determine the entropy of the gas by counting the number of
equally probable microstates it can adopt- In order to keep things
simple, we will assume that this gas consists of a single molecule#47.
First, we push the gas into one half of the jar, whilst maintaining the
gas at a constant temperatune.

Next, we divide the jar into WA small cubes, and we define the
molecule’S position to be the position of the cube it occupizs. The
number of different possible positions (cubes) for the molecule is also
Wi, where each molecule position corresponds to a single microstaite.
If the number of possible microstates available to the gas in the whole
jar is WA then the number of microstates in half the jar is = W)/2.
Therefore, in confining the gas to half the jar, the thermodynamic
entropy changes from an initial high value of

51 = kln WA joules/degrees, ®6)

to a lower thermodynamic entropy

5; = #kinW; joules/degree. ®7)

Thus, a gas distributed throughout a jar has higher thermodynamic
entropy than if it occupies only one half of the jar. Spedifiicallly, in the
process of confining the gas from the whole jar into half the jar, the
thermodynamic entropy decreases by an amount

AS = KimW—k\n¥z (CX5))
= Kln2We —Adnie 3.9)
= Kn2{Wx/M) ®10)
= Kdm2joules/degree. ®1)
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Neotice that this remains true irrespective of how small we make the
cubes. Multiplying by temperature T, we obtain

TAS

KT In2 ®12
0.693 x kT joulks. ®13)

Equation 813 states that the amount of energy required to change the
entropy of a system is equal to the change in entropy multiplied by the
system’S tempenatune.

If we consider this in terms of Shannon’3 information entropy then
we find that the process of restricting the gas to half of the jar decreases
the information entropy from Hj = logWi bits to Hz = logW; bits,
which is a decrease in information entropy of

AH

logg (W1 /W2) ®19)
Lbit. ®15)

Thus, forcing a @asinto omee Hallf off aa jgar léeatls tto @ déeceesse
in thermodynamic entropy of AS = 0.693k joules/depree, and a
corresponding decrease in information entropy of AH = 1 bit.

Using a similar line of reasoning, Landauer showed that the smallest
amount of energy required to erase (or acquire) one bit is

1bbit = 0.693% joules/degree ®16)

= 957 x 1CT# joulles/degnee. ®17)

The reason that this Landauer limit increases with temperature is
because the information communicated has to overcome the effects
of random fluctuations (moise), which inevitably increase at higher

tempenaitunes. For example, the cost of Shannon information at a
temperature of T —313K (40<C) is

957 x I0"#AXx T = 3 x ICTA joules/tii. ®18)

One interpretation of the above is that, initiallly, we have no
information about which half of the jar the gas is in. Given that the
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gas is restricted to one half of the jar, we require one bit of information
to tell us which half. Thus, in the process of restricting the gas to
one half of the jar, we effectively remove one bit's worth of uncertainty
(imffonmation entropy) about which half of the jar the gas is in. Because
the amount of energy required to force the gas into one half of the jar
cannot be less than TAS = 0.693kT joules, this is also the energy cost
of reducing the information entropy of this one-molecule gas by one bit.

Strictly speaking, the preceding account applies only to logically
irreversible binary operations, like erasing (ffargetting) information
based on some observation. Evidence for the existence of the Landauer
limit has been obtained by Berut et al (2012)7.

Key poimt. No matter how efficient any physical device
is (e.g. a computer or a braim), it can acquire one bit of
information only if it expends at least 0.693kT joules of energy.

8.6. The Second Law of Thermodynamics

The second law of thermodynamics can be summarised as things fall
apartt. More formallly, it states that the entropy of an isolated system
increases until it reaches a maximum value. An isolated system is one
which does not lose or gain energy from outside the system.

In a sense, we have already derived a statistical rationale for why
the second law of thermodynamics ought to be true. Given a few
assumptions regarding the rules of prohathiility, our analysis of entropy
in the preceding pages makes us fairly certain that a system will
adopt a high entropy state, for the simple reason that (@t any given
temperature) almost all states have high entropy.

From this perspectiive, the second law of thermodynamics seems
inevitable, almost tautologicall. But it is not. It only seems to be
so because we have built up our picture of entropy from assumptions
based on physically valid observations regarding the laws of prohbethiility.

One consequence of the second law of thermodynamics is that a
system, when left to its own devices, will inevitably choose a series of
macrostates with successively larger entropies. It will, in a sense, ‘Fun
uphill’”in terms of entropy, which corresponds to ‘funning downhill’in
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terms of order. When it has finished running it is said to be in a state
of equilibriwm, which corresponds to a maximum entropy state.

In terms of the jar of gas, if we use a piece of cardboard to push all of
the molecules into one half of the jar and then remove the cardboard,
we should be unsurprised when the molecules quickly migrate to fill all
of the jar. But we should be unsurprised for one very good reasom.

The above analysis informs us that the most common microstates
correspond to macrostates in which the molecules are pretty much
evenly distributed throughout the jar, and these common microstates
far outnumber the microstates in which the molecules arrange
themselves to occupy one half of the jar. It follows that, from its initial
low entropy state, the jar of gas will run uphill to achieve maximum
entropy, which will look like a gas that is running downbhill in terms of
orderliness. With this new perspective, we

... should never be surprised by or feel the need to explain
why any physical system is in a high entropy state.
Greene B, 20042

8.7. Maxwell’Ss Demon

The being soon came to be called Maxwell’S demom, because
of its far reaching subversive effects on the natural order of
things. Chief among these effects would be to abolish the
need for energy sources such as oil, uranium and sunlight.
Bennett CH, 19876.

Suppose we wanted to cheat physics with a cunning ploy, using pure
informatiom. In 1871, the physicist James Clerk Maxwell proposed an
ingeniously simple method for doing this. If Maxwell’S method actually
worked then we could create perpetual motion machines, and build
power stations fuelled by pure information. Unfortunately, Maxwell’s
demon does not provide energy for free in practice. More impantzantly,
such a demon cannot provide energy for free, not even in principle.

Maxwell’Z demon resides on top of a closed container of gas, near to
a transparent partition positioned between the container’s two halves,
labelled A and B. The demon can open and close a small door in
the partition with the flick of his wrist (which we assume expends no
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Warm

Figure 8.4. Maxwell’'s demon opens and closes a door between two halves of
a comtaimer, so that only fast molecules pass into the right side, and only slow
molecules pass into the left side. Thus, pure information regarding the speed
and direction of individual gas molecules is used to create a temperature
difference, which can be used to generate electridgity. By Teleri Stome.

energy). When he spots a fast-moving molecule in A heading towards
the door, he opens it, so the molecule can pass into B, as shown in
Figure 84a. Similarly, when he spots a slow-moving molecule in B
heading towards the door, he opens it, so the molecule can pass into
A. Over time, this results in the accumulation of all fast molecules in
B, and all slow molecules in A, as shown in Figure 84b.

Because the speed of molecules in a gas defines its temperaturre, the
demon effectively separates the original container of gas into a cold
side and a hot side. Such a temperature difference can then be used
to do work. The archetypal machine of this type is the steam engine,
or internal combustion engine. In both cases, the fast molecules push
against a piston head, and the resultant piston motion can be harnessed
to drive the wheels of a steam tractor or a car. Similarly, we could place
ademon and his door at the intake pipe of a power station (Figure 8.5),
so that only hot air is allowed in. Because power stations run on hot
gas, we would have free power, forever. But there is a cateth.

In order to know when to open and shut the doar, the demon must use
information about the speed and direction of each moleculle. However,
we already know that each bit of information cannot cost less than the
Landauer limit of 0.698kT joules/bit (Equation 8.16).

If the energy extracted from a fast-moving molecule allowed through
the door were larger than the Landauer limit then we could run power
stations on informatiom, because there would then be a net energy
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Figure 8.5. Using Maxwell’s demem, the fuel for power stations would be
pure informatiom. From Wikimedia.

profit for each molecule. But it turns out that the amount of usable
energy the demon accumulates in the container is exactly balanced by
the energy required to acquire the information needed to open the door
at the right times. So, even though Maxwell’S demon could run a power
statiom, the energy generated cannot be more than the energy expended
by the demam.

In other words, there is no net gain to be had from using information
to accumulate fast-moving molecules in one half of a contaimer, and
using the resultant temperature difference to generate electricityy. This
is important because it provides a fundamental link between the notion
of Shannon’s information entrapy, as defined in information theary, and
thermodynamic entropy, as defined in physics. Indeed, within three
years of the publication of Shannon’s theony, Gabor'® declared:

We cannot get anything for nothing, not even an observatiom.
Gabor D, 1951.

On a lighter note, the novelist Terry Pratchett speculated that
knowledge requires physical storage space, and he used this supposition
to explain the mysterious dark matter which comprises 9% of the mass
of the universe:

For something to exist, it has to have a position in time and
space. And this explains why nine-tenths of the mass of the
universe is unaccounted for. Nine-tenths of the universe is
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the knowledge of the position and direction of everything
in the other tenth ...
Pratchett T, Thief of Time, 2001.

8.8. Quantum Computation

After some initial reluctance, quantum mechanics was embraced by
the physics community in the twentieth centwry. Because physics
can be viewed in terms of computing with physical entities, it was
inevitable that the quantum revolution would eventually impact on
our understanding of computing with numbers. Accordiingly, quantum
mechanics is in the process of being harnessed in the hope that it
will be able to perform computational feats beyond the capability of
conventional computers. For example, a quantum computer program
invented by Lov Grover 23in 1996 should be able to play the game of ‘20
questions’ising a sequence of just five (or, more preciselly, W20 = 4.47)
computational steps. If we interpret each computational step as a
quantum question then a quantum computer could win the game of ‘20
questions’using just five quantum questions. More generallly, Grover's
program should play the game of N questions using the equivalent of
only VN quantum questioms.

Inevitathlly, there is a trade-off between the sequence of N simple
computational steps of a conventional computmr, and the sequence of
y/N complex computational steps of a quantum computtesr. Indeed, if a
sequence of y/N steps can be executed by a quantum computer faster
than a conventional computer can execute N simple steps then the
quantum computer should be a clear winner.

