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Suppose that we were asked to arrange the following in two 
categories - distance, mass, electric force, entropy, beauty, 
melody. I think there are the strongest grounds for placing 
entropy alongside beauty and melody ...
Eddington A, The Nature of the Physical World, 1928.
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Preface

This book is intended to provide a coherent and succinct account of 
information theory. In order to develop an intuitive understanding 
of key ideas, new topics are first presented in an informal tutorial 
style before being described more formally. In particular, the equations 
which underpin the mathematical foundations of information theory are 
introduced on a need-to-know basis, and the meaning of these equations 
is made clear by explanatory text and diagrams.

In mathematics, rigour follows insight, and not vice versa. Kepler, 
Newton, Fourier and Einstein developed their theories from deep 
intuitive insights about the structure of the physical world, which 
requires, but is fundamentally different from, the raw logic of pure 
mathematics. Accordingly, this book provides insights into how 
information theory works, and why it works in that way. This is entirely 
consistent with Shannon’s own approach. In a famously brief book, 
Shannon prefaced his account of information theory for continuous 
variables with these words:

We will not attempt in the continuous case to obtain our 
results with the greatest generality, or with the extreme 
rigor of pure mathematics, since this would involve a great 
deal of abstract measure theory and would obscure the 
main thread of the analysis. ... The occasional liberties 
taken with limiting processes in the present analysis can be 
justified in all cases of practical interest.
Shannon C and Weaver W, 194950.



In a similar vein, Jaynes protested that:
Nowadays, if you introduce a variable x without repeating 
the incantation that it is some set or ‘space’ X, you are 
accused of dealing with an undefined problem ...
Jaynes ET and Bretthorst GL, 2003 26.

Even though this is no excuse for sloppy mathematics, it is a clear 
recommendation that we should not mistake a particular species of 
pedantry for mathematical rigour. The spirit of this liberating and 
somewhat cavalier approach is purposely adopted in this book, which 
is intended to provide insights, rather than incantations, regarding how 
information theory is relevant to problems of practical interest.
MatLab and Python Computer C ode
It often aids understanding to be able to examine well-documented 
computer code which provides an example of a particular calculation 
or method. To support this, MatLab and Python code implementing 
key information-theoretic methods can be found online. The code also 
reproduces some of the figures in this book.
MatLab code can be downloaded from here:
http://jim-stone.staff.shef.ac.uk/BookInfoTheory/InfoTheoryMatlab.html 
Python code can be downloaded from here:
http: / /jim-stone .st aff. shef. ac. uk / BooklnfoTheory/InfoTheoryPyt hon .html 

PowerPoint Slides o f Figures
Most of the figures used in this book are available for teaching purposes 
as a pdf file and as PowerPoint slides. These can be downloaded from 
htt p : / /jim-stone .staff. shef. ac. uk/BooklnfoTheory/InfoTheory F igures. html

Corrections
Please email corrections to j.v.stone@sheffield.ac.uk.
A list of corrections can be found at
http: //jim-stone.staff.shef.ac.uk/BookInfoTheory/Corrections.html

Acknow ledgments
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Chapter 1

What Is Information?

Most of the fundamental ideas of science are essentially 
simple, and may, as a rule, be expressed in a language 
comprehensible to everyone.
Einstein A and Infeld L, 1938.

1.1. In troduction
The universe is conventionally described in terms of physical quantities 
such as mass and velocity, but a quantity at least as important as 
these is information. Whether we consider computers30, evolution2’19, 
physics15, artificial intelligence9, quantum computation46, or the 
brain17’43, we are driven inexorably to the conclusion that their 
behaviours are largely determined by the way they process information.

1

Figure 1.1. Claude Shannon (1916-2001).



1 What Is Information?

In 1948, Claude Shannon published a paper called A Mathematical 
Theory of Communication*8. This paper heralded a transformation in 
our understanding of information. Before Shannon’s paper, information 
had been viewed as a kind of poorly defined miasmic fluid. But after 
Shannon’s paper, it became apparent that information is a well-defined 
and, above all, measurable quantity.

Shannon’s paper describes a subtle theory which tells us something 
fundamental about the way the universe works. However, unlike 
other great theories such as the Darwin-Wallace theory of evolution, 
information theory is not simple, and it is full of caveats. But we 
can disregard many of these caveats provided we keep a firm eye on the 
physical interpretation of information theory’s defining equations. This 
will be our guiding principle in exploring the theory of information.

1.2. Information, Eyes and Evolution

Shannon’s theory of information provides a mathematical definition 
of information, and describes precisely how much information can be 
communicated between different elements of a system. This may not 
sound like much, but Shannon’s theory underpins our understanding of 
how signals and noise are related, and why there are definite limits to 
the rate at which information can be communicated within any system, 
whether man-made or biological. It represents one of the few examples 
of a single theory creating an entirely new field of research. In this 
regard, Shannon’s theory ranks alongside those of Darwin-Wallace, 
Newton, and Einstein.

When a question is typed into a computer search engine, the results 
provide useful information but it is buried in a sea of mostly useless 
data. In this internet age, it is easy for us to appreciate the difference 
between information and data, and we have learned to treat the 
information as a useful ‘signal’ and the rest as distracting ‘noise’. This 
experience is now so commonplace that technical phrases like ‘signal 
to noise ratio’ are becoming part of everyday language. Even though 
most people are unaware of the precise meaning of this phrase, they 
have an intuitive grasp of the idea that ‘data’ means a combination of 
(useful) signals and (useless) noise.
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1.3. Finding a Route, Bit by Bit

The ability to separate signal from noise, to extract information from 
data, is crucial for modern telecommunications. For example, it allows 
a television picture to be compressed to its bare information bones and 
transmitted to a satellite, then to a TV, before being decompressed to 
reveal the original picture on the TV screen.

This type of scenario is also ubiquitous in the natural world. The 
ability of eyes and ears to extract useful signals from noisy sensory data, 
and to package those signals efficiently, is the key to survival51. Indeed, 
the efficient coding hypothesis3'8'*3'33 suggests that the evolution of 
sense organs, and of the brains that process data from those organs, is 
primarily driven by the need to minimise the energy expended for each 
bit of information acquired from the environment. More generally, a 
particular branch of brain science, computational neuroscience, relies 
on information theory to provide a benchmark against which the 
performance of neurons can be objectively measured.

On a grander biological scale, the ability to separate signal from noise 
is fundamental to the Darwin-Wallace theory of evolution by natural 
selection12. Evolution works by selecting the individuals best suited to 
a particular environment so that, over many generations, information 
about the environment gradually accumulates within the gene pool. 
Thus, natural selection is essentially a means by which information 
about the environment is incorporated into DNA (deoxyribonucleic 
acid). And it seems likely that the rate at which information is 
incorporated into DNA is accelerated by an age-old biological mystery, 
sex. These and other applications of information theory are described 
in Chapter 9.

1.3. Finding a Route, Bit by Bit
Information is usually measured in bits, and one bit of information 
allows you to choose between two equally probable alternatives. The 
word bit is derived from binary digz£ (i.e. a zero or a one). However, as 
we shall see, bits and binary digits are fundamentally different types of 
entities.

Imagine you are standing at the fork in the road at point A in Figure 
1.2, and that you want to get to the point marked D. Note that this 
figure represents a bird’s-eye view, which you do not have; all you have

3



1 What Is Information?

is a fork in front of you, and a decision to make. If you have no prior 
information about which road to choose then the fork at A represents 
two equally probable alternatives. If I tell you to go left then you have 
received one bit of information. If we represent my instruction with a 
binary digit (O^left and l=right) then this binary digit provides you 
with one bit of information, which tells you which road to choose.

Now imagine that you stroll on down the road and you come to 
another fork, at point B in Figure 1.2. Again, because you have no 
idea which road to choose, a binary digit (l=right) provides one bit 
of information, allowing you to choose the correct road, which leads to 
the point marked C.

Note that C is one of four possible interim destinations that you 
could have reached after making two decisions. The two binary 
digits that allow you to make the correct decisions provided two bits 
of information, allowing you to choose from four (equally probable) 
possible alternatives; 4 happens to equal 2 x 2 = 22.

A third binary digit (l=right) provides you with one more bit of 
information, which allows you to again choose the correct road, leading 
to the point marked D. 4

Figure 1.2. How many roads must a man walk down? For a traveller who 
does not know the way, each fork in the road requires one bit of information 
to make a correct decision. The Os and Is on the right-hand side summarise 
the instructions needed to arrive at each destination; a left turn is indicated 
by a 0 and a right turn by a 1.
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1.3. Finding a Route, Bit by Bit

There are now eight roads you could have chosen from when you 
started at A, so three binary digits (which provide you with three 
bits of information) allow you to choose from eight equally probable 
alternatives; 8 happens to equal 2 x 2 x 2 = 23 = 8.

The decision taken at A excluded half of the eight possible 
destinations shown in Figure 1.2 that you could have arrived at. 
Similarly, the decision taken at each successive fork in the road halved 
the number of remaining possible destinations.
A Journey o f Eight Alternatives
Let’s summarise your journey in terms of the number of equally 
probable alternatives:

If you have 1 bit of information then you can choose between 2 
equally probable alternatives (i.e. 21 = 2).

If you have 2 bits of information then you can choose between 4 
equally probable alternatives (i.e. 22 =4).

Finally, if you have 3 bits of information then you can choose 
between 8 equally probable alternatives (i.e. 23 = 8).

We can restate this in more general terms if we use n to represent the 
number of forks, and m to represent the number of final destinations. 
If you have come to n forks, then you have effectively chosen from

m — 2n final destinations. (1.1)

Because the decision at each fork requires one bit of information, n 
forks require n bits of information, which allow you to choose from 2n 
equally probable alternatives.

There is a saying that “a journey of a thousand miles begins with a 
single step”. In fact, a journey of a thousand miles begins with a single 
decision: the direction in which to take the first step.

Key point. One bit is the amount of information required to 
choose between two equally probable alternatives.

5



1 What Is Information?

Binary Numbers
We could label each of the eight possible destinations with a decimal 
number between 0 and 7, or with the equivalent binary number, as 
in Figure 1.2. These decimal numbers and their equivalent binary 
representations are shown in Table 1.1. Counting in binary is analogous 
to counting in decimal. Just as each decimal digit in a decimal number 
specifies how many Is, 10s, 100s (etc) there are, each binary digit in 
a binary number specifies how many Is, 2s, 4s (etc) there are. For 
example, the value of the decimal number 101 equals the number of 
100s (i.e. 102), plus the number of 10s (i.e. 101), plus the number of Is 
(i.e. 10°):

Similarly, the value of the binary number 101 equals the number of 4s 
(i.e. 22), plus the number of 2s (i.e. 21), plus the number of Is (i.e. 2°):

The binary representation of numbers has many advantages. For 
instance, the binary number that labels each destination (e.g. Oil) 
explicitly represents the set of left/right instructions required to reach 
that destination. This representation can be applied to any problem 
that consists of making a number of two-way (i.e. binary) decisions.

Logarithms
The complexity of any journey can be represented either as the number 
of possible final destinations or as the number of forks in the road which 
must be traversed in order to reach a given destination. We know that 
as the number of forks increases, so the number of possible destinations 
also increases. As we have already seen, if there are three forks then 
there are 8 = 23 possible destinations.

Decimal 0 1 2 3 4 5 6 7
Binary 000 001 010 Oil 100 101 110 111

Table 1.1. Decimal numbers and their equivalent binary representations.

( lx  100) + (Ox 10)+ ( l x l )  = 101. (1.2)

(1 x 4) + (0 x 2) + (1 x 1) = 5. (1.3)

6



1.3. Finding a Route, Bit by Bit

Viewed from another perspective, if there are m — 8 possible 
destinations then how many forks n does this imply? In other words, 
given eight destinations, what power of 2 is required in order to get 
8? In this case, we know the answer is n = 3, which is called the 
logarithm of 8. Thus, 3 = log2 8 is the number of forks implied by eight 
destinations.

More generally, the logarithm of m is the power to which 2 must be 
raised in order to obtain m; that is, m = 2n. Equivalently, given a 
number m which we wish to express as a logarithm,

n = log2m. (1.4)

The subscript 2 indicates that we are using logs to the base 2 (all 
logarithms in this book use base 2 unless stated otherwise). See 
Appendix C for a tutorial on logarithms.

A Journey o f log2(8) Decisions
Now that we know about logarithms, we can summarise your journey 
from a different perspective, in terms of bits:

If you have to choose between 2 equally probable alternatives 
(i.e. 21) then you need 1(= log2 21 = log2 2) bit of information.

If you have to choose between 4 equally probable alternatives 
(i.e. 22) then you need 2(= log2 22 = log2 4) bits of information.

If you have to choose between 8 equally probable alternatives 
(i.e. 23) then you need 3(= log2 23 = log2 8) bits of information.

More generally, if you have to choose between m equally probable 
alternatives, then you need n = log2 m bits of information.

Key point. If you have n bits of information, then you 
can choose from m = 2n equally probable alternatives. 
Equivalently, if you have to choose between m equally probable 
alternatives, then you need n = log2 m bits of information.

7



1 What Is Information?

1.4. A M illion Answers to Twenty Questions
Navigating a series of forks in the road is, in some respects, similar to 
the game of ‘20 questions’. In this game, your opponent chooses a word 
(usually a noun), and you (the astute questioner) are allowed to ask 
20 questions in order to discover the identity of this word. Crucially, 
each question must have a yes/no (i.e. binary) answer, and therefore 
provides you with a maximum of one bit of information.