It is still early days for quantum computatiom, and only simple
quantum computers exist. But we should not despaiir, because
conventional computers also had a slow start. In 1949, an article in
Popular Mechanics Magazine declared:

... a calculator today is equipped with 18,000 vacuum tubes
and weighs 30 tons, computers in the future may have only
1,600 vacuum tubes and perhaps weigh only half a ton.
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8.9. Summary

In this chapter, we have reinforced the claim expressed in previous
chapters that the rarefied concepts of entropy and Shannon information
have tangible concomitants in the world of physics. When John
Wheeler proclaimed that “All things physical are information-theoretic
in origin”; he was not being metaphorical (ke was a physicist,
after all) because he understood that there is a deep, but subtle,
connection between the abstract constructs of information theory and
the nature of the physical universe. Most remarkable of all is that
information has a definite lowest cost which can be measured in joules
per bit. More than any other, this fact establishes the existence
of a fundamental link between Shannon’s information entropy and
Boltzmann-Gibbs’“thermodynamic entropy, between information and
the disorderly arrangement of molecules in a jar of gas.



Chapter 9

Information As Nature’s Currency

Nature uses only the longest threads to weave her patteirns,
so each small piece of her fabric reveals the organization of

the entire tapesimy.
Feynman R, 1967.

9.1. Introduction

Information theory is used in research fields as diverse as linguistics,
communications, signal processimg, computing, neuroscience, genetics,
and evolutionary theonmy. In this chapter, we explore some relevant
applications, and discuss them in the context of information theaimy.

9.2. Satellite TVs, MP3 and All That

The next time you switch on your TV, remember that what you see on
the screen bears only a superficial resemblance to the data streaming
out of the satellite that delivers the signal to your house. The reason
is that the original images were encoded or compressed before being
transmitted from a TV station to the satellite, and these encoded
images must be decoded by your TV’S computer before the original
images can be recovered. Thus, the problem faced by modern television
systems is that images must be displayed at a very high quality, but
the image data must be transmitted through a communication channel
with a relatively small capadiity. This is clearly a problem that can be
addressed with information theany.

The camera that recorded the original image data is essentially an
information source that generates data at a rate of about 15 gigabits
per second (Gb/s), where a gigabit is one billion (109 or 1,000 milliom)

185



9 Information As Nature’s Currency

binary digits. This figure of 1.5Gb/s results from the fact that TVs
typically display 1920 elements horizontally and 1080 lines verticailly,
at a rate of 30 images per second. Each colour image displayed consists
of 1920 x 1080 sets of three pixels ((red, green and blug), so the total
number of pixels is about 6 million (.e. 3 x 1920 x 1080 = 6,220,800).

Let'3 assume the intensity of each pixel has a range of zero to 2565,
which is represented by log256 = 8 binary digits, making a total
of 49,766,400, or about 50 million binary digits per image. Because
a TV displays 30 images per secomd, this amounts to about 1,500
million binary digits/s This is confusingly quoted as 1,500 megabits/s
(-e. 1,500 million bits/s) in the world of computing because both bit
and binary digit are used to refer to binary digits (see Section 1.5).

Howeverr, the channel through which these 1,500 million binary
digits/s are communicated (d.e. a satellite) can carry only 19.2 million
binary digits/s. According to Shannon, a noiseless channel which
carries 19.2 million binary digits/s has a capacity of exactly 19.2 million
bits/s. So the problem is this: how can the information implicit in
1,500 million binary digits/s be communicated through a channel which
carries only 19.2 million binary digits/s?

Roughly speaking, the solution comprises four stages of processing
before the signal is transmitted. First, squeeze all of the redundant data
out of the images. Second, remove compomnents which are essentially
invisible to the human eye. Third, recode the resultant data so that all
symbols occur equally often (e.g. using Huffman codimg), and, finally,
add a small amount of redundancy in the form of an error-correcting
code. As discussed in Chapter 1, the similarity between adjacent pixel
values is one source of redundamey. However, because a TV receives
data as a temporal sequence of images, the state of each pixel tends to
be similar between consecutive images, and this temporal redundancy
can also be removed to compress the data.

The standard set of methods used to remove spatial and temporal
redundancy are collectively called MPEG (Moving Picture Expert
Group). Whilst these methods are quite complex, they all rely
heavily on a core method called the cosine transfornn. In essence,
this decomposes the data into image features of different sizes. When
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measured across space (i.e. within an imagg)), size translates to spatial
frequency (actually, L/spatial frequency, so large features have low
spatial frequencies). When measured across time, size translates
to features that persist for short or long times, which translates
to temporal frequency (@ctually, IL/temporal frequency, so persistent
features have low temporal frequenciis)).

Once the data have been transformed into a series of spatial and
temporal frequencies, some of them can be thrown away. This is an
important step for two reasons. First, it reduces the quantity of data
to be communicated, which is goodl. Secomnd, it reduces the quantity of
information communicated, which is bad. However, if the information
thrown away involves only those frequencies which we cannot see, then
it is not so bad, after all. For example, fine details that are beyond the
resolution of the human eye correspond to high spatial frequencies, and
can therefore be discarded without any apparent loss of image qualiity.
Similarlly, changes over time that are too fast to be detectable by the
eye correspond to high temporal frequencies, and can be discarded. At
the other extreme, very low spatial and temporal frequencies are also
essentially invisible to the eye, and can be discarded.

The eye is sensitive to intensity (luminanes)), but relatively insensitive
to fine gradations of colowr. Conseguentily, the data from TV cameras
can be recoded to give high-resolution intensity data, and low-resolution
colour data. Because this recoding mirrors the encoding within the
human visual system®l, the perceived picture quality is unaffected.
The result is a 50% saving in the number of binary digits required to
represent information regarding the colour and intensity of pixels.

Discarding certain spatial and temporal frequencies and recoding
intensity/colour data means that data recorded at a rate of 1,500
million binary digits/s can be compressed and transmitted through a
communication satellite channel with a capacity of 19.2 million bits/s,
and then decoded to present you (the TV viewer) with 1500 million
binary digits of data per second (with some loss of information but no
visible loss of quality)). This represents an effective compression factor
of about 78(~ 1500/19.2), so it looks as if we can comeunicate 78
times more data than the channel capacity would suggest. In fact, the
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compression has to be a little better than this, because the stereo sound
is also squeezed into the same channel. This is achieved by applying the
cosine transform mentioned above to sound (where it is called MP3).

Compression that throws away information is called lossy, whereas
compression that preserves all information is called lossless. Most
practical systems are lossy, but they do not give the appearance of
losing information because the discarded information is invisible, or, at
least, unimportant for human perception of images or sounds.

Finallly, in order to minimise the effects of noise, redundancy is added
to the compressed data. Unlike the redundancy of the original data, the
amount of added redundancy is small, but it is just enough to enable
the receiver to recover from all but the most catastrophic forms of noise
in the form of electrical interference.

9.3. Does Sex Accelerate Evolution?

Even though the Darwin-Wallace theory of evolution by natural
selection was published in 1859, it still holds a number of mysteries.
Prominent amongst these is the question of sex. Specifficallly, why do
some species have two sexes?

Many answers which have been proposed rely on logical argument
mixed with a degree of plausible speculatiom, rather than mathematical
analysis. And even though mathematical analysis cannot usually
provide definitive answers to biological questions, it can constrain the
space of possible answers. In so doing, some answers can be definitely
excluded, and those that remain can be used to yield hypotheses which
can be tested empiiriically.

Evolution is essentially a process in which natural selection acts as
a mechanism for transferring information from the environment to the
collective genome of a species. (The term genome is conventionally
used to refer to all of the genes in a particular individual, but we use
it to refer to all of the genes in a typical individuall) Each individual
represents a question asked of the environment: are the genes in this
individual better or worse than average? The answer is often brutal,
because the environment destroys many individuals in infancy. But
even when the answer is given more tactfiullly, so that an individual
does not die but simply has fewer offspring, it is still brutally honest.
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The answer comes in units called fitness, and a good measure of
fitness is the number of offspring each individual rears to breeding
age. Over many generations, the information provided by the answers
(@itness) allocated to each individual coerces the genome via natural
selection to adopt a particular form. Thus, information about the
environment eventually becomes implicit in the genome of a species.

The form of the information received from the environment is both
crude and noisy. It is crude inasmuch as it is measured in units of whole
numbers of offspring, rather than in the fractional offspring numbers
required to obtain a precise measure of fitness. And it is noisy inasmuch
as the environment does not simply provide a perfect estimate of each

individual’s fitness because, sometimes,

the race is not to the swift, nor the battle to the strong
... but time and chance happeneth to them all.
Ecclesiastes %11, King James Bible.

Thus, the environment assigns a noisy fitness value to each individual,
where fitness equates to the number of offspring each individual rears
to adulthood. However, this fitness value gets assigned to a whole
individual, and not to particular genes that make large (imegative or
posittiive)) contributions to an individual’s fitness. In other words, the
totality of an individual’s fitness value does not specify which beneficial
features increase fitness, or which detrimental features decrease fitness.
Ultimatelly, each individual either lives or dies before reproducing,
which implies that its genome provides a maximum of one bit of
information about its relative fitness. Howewer, the fact that the
information received from the environment is crude and noisy is not
necessarily a problem for evolutiom.

In a theoretical tour de force, John Holland (1982)% proved that the
type of genetic algorithm used in natural selection implements a kind
of intrinsic parallelism, which makes it incredibly efficient at allocating
blame or credit to particular genes. In essence, Holland’s mathematical
analyses proved the schema theerem, which states that a gene increases
in frequency within a species at a rate exponentially related to the extra
fitness that gene confers on its owners (i.e. good genes spread extremely
quickly). Even though Holland’s results make no explicit claims on
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information theomy;, it seems likely that information theory is relevant.
On a related topic, information theory has been applied to test the idea
that the genetic code is optimal®3#4.

The human genome contains about 3 x 109 (3 billiom) pairs of
nucleotides, where each nucleotide comprises one element in one half of
the classic double helix of the DNA (dieaxyribonucleic acid) molecule
(there are about 1,000 nucleotides per geme). In order to explore
how quickly the genome acquires information about the environmemt,
MacKay (2008)34 identifies one bit as corresponding to one nucleotide,
which is a well-defined chemical structure (umlike a geme). The
human genome makes use of four particular nucleotides, adenine (A),
guanine (G), thymine (T) and cytosine (C). Within the DNA molecull,
nucleotides pair up on opposite sides of the double helix, such that A
pairs with T, and C pairs with G.

In the spirit of the methods applied successfully in physics, MacKay
uses a stripped-down model of each nucleotide, which is assumed to
occur in one of two states, good or bad. Given a genome of N
nucleotides, the fitness of an individual is defined simply as the number
of nucleotides in a good state, and the normalised fitness is defined as
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Figure 9.1. How fitness changes over generations for asexual and sexually
reproducing populatiors. In this simulation, the number of genes per
individual is N = 1,000, and 1,000 individuais initially had randomly
generated genomes with a fitness f = 0.5, so the population fitness was
initially 500. The dashed line shows the theoretical curwe. Reproduced with
permission from MacKay (2008)%4.
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the proportion of good genes in an individual'’? genome. Finally, the
proportion of good genes above 50% is defined as the excess normalised
fitness, 8§, which we will just call fitness.

MacKay then compares the effects of different mutation rates on
fitness in populations that reproduce sexually and asexuallly. If a
sexually reproducing population is well adapted to its environment
then, by definitiom, the genome is close to an ideal or optimal genotne.
MacKay shows that this near-optimal genome acquires one bit every
two gemeratioms. However, if the environment changes then over
generations the genome adapts. MacKay proves that the rate at
which a genome of N nucleotides accumulates information from the
environment can be as large as

VN  bits/generatiom. ©.1)

For example, given that N = 3x 10® nucleotides, the rate at which the
population accumulates information from the environment can be as
large as 540,000 bits/generation. In this case, the collective genome of
the current generation would have 540,000 bits more information about
its environment than the genomes of the previous generatiom, and so
should be better prepared to meet the challenges of that environmemit.
In contrast, under similar circumstances, an asexually reproducing
population (e.g. aphids) acquires information at a fixed rate of one bit
per generatiom.

The result stated in Equation 9.1 seems to suggest that the bigger
the genome, the faster evolution can work. If this is true, then why
doesn’t the process of natural selection result in genomes which are as
large as possible? The answer involves mutation rates.

The mutation rate is the probability that each gene will be altered
from one generation to the next, and (equivalently) is the average
proportion of genes altered from one generation to the next. It turns
out that, in theany, the largest mutation rate that can be tolerated in
an asexual population is about 1/iV, whereas it is 1/y/N in a sexual
populatiom. To take a simple example, if the genome size is tiny, say
N = 100, then the largest mutation rate that can be tolerated in an
asexual population is 0.01, whereas it is 1/y/N = 1/10 = 0.1 in a
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sexual populatiom. So, in both cases, the rate of genetic mutation
affects large genomes more than small ones, but a sexual population
can tolerate a much higher mutation rate than an asexual populatiom.
This is especially pertinent given that mutation is pretty much the only
source of inter-imdiividual variability available to asexual populations.
Because variability provides the raw materials for natural selectiom, the
net effect is to accelerate evolution in sexual populations.

However, the above results provide a biological conundrum: a large
genome increases evolutionary speed, but it also decreases tolerance to
mutations. This means there is a trade-off between a large genome
(hich accelerates evolutiom, but provides poor mutation tolerance)
and a short genome (which provides good mutation toleramce, but
decelerates evolutiom). These conflicting constraints suggest that
evolution should have found a ‘happy medium’“for genome size, which
ensures that the rate of evolution is as fast as it can be for a given
genome size and mutation rate.

The upshot of this analysis suggests that natural selection allows a
genome of size N to accumulate information from the environment at
a rate proportional to VN times faster in a sexual population than in
an asexual populatiom. Additioraslly, a sexual population can tolerate
a mutation rate that is proportional to y/N times greater than the
mutation rate that can be tolerated by an asexual populatiom. For
genomes with N & 109 nucleotides, this factor of y/N is not trivial.
Even for a ‘foy’“genome size of N = 1,000, if an asexual population
accumulates information at the rate of 10 bits/generation then a sexual
population would accumulate information at the rate of 10x yQ0, 000
1,000 bits/generation.

Darwin would almost certainly approve of this type of analysis, which
seeks to find the laws which underpin evolution by natural selectiom:

The grand Question which every naturalist ought to have
before him when dissecting a whale or classifying a mite, a
fungus or an infusorian is “What are the Laws of Life?”
Darwin C, B Notebook, 1837.

According to the analysis summarised above, we now have a candidate
for one of these laws: between successive generatioms, the collective
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genome of a species should maximise the Shannon information acquired
about its environment for each joule of expended energy. This general
idea of efficient evolution can be considered to be an extension of the
efficient coding hypothesis normally applied to brains.

Finallly, MacKay argues that faulty transcription of DNA effectively
smoothes out an otherwise rugged fitness landscape, and thereby
increases the rate of evolutiom. This type of phenomenon is an example
of the Baldwin effecty, which is traditionally considered to rely on
within-lifetime learning to accelerate Darwinian genetic evolutiom.

The results of information-theoretic analyses®%4 of biological
evolution are not only compelling and intriguing; they also provide
hypotheses that can be tested empirically: hypotheses which should
make redundant much of the speculative debate that often accompanies
such controversies.

9.4. The Human Genome: How Much Information?

Like any message, DNA is composed of a finite alphabet. As described
above, the alphabet for DNA comprises 4 letters (A,G,T, and C), where
each letter corresponds to one nucleotide. For a message which is N
letters long, the number m of possible messages that could be sent is
therefore m = 4N, and the maximum amount of information conveyed
by this message is H = log4N = Nlog4 = 2N bits. Given that the
human genome consists of N = 3 x 109 nucleotides, this implies that it
contains a maximum of H = 6x IM®or 6 billion bits of informatiom. Of
course, the genetic code is partially redundant (which may be necessary
to minimise errors) and some regions of the DNA molecule do not seem
to code for anything, so the estimate of 6 billion bits is an upper boumnd.

Note that 6 billion bits could be stored in 6 billion binary digits,
which is almost one gigabyte (@ gigabyte is 8 x 109 binary digjts)). For
comparisom, a basic DVD disc can store 8 billion binary digits, which
is enough for a two-hour movie. Howewver, whereas a disc or a memory
stick consists of a substantial amount of material, these 6 billion binary
digits’*worth of data are stored in the DNA inside the nucleus of every
cell in the human body.



9 Information As Nature’s Currency

9.5. Enough DNA to Wire Up a Brain?

Everything that we see, hear, or touch depends on the flow of
information through nerve cells or neuroms. These neurons are the only
connection between us and the physical world, and the brief on-off
pulses they deliver to the brain are the only messages we can ever
receive about that world. However, even before we are bomm, some
information has already been transferred from our DNA into the brain;
otherwise, we could neither breathe nor suckle. So at least some of
the brain’d microstructure is determined primarily by nature, rather
than nurture. In terms of informatiom, an obvious question is: does
the DNA of the human genome contain enough information to specify
every single connection in the brain of a new-born baby?

The human brain contains about 10% (one hundred billiom) neuroms,
and each neuron has about 10 (tten thousand) connections or synapses
to other neurons. This leads to an estimate of 105 synapses in totall. As
stated above, the human genome contains about 3 x 109 (tthree billiom)
nucleotides (see Section 9.3). In fact, there are about 1,000 nuclectides
per gene, but let’s keep things simple. If each nucleotide specified one
synapse then this would place an extremely conservative upper bound
on the number of synapses that could be genetically programmed. Even
under this conservative assumptiom, if one bit were used to specify
the strength of a synapse (e.g. on or off) then there would be enough
information for only 109 synapses, which represents one millionth of all
the synapses in the brain (10%/10%5 = 10~%). And this would leave no
DNA for the rest of the bodly. In essence, if we want to use DNA to
encode synapses then we would need about a million times more DNA
than we have now.

In Darwin’s day, the question posed above would be hostage to pure
speculation. But with Watson and Crick’s discovery of the structure
of DNA in 1953, combined with Shannon’3 information theony, we can
answer this question definitively: no, there is not enough DNA in the
human genome to specify every single connection in the braim.

A compelling implication of this answer is that the human brain must
learn. It may seem obvious from observing an infant that we learn, but
the fact that we do learn does not imply we have to learn in order to
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develop. Thus, information theory tells us that we must learn, because
learning provides a way for the brain to use the information supplied
by the environment to specify the correct set of 1045 synapses.

9.6. Are Brains Good at Processing Information?

Neurons communicate information. They do not care about the shape
of a tree, the smell of vanilla, or the touch of a cat’s fur. That is for us,
the beneficiaries of what neurons do; what they do is to communicate
informatiom, and that is pretty much all that they do.

Ever since the first neurons appeared, about 580 million years ago,
the relentless forces of natural selection have ensured that they are
about as perfect as they can be. We know this is true because
information theory has been applied within the research field of
computational neuroscience to the various functions that neurons
perform i7%5#3. The success of this highly technical research program,
far from diminishing the wonder of brain functiom, promises a radical

change in our perspectiive:

... we claim that the results of a quantitative approach are
sufficiently extreme that they begin to alter our qualitative
conception of how the nervous system works.

Rieke et al, 19073

A major reason this research program has been so successful is
because, whatever else neurons appear to be doing, they must be
communicating information about the world to the brain. As the world
offers up almost infinite amounts of sensory data to be communicated,
it is necessary for neurons to be selective, and efficient in encoding the
information they select for transmissiom. This general approach has
been championed by Horace Barlow, who has been largely responsible
for the genesis of the resultant efficient coding hypothesis®. Put simplly,
this states that data acquired by the eye should be encoded as efficiently
as possible before being communicated to the braim.

Information in Spiking Neurons

One of the first applications of information theory to neuroscience was
by MacKay and McCulloch (19562), who calculated the entropy of a
spiking source, a mere four years after the publication of Shannon’s
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Figure 9.2. A series of n voltage spikes from a neuron can be represented as
s and 1s. If a time period of T seconds contains n spikes then the firing rate
is r —n/T spikes/s. If T is divided into M small intervals or bins of width
At then the probability of observing a spike in each bin is p = r x At.

paper. The following account is based on Rieke et al (1997)#%, and on
lecture notes by Professor John Poiill.