By analogy with the navigation example, where each decision at a 
road fork halved the number of remaining destinations, each question 
should halve the number of remaining possible words. In doing so, each 
answer provides you with exactly one bit of information. A question to 
which you already know the answer is a poor choice of question. For 
example, if your question is, “Is the word in the dictionary?”, then the 
answer is almost certainly, “Yes!”, an answer which is predictable, and 
which therefore provides you with no information.

Conversely, a well-chosen question is one to which you have no idea 
whether the answer will be yes or no; in this case, the answer provides 
exactly one bit of information. The cut-down version of ‘20 questions’ 
in Figure 1.3 shows this more clearly.

0
0
1

1
0

0
1

1

0
1
0

1
0

1
0
1

Figure 1.3. The game of ‘20 questions’, here abbreviated to ‘3 questions’. 
Given an opponent who has one of eight words in mind, each yes/no question 
halves the number of remaining possible words. Each binary number on the 
right summarises the sequence of answers required to arrive at one word 
(no=0 and yes=l).
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1.4. A Million Answers to Twenty Questions

In this game, your opponent has a vocabulary of exactly eight words, 
and you know which words they are. Your first question (Ql) could be, 
"Is it inanimate?”, and the answer should halve the number of possible 
words to four, leading you to your second question (Q2). If your second 
question (Q2) is, "Is it a mammal?”, then the answer should again 
halve the number of possible words, leading to your third question 
(Q3). By the time you arrive at Q3, there are just two possible words 
left, and after you have asked the third question (e.g. "Is it ‘cat’?”), 
your opponent’s yes/no response leads you to the correct answer. In 
summary, you have asked three questions, and excluded all but one out 
of eight possible words.

More realistically, let’s assume your opponent has the same 
vocabulary as you do (most of us have similar vocabularies, so this 
assumption is not entirely unreasonable). Specifically, let’s assume 
this vocabulary contains exactly 1,048,576 words. Armed with this 
knowledge, each question can, in principle, be chosen to halve the 
number of remaining possible words. So, in an ideal world, your first 
question should halve the number of possible words to 524,288. Your 
next question should halve this to 262,144 words, and so on. By the 
time you get to the 19th question there should be just two words left, 
and after the 20th question, there should be only one word remaining.

The reason this works out so neatly is because 20 questions allow 
you to choose from exactly 1,048,576 = 220 equally probable words 
(i.e. about one million). Thus, the 20 bits of information you have 
acquired with your questioning provide you with the ability to narrow 
down the range of possible words from about 1 million to just one. In 
other words, 20 questions allow you to find the correct word out of 
about a million possible words.

Adding one more question would not only create a new game, ‘21 
questions’, it would also double the number of possible words (to 
about 2 million) that you could narrow down to one. By extension, 
each additional question allows you to acquire up to one more bit of 
information, and can therefore double the initial number of words. In 
principle, a game of ‘40 questions’ allows you to acquire 40 bits of 
information, allowing you to find one out of 240 « 1012 words.

9



1 What Is Information?

In terms of the navigation example, 40 bits would allow you to 
navigate 40 forks in the road, and would therefore permit you to 
choose one out of about a trillion possible routes. So the next 
time you arrive at your destination after a journey that involved 40 
decisions, remember that you have avoided arriving at a trillion-minus- 
one incorrect destinations.

1.5. Information, Bits and Binary D igits
Despite the fact that the word bit is derived from binary digit, there is 
a subtle, but vital, difference between them. A binary digit is the value 
of a binary variable, where this value can be either a 0 or a 1, but a 
binary digit is not information per se. In contrast, a bit is a definite 
amount of information. Bits and binary digits are different types of 
entity, and to confuse one with the other is known as a category error.

To illustrate this point, consider the following two extreme examples. 
At one extreme, if you already know that you should take the left-hand 
road from point A in Figure 1.2 and I show you the binary digit 0 
(=left), then you have been given a binary digit but you have gained 
no information. At the other extreme, if you have no idea about which 
road to choose and I show you a 0, then you have been given a binary 
digit and you have also gained one bit of information. Between these 
extremes, if someone tells you there is a 71% probability that the left- 
hand road represents the correct decision and I subsequently confirm 
this by showing you a 0, then this 0 provides you with less than one bit 
of information (because you already had some information about which 
road to choose). In fact, when you receive my 0, you gain precisely half 
a bit of information (see Section 5.8). Thus, even though I cannot give 
you a half a binary digit, I can use a binary digit to give you half a bit 
of information.

The distinction between binary digits and bits is often ignored, 
with Pierce’s book40 being a notable exception. Even some of the 
best textbooks use the terms ‘bit’ and ‘binary digit’ interchangeably. 
This does not cause problems for experienced readers as they can 
interpret the term ‘bit’ as meaning a binary digit or a bit’s worth of 
information according to context. But for novices the failure to respect 
this distinction is a source of genuine confusion.

10
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Sadly, in modern usage, the terms bit and binary digit have 
become synonymous, and MacKay (20 03)34 proposed that the unit 
of information should be called the Shannon.

Key point. A bit is the amount of information 
required to choose between two equally probable alternatives 
(e.g. left/right), whereas a binary digit is the value of a binary 
variable, which can adopt one of two possible values (i.e. 0/1).

1.6. Example 1: Telegraphy
Suppose you have just discovered that if you hold a compass next to a 
wire, then the compass needle changes position when you pass a current 
through the wire. If the wire is long enough to connect two towns like 
London and Manchester, then a current initiated in London can deflect 
a compass needle held near to the wire in Manchester.

You would like to use this new technology to send messages in the 
form of individual letters. Sadly, the year is 1820, so you will have to 
wait over 100 years for Shannon’s paper to be published. Undeterred, 
you forge ahead. Let’s say you want to send only upper-case letters, to 
keep matters simple. So you set up 26 electric lines, one per letter from 
A to Z, with the first line being A, the second line being B, and so on. 
Each line is set up next to a compass which is kept some distance from 
all the other lines, to prevent each line from deflecting more than one 
compass.

In London, each line is labelled with a letter, and the corresponding 
line is labelled with the same letter in Manchester. For example, if 
you want to send the letter D, you press a switch on the fourth line 
in London, which sends an electric current to Manchester along the 
wire which is next to the compass labelled with the letter D. Of course, 
lines fail from time to time, and it is about 200 miles from London to 
Manchester, so finding the location of the break in a line is difficult 
and expensive. Naturally, if there were fewer lines then there would be 
fewer failures.

With this in mind, Cooke and Wheatstone devised a complicated 
two-needle system, which could send only 23 different letters. Despite

11
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the complexity of their system, it famously led to the arrest of a 
murderer. On the first of January 1845, John Tawell poisoned his 
mistress, Sarah Hart, in a place called Salt Hill in the county of 
Berkshire, before escaping on a train to Paddington station in London. 
In order to ensure Tawell’s arrest when he reached his destination, the 
following telegraph was sent to London:

A MURDER HAS GUST BEEN COMMITTED AT SALT 
HILL AND THE SUSPECTED MURDERER WAS SEEN 
TO TAKE A FIRST CLASS TICKET TO LONDON BY 
THE TRAIN WHICH LEFT SLOUGH AT 742 PM HE IS 
IN THE GARB OF A KWAKER ...

The unusual spellings of the words JUST and QUAKER were a result 
of the telegrapher doing his best in the absence of the letters J, Q and Z 
in the array of 23 letters before him. As a result of this telegram, Tawell 
was arrested and subsequently hanged for murder. The role of Cooke 
and Wheatstone’s telegraph in Tawell’s arrest was widely reported in 
the press, and established the practicality of telegraphy.

In the 1830s, Samuel Morse and Alfred Vail developed the first 
version of (what came to be known as) the Morse code. Because 
this specified each letter as dots and dashes, it could be used to send 
messages over a single line.

An important property of Morse code is that it uses short codewords 
for the most common letters, and longer codewords for less common 
letters, as shown in Table 1.2. Morse adopted a simple strategy to 
find out which letters were most common. Reasoning that newspaper

A • - J • ------ S • •  •
B - •  •  • K - •  - T  -
C - •  - • L •  - •  • U
D - M - - V
E • N - • w  • -  -
F •  • -  • 0 ------ X -
G - - • P  • Y - -
H • • • •  
I • •

Q
R •

Z - -

Table 1.2. Morse code. Common letters (e.g. E) have the shortest codewords, 
whereas rare letters (e.g. Z) have the longest codewords.
12
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printers would have only as many copies of each letter as were required, 
he went to a printer’s workshop and counted the copies of each letter. 
As a result, the most common letter E is specified as a single dot, 
whereas the rare J is specified as a dot followed by three dashes.

The ingenious strategy adopted by Morse is important because it 
enables efficient use of the communication channel (a single wire). We 
will return to this theme many times, and it raises a fundamental 
question: how can we tell if a communication channel is being used 
as efficiently as possible?

1.7. Example 2: Binary Images
The internal structure of most images is highly predictable. For 
example, most of the individual picture elements or pixels in the image 
of stars in Figure 1.4 are black, with an occasional white pixel, a 
star. Because almost all pixels are black, it follows that most pairs 
of adjacent pixels are also black, which makes the image’s internal 
structure predictable. If this picture were taken by the orbiting Hubble 
telescope then its predictable structure would allow it to be efficiently 
transmitted to Earth.

Suppose you were in charge of writing the computer code which 
conveys the information in Figure 1.4 from the Hubble telescope to 
Earth. You could naively send the value of each pixel; let’s call this 
method A. Because there are only two values in this particular image 
(black and white), you could choose to indicate the colour black with 
the binary digit 0, and the colour white with a 1. You would therefore 
need to send as many Os and Is as there are pixels in the image. For 
example, if the image was 100 x 100 pixels then you would need to 
send ten thousand 0s or Is for the image to be reconstructed on Earth. 
Because almost all the pixels are black, you would send sequences of 
hundreds of 0s interrupted by the occasional 1. It is not hard to see that 
this is a wasteful use of the expensive satellite communication channel. 
How could it be made more efficient?

Another method consists of sending only the locations of the white 
pixels (method B). This would yield a code like [(19,13), (22,30),... ], 
where each pair of numbers represents the row and column of a white 
pixel.

13
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Figure 1.4. The night sky. Each pixel contains one of just two values.

Yet another method consists of concatenating all of the rows of 
the image, and then sending the number of black pixels that occur 
before the next white pixel (method C). If the number of black pixels 
that precede the first white pixel is 13 and there are 9 pixels before 
the next white pixel, then the first row of the image begins with 
000000000000010000000001..., and the code for communicating this 
would be [13,9,... ], which is clearly more compact than the 24 binary 
digits which begin the first row of the image.

Notice that method A consists of sending the image itself, whereas 
methods B and C do not send the image, but they do send all of the 
information required to reconstruct the image on Earth. Crucially, 
the end results of all three methods are identical, and it is only the 
efficiency of the methods that differs.

In fact, whether A, B, or C is the most efficient method depends on 
the structure of the image. This can be seen if we take an extreme 
example consisting of just one white pixel in the centre of the image. 
For this image, method A is fairly useless, because it would require 
10,000 binary values to be sent. Method B would consist of two 
numbers, (50,50), and method C would consist of a single number, 
5,050. If we ignore the brackets and commas then we end up with four 
decimal digits for both methods B and C. So these methods seem to 
be equivalent, at least for the example considered here.

For other images, with other structures, different encoding methods 
will be more or less efficient. For example, Figure 1.5 contains just 
two grey-levels, but these occur in large regions of pure black or pure

14
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Figure 1.5. In a binary image, each pixel has 1 out of 2 possible grey-levels.

white. In this case, it seems silly to use method B to send the location 
of every white pixel, because so many of them occur in long runs of 
white pixels. This observation makes method C seem to be an obvious 
choice - but with a slight change. Because there are roughly equal 
numbers of black and white pixels which occur in regions of pure black 
or pure white, we could just send the number of pixels which precede 
the next change from black to white or from white to black. This is 
known as run-length encoding.

To illustrate this, if the distance from the first black pixel in the 
middle row to the first white pixel (the girl’s hair) is 87 pixels, and 
the distance from there to the next black pixel is 31 pixels, and the 
distance to the next white pixel is 18 pixels, then this part of the image 
would be encoded as [87,31,18,...]. Provided we know the method 
used to encode an image, it is a relatively simple matter to reconstruct 
the original image from the encoded image.

1.8. Example 3: Grey-Level Images
Suppose we wanted to transmit an image of 100 x 100 pixels, in which 
each pixel has more than two possible grey-level values. A reasonable 
number of grey-levels turns out to be 256, as shown in Figure 1.6a. As 
before, there are large regions that look as if they contain only one grey- 
level. In fact, each such region contains grey-levels which are similar, 
but not identical, as shown in Figure 1.7. The similarity between nearby 
pixel values means that adjacent pixel values are not independent of
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Figure 1.6. Grey-level image, (a) An image in which each pixel has one 
out of 256 possible grey-levels, between 0 and 255, each of which can be 
represented by a binary number with 8 binary digits (e.g. 255=11111111). 
(b) Histogram of grey-levels in the picture.

each other, and that the image has a degree of redundancy. How can 
this observation be used to encode the image?