Suppose we regard the neuron as a chanmel. A neuron acts as a
binary channel because neurons deliver information in the form of brief
voltage spikes, as shown in Figure 9.2. These spikes occur at a typical
rate of between one and 100 spikes per second (Gpikes/s). Suppose we
record spikes with only limited temporal resolution of, say, At = 0.001
seconds (d.e. 1 millisecond (ms)) then a spike can either be present or
not present in each Lms interval. This binary channel can carry one
binary digit each millisecond, so its capacity is C = 1/At bits/s. With
a temporal resolution of At = 0.001 seconds, this gives an upper bound
defined by its channel capacity of 1,000 bits/s.

Let’3 estimate the entropy of the output of a typical neuromn, assuming
that spikes are mutually independemt. The entropy of a sequence
of spikes, or sptke train, is given by the logarithm of the number of
different possible spike trains that could occur in a given time interval
T. In order to avoid the complicated mathematics that ends with a
good approximation to this#3, we will use some much less complicated
mathematics to obtain a slightly less good approximatiam..

If spikes are produced at an average firing rate of r spikes/s then the
probability of a spike in each time interval of At seconds is

p r At, @2
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and the probability that no spike occurs in each interval is therefore
g = 1—p. Thus, the average Shannon information of each interval is

H

h{p)+H{@) @3
plog (1/p)+ g log (1/g) bits. @9

If we define At to be sufficiently small then the probability of a spike in
each interval is low, and therefore the probability of no spike is almost
one, which implies that h(g) =« 0 bits. Thus, Equation 9.4 can be
approximated by its first term H = plog(¥ /D). We can use Equation
9.2 tdoreenitidet lifd Sintdenm sob vkt

H =z rAtlog

— bits. ©5)

This is actually the average Shannon information produced in time At,
so the average rate R at which Shannon information is generated is
found by dividing by At

H/At (©@.6)
1 log At bits/s, @7
where we have omitted the approximation symball. For a neuron with

a firing rate of r = 50 spikes/s, and assuming an interval of one
millisecond (At = 0.001s), this gives an information rate of

If 50 spikes convey 216 bits then each spike conveys an average of

216/50 = 4.32 bits/apike. ©@.9)

Note that the temporal precision At effectively places an upper
bound on channel capacitty. This bound applies to us (@s observers
of neuronal outputs) and to neurons that receive the outputs of other
neurons which cannot resolve the timing of spikes below some threshold
of temporal precisiom.
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The estimate of 4.32 bits/spike is more than the information (one bit)
carried by the state (Spike or no-spike) of each bin, which can be
understood if we adopt a slightly different perspectiive. Given a firing
rate of 50 spikes per second and a temporal resolution defined by 1,000
bins per second, an average of one out of every 20 (=1000/50) bins
contains a spike. Because each spike can appear in any bin with
equal probaiiitty, each set of 20 bins can adopt 20 equally probable
states. Roughly speaking, each set of 20 bins has an entropy of about
log 20 = 4.32 bits, and because each of these sets contains an average
of one spike, each spike effectively conveys an average of 4.32 bits.

Irrespective of precisely how much information is implicit in the
neuron’S output, there is no guarantee that it provides information
about the neuron’s input, that is, the mutual information between the
input and output. Note that the mutual information cannot be greater
than the maximum entropy implied by the neuron’s mean firing rate.
Thus, the maximum entropy implied by a neuron’s mean firing rate

acts as an upper bound on its entropy, and this, in turm, acts as an
upper bound on the mutual information between the neuron’s input
and output..

Using data collected from mechanical receptors in the cricket,
Warland et al (1992) found that neurons have an entropy of about
600 bits/s. However, it was found that only about half of this entropy
is related to the neuron’s input, and the rest is noise. These neurons
therefore transmit information about their inputs at a rate of about 300
bits/s, which represents a coding efficiency of about 0.5 (i.e. 300/600).

Let’s think about what it means for a neuron to provide 300 bits/s
about its input. Using a simplistic interpretatiom, at the end of one
second a neuron has provided 300 bits, which is enough information to

specify its input to within one part in 2%%) or (@guivalently) as one part
in 2 x 108, This would be analogous to measuring someone’3 height
to within a fraction of the width of an atom, which is clearly silly. So
what are we to make of this result?

An alternative interpretatiom, proposed by Rieke et a4 is that each
neuron provides a kind of ‘Funning commentary’“about its input, which
is usually changing rapidly. When considered like this, each neuron
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provides, on average, three bits each 10ms, where 10ms seems to
represent a plausible time frame. In other words, every 10ms a neuron’s
output specifies what is driving its input with a precision of one part
in 8(= 2%). For exampile, if a neuron is sensitive to the speed of visual
motion between, say, zero and 32 degrees/s then its output over 10ms
could indicate one particular eighth of this range. Because 1/8 of 32 is
4, the neuron’s output could indicate a speed of, say, 20 4=2 degrees/s,
where £2 implies a range of 4 degrees/s. In this case, the information
conveyed over 10 ms is about the same as the information conveyed by
each spike (ithree bits), so the timing of each spike effectively indicates
speed to within +2 degrees/s.

Experiments on the frog auditory system?? showed that the
proportion of output entropy that provides information about a
neuron’s input depends on the nature of the sounds used. Specifically,
if artificial sounds were used then the coding efficiency was only about
20%, but if naturalistic frog calls were used then the coding efficiency
was an impressive 90%.

Eyes, Flies, and Information Theory

The purpose of an eye is to communicate information about the world
to the brain, and this is as true for the eye of a fly as it is for the eye
of a human. Thus, even though the structure of a human eye is very
different from the structure of a fly's eye, it is likely that the underlying
computational processes in both are essentially the same.

Laughlin (1981)% showed that neurons which receive outputs from
the eye communicate about as much information as is theoretically
possiblle. He showed this to be true for fly eyes, and subsequent work
suggests that it is also true for human eyes. Laughlin’s brief paper
(two pages) is not only a physical example of the power of information
compressiion, but also one of the most insightful papers in biology:.

Organisms with eyes are more interested in differences in luminance,
or contrast, than in luminance per se. For this reasom, the neurons
which receive outputs from photoreceptors respond to contrast rather
than luminance. In the fly, these neurons are called large monopolar
cells or LMCs. These brain cells, which have continuous voltage
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outputs (vather than spikes), are the cells from which Laughlin made

his recordings.

The first question Laughlin posed in his paper was this: if the

distribution of contrasts seen by a fly’s eye is fixed by its natural
environment, and if the LMC neurons in a fly’s eye have a specific
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Figure 9.3. Schematic summary of Laughlin’s experimnsenit.

(a) Probability density function p3(s) of comtrasts s in the fly’s enviromment.
(b) Sampled values of s from (a) obtained over time as the fly moves aroumd.
(c) Transforming s values to x values using the cumulative distribution
function of p3(s), which is the optimal encoding function §* (smooth curvs),
and which predicts the (rescaled) outputs x = g(s) of LMC neurons (@bts).
(d) How LMC neuron outputs x change over time.

(¢) Uniform pdf px(x) of LMC outputs predicted by g*.
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input/output encoding functiom, then what is the precise form of this
encoding function which would communicate as much information as
possible from the fly’s eye to the fly’S brain?

Each LMC neuron has an output between xpin = —20mV and
Tmar = +20mV, so it acts like an encoding function which prepares
(emcodes) contrasts for transmission along a communication channel
with fixed lower and upper bounds (@here LMC outputs were rescaled
to have a range between zero and ome). The analysis in Section 7.7
implies that the optimal encoding function g*{s) for such a channel is
given by the cumulative distribution function (cdf) of the probability
density function (pdf) pA(s) of contrasts s in the fly’S environment
x* = g*(s). By definition, if the pdf of contrasts seen by a fly’s eye in
its natural environment is ps(s) then the cdf of contrast values is

M9 = | @10)
Jt=—c0

From Section 7.7, we know that the encoding function g* is guaranteed

to transform the distribution p3(s) of contrast values into a uniform pdf

px(x) of encoded contrast values x. Because the uniform distribution is

a maximum entropy pdf, each value of x provides as much information

as possilblke.

In order to estimate the optimal encoding function g*(s), Laughlin
needed to know ps(s), the pdf of contrasts in the fly’S environmemt.
For this, he measured the distribution of contrasts which occur in a
woodland setting. These data were used to construct a histogram,
which represents an approximation to p3(s) (Figure 9.3a). Numerical
integration of this histogram was then used to estimate the cdf g*(s)
(Fgure 9.3c, solid curve).

Having used information theory to find the precise form that an
optimal encoding function should adopt, Laughlin’S second question
was this: does the LMC encoding function g implicit in LMC neurons
match the optimal encoding function g* predicted by information
theory?

In some respects, this second question is conceptually more
straightforward than the first question because the encoding function g
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of an LMC neuron is given by the mean response to each contrast.
Accordiinglly, Laughlin exposed the fly to different contrasts in his
laboratony, and measured the output voltage of LMC neuroms. As
the contrast was increased, the output increased slowly at first, then
more rapidly, and finally tailed off at very high contrasts, as shown by
the data points plotted in Figure 9.3c.

To answer his second questiom, Laughlin had to compare the data
points from the neuron's encoding function g(s) with the optimal
encoding function g*(s). In order to make this comperisom, LMC
outputs were linearly rescaled to have a range between zero and one.
The match between the LMC outputs x = g(s) (ithe data points in
Figure 9.3c) and the values predicted by the optimal encoding function
g*(s) (the solid curve in Figure 9.3c) is remarkably goodl.

Laughlin’§ experiment represents one of the first tests of an
information-theoretic optimality principle within the brain (.e. the
efficient coding hypothesiig). This general approach has been vindicated
in tests on other organisms (including humans*%:%) and on other
sense modalities (e.g. olfaction?® and audition?®). Indeed, Karl
Friston’3 free-energy theory747 assumes that an organising principle
for all behaviour consists of minimising the sum total of all future
surprises (§.e. sensory entropy))-
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Figure 9.4. Photoreceptor sensitivity to different wavelengths of light.
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The Colour of Information

The human eye comtains about 126 million photoreceptans, which
consist of two main types. The 120 million rods are very sensitive
to light, and these function only in low-light conditions. The 6 million
cones function under daylight conditioms, and are concentrated close
to the optical centre of the eye. There are three types of cones, and
these are responsible for colour vision. The amount of light absorbed
at each wavelength by each cone type defines its tuming curve, as
shown in Figure 9.4. These cones are labelled L, M and S, supposedly
named after long, medium and short wavelengtths. However, this is a
misleading nomenclature, because the L and M cones have very similar
tuning curves, and both cone types respond best to light which looks
greemy-yellow. 1n contrast, the S-cones are sensitive to short wavelength
light which appears blue. Despite this misnaming, for simpliciity, we will
refer to them as red, green and blue cones.

The outputs of the photoreceptors are transmitted to the brain via
one million fibres which comprise the optic nerve. However, trying to
squeeze the outputs of 126 million photoreceptors into the optic nerve’s
one million fibres is the cause of a severe bottlemesik.

Ganglion
cell

Ganglion

Ganglion
cell

cell

Difference

Blue-Yellow Luminance Red-Green
channel channel channel

Figure 9.5. Combining outputs from three cone types to produce three new
colour channels (ganglion cell outpuits). From Frisby and Stone (2010)'5.

203



9 Information As Nature’s Currency

80 15 =
L
. g

70 S *CJ 10 * % o.

5 il ¥ S U
.
Q 5 . *

50 el . . <
-i ‘: ":o 4 J g ) e ** R
£ 40 o A0k 5 B b
5 .. e o § . o . . . .

30 vm 8 -5 * o .
§ 20 . 0'. % § . Fog ;"

. . L]
g . E -10 ’ . .

10 o2 o S a® o @

o oo

o

ﬁo 40 60
ed channel output [

@

80

1
[
w

o

50 100
Sum output, g_ a'('n*rc)

®

150

Figure 9.6. Schematic illustration of sum-difference recodiing. (a) The similar
tuning curves of red and green cones means that nearby cones have similar
output values. (b) The recoded sum gR+G = rR+vG and difference gr-G =
wkg —tg channels are independemt. From Stome, 201251

Because the red and green cone types have similar tuning curves,
neighbouring red and green cones usually have similar outputts. If these
red and green cones had their own private nerve fibres to send their
outputs along then these outputs would be similar; almost as if the same
message is being sent along two different wires. Given the information
bottlsmerik, this would obviously be a wasteful use of the capacity of
the communication channels (i.e. nerve fibres).

One simple way to ensure that the messages in different optic nerve
fibres are uncorrelated consists of using one fibre to carry the sum of
the red and green cone outputs, and another to carry the difference
between their outputs, as in Figure 9.5. For brevity, we will call
this type of recoding sum-difference recoding; it is also obtained by
applying principal component analysis to the data in Figure 9.6a.
It can be shown that if cone outputs have Gaussian distributions
then sum-difference recoding yields independent messages. Physical
evidence for sum-difference recoding exists in the form of ganglion

cells. These cells reside in the retina, where they collate the outputs of
neighbouring photoreceptens, and each ganglion cell output is carried
by one of the million nerve fibres in the optic nerve.
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To confirm that the sum and difference signals are independent, we
can test whether one can be predicted from the other. For example, if
the two cone outputs are represented as r# and zg then the value of
TR tells us roughly what the value of rg is; they are highly correlated,
as shown in Figure 9.6a. Now, using g to denote ganglion cell outpuit,
suppose instead that these values are recoded in terms of a sum ganglion
cell output, gR+G = g + re, and a difference ganglion cell output,
gR=G = xr —tg, as shown in Figure 9.6b. The almost uniform
coverage in Figure 9.6b suggests that the ganglion cell outputs gR+g
and gr-G are independemt, and this, in turn, suggests that ganglion
cell channel capacity is not being wasted. In fact, ganglion cell channel
capacity is only fully utilised if the outputs of each ganglion cell are also
independent over time, and there is evidence for this%7. In summainy,
using separate ganglion cells to transmit outputs of red and green
cones necessarily wastes some of the channel capacity of ganglion cells,
whereas using ganglion cells to implement sum-difference recoding of
cone outputs using does not.

The Brain: An Efficient Encoder

The experiments and analyses described above suggest that the brain’s
ability to process information is about as efficient as it possibly can be.
More impaortamtilly, information-theoretic analyses of such experiments
have led to the general conclusion that, within sensory systems:

. information rates are very large, close to the physical
limits imposed by the spike train entropy.
Rieke et al, 199743,

Without information theory, we would have no way of telling how well
neurons perform, because we would have little idea of what it means
to measure neuronal information processing performance in absolute
terms. And so we would not be able to tell that the answer to the
questiom, “dre brains good at processing information?”” is yes. More
importantlly, we could not know that, within the constraints imposed
by their physical structure, brains operate close to the limits defined
by Shannon’S mathematical theory of communmicatiom.
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9.7. A Very Short History of Information Theory

Even the most gifted scientist cannot command an original theory out
of thin ale. Just as Einstein could not have devised his theories of
relativity if he had no knowledge of Newton’s work, so Shannon could
not have created information theory if he had no knowledge of the work
of Boltzmann (1875) and Gibbs (1902) on thermodynamic entropy,
Wiener (1927) on signal processiing, Nyquist (1928) on sampling theony,
or Hartley (1928) on information transmission#0.

Even though Shannon was not alone in trying to solve one of the
key scientific problems of his time (.e. how to define and measure
informatiomn), he was alone in being able to produce a complete
mathematical theory of information: a theory that might otherwise
have taken decades to comstruct. In effect, Shannon single-handedly
accelerated the rate of scientific progress, and it is entirely possible
that, without his contributiom, we would still be treating information
as if it were some ill-defined vital fluid.

9.8. Summary
In 1986, the physicist John Wheeler said:

It is my opinion that everything must be based on a simple
idea. And ... this idea, once we have finally discovered it,
will be so compellling, so beautiifiul, that we will say to one
another, yes, how could it have been any different?

So compelliing, and so beautiful: information theory represents a
fundamental insight that must surely rank as a candidate for Wheeler’s
“¢imple idea”” Indeed, after many years of studying physics and
information theony, Wheeler came up with a propesal which is both
radical and intriguing:

... the universe is made of information; matter and energy
are only incidemiall.

Insofar as it must be made of something, a universe in which all
forms of energy and matter are simply different manifestations of pure
information might be as sublime as this one.
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Appendix A

Glossary

alphabet A set of symbols used to construct a message. For examplie,
the numbers 1 to 6 define a discrete variable which has an
alphabet of possible values As = {1,2,3,4,5,6}, and a message
could then be either a single symball, such as s = 4, or an ordered

list of symbals, such as s = (1,,1,6,3,2,3,1,1,4).

average Given a variable x, the average or mean value of a sample of
n values of x is

g = lev
T = nj;z,. AL

In the limit, as n — oo, the sample mean equals the expected
value of the variable x

m

EM = D p(zi)zi, a2

=1

where p(xi) is the proportion of values equal to £, and m is the
number of different values that x can adopt. See Appendix E.

Bayes’ rule Given an observed value x of the discrete variable X,
Bayes’“rule states that the posterior probability that the variable
Y has the value y is p(y\x) = p(x\y)p(¥)/p(x), where p(x\y) is
the probability that X = x given that ¥ = y (tthe likelihood),
p(y) is the prior probability that Y = y, and p(z) is the marginal
probability that X = x. See Appendix F.



Glossary

binary digit A binary digit can be either a Qor a 1L

binary number A binary number comprises only binary digits
{e-g- 1001). Also called binary strings.

binary symmetric channel A channel in which the probability P that
an input value X = L will be flipped to an output value ¥ = Qis
the same as the probability that a 0 will be flipped to a 1L

binomial coefficient Given a binary number containing n binary
digits, the number of different ways that we can arrange k 1s
amongst n positions is given by the binomial coefficient

Enk = W@ov o)

where nt =n x (M —1) x (M —2) X ~===x L

bit A fundamental unit of informatiom, often confused with a binary
digit (see Section 1.5). A bit provides enough information for one
of two equally probable alternatives to be speciffied.

byte An ordered set of 8 binary digits.

capacity The capacity of a communication channel is the maximum
rate at which it can communicate information from its input to its
output. Capacity can be specified either in terms of information
communicated per second (e.g. bits/s), or in terms of information
communicated per symbol (e.g. bits/symnibail).

channel A conduit for communicating data from its input to its output.

code A code consists of a set of symbols or messages, an encoder (which
maps symbols to channel inputs)), a decoder (which maps channel

outputs to inputs)).

codebook The set of codewords produced by a given encodkr.

codieword Each symbol s in a message is encoded before transmission
as a codeword x.



Glossary

coding efficiency A source generates messages with entropy H(S)-
These are encoded as sequences of codewords with a mean length
L(X). The coding efficiency is H(S)/L(X) bits/binary digit,
which is the amount of information each binary digit carries.

conditional probability The probability that the value of one random
variable Y has the value y given that the value of another random
variable X has the value x, written as p(¥Y = y\X = x) or p(y|I%).

conditional entropy Given two random variables X and Y, the average
uncertainty regarding the value of ¥ when the value of X is

known, H(Y\X) = Eg(1/p(pA)] bits.

continuous In contrast to a discrete variable which can adopt a discrete
number of values, a continuous variable can adopt any value
(e-g- a deciimesl]).

cumulative distribution function The cdf of a wvariable is the
cumulative area under the probability density function (pdf) of
that variable. See Appendix G.

differential entropy The expected value of a continuous random

variable, Eflog(IVfxt))-

discrete Elements of set that are clearly separated from each other,
like a list of integers, are called discrete. See also continuous.

disjoint If two sets of items are disjoint then they do not have any items
in commam. For example, the sets A\ = {pgr} and Az = {stu}
are disjoint, whereas the sets A\ — {pgr} and As = {rst} are
not, because they both contain the letter r.

encoding Before a message is transmitted, it is recoded or encoded as
an input sequence. Ideallly, the encoding process ensures that each
element of the encoded message conveys as much information as
possiiblke.

ensemble In physics, this is the set of all possible microstates of a
system. For example, each spatial configuration of molecules
in a jar represents a microstate, and the set of all possible
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Glossary

configurations constitutes an ensemble of microstates. In
information theony, the entropy of a source is defined in terms
of the ensemble of an infinite set of sequences.

entropy The entropy of a variable is a measure of its overall variabillity.
A discrete variable with high variability can convey more
information than a variable with low variabilit. The entropy
of a discrete variable X which adopts m possible values with
probability p(xi) is

H{X) = Dpoi))logl/p(x) bits, a9

i=1
where the values of X are assumed to be iid.
expected value See average.

histogram If we count the number of times the value of a discrete
variable adopts each of a number of values then the resultant set
of counts defines a histogram. If each count is divided by the total
number of counts then the resultant set of proportions defines a
normalised histogramn. See Appendix D.

jid If values are chosen independently (i.e. ‘at random’J from a single
probability distribution then they are said to be iid (independent

and identically distridutket)).

independence If two variables X and Y are independent then the value
x of X provides no information regarding the value y of the other
variable Y, and vice versa.

information The amount of information conveyed by a discrete variable
X which has a value X = x is h(x) = log(1/p(x)). The average
amount of information conveyed by each value of X is its entropy

H{Op(25 Plog(l Apg@/p(xi)) -

integration The process of integration can be considered as a platonic
form of summation (®ee Appendix D).

joint probability The probability that two or more quantities
simultaneously adopt specified values. For example, the
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probability that one die yields x3 = 3 and another yields %= 4
is the joint probability p(x3,24) = 1/36.