One method consists of encoding the image in terms of the differences 
between the grey-levels of adjacent pixels. For brevity, we will call this 
difference coding. (More complex methods exist, but most are similar 
in spirit to this simple method.) In principle, pixel differences could 
be measured in any direction within the image, but, for simplicity, we 
concatenate consecutive rows to form a single row of 10,000 pixels, 
and then take the difference between adjacent grey-levels. We can 
see the result of difference coding by ‘un-concatenating’ the rows to 
reconstitute an image, as shown in Figure 1.8a, which looks like a badly 
printed version of Figure 1.6a. As we shall see, both images contain 
the same amount of information.

If adjacent pixel grey-levels in a given row are similar, then the 
difference between the grey-levels is close to zero. In fact, a histogram 
of difference values shown in Figure 1.8b shows that the most common 
difference values are indeed close to zero, and only rarely greater than 
±63. Thus, using difference coding, we could represent almost every 
one of the 9,999 difference values in Figure 1.8a as a number between 
—63 and ±63.

In those rare cases where the grey-level difference is larger than ±63, 
we could list these separately as each pixel’s location (row and column
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(a) (b) (c)

Figure 1.7. Adjacent pixels tend to have similar grey-levels, so the image 
has a large amount of redundancy, which can be used for efficient encoding, 
(a) Grey-level image. (b) Magnified square from a. (c) Magnified square 
from b, with individual pixel grey-levels indicated.

as 2x7 binary digits), and its grey-level (8 binary digits). Most coding 
procedures have special ‘housekeeping’ fragments of computer code to 
deal with things like this, but these account for a negligible percentage 
of the total storage space required. For simplicity, we will assume that 
this percentage is zero.

At first, it is not obvious how difference coding represents any saving 
over simply sending the value of each pixel’s grey-level. However, 
because these differences are between —63 and +63, they span a range 
of 127 different values, i.e. [—63, —62,..., 0,..., 62,63]. Any number 
in this range can be represented using seven binary digits, because 
7 = log 128 (leaving one spare value).

In contrast, if we were to send each pixel’s grey-level in Figure 1.6a 
individually, then we would need to send 10,000 grey-levels. Because 
each grey-level could be any value between 0 and 255, we would have 
to send eight binary digits (8 = log 256) for each pixel.

Once we have encoded an image into 9,999 pixel grey-level differences 
(di, c?2, ... ,^9999), how do we use them to reconstruct the original 
image? If the difference d\ between the first pixel grey-level x\ and 
the second pixel grey-level X2 is, say, d\ = (X2 — x\) = 10 grey-levels 
and the grey-level of x\ is 5, then we obtain the original grey-level of 
X2 by adding 10 to xi; that is, X2 = x\ + d\ so X2 = 5 + 10 = 15. We 
then continue this process for the third pixel (#3 = £2 + ̂ 2), an(3 so on. 
Thus, provided we know the grey-level of the first pixel in the original 
image (which can be encoded as eight binary digits), we can use the
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(a)

Figure 1.8. Difference coding, (a) Each pixel grey-level is the difference 
between adjacent horizontal grey-level values in Figure 1.6a (grey = zero 
difference). (b) Histogram of grey-level differences between adjacent pixel 
grey-levels in Figure 1.6a. Only differences between ±63 are plotted.

pixel grey-level differences to recover the grey-level of every pixel in 
the original image. The fact that we can reconstruct the original image 
(Figure 1.6a) from the grey-level differences (Figure 1.8a) proves that 
they both contain exactly the same amount of information.

Let’s work out the total saving from using this difference coding 
method. The naive method of sending all pixel grey-levels, which vary 
between 0 and 255, would need eight binary digits per pixel, requiring 
a total of 80,000 binary digits. Using difference coding we would need 
seven binary digits per difference value, making a total of 70,000 binary 
digits. Therefore, using difference coding provides a saving of 10,000 
binary digits, or 12.5%.

In practice, a form of difference coding is used to reduce the amount 
of data required to transmit voices over the telephone, where it is known 
as differential pulse code modulation. Using the differences between 
consecutive values, a voice signal which would otherwise require eight 
binary digits per value can be transmitted with just five binary digits.

As we shall see in subsequent chapters, a histogram of data values 
(e.g. image grey-levels) can be used to find an upper bound for 
the average amount of information each data value could convey. 
Accordingly, the histogram (Figure 1.6b) of the grey-levels in Figure 
1.6a defines an upper bound of 7.84 bits/pixel. In contrast, the 
histogram (Figure 1.8b) of the grey-level differences in Figure 1.8a 
defines an upper bound of just 5.92 bits/pixel. 18
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Given that the images in Figures 1.6a and 1.8a contain the same 
amount of information, and that Figure 1.8a contains no more than 5.92 
bits/pixel, it follows that Figure 1.6a cannot contain more than 5.92 
bits/pixel either. This matters because Shannon’s work guarantees that 
if each pixel’s grey-level contains an average of 5.92 bits of information, 
then we should be able to represent Figure 1.6a using no more than 5.92 
binary digits per pixel. But this still represents an upper bound. In 
fact, the smallest number of binary digits required to represent each 
pixel is equal to the amount of information (measured in bits) implicit 
in each pixel. So what we really want to know is: how much information 
does each pixel contain?

This is a hard question, but we can get an idea of the answer by 
comparing the amount of computer memory required to represent the 
image in two different contexts (for simplicity, we assume that each 
pixel has eight binary digits). First, in order to display the image 
on a computer screen, the value of each pixel occupies eight binary 
digits, so the bigger the picture, the more memory it requires to be 
displayed. Second, a compressed version of the image can be stored on 
the computer’s hard drive using an average of less than eight binary 
digits per pixel (e.g. by using the difference coding method above). 
Consequently, storing the (compressed) version of an image on the hard 
drive requires less memory than displaying that image on the screen. 
In practice, image files are usually stored in compressed form with the 
method used to compress the image indicated by the file name extension 
(e.g. ‘.jpeg’).

The image in Figure 1.6a is actually 344 by 299 pixels, where each 
pixel grey-level is between 0 and 255, which can be represented as eight 
binary digits (because 28 = 256), or one byte. This amounts to a total 
of 102,856 pixels, each of which is represented on a computer screen as 
one byte. However, when the file containing this image is inspected, 
it is found to contain only 45,180 bytes; the image in Figure 1.6a can 
be compressed by a factor of 2.28(= 102856/45180) without any loss 
of information. This means that the information implicit in each pixel, 
which requires eight binary digits for it to be displayed on a screen, 19
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1 What Is Information?

can be represented with about four binary digits on a computer’s hard 
drive.

Thus, even though each pixel can adopt any one of 256 possible grey- 
levels, and is displayed using eight binary digits of computer memory, 
the grey-level of each pixel can be stored in about four binary digits. 
This is important, because it implies that each set of eight binary digits 
used to display each pixel in Figure 1.6a contains an average of only four 
bits of information, and therefore each binary digit contains only half 
a bit of information. At first sight, this seems like an odd result. But 
we already know from Section 1.5 that a binary digit can represent half 
a bit, and we shall see later (especially in Chapter 5) that a fraction 
of a bit is a well-defined quantity which has a reasonably intuitive 
interpretation.

1.9. Summary
From navigating a series of forks in the road, and playing the game 
of ‘20 questions’, we have seen how making binary choices requires 
information in the form of simple yes/no answers. These choices can 
also be used to choose from a set of letters, and can therefore be used 
to send typed messages along telegraph wires.

We found that increasing the number of choices from two (forks in the 
road) to 26 (letters) to 256 (pixel grey-levels) allowed us to transmit 
whole images down a single wire as a sequence of binary digits. In 
each case, the redundancy of the data in a message allowed it to be 
compressed before being transmitted. This redundancy emphasises 
a key point: a binary digit does not necessarily provide one bit of 
information. More importantly, a binary digit is not the same type of 
entity as a bit of information.

So, what is information? It is what remains after every iota of natural 
redundancy has been squeezed out of a message, and after every aimless 
syllable of noise has been removed. It is the unfettered essence that 
passes from computer to computer, from satellite to Earth, from eye 
to brain, and (over many generations of natural selection) from the 
natural world to the collective gene pool of every species.
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Chapter 2

Entropy o f D iscrete Variables

Information is the resolution of uncertainty.
Shannon C, 1948.

2.1. In troduction
Now that we have an idea of the key concepts of information theory, 
we can begin to explore its inner workings on a more formal basis. 
But first, we need to establish a few ground rules regarding probability, 
discrete variables and random variables. Only then can we make sense 
of entropy, which lies at the core of information theory.

2.2. Ground Rules and Term inology
Probability

We will assume a fairly informal notion of probability based on the 
number of times particular events occur. For example, if a bag 
contains 40 white balls and 60 black balls then we will assume that 
the probability of reaching into the bag and choosing a black ball is 
the same as the proportion, or relative frequency, of black balls in the 
bag (i.e. 60/100 = 0.6). From this, it follows that the probability of an 
event (e.g. choosing a black ball) can adopt any value between zero and 
one, with zero meaning it definitely will not occur, and one meaning it 
definitely will occur. Finally, given a set of mutually exclusive events 
(such as choosing a ball, which has to be either black or white), the 
probabilities of those events must add up to one (e.g. 0.4 + 0.6 = 1). 
See Appendix F for an overview of the rules of probability.
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Experiment 
Coin flip

___ J  O utcom e \ ___
V  * head J Random variable X

Experiment ___ J  Outcome \ ___ Random variable X
Coin flip \  ««» J

Figure 2.1. Random variables. A random variable translates the outcome of 
an experiment to an outcome value. Top: flipping a coin yields a head, which 
is mapped by the random variable X to the outcome value X(head) = 1, 
usually written as X = 1. Bottom: flipping a coin yields a tail, which is 
mapped to the outcome value X(tail) = 0, usually written as X = 0.

D iscrete Variables

Elements of a set that are clearly separated from each other, like a list 
of integers, are called discrete, and the variables used to represent them 
are called discrete variables. The distribution of probability values of a 
discrete variable is called a probability function. It can be represented 
as a bar graph, as in Figure 2.2.

In contrast, elements which are packed together so densely that there 
is no space between them, like the points on a line, are represented by 
continuous variables (see Chapter 5), which have distributions called 
probability density functions (see Appendix D). We will usually refer 
to both probability functions and probability density functions as 
probability distributions in this text.

R and om  Variables

A random variable is used to refer to a special type of quantity; it can be 
either discrete or continuous. The value of a discrete random variable 
can be considered as a measurement made on a physical outcome of 
an experiment in which the number of different possible outcomes is 
discrete, for example as shown in Figure 2.1. In contrast, the value 
of a continuous random variable can be considered as a measurement 
made on a physical outcome of an experiment in which the values of
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the possible outcomes are continuous, such as temperature. The crucial 
point is that these outcomes are subject to a degree of randomness.

The idea of a random variable was devised for historical reasons. 
Although they share the name ‘variable’, random variables are not the 
same as the variables used in algebra, like the x in 3x + 2 = 5, where 
the variable x has a definite, but unknown, value that we can solve for.

A random variable is represented by an upper-case letter, such as 
X. An experiment consisting of a coin flip has two possible physical 
outcomes, a head Xh and a tail xt, which define the alphabet

The sample space of the random variable X  is the set of all possible 
experiment outcomes. For example, if an experiment consists of three 
coin flips then each time the experiment is run we obtain a sequence of 
three outcomes (e.g. (xh, xt, #*)), which is one out of the eight possible 
sequences of three outcomes that comprise the sample space.

The value of the random variable is a mapping from the experiment 
outcome to a numerical outcome value. Thus, strictly speaking, a 
random variable is not a variable at all, but is really a function which 
maps outcomes to outcome values. In our experiment, this function 
maps the coin flip outcome to the number of heads observed:

Thus, a random variable (function) takes an argument (e.g. Xh or xt), 
and returns an outcome value (e.g. 0 or 1). An equivalent, and more 
conventional, notation for defining a random variable is

Ax = {xh,xt}. (2.1)

X(xh) - 1,
X(xt) = 0.

(2.2)

(2.3)
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For brevity, the different possible values of a random variable can also 
be written in terms of the outcomes,

X  = xh, (2.4)
X  -  xt, (2.5)

or in terms of the outcome values,

X  = 1, (2.6)
X  = 0. (2.7)

In many experiments, different physical outcomes have different 
probabilities, so that different outcome values of X  also have different 
probabilities. If the same experiment is repeated infinitely many times 
then the frequency with which different values of X  occur defines 
the probability distribution p(X) of X. There are only two possible 
outcomes for a coin, so p(X) consists of just two probabilities,

p(X) = {p(X = xh),p (2.8)

which is usually written as

p(X) = {p(xh),p(xt)}. (2.9)

F igu re 2.2. T h e  p rob a b ility  d is tr ib u t ion s o f  tw o coins, (a) P rob a b ility  
d istr ibu tion  p(X) = {p(xh),p(%t)} of a fair co in  which  lands h ead s up w ith  
a p robab ility  o f p(xh) =  0.5. (b) P rob a b ility  d is tr ibu t ion  o f  an unfair co in
which  lands h eads up  w ith  a p ro b a b ility  o f p(xn) = 0.9.
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For a fair coin both probabilities are equal to 0.5, i.e.

p(xh) = 0.5, p(xt) = 0.5, (2.10)

so the probability distribution is

P(X ) = {P(xh),p(xt)} (2.11)
= {0.5,0.5}, (2.12)

as shown in Figure 2.2a. In contrast, if a coin is so badly bent that it 
lands heads up 90% of the time then

p(xh) = 0.9, p(Xt) = 0.1, (2.13)

and the probability distribution of this coin is (see Figure 2.2b)

P(x ) = {P{xh),p{xt)} (2.14)
-  {0.9,0.!}. (2.15)

It is worth noting that the probabilities associated with different 
values of a discrete random variable like X  vary continuously between 
zero and one, even though the values of X  are discrete.