Kolmogorov compllexity The smallest number of binary digits required
to represent a given entity (e.g. number, systemn, objgaif),
asymptotically equivalent to Shannon informatiam.

Kulihack~-Leibler divergence Given two distributions p(X) and (X)),
the KL-diivergence (relative entropy) is a measure of how different
these distributions are, given by

D ke pifontnZ =4 ) to@esy x . (A5

law of large numbers Given a variable X with a mean /, the mean of
a sample of n values converges to p as the number of values in
that sample approaches infinity; that is, E[X] - p as n — 00.

logarithm Given a number x which we wish to express as a logarithm
with base a, y = logax is the power to which we have to raise a
in order to get x. See Section 1.3 and Appendix C.

mean See average.

message A sequence of symbols or values, represented in bold s or
non-bold §, according to context.

marginal distribution A distribution that results from marginalisation
of a multivariate (e.g. 2D) distributiom. For examplle, given a 2D
distribution p(X, ), one of its marginal distributions is p(X) =

Jy Ptz y)dy.

monotonic If a variable y = () changes monotonically with changes
in x then a change in x always induces an increase or it always
induces a decrease in y. For example, see Figure C.L.

mutual information The reduction in uncertainty [(X,Y)) regarding
the value of one variable ¥ induced by knowing the value
of another variable X. Mutual information is symmetric, so

I(X,Y) = I(Y, X).
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noise The random ‘fitter’that is part of a measured quantitsy.

outcome In this text, the term outcome refers to a single instance of
a physical outcone, like the pair of numbers showing after a pair
of dice is throwm. In terms of random variables, an outcome is
the result of a single experimnemt.

outcome value In this text, the term outcome value refers to the
numerical value assigned to a single physical outcomee. For
example, if a pair of dice is thrown then the outcome (&i,02)
comprises two numbers, and the outcome value can be defined
as the sum of these two numbers, x = £ + £2. In terms of
the random variable X, the outcome value is the numerical value
assigned to the outcome (£il,£2), written as x = X(£i,£2).

outer product Given two probability distributions represented as
p{X) = {p(i),-.. and = {p(ypf{xn)lyn)}, thefp{yi).
outer product is an n x m matrix in which the ith column and
jith row is the product p(xf) x p{yj)). The distribution of values in
this matrix represents the joint distribution p(X, ¥) = p(Om(Y)).

parity A measure of the number of 1s or s in a binary number, as
indicated by the value of a parity binary digit, which is often
incorrectly called a parity bit.

precision An indication of the granularity or resolution with which
a variable can be measured, formally defined as the inverse of
variance (i.e. precision=1{Vreaizaws)).

prefix code A code in which no codeword is the prefix of any other
codewand, so each codeword can be decoded as soon as it arrives,
also called an instantaneous or self-pumctuating code.

probability There are many definitions of probefiiitty. The two main
ones are (wsing coin bias as an example): (1) Bayesian: an
observer’s estimate of the probability that a coin will land heads
up is based on all the information the observer has, including
the proportion of times it was observed to land heads up in the
past. (2) Frequentist: the probability that a coin will land heads
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up is given by the proportion of times it lands heads up, when
measured over a large number of coin flips.

probability density function (pdf) The probability density function
{pdf) p{X) of a continuous random variable X defines the
probability density of each value of X. Loosely speaking, the
probability that X — x can be considered as the probability
density p(x). See Appendix D.

probability distribution The distribution of probabilities of different
values of a variable. The probability distribution of a continuous
variable is a probability density function, and the probability
distribution of a discrete variable is a probability functiom. When
we refer to a case which includes either continuous or discrete
variables, we use the term probability distribution in this text.

probability function (pf) A function p(X) of a discrete random
variable X defines the probability of each value of X. The
probability that X = x is p(X = x) or, more succinetlly, p(x).
This is called a probability mass function (pmf) in some texts.

quantum computer A computer which makes use of quantum
mechanics to speed up computaitiim.

random variable (RV) The concept of a random variable X can be
understtood from a simple example, such as the throw of a pair
of dice. Each physical outcome is a pair of numbers (xg,x%),
which is assigned a value {ttypicallly, x = xa + x¥) which is taken
to be the value of the random variable, so that X = x. The
probability of each value is defined by a probability distribution

p(X) = {p@®i),p(x2),.. F=See Section 2.2.

redundancy Given an ordered set of values of a variable (e.g. in an
image or sound)), if a value can be obtained from a knowledge of
other values then it is redundamt.

relative entropy A general measure of the difference between two
distributioms, also known as Kullback-Leibler divergenes.



Glossary

relative frequency Frequency of ocourrence, expressed as a proportiom.
For examplle, out of every 10,000 English letters, 1,304 of them are
the letter E, so the relative frequency of E is 1.304/10000=0.134.

sample space The sample space of the random variable X is the set of
all possible experiment outcomes. For examplle, if an experiment
consists of three coin flips then each time the experiment is run we
obtain a sequence of three head or tail values (e.g. (®fs.%t,%t)),
which is one out of the eight possible outcomes (i.e. sequences)
that comprise the sample space.

standard deviation The square root o of the variance of a variabie.

stationary source A source for which the probability of each symboll,
and for every sub-sequence of symballs, remains stable over time.

symbol A symbol is one element of an alphabet of symbolls, and refers
to a particular value that a random variable can adopt.

theorem A theorem is a mathematical statement which has been
proven to be true.

uncertainty In this text, uncertainty refers to the surprisal
@-e. log(Vad)) of a variable X.

variable A variable is essentially a ‘Gontainer’; usually for one number.

variance The variance is a measure of how ‘Spread out’=the values of
a variable are. Given a sample of n values of a variable x with a
sample mean x, the estimated variance vx of x is

ne

b = - (@2 A.6)
i=1

where the sample mean is x = 1/n)zj xj= If x can adopt m
different values then its variance is

m
ve = 3 p@i)(@ - Ela])?, %)
i=1

where p(xi) is the proportion of values equal to x and Efx] is the
expected value of x.
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Appendix B

Mathematical Symbols

" the hat symbol is used to indicate an estimated value. For example,
vx is an estimate of the variance vx.

M indicates the absolute value of x (e.g. if x = -3 then | = 3).
< if x < y then x is less than or equal to y.

> if x > y then x is greater than or equal to y.

&« means ‘pproximately equal to’”

~ if a random variable X has a distribution p(X) then this is written

as X~p pi¥).
00 infinity.
oc indicates proportional to.

e Greek letter alpha, denotes the number of different symbols in an
alphabet.

A Greek upper case letter delta, denotes a small incremeni.
e Greek letter epsilom, denotes a small quantiy-

1] Greek letter eta (jmromounced eater), denotes a single value of the
noise in a measured quantiity.

T large Greek letter eta, used in this text to denote a random variable
for noise.
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Mathematical Symbols

i Greek letter mu (pwonounced mew), denotes the mean value of a
variablie.

p Greek letter rho (pronounced row), denotes correlatiom.
& Greek letter sigma, denotes the standard deviation of a distribustiom.

the capital Greek letter sigma represents summation. For example,
if we represent the n = 3numbers 2, 5and 7as X\ = 2, x4 = §,
xz —7T then their sum xsym is

Xsum —
i=1
X1 +X2+ 23
24+ 5+7

14.
The variable i is counted up from 1 to n, and, for each i, the term

%] adopts a new value and is added to a running totall

A the set or alphabet of different values of a random variable. For
examplle, if the random variable X can adopt one of m different
values then the set Ax is

Ax i B4)

C channel capacitty, the maximum rate at which information can be
communicated through a given channel, usually measured in bits

per second (bits/s).

e constamt, equal to 2.7 1828 1828 — . Base of natural logarithms, so
that IneX = x.

E the mean, average, or expected value of a variable X, written as E[X].

g encoding function, which transforms a message of symbols s =
(®i,-- ., Sk) into channel inputs x = (&i,-.. ,Xp), S0 X = g(s).

h(x) Shannon information, uncertaimtyy, or surprise, log(IVfx¢)),
associated with the value x.



Mathematical Symbols

h(x) average Shannon information of a finite sample of values of x.

H(X) entropy of X, which is the average Shannon information of the
probability distribution p(X) of the random variable X.

H(X\¥) conditional entropy of the conditional probability distribution
p(X\Y) of values adopted by the variable X given values of the
variable ¥. This is the average uncertainty in the value of X after
the value of Y is obserwed.

H(Y\X) conditional entropy of the conditional probability distribution
p(¥\X) of values adopted by the variable Y given values of the
variable X. This is the average uncertainty in the value of ¥ after
the value of X is obserwed.

H{X,Y) entropy of the joint probability distribution p(X,Y) of the
variables X and Y.

I1(X,Y) mutual information between X and ¥, the average number of
bits provided by each value of ¥ about the value of X, and vice
versa.

Ina natural logarithm ((log to the base €) of x.

logx logarithm of x. Logarithms use base 2 in this text, and base
is indicated with a subscript if the base is unclear {e.g. log2x).
Natural logarithms are logarithms to the base e, and are usually
written as Inx.

m number of different possible messages, input values, codewouds, or
symbols in an alphabet.