The subtle distinction between an outcome x and an outcome value 
X(x) is sometimes vital, but in practice we only need to distinguish 
between them if the numbers of outcomes and outcome values are not 
equal (e.g. the two-dice example in Section 3.5). For example, suppose 
we roll a die, and we define the random variable X  to be 0 when the 
outcome is an odd number and 1 when the outcome is an even number, 
so that

{0, if the outcome x is 1,3, or 5,
1, if the outcome x is 2,4, or 6.

In this case, the number of outcomes is six, but the number of outcome 
values is just two.

In the majority of cases, where we do not need to distinguish between 
outcomes and outcome values, we will use the lower case symbol x to
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represent them both. The terms outcome and outcome value are unique 
to this book.

All of this may seem like a lot of work just to set the value of a random 
variable to 0 or 1, but these definitions are key to making sense of more 
complicated scenarios. A brief tutorial on probability distributions is 
given in Appendix D.

K ey point. A random variable X  is a function that maps 
each outcome x of an experiment (e.g. a coin flip) to a number 
X(x), which is the outcome value of x. If the outcome value 
of x is 1 then this may be written as X  = 1, or as x = 1.

In form a tion  T h eo ry  T e rm in o lo g y

For historical reasons, information theory has its own special set of 
terms. We have encountered some of these terms before, but here, and 
in Figure 2.3, we give a more detailed account.

First, we have a sou rce which generates messages. A message is an 
ordered sequence of k sym bols

s = (sx,...,sfc), (2.16)

Figure 2.3. The communication channel. A message s is encoded as 
codewords x  before being transmitted through a channel, which may corrupt 
the encoded message by adding noise rj to produce outputs y = x  + rj. A 
receiver decodes the output y to recover inputs x, which are then interpreted 
as a message s.
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where each symbol can be a number or a letter corresponding to 
the value of a random variable. Notice that the entire sequence s is 
represented by a letter in bold typeface, and its symbols are enclosed 
in round brackets.

Each symbol is an outcome value of a random variable S which can 
adopt any value from an alphabet of a (alpha) different symbols,

As = {si,...,sQ}. (2.17)

The probability of each symbol being generated by the source is defined 
by the probability distribution

p(S) =  {p(si),...,p(sa)}»  (2.18)

where, by definition, the sum of p(s) values must add up to one,
Ot

£ p ( * )  = !• (2-19)
i= 1

The summation symbol ^  is explained in Appendix B.
A communication channel is used to transmit data from its input to 

its output. If these data are transmitted from input to output without 
error then they have been successfully communicated. Before being 
transmitted, each message s is transformed by an encoder, which we 
can represent as a generic function #, into the channel input x = g(s), 
which is a sequence of codewords

X = (xx,...,xn), (2.20)

where each codeword is the value of a random variable X  which can 
adopt any one of m different values from the codebook

Ax — {xi (2.21)

The probability of each codeword is defined by the probability 
distribution

(2.22)
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2 Entropy of Discrete Variables

We may choose to transmit a message as it is, so that the message and 
the transmitted codewords are identical (i.e. x = s). However, several 
symbols may be combined into a single codeword (see Section 3.4), or 
the message may be compressed by removing its natural redundancy. 
Consequently, the number of codewords in an encoded message x = g(s) 
may not match the number of symbols in the message s.

If the form of compression allows the message to be decompressed 
perfectly then the compression is lossless (see Section 3.5), but if some 
information is discarded during compression then the message cannot 
be recovered exactly, and the compression is lossy.

A code is a list of symbols and their corresponding codewords. It can 
be envisaged as a simple look-up table (e.g. Table 2.1).

In order to ensure that the encoded message can withstand the effects 
of a noisy communication channel, some redundancy may be added to 
codewords before they are transmitted (see Section 4.7).

Transmitting a message s encoded as the codewords x produces the 
channel outputs

y = (2/1, ••-,2/n)- (2.23)

Each output is the value of a random variable Y, which can adopt any 
one of m different values

Ay — {y i i • • • ? Vm}- (2.24)

If the channel is noisy then the output yj may be different from the 
codeword Xj that was transmitted. 28

Symbol Codeword Symbol Codeword
si = 3 x\ = 000 S5 = 15 £5 = 100
S2 = 6 X2 = 001 sq = 18 £6 = 101
S3 = 9 £3 = 010 s7 = 21 £7 = 110
S4 = 12 £4 = Oil s8 = 24 Xs = 111

Tab le  2.1. A c o d e  con s is t s  o f  a set o f  sym b o ls  (e.g. d e c im a l numbers) or 
m essa ge s which  are en cod ed  as c o d ew o rd s (e.g. b inary numbers). Here, the 
e igh t sym b o ls  are num bers w hich  in crea se in s tep s o f  three, but, in prin cip le, 
th ey cou ld  b e  any e igh t num bers or any e igh t entities.
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2.2. Ground Rules and Terminology

The probability of each output is defined by the probability 
distribution

P(Y) = {p(yi),--.,p{ym)}- (2-25)

Each output sequence y is interpreted as implying the presence of a 
particular input sequence x. If this interpretation is incorrect (e.g. due 
to channel noise) then the result is an error. For a given channel, the 
mapping between messages and outputs, and vice versa, is provided 
by a code. A code consists of a message, an encoder, and a decoder. 
The decoder converts each output y to a (possibly incorrect) message. 
Channel noise induces errors in interpreting outputs; the error rate of 
a code is the number of incorrect inputs associated with that codebook 
divided by the number of possible inputs.

Channel capacity is the maximum amount of information which can 
be communicated from a channel’s input to its output. Capacity can 
be measured in terms of the amount of information per symbol, and if 
a channel communicates n symbols per second then its capacity can be 
expressed in terms of information per second (e.g. bits/s). The capacity 
of a channel is somewhat like the capacity of a bucket, and the rate is 
like the amount of water we pour into the bucket. The amount of water 
(rate) we pour (transmit) into the bucket is up to us, and the bucket 
can hold (communicate, or transmit reliably) less than its capacity, but 
it cannot hold more.

In order to be totally clear on this point, we need a few more details. 
Consider an alphabet of a symbols, where a = 2 if the data is binary. 
If a noiseless channel transmits data at a fixed rate of n symbols/s 
then it transmits information at a maximum rate or channel capacity 
of n loga bits/s, which equals n bits/s for binary data.

However, the capacity of a channel is different from the rate at which 
information is actually communicated through that channel. The rate 
is the number of bits of information communicated per second, which 
depends on the code used to transmit data. The rate of a given code 
may be less than the capacity of a channel, but it cannot be greater; 
the channel capacity is the maximum rate that can be achieved when 
considered over all possible codes. For example, a code for binary data 29
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2 Entropy of Discrete Variables

Noiseless Noisy
Channel Channel

F igu re 2.4. T h e  channel capacity o f  n o ise le ss and n o isy  channels is the 
m ax im um  rate at which  in form ation  can be  com m un ica ted . I f a n o ise le ss 
channel com m un ica te s d a ta  at 10 b in ary d ig its/ s  then its ca p a c ity  is C = 10 
bits/s. T h e ca p a c ity  o f  a n o ise le ss channel is num erica lly  equa l to  th e ra te at 
which  it com m un ica te s b in a ry  d ig its, whereas the ca p a c ity  o f  a n o isy  channel 
is less than th is b e cau se  it is lim ited  by the am oun t o f  n oise in th e channel.

in which Os and Is occur equally often ensures that each binary digit 
(symbol) conveys one bit of information, but for any other code each 
binary digit conveys less than one bit (see Section 2.4). Thus, the 
capacity of a noiseless binary channel is numerically equal to the rate 
at which it transmits binary digits, whereas the capacity of a noisy 
binary channel is less than this, as shown in Figure 2.4.

Some of these definitions require a different interpretation for 
continuous variables, and we may sometimes use non-bold letters to 
represent messages, encoded messages and output sequences. 30

Key point. A message comprising symbols s = (si,..., s*) is 
encoded by a function x = g(s) into a sequence of codewords 
x = (xi,..., xn), where the number of symbols and codewords 
are not necessarily equal. These codewords are transmitted 
through a communication channel to produce outputs y = 
(2/1,..., yn) which are decoded to recover the message s.
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2.3. Shannon’s Desiderata

2.3. Shannon’s Desiderata
Now that we have a little experience of information, we can consider 
why it is defined as it is. Shannon knew that in order for a mathematical 
definition of information to be useful it had to have a particular minimal 
set of properties:

1. Continuity. The amount of information associated with an 
outcome (e.g. a coin flip) increases or decreases continuously 
(i.e. smoothly) as the probability of that outcome changes.

2. Symmetry. The amount of information associated with a 
sequence of outcomes does not depend on the order in which 
those outcomes occur.

3. Maximal Value. The amount of information associated with a 
set of outcomes cannot be increased if those outcomes are already 
equally probable.

4. Additive. The information associated with a set of outcomes 
is obtained by adding the information of individual outcomes.

Shannon50 proved that the definition of information given below is the 
only one which possesses all of these properties.

2.4. Information, Surprise and Entropy
Suppose we are given a coin, and we are told that it lands heads up 
90% of the time, as in Figure 2.2b. When this coin is flipped, we expect 
it to land heads up, so when it does so we are less surprised than when 
it lands tails up. The more improbable a particular outcome is, the 
more surprised we are to observe it.

One way to express this might be to define the amount of surprise of 
an outcome value x to be l/(the probability of x) or l/p(x), so that the 
amount of surprise associated with the outcome value x increases as the 
probability of x decreases. However, in order to satisfy the additivity 
condition above, Shannon showed that it is better to define surprise 
as the logarithm of l/p(x), as shown in Figure 2.5. This is known as 
the Shannon information of x. (A reminder of the logarithmic function 
is provided in Appendix C.) The Shannon information of an outcome 
is also called surprisal because it reflects the amount of surprise when 
that outcome is observed. 31
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2 Entropy of Discrete Variables

F igu re 2.5. Shannon  in form ation  as surprise. V alues o f x tha t are less 
p rob a b le  have larger va lues o f  surprise, defin ed as h(x) = lo g 2(l/p(x)).

If we use logarithms to the base 2 then the Shannon information of 
a particular outcome is measured in bits,

h{x) = log2 bits, (2.26)

where h is standard notation for Shannon information. A general rule 
for logarithms states that

log2p(x) ■ l°g2 p(x),

so that Equation 2.26 is often written as

h(x) = — log2 p(x) bits.

(2.27)

(2.28)

We will usually omit the 2 subscript from log2 unless the base of the 
logarithm needs to be made explicit.

Key Point. Shannon information is a measure of surprise.
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How Surprised Should We Be?

In order to be surprised, we must know which outcomes are more 
surprising and which are less surprising. In other words, we need to

the probability distribution p(X) of the random variable X. Thus, 
the Shannon information implicit in a given set of outcomes can only 
be evaluated if we know the probability of each outcome. One way to 
obtain this knowledge is to observe outcomes over a long period of time. 
Using the observed outcomes, we can estimate the probability of each 
outcome, and therefore build up an estimate of p(X). But however it 
is acquired, we need the probability distribution p(X) to evaluate the 
Shannon information of each outcome.

Entropy is Average Shannon Information

In practice, we are not usually interested in the surprise of a particular 
value of a random variable, but we would like to know how much 
surprise, on average, is associated with the entire set of possible values. 
That is, we would like to know the average surprise defined by the 
probability distribution of a random variable. The average surprise of 
a variable X  which has a distribution p(X) is called the entropy of 
p(X), and is represented as H(X). For convenience, we often speak of 
the entropy of the variable X , even though, strictly speaking, entropy 
refers to the distribution p(X) of X.

Before we consider entropy formally, bear in mind that it is just the 
average Shannon information. For example, if we flip a coin n times to 
produce the sequence of outcomes (aq,..., xn) then the entropy of the 
coin is approximately

In order to explore the idea of entropy, we will consider examples 
using two coins: a fair coin, and a coin which lands heads up 90% of 
the time. 33

know the probability of the possible outcomes which collectively define

H(X) (2.29)
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2 Entropy of Discrete Variables

The Entropy o f a Fair Coin
The average amount of surprise, unpredictability, or uncertainty about 
the possible outcomes of a coin flip can be found as follows. If a coin 
is fair or unbiased then p(xh) = 0.5, as shown in Figure 2.2a, and the 
surprise of observing a head is

h{x}0 l0g p(xh) (2.30)

log(l/0.5) (2.31)
1 bit. (2.32)

Given that p(xt) =0.5, the surprise of observing a tail is also one bit. It 
may seem obvious that the average surprise of this coin is also one bit, 
but we will make use of some seemingly tortuous reasoning to arrive 
at this conclusion, because we will require the same reasoning for less 
obvious cases.

We can find the average surprise by flipping the coin, say, 100 times, 
measuring the surprise of each outcome, and then taking an average 
over the set of 100 outcomes. Because each outcome has no effect on 
any other outcome, these outcomes are independent. If we flip a coin

Probability of a head (coin bias)

F igu re 2.6. G raph  o f  en trop y  H(X) versus co in  b ia s (p robab ility  p(xh) o f  a 
head). T h e en tropy  o f  a co in  is th e average am oun t o f  su rp r ise  or Shannon  
in fo rm a tion  in the d is tr ib u t ion  o f  p o s s ib le  o u tc om e s (i.e. h ead s and tails), 
and has a value o f  on e b it for a co in  w ith  a b ia s o f  p(xh) =  0.5.
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2.4. Information, Surprise and Entropy

100 times we would expect to observe a head roughly 50 times, and a 
tail roughly 50 times. For the sake of argument, let’s assume that we 
observe exactly 50 heads and 50 tails, so that the average amount of 
surprise is

H(X) =
£,“iiog(i /p(xh)) + £-°iiog(i/p(*f))

100 (2.33)

[50 x log(l/p(xh))] + [50 x log(l/p(a:t))]
ioo ’

which evaluates to

H(X) = [0.5 x log(l/0.5)] + [0.5 x log(l/0.5)] (2.35)

= 1 bit per coin flip. (2.36)

In summary, because the amount of surprise or Shannon information 
provided by observing the outcome of each flip of this fair coin is one 
bit, it follows that the average information H(X) of each flip is also 
one bit.

Interpreting Entropy

There are several ways to interpret the notion of entropy, but one stands 
out as being particularly accessible. In general, the entropy of a variable 
is the logarithm of the number m of equally probable outcome values

H(X) = log mbits. (2.37)

In the above example, there are m = 2 equally probable outcome values, 
so the entropy is confirmed to be

H(X) = log 2 (2.38)
-  1 bit. (2.39)

Given that we are using logarithms with a base of 2, we can raise 
both sides of Equation 2.37 to the power of 2 to confirm that we
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are dealing with

m = 2h(X) (2.40)
= 2 equally probable values. (2.41)

Thus, the number 2 raised to the power of the entropy H(X) yields the 
number of equally probable outcome values which could be represented 
by a variable with an entropy of H(X).

Key Point. A variable with an entropy of H(X) bits provides 
enough Shannon information to choose between m = 2H 
equally probable alternatives.

The Entropy o f an Unfair (Biased) Coin
If a coin is biased then the average amount of surprise or uncertainty is 
less than that of an unbiased coin, as shown in Figure 2.6. For example, 
if we know that the probability of a head is p(xh) = 0.9 then it is quite 
easy to predict the result of each coin flip with a reasonable degree 
of accuracy (90% accuracy if we predict a head for each flip). If the 
outcome is a head then the amount of Shannon information is

h{xh) = log(l/0.9) (2.42)
= 0.15 bits per head. (2.43)

On the other hand, if the outcome is a tail then the amount of Shannon 
information is

h(xt) = log(l/0.1) (2.44)
= 3.32 bits per tail. (2.45)

Notice that more information is associated with the more surprising 
outcome (a tail, in this case).

We will follow the same line of reasoning used for Equation 2.36 to 
find the average amount of surprise for a coin with bias p(xh) =0.9.
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2.4. Information, Surprise and Entropy

If we flip this coin 100 times then we would expect to observe a head 
90 times and a tail 10 times. It follows that the average amount of 
surprise is

H(X) 1
lo o

i

90 l 10 i
2> e ^  + I > s ; s
3=1 3 =  1 p(xt)

(2.46)

= Yoo t90 x ^(VpO*^)) + 10 x logUM®*))]. (2-47)

Substituting p(xh) = 0.9 and p(xt) = 0.1 yields

H(X) = [0.9 x log(l/0.9)] -f [0.1 x log(l/0.1)] (2.48)
= 0.469 bits per coin flip. (2.49)

The average uncertainty of this biased coin is less than that of an 
unbiased coin, even though the uncertainty of one of the outcomes (a 
tail) is greater for a biased coin (3.32 bits) than it is for an unbiased 
coin (1 bit). In fact, no biased coin can have an average uncertainty 
greater than that of an unbiased coin (see Figure 2.6).

Because p(xh) = 0.9 and p(xt) = 0.1, Equation 2.48 can also be 
written as

H(X) = p(xh)log{l/p(xh))+p{xt)log(l/p(xt)) (2.50)
= 0.469 bits per coin flip. (2.51)

If we define a tail as x\ = xt and a head as X2 = Xh then we can write 
this more succinctly by summing over the two possible values of Xi to 
obtain the same answer as above:

H(X) = £>(*«) log— -y (2-52)

= 0.469 bits per coin flip. (2.53)

As we will see later, an entropy of 0.469 bits implies that we could 
represent the information implicit in, say, 1,000 flips (which yield 1,000 
outcomes) using as little as 469(= 1000 x 0.469) binary digits.

37



2 Entropy of Discrete Variables

In this example, given that H(X) = 0.469 bits, the variable X  could 
be used to represent

2h (x ) (2.54)
20.469 (2.55)
1.38 equally probable values. (2.56)

At first sight, this seems like an odd result. Of course, we already know 
that H(X) = 0.469 bits is the entropy of an unfair coin with a bias of 
0.9. Nevertheless, translating entropy into an equivalent number of 
equally probable values serves as an intuitive guide for the amount of 
information represented by a variable. One way to think of this is that 
a coin with an entropy of H(X) = 0.469 bits has the same entropy as 
an imaginary die with 1.38 sides.

Entropy: A Summary

A random variable X  with a probability distribution

p(X) = {p(xi(2.57)

has an average surprise (Shannon information), which is its entropy
771 ^

H(X) = E ^ ) log ^ )  ’ (2-58)

A succinct representation of this is

H(X) = E[log(l/p(x))] bits, (2.59)

where E is standard notation for the average or expected value (see 
Appendix E).

2.5. Evaluating Entropy
Here, we show that we can either calculate the entropy of a variable 
X  from the probability of m different outcome values defined by a 
probability distribution, or estimate entropy from n outcome values 
sampled from that probability distribution, and that we obtain
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approximately the same value for entropy in both cases. Specifically, as 
our sample size n grows infinitely large (i.e. n —> oo), the value of the 
estimate based on the sample converges to the entropy H(X) calculated 
from the underlying probability distribution. Given that entropy is the 
average Shannon information of a variable, readers unfamiliar with such 
matters should read the brief tutorial in Appendix E on how to obtain 
an average (e.g. entropy) from a distribution.

Calculating Entropy From a Probability D istribution

If we have a die with eight sides, as in Figure 2.7a, then there are m — 8 
possible outcomes,

Ax = {1,2,3,4,5,6,7,8}. (2.60)

Because this is a fair die, all eight outcomes occur with the same 
probability of p(x) = 1/8, which defines the uniform probability 
distribution

p(X) = {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8} (2.61)

shown in Figure 2.7b. The entropy of this distribution can be evaluated 
using the definition in Equation 2.58, i.e.

m—8
H(X) = ^ l / g x l o g ^

1=1 
= log 8
= 3 bits.

(2.62)

(2.63)
(2.64)

Because the information associated with each outcome is exactly three 
bits, the average is also three bits and is therefore the entropy of X. 

Given that X  has an entropy of H(X) = 3 bits, it can represent

m = 2h{x) (2.65)
(2.66)

(2.67)
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2 Entropy of Discrete Variables

More generally, given a die with m sides, the probability of each 
outcome is p(Xi) = 1/m, so, according to Equation 2.58, the entropy 
of an m-sided die is

m ..
H(X) =  ̂  log (2'68)

= log mbits, (2.69)

which confirms that entropy is the logarithm of the number of equally 
probable outcomes.

We can also work back from the entropy H(X) to the value of p(xi). 
Substituting p(xi) = l/m in 2.65 yields

2h(X) = (2.70)

so if a die has an entropy of H(X) bits then the probability of each 
outcome is given by

p(xi) = 2~h(x \ (2.71) 

Estimating Entropy From a Sample

If we throw a die n = 1,000 times then we have a sample of n outcomes 
x = (xi, £2, • • • 5 £n), where each outcome is chosen from m different 
possible outcomes. Given that the Shannon information of one outcome
Xj is

h(Xj) = logl/p(rj)> (2-72)

we can denote the average Shannon information of the finite sample x 
as ft(x), which is calculated as

h(x) 1 n— ^  h(xj) bits

1
n E los

3 =  1

1
p(Xj) bits.

(2.73)
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If the sample size n is large then the entropy of the sample is 
approximately the same as the entropy of the random variable X, i.e.

h(x) « H(X). (2.75)

Equation 2.74 is defined over n instances of x in a given sample, in which 
two instances (outcomes) may have the same value, whereas Equation
2.58 is defined over the m unique outcomes in X. Usually n »  m 
(i.e. n is much greater than m).

The definition of entropy in Equation 2.58 looks very different 
from Equation 2.74, which is more obviously the average Shannon 
information of a sample of outcome values. This is because Equation
2.58 is used to calculate entropy from a probability distribution of m 
different outcome values, whereas Equation 2.74 is used to estimate 
entropy from a sample of n outcome values chosen independently from 
that distribution.

Whether we calculate entropy from the known probability of each 
value as in Equation 2.58, or from the average of a sample of values as 
in Equation 2.74, it is important to note that entropy is the average 
amount of Shannon information provided by a single value of a variable.

2.6. P roperties o f Entropy
In essence, entropy is a measure of uncertainty. When our uncertainty 
is reduced, we gain information, so information and entropy are two 
sides of the same coin. However, information as conceived by Shannon

F igu re 2.7. (a) An 8-sided die. (b) T h e un iform  n orm a lised  h istog ram  
(probab ility  d istr ibu tion ) o f  o u tc om e s  has an en tropy  o f  lo g  8 =  3 bits.
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2 Entropy of Discrete Variables

has a rather subtle interpretation, which can easily lead to confusion. 
Accordingly, it is worth a moment’s thought to consider the meaning 
of information and entropy.

Average information actually shares the same definition as entropy, 
but whether we call a given quantity information or entropy usually 
depends on whether it is being given to us or taken away. For example, 
a variable may have high entropy, so our initial uncertainty about the 
value of that variable is large and is, by definition, exactly equal to its 
entropy. If we are then told the value of that variable then, on average, 
we have been given an amount of information equal to the uncertainty 
(entropy) we initially had about its value. Thus, receiving an amount of 
information is equivalent to having exactly the same amount of entropy 
taken away.

Key point. The average uncertainty of a variable X  is 
summarised by its entropy H(X). If we are told the value 
of X  then the amount of information we have been given is, 
on average, exactly equal to its entropy.

Doubling the Number o f Sides
If we double the number of sides on the die from eight to 16 then we 
double the number of possible outcomes. Following the same line of 
reasoning as in Equations 2.62-2.64, the entropy of outcome values is 
H(X) = log 16 = 4 bits. Doubling the number of sides from eight to 16 
increases the entropy from three to four bits, and therefore adds exactly 
one bit (i.e. log 2) to the entropy of the distribution of outcome values.

Key point. Doubling the number of possible values of a 
variable adds one bit to its entropy.

Doubling the Number on Each Side
As we have just seen, the entropy of a discrete random variable 
X  depends on the number of different outcome values and on the 
probability of each outcome value. But it does not depend on the 
particular outcome values that X  can adopt. For example, we could
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double all the outcome values on an 8-sided die to define the alphabet 
Ax = {2,4,6,8,10,12,14,16}. However, each of these values would 
still occur with the probability (1/8) defined in Equation 2.61, so the 
entropy would still be H(X) = 3 bits. In contrast, doubling the values 
of a continuous variable does change its entropy (see Section 5.5).

Key point. The entropy of a discrete variable depends 
only on the probability distribution of its values. Changing 
the values of a discrete variable does not change its entropy 
provided the number of values stays the same.

2.7. Independent and Identically D istributed Values
When a die is thrown, each outcome value is chosen from the same 
uniform distribution of values. Additionally, it does not depend on any 
other outcome, so values are said to be independent Outcome values 
that are chosen independently from the same uniform distribution are 
said to be independent and identically distributed, which is usually 
abbreviated to iid.

These considerations imply that the entropy of a sequence is given 
by Equation 2.58 only if its values are chosen independently from the 
same distribution (i.e. if they are iid). However, if consecutive values 
are related (e.g. as in an English sentence) then they do not provide 
independent information. In this case, the elements of the sequence 
are not iid, and the sequence has less entropy than the summed 
(over-estimated) entropies of its individual elements calculated using 
Equation 2.58.

If a source generates values chosen from an underlying distribution 
which remains constant over time then the source is said to be 
stationary. Unless stated otherwise, all sources in this text are assumed 
to be stationary.

2.8. Bits, Shannons, and Bans
The maximum amount of information associated with a discrete 
variable is the logarithm of the number m of equally probable values it 
can adopt. Thus, because a binary variable can adopt m = 2 states, it 
conveys up to n = 1 bit of information.
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However, the translation from m possible values to an amount of 
information depends on the base of the logarithm used to do the 
translation (see Appendix C). If we used base 10 instead of base 2 
then we would obtain a different answer, even though the underlying 
amount of information would remain the same. By analogy, consider 
an amount of water that can be expressed either as two pints or about 
1.14 litres; the amount of water is the same in both cases, but the units 
in which it is measured are different.

If we measure information using logarithms with the base e = 2.72 
(as used in natural logarithms) then the units are called nats. In 
contrast, if we measure information using logarithms with base 10 then 
the units are called bans, named after the English town of Banbury. The 
ban was named during World War II by the British code-breakers of 
Bletchley Park (including Alan Turing), where the German code had to 
be broken on a daily basis. Data were tabulated using special cards or 
banburies printed in Banbury, and the code-breaking method was called 
Banbarismus34. Finally, because the word bit is often mistakenly used 
to refer to a binary digit (see Section 1.5), a less ambiguous name is 
the Shannon34, for which an appropriate abbreviation would be Sh.