M number of bins in a histogram.

N noise variance in Shannon’3 fundamental equation for channel
capacity C —% log(1 + P/I).

n the number of observations in a data set (e.g. coin flip outeamss), or
elements in a message, or codewords in an encoded message.

p(X) the probability distribution of the random variable X.
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p(x) the probability (density) that the random variable X = x.

p(X,Y) the joint probability distribution of the random variables X
and Y. For discrete variables this is called the joimt probability
funetion (pf) of X and Y, and for continuous variables it is called
the joint probability density function (pdf) of X and Y.

p{x,y) the joiint probability that the random variables X and ¥ have
the values x and y, respectiiraily.

plx\y) the conditional probability that the random variable X = x
given that ¥ = y.

R the rate at which information is commumnicated, usually measured in
bits per second (bits/s).

S aarbaddemveriidilte. THeeprobzdilityytieat Haadpitsaavadheessissdedineet
by the value of the probability distribution p(S) at § = s.

s a value of the random variable S, used to represent a message.
vx if X has mean p then the variance of X is vx = 0§ —H(fx- x)%}
W the total number of microstates of a systemn.

X a random variable. The probability that X adopts a specific value
x is defined by the value of the probability distribution p(X) at
X=x

XA a variable which has been quantised into intervals (e.g. histogram
bins) of width Ax.

% a value of the random variable X, used to represent a channel input.

x avector or permutation (round brackets (&i,,-.., Xn)) or combination
(curly brackets {xi,...,xp}) of x values.

Y a random variable. The probability that ¥ adopts a specific value
y is defined by the value of the probability distribution p(Y) at
Y —v.

y a value of the random variable Y, used to represent a channel outpoat.



Appendix C
Logarithms

This is a basic tutorial about logarithms. As an examplie, if we want to
know what power we must raise 10 to in order to get 100 then we find
that the answer is 2, because 100 = 102. Equivallenilly, the logarithm
of 100 is 2, written as 2 = log;9100, so we say that the log of 100 is 2
(using logarithms to the base 10).

The reason that logarithms are so useful is because they turn
multiplication into addition. For example, if we want to multiply 100
by 100 then we have

{g2+2 (€.
0% (C.2)
1, 000. (€.3)

Figure €.1. The logarithmic function with base 2 (dotted curws), and with
base 10 (solid cunwe). Note that log# increases monotomically with x.



Logarithms
If we express this in terms of logarithms to the base 10 then we have

100100 + log 100 = logHl02+ logplLeP €4
2+2 (C.5)

and the answer is obtained by taking the anti-logarithm of 4, which
means raising 10 (the base) to the power of 4, which comes to 104 =
10,000. If we have two numbers n and m that we wish to multiply then
we can simply add their logarithms, and then find the product from
the anti-llogarithm of this sum.

Instead of using logarithms with base 10, we can use logarithms with
any base B so that

y = logp(n x m) = loghn +loghm, €.6)
and the product is obtained from the anti-lngarithm of the sum y as
AXMh = pegditiogrm = by €.7)

The rule for converting from logarithms with base a to logarithms
with base b is

leggZ
logpx 08az ((e2.))
lega b -
Natural logarithms are logarithms to the base e, and are usually written
as Inx. Logarithms use base 2 in this book, unless otherwise spegiffied.

In summany, given a number x which we wish to express as a
logarithm with base a, y = loggx is the power to which we have to raise
a in order to get x. Equivalemtlly, if the logarithm of x is y = logax
then x = a¥.
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Probability Density Functions

Before describing probability density functions, we briefly review the
idea of a functiom. In essence, a function is a mapping from one space,
called the domain, to another space, called the range. For examplie,
the area y of a circle increases with square of its radius x, and the
precise nature of the mapping from the domain x to the range y is
defined by the function y = #w2. Sometimes it is convenient to refer
to a function without specifying its precise form, and in such cases we
often write y = f(x). For example, the letter f could represent the
function f(x) = 7. Of course, a function can be used to describe the
relationship between any two continuous variables, like the speed of a
falling ball and time. It can also capture the relationship between more
abstract quantities, like probafhiility.

In contrast, a probability density function defines the probability of
every value of a variable. We can gain some intuition behind a pdf by
starting with a histogram of some observed data.

1f we measure the height of 5,000 people, and count the number of
people with each height, then the resultant set of counts can be used to
construct a histogram. A histogram is a graphical representation of a
set of such counts, as shown in Figure 5.1. However, no two individuals
have exactly the same height, so it doesn’f make any sense to try to
count how many people have any particular height.

In order to make progress, we have to divide height into a number
of different intervals, and then count how many individuals fall into
each interval. Of course, this entails choosing a size for the intervals,
and we will choose an interval of Ax = 1.6 inches, between 60 and 84
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inches (A is the Greek letter delta). This yields a total of M = 15
intervals or bins, where each bin is defined by a lower and upper bound
(e-.g. the first bin spans 60-61.6 inches). For each bim, we count the
number of measured heights spanned by that bin. We expect a large
proportion of measurements to be in bins at around 72 inches, because
this is a common human height. The resultant histogram has a typical
bell shape, shown in Figure 5.1

In order to make the transition from histograms to pdfs, at this
point, we will adopt a different perspectiie. Suppose we drop dots
from a great height onto the image of a histogram, so that they appear
in random locatioms, as in Figure D.1 (we ignore dots which do not fall
under the curve). The probability that a dot will fall into a particular
bin is directly related to the area of that bin; the bigger the bin, the
more dots will fall into it. In fact, the probability P} that a dot will
fall into a particular bin is just the area  of that bin expressed as a
proportion of the total histogram area A, so that P} = ai/A. The area
of the ith bin is its width times its height, where height is equal to the
number kj of dots in the bin = hj x Ax, and the total area of all

P(x)

Figure D.L. A normalised histogram as an approximation to a probability
density function or pdf (smooth curws). If black dots fall onto the page at
random positions then there will usually be more dots in the taller columms.
As the columns get thinner then the proportion of dots in each column gets
closer to the height p(x) of the peif.
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bins is just the sum of all M bin areas,
M
A = 2a. @.1)
i=1

Given that x must have some definite value, the total probability of all
M possible values must add up to one,

M
22: Bi = L @2

i=il

The #th bin spans the interval from a lower value ™ to an upper
value x™&%, such that the bin width is

Ax = 8% a™A. ®.3)

Thus, in this normalised histogram, the area of the ith bin is
numerically equal to the probability

#; = p(Xis between x™H and x™&X ). (D-4)

p(x)

area = p(x)Ax

Plx)e ===

Ax

Figure D.2. A probability density function p(X)). The vertical lines are
eentred on a value at X = Xi. The probability P} (that a randomly chosen
value of X = %) is numerically equal to the proportion of the total area
between the two vertical lines and the curve. This area is the width Ax
times the height (& p(z»))-



Probability Density Functions

The height of a bin is its area divided by its width p(xi) = Pj/Ax,
which is the probability density in the vicinity of .

In order to make the final transition from histograms to pdffs, we
need to reduce the bin widths. If we reduce each bin width Ax so that
it approaches zero then the finite interval Ax becomes an infinitesimal
interval, written as dx. At this point, the infimitesimal interval dx at
X —x has a probability density p(x), and the density values of the
continuous variable X define a continuous probability density function
p(X)), shown by the curve in Figures D.1 and D.2. A key advantage
of a pdf is that it can be characterised with an equatiom, such as a
Gaussian (@ee Appendix G).

To understand why the height of the curve defined by p(X) is called
a probability density, consider an analogy with the density of a metal
rod. Suppose that this rod is made of a mixture of gold (which is very
dense) and aluminium, but the proportion of gold increases from left
to right, so that the density increases accordimgly. We can equate the
area of a histogram bin with the mass of a small segment of the rod.
Similiarly, we can equate the bin width with the volume of that segmemit.
The density of a segment is its mass divided by its volume

. segment mass
rod segment density = ——. .
g y segment volume EE) %‘

Similanlly, the probability density {(=height) of a bin is

E'robabilitg densftx = probab:il::ly“l(;:)l;lln area) ,---—-(\:/D:G)(D.G)

Given that P} = p(xi)Ax, we can rewrite Equation D.2 as
M
Y. Az = 1 pAx .7

2=1

As the bin width Ax approaches zero, this becomes an integral

jp(x) dx = 1, ©.8

where the area under the pdf is, by definitiom, equal to one.



Appendix E

Averages From Distributions

Here we show how the mean, average or expected value of a variable
X can be obtained from an equation like

m
EX] = M2(ei)xi E.1)
=1

1f we sample items from a population then we would expect to observe
values in proportion to their frequency in the populatiom. For example,
if the population consists of items having one of three values 1 5 6]
which occur with relative frequencies [@1 0.2 0.7) then a typical sample
of 100 items would consist of 10 fours, 20 fives, and 70 sixes. The mean
of our sample would therefore be

WX+ X9+ DX _ @raxay+ 2650+ @), €2

Note that the probability that a randomly chosen item from the
population has value 4 is Q.1 If we denote the item value as x then we
can write this as p(X = 4) = 0.1.. To simplify this further, if we denote
the value X = 4 as Xj, then we have p(xj) =001. Similanly, we can use
#2 to stand for X = 5, and £3 to stand for X = 6, so that p(x2) = 0.2
and p(x3) = 0.7. We can now rewrite Equation E.2 as

©1x 49+ @©2x5+ @7x 6) E.3D
p(xi)xi + p{x2)xz + p(xPxa. (=X

E[X]



Averages From Distributions
If we replace each subscript with the letter i then we have
3
EX] = pmei)a. (E.5)
2=1
More gemerallly, if we want to know the expected value of some function,

say h(xi) = xf, of a variable which can adopt m different values, then
we can obtain this as

p(x  DxR(Epizdn, .+ plapOayxm  (E.6)

Wl

EH
=1
4
Y (=) i) (E.8)
Effi). (E.9)

If h(x) is the Shannon information of an outcome %, defined as h(x) =
log(Vfib®)), then the expected value of the Shannon information is

ENS) = Doety gy (=109
= H (X @1y

As expectedl, the average Shannon information is the entropy H(X)).