2.9. Summary
Entropy is a core concept in information theory. But it is also quite 
subtle and demands a sound grasp of probability, random variables 
and probability distributions, which were introduced in this chapter. 
After defining key technical terms, we considered entropy as the average 
amount of surprise of a particular variable, like the flipping of a coin or 
the throw of a die. Both of these were used as examples for calculating 
entropy.
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Chapter 3

The Source C od ing Theorem

Gratiano speaks an infinite deal of nothing.
Shakespeare W, 1598.

3.1. In troduction
Most natural signals, like sounds and images, convey information in a 
relatively dilute form, so that a large amount of data contains a small 
amount of information. There are two reasons why information is so 
dilute in natural signals.

First, values that are close to each other tend to have similar values 
(e.g. in images), or to be related to each other (e.g. in English), so that 
different signal values partially duplicate the information they carry.

A second, more subtle, reason involves the distribution of values in 
a signal. The optimal distribution for a given communication channel 
depends on the constraints that apply. For example, if a channel has 
fixed lower and upper bounds then recoding an iid signal so that all of 
its values occur equally often (i.e. a uniform distribution) guarantees 
that each binary digit carries as much information as possible (i.e. one 
bit). Thus, for a channel with fixed bounds, the optimal distribution 
is uniform.

Together, these considerations suggest that a signal can be conveyed 
through a communication channel most efficiently if (1) it is first 
transformed to a signal with independent values, and (2) the values of 
this transformed signal have a distribution which has been optimised 
for that particular channel.
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3 The Source Coding Theorem

F igu re 3.1. T h e  d is cr e te  n o ise le ss channel. D a ta  in the form  o f  sym b o ls  
from  a sou rce  are en cod e d  as c o d ew o rd s (e.g. b in ary numbers) b e fo re  b e in g  
tran sm itted  as in pu ts th rou gh  a com m un ica tion  channel. A t th e oth er end, 
a rece iver d e c o d e s  th ese co d ew o rd s  to  recover the o r ig in a l m essage.

The source coding theorem is so called because it is really about 
the coding of messages before they are transmitted through a 
communication channel, as in Figure 3.1. It states that messages can be 
recoded as described above, but it does not state how such recoding can 
be achieved. However, once the theorem had been proved, researchers 
began to search for, and soon found, coding schemes that were close to 
the theoretical limits defined by Shannon.

Shannon’s theorem is remarkable because it not only applies to all 
sequences in which elements are independent, but also to structured 
sequences like English text; that is, sequences which contain short- 
range and long-range dependencies between their elements. But before 
we can appreciate Shannon’s source coding theorem, we need to know 
more about channel capacity, which was introduced in Chapter 2.

3.2. Capacity o f a D iscrete Noiseless Channel
The capacity C of a discrete noiseless channel is the maximum number 
of bits it can communicate, usually expressed in units of bits per second 
or bits per symbol. Given that a binary digit can convey a maximum 
of one bit, a channel which communicates at the rate of R binary digits 
per second can communicate information at the rate of C = R bits/s, 
its channel capacity. Thus, channel capacity is numerically equal to the 
number of binary digits communicated per second. Of course, if each 
binary digit carries less than one bit then the channel communicates
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3.2. Capacity of a Discrete Noiseless Channel

information at a lower rate R <  C  bits/s. In practice, to achieve 
a rate R close to the channel capacity C the transmitted codewords 
(e.g. binary digits) must be used wisely.

Consider a source which generates a stream of data in the form of 
symbols s i,s2,..., with an entropy of H{S) bits per symbol, and a 
channel which transmits the corresponding encoded inputs #i,x2,..., 
where each input consists of C binary digits. Each symbol could, for 
example, consist of eight binary digits, where each binary digit carries 
only half a bit of information (as in the final part of Section 1.8); 
in the absence of any encoding (i.e. Xi = s*), each input would carry 
only C /2 bits of information. To pre-empt the next section, Shannon’s 
source coding theorem guarantees that for any message there exists an 
encoding of symbols such that each channel input of C binary digits can 
convey, on average, close to C bits of information.

This encoding process yields inputs with a specific distribution 
p(X). The shape of this distribution determines its entropy H(X) 
and therefore how much information each input carries. Thus, the 
capacity of a channel is defined in terms of the particular distribution 
p(X) which maximises the amount of information per input, i.e.

C = max H(X) bits per input. (3.1)

This states that channel capacity C is achieved by the distribution 
p(X) which makes H(X) as large as possible. If the channel transmits 
one input per second (for example) then we can state this in terms of 
the number of bits per second,

C = max H(X) bits/s, (3.2)

so that the maximum number of symbols communicated per second is 

C/H(X) symbols/s. (3.3)

It can be shown that a uniform distribution p(X) maximises H(X).
An equivalent definition of capacity was given by Shannon48. He 

defined the channel capacity of a noiseless channel as the logarithm
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3 The Source Coding Theorem

of the number N(t) of inputs (encoded messages) that can be 
communicated through the channel in a time interval £, given by

C bits/s. (3.4)

So as t approaches infinity, the logarithm of the number of encoded 
messages that can be conveyed per second approaches the channel 
capacity. The reason for including the proviso “as t approaches infinity” 
is because some messages are encoded using extremely long codewords 
which are averaged out when measuring over long time periods. If 
we omit this nicety then the channel capacity is simply the logarithm 
of the number of distinguishable encoded messages that could be 
communicated each second.

Note that this definition does not refer to the number of encoded 
messages actually communicated per second, but to the number of 
different encoded messages that could be communicated per second.

For example, you may be able to say one word per second, but you 
choose each word from a vocabulary of about m = 1,000 words. If 
we assume you are a channel then you could generate information at 
a maximum rate of log 1000 = 9.96 bits/s which is, by definition, your 
channel capacity.

However, this capacity can only be achieved if (1) you generate 
all words equally often, and (2) you generate words in random order 
(i.e. the words are iid, see Section 2.7). If you do not generate all words 
equally often then some words will be more frequent, making them less 
surprising, so that they convey less Shannon information than others. 
Similarly, if you do not generate words in random order then some 
words will be fairly predictable; in a common phrase like thank you, 
the word you is very predictable. By definition, predictable words are 
unsurprising, and such words convey less Shannon information than 
unpredictable words. Thus, any form of inequality in the frequency of 
your words, or any form of redundancy in your words, means that you 
would generate information at a rate which is less than your channel 
capacity.

We can check that the definition in Equation 3.4 accords with our 
intuitions by using an example channel. Consider a channel that can
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convey nine binary digits per second. Each set of nine binary digits can 
adopt one out of a total of N = 29 binary numbers, so the message that 
is actually sent in one second is chosen from N = 29 different possible 
messages that could have been sent. Similarly, in t seconds, a total 
of 9t binary digits can be sent, where this message is one out of 29t 
different messages that could have been sent. According to Equation
3.4, the capacity of a channel which communicates nine binary digits 
per second is

C  = ^  = 9 t/t = 9bits/s. (3.5)

In other words, if a channel conveys nine binary digits per second then 
the maximum amount of information it can convey (i.e. its capacity) is 
an average of nine bits per second.

We have not done anything new in this section, except to define 
what we mean by channel capacity, and to check that it makes sense 
intuitively. Next, we examine Shannon’s source coding theorem.

Key Point. The capacity C of a noiseless channel is the 
maximum number of bits it can communicate per second, 
and is numerically equal to the number of binary digits it 
communicates per second.

3.3. Shannon’s Source C od in g Theorem
Now that we are familiar with the core concepts of information theory, 
we can quote Shannon’s source coding theorem in full. This is also 
known as Shannon’s fundamental theorem for a discrete noiseless 
channel, and as the first fundamental coding theorem.

Let a source have entropy H  (bits per symbol) and a channel 
have a capacity C  (bits per second). Then it is possible to 
encode the output of the source in such a way as to transmit 
at the average rate C/H — e symbols per second over the 
channel where e is arbitrarily small. It is not possible to 
transmit at an average rate greater than C/H  [symbols/s]. 
Shannon and Weaver, 1949 50.
[Text in square brackets has been added by the author.]
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Note that the Greek letter e (epsilon) is traditionally used to denote 
a very small quantity. In essence, Shannon’s source coding theorem 
states that the messages from a source which generates information at 
the rate of H  bits/s can be encoded so that they can be transmitted 
at a rate arbitrarily close to the capacity C of a channel, provided 
H <  C. To modern eyes, familiar with computers, this may seem to be 
a circular argument. However, in Shannon’s day it was a revelation.

3.4. Calculating Information Rates
The channel capacity C  is usually expressed in bits/s, and if the 
channel is binary then this means that it communicates C binary 
digits/s. The full capacity of the channel is utilised only if the outcome 
values generated by the source are encoded such that each transmitted 
binary digit represents an average of one bit of information. In order 
to reinforce our intuitions about channel capacity, we consider two 
examples below. For the present these examples involve rolling a die 
because this avoids the problems associated with encoding variables 
which are not iid.

Coding for an 8-Sided Die

Why would you want to construct a code for a variable with eight 
possible values? For example, you might have a telephone voice signal 
in which the amplitude of the signal at each millisecond is represented 
as a decimal value between 1 and 8. This coarse amplitude quantisation 
would be less than ideal, and (unlike die outcomes) the similarity 
between consecutive values mean the signal is not iid, but we shall 
ignore such niceties here.

As described in Section 2.5, if each outcome value generated by a 
source is a number that results from rolling an 8-sided die then each 
outcome value or symbol is between 1 and 8. Each of these symbols can 
be encoded with exactly three binary digits (because 3 = log 8). Each 
of the eight possible symbols As = {si,..., s$} is equally probable, and 
each outcome does not depend on any other outcome, so the outcome 
variable is iid and has a uniform probability distribution. Given these 
very particular conditions, each outcome Si conveys exactly three bits,
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Symbol Codeword
*1 = 1 xi = 000
S2 = 2 X2 = 001
S3 — 3 £3 = 010
£4 = 4 £4 = 011
S 5 — 5 £5 = 100
se = 6 Xq = 101
s 7 = 7 £7 -  110
sg = 8 z 8 = 111

Tab le 3.1. Each  o u tc om e  s from  an 8-sided d ie has a value wh ich  can  b e  
rep resen ted  as a 3-digit b inary c o d ew o rd  x.
and therefore conveys an average of H = 3 bits/symbol, which is (by 
definition) its entropy.

If the channel capacity C  is 3 bits/s then to communicate information 
at the rate of 3 bits/s the source symbols must be encoded such that 
each binary digit in each codeword x provides one bit of information. 
In this case, simply converting decimal to binary (minus one) provides 
the necessary encoding, as shown in Table 3.1, where each symbol Si is 
encoded as a codeword Xi in the form of a binary number.

Using this simple code, each outcome value Si from the roll of the die 
is transmitted as a codeword Xi which is decoded at the other end of 
the communication channel. For example, if the die shows 54 = 4 then 
this is coded as the codeword X4 =011, which is decoded as 4 when it 
is received at the other end of the communication channel. According 
to Shannon’s source coding theorem, the maximum rate R at which 
these symbols can be transmitted as codewords is

R = C/H  (3.6)
= __3bjWg_ (37)

3 bits/symbol 
— lsymbol/s, (3.8)

and, because we know that each symbol (die outcome value) represents 
three bits, this amounts to a communication rate of R = 3 bits/s.

In this case, encoding each decimal number into a binary number 
allows information to be communicated at a rate equal to the channel 
capacity, so this is called an efficient code.
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More generally, we can work out the efficiency of a code by comparing 
the average number of binary digits per codeword with the entropy 
H(S) of the symbol alphabet. If the average number of binary digits 
in each codeword is L(X) then the coding efficiency of this simple code 
is

H{S) = 3 bits/symbol
L(X) 3 binary digits/symbol

= 1 bit/binary digit. (3.10)

The coding efficiency has a range between zero and one, so the code 
above is maximally efficient.
Coding for a 6-Sided Die
Now consider a more subtle example, in which the numbers si = 1 and 
56 — 6 are obtained from throwing a 6-sided die, defining the alphabet

-  {1,2,3,4,5,6} (3.11)
= {5i ,52,S3,-S4,55,56}. (3.12)

According to Equation 2.69, each symbol from a die of m = 6 sides
provides an average of

H = log 6 (3.13)
= 2.58 bits/symbol, (3.14)

so Shannon’s source coding theorem guarantees that each symbol can 
be encoded with an average of 2.58 binary digits, in principle.

If the channel communicates one binary digit per second then in this 
example the channel capacity is C = 1 bit per second. Shannon’s source 
coding theorem states that it should be possible to find an encoding 
which allows us to communicate information at a maximum rate of one 
bit per second, or, equivalently,

R = C/H (3.15)
1 bit/s 

2.58 bits/symbol (3.16)

0.387 symbols/s. (3.17)
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How can this be achieved in practice? As a first attempt, we could 
encode each symbol using a simple binary code. This consists of coding 
each symbol as a codeword of three binary digits, by using the first six 
rows in Table 3.1. However, because our encoding uses three binary 
digits per symbol (where each symbol carries 2.58 bits), this code has 
a coding efficiency of only

H(S) = 2.58 bits/symbol
L(X) 3 binary digits/symbol

= 0.86 bits/binary digit. (3.19)

Because the channel allows us to transmit exactly one binary digit each 
second, we end up with a communication rate of

C/H (3.20)

0.86 bits/s 
2.58 bits/symbol (3.21)

0.333 symbols/s, (3.22)

which is less than the maximum rate of R = 0.387 symbols/s in 
Equation 3.17. This is well below the channel capacity (one bit or 
0.387 symbols), so it is an inefficient code. Can we improve on this?

We can do better if we encode more than one symbol in each 
codeword. Specifically, if we send the outcome values of three throws at 
a time then there are a total o f 6 x6 x6x  = 216 possible combinations 
of outcome values, and we can label each of these 216 combinations 
with a number between 1 and 216.

Now, for any observed outcome value resulting from three die throws, 
we can encode its label as a binary number. In order to represent 216 
numbers, we need eight binary digits. This is because eight binary 
digits provide 256 (= 28) labels. Because we use eight binary digits 
for each triplet of symbols (i.e. three die outcome values), we are using 
8/3 « 2.66 binary digits per symbol. We know that, on average, there
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Figure 3.2. (a) A pair of dice. (b) Normalised histogram of dice outcome 
values shown in Table 3.2 has an entropy of 3.27 bits per outcome value.

are 2.58 bits/symbol (Equation 3.14), so the coding efficiency is

H(S) _  2.58 bits/symbol
L(X) 2.66 binary digits/symbol

= 0.970 bits/binary digit, (3-24)

which is a substantial improvement on 0.86 bits/binary digit. Because 
the channel allows us to transmit exactly one binary digit each second, 
we end up with a communication rate of

0.970 bits/s 
2.58 bits/symbol 
0.376 symbols/s,

(3.25)

(3.26)

which is closer to the maximum rate of C/H — 0.387 symbols/s 
in Equation 3.17 than was achieved from the simple binary code of 
0.333 symbols/s in Equation 3.22.

Key Point. If each independently chosen value of a variable 
represents a non-integer number of bits then an efficient 
encoding can be obtained by combining several symbols in 
a single binary codeword.

3.5. Data Compression
So far, we have been dealing mostly with variables that have uniform 
distributions, but the importance of the ideas developed above only 
becomes apparent for non-uniform distributions.
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The outcome of throwing a pair of 6-sided dice is a pair of decimal 
numbers, shown in Table 3.2. If we define the outcome value as the sum 
of this pair of numbers then each outcome value is a number between 
2 and 12. This defines an alphabet of m = 11 possible outcome values

=  {2 ,3 ,4,5 ,6 , 7 ,8 ,9 ,10,11,12} (3.27)

=  { s i,  S2, ^ 3 , S4 , s5, $6,5 7 ,Sg,s9 ,$ 10, s 11}, (3.28)

represented by the symbols $i,..., $n, which occur with the frequencies 
shown in Table 3.2. There are a total of 36 possible ordered pairs of die 
outcomes, each occurring with equal probability (i.e. 1 /36). By dividing 
each outcome frequency by 36 we obtain an outcome probability, shown 
in Figure 3.2b. Using Equation 2.59, we can then use these probabilities 
to find the entropy

771=11 ^

(3.29)

3.27 bits/symbol. (3.30)

S ym bo l Sum D ice Freq V h C o d e  x
S l 2 1:1 1 0.03 5.17 10000
S2 3 1:2, 2:1 2 0.06 4.17 0110
S3 4 1:3, 3:1, 2:2 3 0.08 3.59 1001
S4 5 2:3, 3:2, 1:4, 4:1 4 0.11 3.17 001
S5 6 2:4, 4:2, 1:5, 5:1, 3:3 5 0.14 2.85 101
S6 7 3:4, 4:3, 2:5, 5:2, 1:6, 6:1 6 0.17 2.59 111
Sl 8 3:5, 5:3, 2:6, 6:2, 4:4 5 0.14 2.85 110
S8 9 3:6, 6:3, 4:5, 5:4 4 0.11 3.17 010
S9 10 4:6, 6:4, 5:5 3 0.08 3.59 000
S 10 11 5:6, 6:5 2 0.06 4.17 0111
S l  1 12 6:6 1 0.03 5.17 10001

Table 3.2. A pa ir o f  d ic e  have 36 p o s s ib le  ou tcom es, w ith  o u tc om e  values 
betw een  2 and 12, which  can  b e  en cod ed  as 11 cod ew ord s.
Sym b: sym b o l u sed  to  rep resen t sum  o f  d ice  values.
Sum: ou tc om e  value, to ta l num ber o f  d o t s  for a g iv en  th row  o f  th e dice. 
Dice: pa ir o f  d ice  o u tc om e s tha t co u ld  gen era te  each  sym bol.
Freq: num ber o f  d ifferen t o u tc om e  pa irs that cou ld  gen era te  each  sym bol. 
p: the p robab ility  tha t th e pa ir o f  d ic e  gen era te  a g iv en  sym b o l (freq/36). 
h: su rprisa l o f  ou tc om e  value, h =  p\og(l/p) bits.
C ode : H uffm an co d ew o rd  for each  sym b o l (see S ec tion  3.6).
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Even though some values are less frequent (and therefore more 
surprising) than others, the average amount of information associated 
with the throw of two dice is 3.27 bits. So according to Shannon’s 
source coding theorem, we should be able to transmit each symbol 
(value) using an average of no more than 3.27 binary digits/symbol.

Suppose we simply coded each of the 11 values as a binary codeword. 
If we used three binary digits per outcome value then we could code 
for 8 = 23 different outcome values (which is not enough), but if we 
used four binary digits per outcome value then we could code for up 
to 16 = 24 different outcome values (which is too many). Thus, using 
this coding, we need at least four binary digits per symbol in order to 
code for 11 different outcome values. However, because the codewords 
for five of the outcome values would never be used, this is clearly not 
an efficient code.

As before, we can work out exactly how efficient this code is by 
comparing the average number of binary digits per codeword, L(X), 
with the entropy of Equation 3.30. If we use four binary digits per 
codeword for each symbol then the average codeword length is L(X) = 
4, and the coding efficiency is

H(S) 3.27 bits/symbol
L(X) 4.00 binary digits/symbol

= 0.818 bits/binary digit.

As an aside, if the 11 outcomes were equally probable (as if we had 
an 11-sided die) then the distribution of values would be uniform, and 
the entropy would be

(3.31)

(3.32)

log 11 = 3.46 bits. (3.33)

In contrast, the distribution of the 11 outcomes from two dice is not 
uniform, see Figure 3.2. Indeed, in order for a single die to have the 
same entropy as two 6-sided dice (i.e. 3.27 bits), it would have to have
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9.65 sides, because such a die would yield

m 2h(S)
2327

9.65 equally probable values.

(3.34)
(3.35)
(3.36)

Even though it is not physically possible to make such a die, it is an 
intriguing idea.

To return to the topic of coding efficiency, can we get closer to the 
lower limit of 3.27 binary digits/symbol defined in Equation 3.30? The 
answer is yes, and one of the most well-known compression methods 
for doing so is called Huffman coding.

3.6. Huffman C od in g
Huffman coding, invented by David Huffman in 1952, is one of many 
methods for efficiently encoding the symbols in a message into a 
corresponding set of codewords. A key property of a Huffman code 
is that frequent symbols have short codewords, whereas rare symbols 
have long codewords. The length of the codeword used to represent 
each symbol matters because long codewords require the transmission 
of more binary digits than short codewords. Consequently, for messages 
which consist of independent symbols, the lossless compression achieved 
by Huffman coding is close to the entropy of those messages, and if 
messages are encoded in binary then Os and Is occur with about the 
same frequency.

Indeed, a reassuring property of Huffman codes (which is a type of 
symbol code) is the source coding theorem for symbol codes34:

Given a discrete variable X  with entropy H(X), there exists 
a symbol code in which the expected codeword length L(X) 
of each codeword is greater than or equal to H(X) and is 
less than H(X) -f 1; that is,

Huffman coding is a lossless compression method, so an encoded 
message can be decoded without any loss of information.

H(X) <  L(X) <  H(X) + 1. (3.37)
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The details of Huffman coding are explained using the small example 
in Figure 3.3. In essence, Huffman coding consists of finding the 
two least probable symbols, and then combining them to make an 
imaginary composite symbol. The two least probable symbols are then 
replaced with the composite symbol, whose probability is the sum of 
the probabilities of its components. This process is repeated (including 
composite symbols) until there is just one symbol left. Each time two 
symbols are combined, the two paths between those symbols and the 
new composite symbol are each labelled with a 1 (for each upper path) 
or a 0 (for each lower path), forming a tree that spreads from left to 
right. When the tree is complete, the code for each symbol is obtained 
by concatenating the binary numbers that lead to that symbol, reading 
from right to left.

In a Huffman code, not every codeword is short for every symbol, 
but the average codeword length is short, as shown by the Huffman 
code for the dice outputs shown in Table 3.2. As before, we can work 
out the efficiency of a Huffman code by comparing the average number 
of binary digits per codeword L(X) with the entropy, which defines a 
lower limit for L(X). If the number of binary digits in the codeword 
Xi is L(xi) then the average codeword length for a pair of dice is

m = 11

T ,  pL(x*)
i= 1

(3.38)

3.31 binary digits/symbol. (3.39)

F igu re 3.3. S im p le exam p le  o f  a Huffm an c o d e  for five sym b o ls  (A-E), which  
o c cu r  w ith the p robab ilit ie s  sh ow n  on  the left. R ead in g  from  righ t to  left, 
the final c o d e  is A = 1, B =  O il,  C  = 010, D = 001, E = 000.
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Here, L(X) is close to the theoretical minimum (3.27 bits) defined by 
the entropy of the original message in Equation 3.30, and the coding 
efficiency of this Huffman code is

H(S) _  3.27 bits/symbol
L(X) 3.31 binary digits/symbol

= 0.99 bits/binary digit. (3.41)

Note that the difference between the average number of binary digits 
in the Huffman code and the entropy of the original message is less 
than one binary digit. Thus, the Huffman code not only satisfies the 
optimality condition in Equation 3.37, but (in this case) it also comes 
close to the theoretical limit of one bit per binary digit.

A useful feature of Huffman codes is that they are prefix codes, which 
means that the border between any two consecutive codewords is easy 
to detect. This is because the n binary digits in each codeword are 
always different from the first n binary digits in any other codeword, 
so that no codeword is the prefix of any other codeword.

Huffman Coding o f Images
In Chapter 1, the grey-level differences shown in Figure 1.8a are derived 
from the grey-levels in Figure 1.6a. A naive coding of the 127 heights in 
the histogram of difference values shown in Figure 1.8b would require 
7(« log 127) binary digits per histogram height. If we give the set of 127 
histogram heights to the Huffman coding method then the resultant 
codewords have an average length of L = 5.97 binary digits, which is 
just larger than the measured entropy H = 5.94 of the histogram of 
grey-level differences. The coding efficiency of this Huffman code is 
therefore

H(S) _  5.94 bits/difference
L(X) 5.97 binary digits/difference

= 0.99 bits/binary digit. (3.42)

However, recall that the figure of 5.94 bits/difference is itself an over­
estimate because it takes no account of the fact that nearby pixels 
have similar grey-levels. So even though Huffman coding does a good 
job of encoding pixel differences, it takes no account of, and does not
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attempt to remove, dependencies between nearby symbols in a message. 
This is important when considering messages in which symbols are not 
independent, such as images and English text.

Huffman C od in g o f  English L etters
Using the relative frequencies of letters in English shown in Table 3.3, 
we can work out that English has an entropy no greater than H  =  4.11 
bits/letter. Note that this estimate includes a space character, which 
we treat as an extra letter, making a total of 27 letters. For now, 
we will ignore the non-independence of letters, so we know that 4.11 
bits is an over-estimate. Applying Huffman coding to these relative 
frequencies, we find that they can be encoded using an average of 4.15 
binary digits/letter, which gives a coding efficiency of 4.11/4.15 = 0.990 
bits per binary digit.

Because 4.15 binary digits allow us to discriminate between about 
18 equally probable alternatives (24 15 = 17.8), the 27 observed 
unequal probabilities have about the same entropy as 18 equally 
probable letters. This suggests that we could replace the 26 letters

Letter Freq (%) Letter Freq (%)
a 5.75 n 5.96
b 1.28 o 6.89
c 2.63 P 1.92
d 2.85 q 0.08
e 9.13 r 5.08
f 1.73 s 5.67
g 1.33 t 7.06
h 3.13 u 3.34
i 5.99 V 0.69
j 0.06 w 1.19
k 0.84 X 0.73
1 3.35 y 1.64
m 2.35 z 0.07
- - SP 19.28 j

T ab le  3.3. T h e  fre qu en cy  o f  e a ch  le t t e r  in  E n g lish . T h e s e  p e r c e n t a g e s  im p ly  
th a t if a ll le tte r s  w ere e q u ip r o b a b le  a n d  in d e p e n d e n t  th en  e a ch  le t t e r  w o u ld  
p ro v id e  an av erage o f  4.11 b i t s  o f  in fo rm a t ion .  H ow ev e r, th e  n o n - u n ifo rm  
d is tr ib u t ion  o f  le tt e r s  an d  th e  c o r r e la t io n s  b e tw e e n  n e a r b y  le t t e r s  in  E n g l i s h  
m ean s th a t ea ch  le tte r  c o n v e y s  o n ly  a b o u t  1.3 b its .  S P = s p a c e  ch a r a c te r ,  
tr e a te d  as an ex tra  letter. D a ta  fr om  M a cK a y  (20 03)34.
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3.7. The Entropy of English Letters

of the alphabet (plus a space character) with 18 letters which occur 
independently and with equal probability.