Rather than taking a mean over a countabie number m of different
values, we can consider X to be continuows, in which case the
summation above becomes an integral,

B[Ol = f plx) h(x) ds. E12)
If h(x) is (agaim) the Shannon information of an outcome x then
E(RQO] = )} p(x) log — dx €13)
= (B

which ylelds the differential entropy of X.
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Appendix F

The Rules of Probability

Independent Outcomes

If a set of individual outcomes are independent then the probability
of that outcome set is obtained by multiplying the probabilities of the
individual outcomes togetiher.

Eor examplle, consider a coin for which the probability of a head )
is p(xtn) = 0.9 and the probability of a tail x{ is p(xt) —(1—0.9) = 0.1
If we flip this coin twice then there are four possible pairs of outcomes:
two heads (xh,XH), two tails (xf,xt), a head followed by a tail (xh,xt),
and a tail followed by a head (xt,Xi)-

The probability that the first outcome is a head and the second
outcome is a tail can be represented as a joiint probability p(xh,xt)
(More generallly, a joint probability can refer to any pair of variables,
such as X and Y.)

In order to work out some averages, imagine that we perform 100
pairs of coin flips. We label each flip according to whether it came first
or second within its pair, so we have 100 first flip outcomes, and 100
corresponding second flip outcomes (@ee Table F.L).

Outcome h t fh.hy £} || vty (thy {t,h}
N 90 10 81 1 9 9 18
N/160 0.90 | 0.10 0.81 0.01 0.09 | 0.09 0.18

Table F.1. The number N and probability N/100 of each possible outcome
from 100 pairs of coin flips of a coin which lands heads up 90% of the
time. Ordered sequences or permutations are written in round brackets %)’;
whereas unordered sets or combinations are written in curly brackets ‘{}\
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The Rules of Probability

Given that p(xi) = 0.9, we expect 90 heads and 10 tails within the
set of 100 first flips, and the same for the set of 100 second flips. But
what about the number of pairs of outcomes?

For each head obtained on the first flip, we can observe the
corresponding outcome on the second flip, and then add up the number
of pairs of each type (e.g. We already know that there are (on

average)
9 = 09x 100 [1:8)

heads within the set of 100 first flip outcomes. For each of these 90
heads, the outcome of each of the corresponding 90 second flips does
not depend on of the outcome of the first flip, so we would expect

8l = 09x30 E.2)

of these 90 second flip outcomes to be heads. In other words, &1 out of
100 pairs of coin flips should yield two heads. The figure of 90 heads
was obtained from Equation F.1, so we can rewrite Equation F.2 as

8l = 09x (09 x I00) = 0.81 x 100, ®.3)

where 0.9 is the probability p(xf) of a head, so the probability of
obtaining two heads is p(xh)2= 0.92 = 0.81.

A similar logic can be applied to find the probability of the other
pairs (&h,xt) and (xF,x5)- For the pair (xf,x%), there are (on average)
10 tails observed in the set of 100 first flip outcomes. For each of these
10 flips, each of the corresponding 10 second flips also has an outcome,
and we would expect 1= 0.1 x 10 of these to be a tail too, so that one
out of 100 pairs of coin flips should consist of two tails (&,x1).

The final pair is a little more tricky, but only a little. For the ordered
pair (xh,x%), there are (on average) 90 heads from the set of 100 first
flips, and we would expect 9= 0.1 x 90 of the corresponding 90 second
flips to yield a tail, so nine out of 100 pairs of coin flips should be (£, xt)
tails. Similanily, for the ordered pair (xt,xR), there are {(on average) 10
heads in the set of 100 first flips, and we would expect 9 = 0.1 x 90 of



The Rules of Probability

the corresponding nine second flips to yield a tail, so nine out of 100
pairs of coin flips should be (xt,x)- If we now consider the number of
pairs that contain a head and a tail in any order then we would expect
there to be 18 = 9+ 9 pairs that contain a head and a tail. Notice
that the figure of 90 heads was obtained from 90 = 0.9 x 100, so we
can write this as 9= (@1 x 0.9) x 100, or p(xh)p(xt) x 100.

In summeany, given a coin that lands heads up on 90% of flips, in any
given pair of coin flips we have (without actually flipping a single coimn)
worked out that there is an 0.81 probability of obtaining two heads,
an 0.01 probability of obtaining two tails, and an 0.18 probability of
obtaining a head and a tail. Notice that these three probabilities sum
to one, as they should. More impartanitlly, the probability of obtaining
each pair of outcomes is obtained by multiplying the probability
associated with each individual coin flip outcomee.

Conditiomal Probability
The conditional probability p(2\y) that X = x given that Y —y

p(xy) = pExy)/p{y), ®.4)

where the vertical bar is read as given thet

The Product Rule
Multiplying both sides of Equation F.4 by p(y) yields the product rule

px,y) = ®.5)

The Sum Rule and Marginalisation

The sum rule is also known as the law of total probafiiiity. In the case
of a discrete variable,

PR = X, vi), (GO
1
and applying the product rule yields

plz) =  YpOkeYH) ) €7
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The Rules of Probability

In the case of a continuous variable, the sum and product rules yield
p(x)= p{x.y )y iy yaly) dy. &8

This is known as marginalisation, and yields the marginal probability
p(x) of the joint probability distribution p(X,Y) at X = x.

Bayes’”Rule

If we swap y for x in Equation E.5 then

ply,x) = p@E)px), E9)

where p(y, x) = p{x, y). Therefore,

p(y\x)p(x) IHXWHEG) - #.10)

Dlviding both sides of Equation F.10 by p(x) yields Bayes ~“rule®®
(hich is also known as Bayes theorem),

TR
Within the Bayesian framewornk, p(y\x) is called the posterior
prolbabiliiyy, p{x\y) is the likelihood, p(y) is the prior probability, and
p(x) is the marginal likelthoodl

Given that this is true for every individual value, Bayes'“rule must
also be true for distributions of values, so that

pONX) WQ@;’W F.12)

where p(Y\X) is a family of posterior distributions (one distribution per
value of x), p(X\Y) is the corresponding family of likelilood functions,
p(X) is the marginal likelihood distributiom, and p(Y) is the prior
distribution of Y.

A brief introduction to Bayes'rule can be downloaded from here:
http: jim-igivonetetefftshitfshet utd BokkBaylem0d 2y ReousRickst




Appendix G

The Gaussian Distribution

A Gaussian probability density function (jpdf) or Gaussian distribution
is shown in Figure G.la. This function is also known as a normal
distribution, or a bell curve. We begin by defining the equation for a
Gaussian distribution with mean p and standard deviation &,

px) = Kee-GeW A=), (G.1)

where the constant e = 2.718, and k = W{@\v2r), which ensures that
the area under the Gaussian distribution sums to one. For convenience,
we define (minus) the exponent in Equation G.1 as

oy s

a

so that Equation G.1 can be written more succinctly as p(x) —ke=%,
where e=% = 1/e?. Therefore, p(x) gets larger as z gets smaller.

We can gain some intuitive understanding of the Gaussian
distribution by considering different values of x, assuming the mean
and standard deviation are constant for now. If x = p then x —p = Q,
and the difference (x —p)2 = 0, at which point z = 0. Given that
e®= 1, if x = p then p(x) adopts its biggest value of p(x) = ke=® = k.
As x deviates from p, so the exponent z increases, which decreases the
value of p(x).

Because the mean determines the location of the centre of the
distributiom, changing its value moves the distribution along the x-axis.

Increasing a decreases 1/er, which effectively rescales the difference
(x —p)- Thus, increasing a increases the ‘Spread’~of the bell curve.
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The Gaussian
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Figure G.1. (a) Gaussian probabiiity density function (pdf) with a mean
Ji = 0 and a standard deviation a = 1 (imdicated by the horizontal dashed
ling)), (b) Cumulative distribution function of the Gaussian pdf shown in (a).

The Central Limit Theorem

In essence, the central limit theorem' states that, as the number n
of points in each sample from almost any distribution increases, the
distribution of mean sample values becomes increasingly Gaussiam.
Because almost every physical quantity (e.g- human height) is affiected
by multiple factors, it is effectively a weighted mean, which suggests
that such quantities should have a Gaussian distributiom. This may
account for the ubiquity of the Gaussian distribution in nature.

The Cumulative Distribution Function of a Gaussian

The cumulative distribution function (cdf) of a Gaussian function is
the cumulative area under a Gaussian pdf, and is defined as

o@) = =f  (G3)

ory/2m ,/:e@
which is plotted in Figure G.1b for a Gaussian with a mean of zero and
a standard deviation of a = 1 (ghown in Figure G.la). Cdfs are useful
in statistics because, for a given value x, the value of the cdf $(x)
is the probability that a value chosen randomly from the Gaussian
distribution will be less than (or equal to) x.



Appendix H
Key Equations

Entropy
m
HX) -
= 7%
H )
(Q / log ﬁ% N )
Joint entropy
M M
H(X)Y) = .
HX)Y) = ./x)é p(x, y)log 29
= HI(X,Y) + HCOY) + H{Y\X)
Conditiomal Entropy
m M i\
HY\X) =
M M f
HX\Y) =

[ .
L"jé(wfv))mw paly

X)) = fyl G e i Sy

@.0)

®H2)

H.3)

H4)
@5

(®.6)

®.8)

®.9)



Key Equations
HX\Y)=Y) - £
HYYX) = H{X,¥)-H{X)
From which we obtain the chain rule for entropy

H{X,Y) =

Mutual Information

m m i
g _PIZOVE)
X, Y E
( ) i:1§$j(=g‘§f%j o LOUD

BEw)
I(X,Y) J; Iip(x, y) log PX)P(Y) dx dy

X Yy) = HOB A H(Y)-H
= H(X)-H(X\Y)
= P{Y)-H(Y\X)
= H(X,Y)~-[HEEY) + HYVOY

Channel Capacity
C = max I[(X,
max X.Y)

Marginalisation

(H.16)
#.17)
(#.18)
H.19)

(#.20)

B@) = 3Z P p(y;) = §E{j’¥9 #1)p oa 762D
=1 1=

p(x) = L px.y)dy,  y) = / plx.y) dx

Jax

H.22)
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