Naturally, Shannon was aware of the problem of producing efficient 
encodings, but his own method, Shannon-Fano coding, was largely 
superseded by Huffman coding. However, both Shannon-Fano and 
Huffman coding are based on the assumption that the symbols in a 
message are mutually independent. But letters (symbols) in English 
are not independent, so the entropy of English must be less than the 
estimate of 4.11 bits/letter given above.

Using a method based on our ability to predict the next letter in a 
sequence of English text, Shannon49 estimated the entropy of English 
to be about 1.3 bits/letter. Using the same logic as above, the fact that 
213 = 2.46 implies that we could replace the conventional alphabet 
with just three independent, equally probable letters. Using purely 
statistical methods like those in the next section, it has been estimated 
that there is an upper bound of 1.75 bits/letter10.

3.7. The Entropy o f English Letters
How can we estimate the entropy of a Shakespeare play? More 
precisely, given any sequence of letters where consecutive letters are 
not independent, how can we estimate its entropy?

The short answer is that we express the probabilities of the letters in 
terms of the probabilities of mutually independent blocks of letters, and 
then use these in the standard definition of entropy (Equation 2.58). 
The long answer below is a summary of Shannon’s proof for estimating 
the entropy of messages in which symbols are not independent.

English Entropy: Informal Account

In order to calculate the entropy of English, we need to know the 
probability of each letter. However, the probability of each letter 
depends on the letter that precedes it, and the letter before that, and 
so on, and on the letter that follows it, and the letter after that, and 
so on. The probability of a letter is a conditional probability, because 
its occurrence depends on (i.e. is conditional on) the identity of nearby 
letters. In short, we need to take account of the context of each letter
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3 The Source Coding Theorem

in order to estimate its conditional probability. Obtaining accurate 
estimates of these conditional probabilities is extremely difficult.

In contrast, the relative frequency of each letter shown in Table 3.3 
and Figure 3.4 is an unconditional probability. For clarity, we will use 
the term relative frequency to refer to unconditional probabilities. The 
entropy of a letter x is determined by its average Shannon information, 
where this average is taken over the set of conditional probabilities 
implied by letters in the vicinity of x, and it can be shown that 
the average Shannon information of a letter based on its conditional 
probability is less than (or equal to) the average Shannon information 
based on its relative frequency. So if the entropy of a letter is estimated 
based on letter frequencies alone then that estimate will be too large.

The Shannon information of a letter is related to how predictable it 
is from its context. Clearly, predicting the identity of a letter becomes 
easier as the number of surrounding letters taken into account increases, 
as shown in Figure 3.5. By implication, the uncertainty of a hidden 
letter’s identity decreases as the number of surrounding letters taken 
into account increases. When averaged over all letters, the degree of 
uncertainty stops decreasing beyond some ‘uncertainty horizon’, as in 
Figure 3.6. At this point, the average uncertainty of each letter is equal 
to the entropy of English.

F igu re 3.4. R e la tiv e frequ en cy  o f  le tters in Sh ak esp ea re’s R om eo  and Juliet. 
Th is d is tr ibu t ion  has an en tropy  o f  G\ = 4.12 b its/ letter.
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3.7. The Entropy of English Letters

Some mathematicians would complain that, strictly speaking, the 
concept of entropy applies to an ensemble of English letter sequences, 
rather than to any particular sequence. For example, the structure of a 
particular sequence of letters depends on the first letter in the sequence, 
which therefore affects the estimated entropy of that sequence. In order 
to preclude such problems, the entropy of English is defined as the 
entropy of an ensemble, which consists of infinite number of sequences. 
In practice, however, the entropy of any variable must be estimated 
from a finite number of observations.

English Entropy: A M ore Formal Account
We are going to consider what happens to the dependence between 
blocks of consecutive letters as we increase the number N of letters 
in each block, and how this affects the uncertainty of letters in blocks 
of different lengths. Shannon’s analysis included all possible blocks, 
but for convenience we will assume that blocks consist of consecutive 
and non-overlapping segments of text, as shown in Figure 3.7. This 
simplification does not alter the results obtained.

If = 1 then the probability of each letter in each 1-letter block B is 
estimated as its relative frequency. If these relative frequencies are used 
to estimate the entropy of English H then the resultant approximation 
is called G\.

If N = 2 then the identity of each letter in a block depends more 
on the other letter in that block than on the letters in most other

F igure 3.5. T h e p red ic ta b ility  o f  le tters sh ou ld  in crea se w ith  in crea sin g 
context. B y R anda ll M unroe, r ep rodu ced  w ith  p erm iss ion  from  xkcd.com .
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3 The Source Coding Theorem

F igu re 3.6. H ow  the am oun t o f  en tropy  per le tter Gn d e crea se s as the 
num ber N  o f  le tters taken in to a ccoun t increases, u sin g a co rp u s o f  70 m illion  
ch a ra c te r s45. Gn app roa ch e s the en tropy  H  o f  E n g lish  le tters (dashed line) 
as N  increases.

blocks, because most other blocks are taken from unrelated parts of 
the original text. As can be seen from Figure 3.8, 2-letter blocks are 
not all equally probable. But if they were then each letter would be 
as unpredictable with its partner as it is on its own. So the fact that
2- letter blocks are not all equally probable implies that each letter is 
more predictable with its partner than it is on its own, which means 
that the average uncertainty G<i of each letter in a 2-letter block is less 
than the uncertainty of each letter considered on its own (i.e. from its 
frequency). Similarly, the uncertainty G3 of each letter’s identity in a
3- letter block is less than the uncertainty G2 of each letter’s identity in 
a 2-letter block.

» 0  0  0

b)

C)

T lH E SP w 0

M 1 H1 E SP w 0 R L D

F igu re 3.7. A s b lo ck  s ize  in crea ses from  (a) N = 1 to  (c) N  =  3, the 
ab ility  to  p red ic t each  le tter from  oth er le tters in the sam e b lo ck  increases. 
Consequen tly, th e m ean  su rprisa l p e r le tter d e crea se s as b lo ck  s ize  increases.
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3.7. The Entropy of English Letters

In other words, it is easier to guess the identity of a hidden letter 
if we know the identity of its immediate neighbours, and the more 
neighbours we know, the easier it is to guess. So, as the block length 
N increases, the identity of each letter in a block depends less and 
less on the letters in other blocks, which implies that blocks become 
increasingly independent as the length of blocks is allowed to increase.

Now, supposing the identity of each letter in English does not depend 
on any letter that is more than 10 letters away. In practice, the 
dependency between nearby letters diminishes rapidly as inter-letter 
distances increase, as shown in Figure 3.6. Once the block length has 
grown to N = 10, the identity of every letter in a given block B 
depends on other letters in that block and exactly two other blocks: 
the previous block B^~1, and the next block jBfc+i. All other blocks 
contain letters which are more than 10 letters away from, and therefore 
independent of, every letter in block B

If the original text is sufficiently long, and if there are a large number 
of blocks, then the dependency between adjacent blocks just described 
accounts for a tiny proportion of the overall dependency between all 
blocks. Thus, the more blocks there are, and the longer each block is, 
the smaller the dependency between blocks. By analogy, it is as if each 
block is one of a large number of independent super-symbols, and if the

F igure 3.8. R ela tiv e frequ en cy  o f  pa irs o f  le tters in R om eo  and Juliet. E ach  
co lum n  rep resen ts the re lative frequ en cy  o f  on e o rd ered  pa ir o f  letters.
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3 The Source Coding Theorem

blocks are independent then finding their entropy is relatively simple. 
The only question is, how long do those blocks have to be to ensure 
that they are independent?

The block length beyond which inter-letter dependence falls to zero 
is called the correlation length N c . Once the block length exceeds the 
correlation length, it is as if all blocks are effectively independent, so 
increasing the block length N beyond Nc has a negligible effect on 
the estimated entropy Gn • At this point, Gn equals the entropy of 
English; that is, Gn = H. This matters because Shannon’s theorems 
are expressed in terms of infinite block lengths, but in practice these 
theorems apply to any block length which exceeds the correlation length 
of the sequence under consideration.

Key point. As the number of letters in each block increases, 
the average uncertainty of each letter decreases.

English Entropy: Formal Account
If we take account of the relative frequency of each letter x then we 
effectively have a block length of N = 1. In this case, our first order 
estimate of the entropy of English H is

m = 27 ^

g  *><*•>'%(*,) (3.43)

4.08 bits/letter, (3.44)

where we have included the space character as the 27th letter. The 
estimates reported here are based on 70 million characters45; the value 
ofGi is based on slightly different frequency estimates from those listed 
in Table 3.3.

Using a block length of N = 2 effectively takes account of the 
dependencies between adjacent letters. Because there are 729(= 272) 
distinct pairs of letters, we can consider these to be 729 distinct blocks 
Bk = [#i,2/j], where k has a range from 1 to 729, and p(Bk) is the 
relative frequency of a particular ordered pair of letters. For example, 
if we take i = 3 and j  — 5 then the 2-letter block is B — [£3, y$\ = [ce], 
and p([ce]) is the relative frequency of the block [ce]. These relative
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3.7. The Entropy of English Letters

frequencies can be used to obtain a second order estimate G2 of H ,

G2 = 5|§ p<|I‘'w,)logsr a )  <345)
- m = 729 -

= 2 E  <3 46)
= 3.32 bits/letter, (3.47)

where we have divided by two to take account of the fact that each 
block contains two letters (remember that G2 is the average Shannon 
information per letter).

This is fine, as far as it goes, but what we really want to know is the 
entropy of a letter Xi given all of the letters which affect the probability 
of Xi. Thus, the figure of 3.32 bits/letter for the entropy of English 
letters is still an over-estimate because it ignores any dependencies 
which extend beyond two letters.

Such long-range dependencies can be taken into account if we use 
blocks of N = 3 letters. In order to evaluate G3, the calculation is 
based on 19,683(= 273) distinct letter triplets:

G3

m=19,683

3 E

(3.48)

(3.49)

= 2.73 bits/letter. (3.50)

Of course, some letter triplets are very common (e.g. and, the), and 
these will dominate the weighted average of surprisal values implicit 
in G3. In contrast, other letter triplets are rare (e.g. nud) in English, 
and these contribute little to the estimate of entropy. More generally, 
the key to understanding Shannon’s source coding theorem is the fact 
that a small proportion of possible letter sub-sequences are common, 
whereas most other sub-sequences are practically non-existent.
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3 The Source Coding Theorem

For any given block length N, the Nth order estimate of entropy is

27n
Gn = — j^ p ( B fe) l o g ^ —  bits/letter. (3.51)

In principle, the process of calculating Gn for larger values of N can 
be repeated indefinitely. Once we have taken account of dependencies 
over all letter ranges up to the correlation length N c , each probability 
p(Bk) entered into the calculation is independent of almost all other 
probabilities. If all block probabilities are independent then Gnc *s 
the entropy per letter as measured in blocks of Nc letters; therefore, 
because G does not increase for blocks containing more than Nc letters, 
Gnc is equivalent to the entropy of English, so Gnc — H bits/letter. 
In practice, as N increases, the estimated entropy of English converges 
to a value of about Gnc = 1*8 bits/letter.

If the entropy of English is H = 1.8 bits/letter then Shannon’s source 
coding theorem guarantees that we should be able to communicate 
letters using just over 1.8 binary digits per letter. Next, we consider 
one simple method for achieving this.
Efficient Transmission o f English
The correlation length of English text is almost certainly not greater 
than Nc = 10 letters, and we will assume that Nc = 10. The number 
of possible 10-letter sub-sequences is about 200 million million,

mc  = 2710 (3.52)
« 206 x 1012, (3.53)

and if all of these sub-sequences were equally probable then they could 
be represented with

Iog206 x l0 12 = 47.5 binary digits. (3.54)

At this point it is worth noting that, as part of the source coding 
theorem, Shannon proved that (see Section 3.8):

1. the most common sub-sequences comprise a tiny proportion of 
the possible sub-sequences;
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3.7. The Entropy of English Letters

2. these common sub-sequences occur with a collective probability 
of about one;

3. each of these sub-sequences occurs with about the same 
probability.

Specifically, the source coding theorem implies that the number of 
(equally probable) 10-letter sub-sequences observed in practice is

mH = 218x10 (3.55)
= 262,144 (3.56)

so each 10-letter sub-sequence can be represented with only

log221,8xl° = 18 binary digits. (3.57)

In the case of English text, this implies that:

1. the most common 10-letter sub-sequences comprise a tiny 
proportion of all possible sub-sequences;

2. these 262,144 most common 10-letter sub-sequences occur with a 
collective probability of about one;

3. each of these 262,144 sub-sequences occurs with about the same 
probability.

Finally, if 262,144 sub-sequences occur with about the same probability, 
and if these are the only sub-sequences that occur, then it follows that 
each sub-sequence occurs with a probability of about 1/262,144. As 
for the remainder, of which there are more than 205 million million, 
Shannon’s theorem implies that these sub-sequences occur with a 
collective probability of about zero. Notice that, because each of 
the 262,144 10-letter sub-sequences (symbols) occurs with the same 
probability, Huffman coding would provide no additional savings in 
terms of the number of binary digits required to represent them.

A correlation length of 10 letters implies that all 10-letter sub­
sequences are mutually independent. This implies that we could 
transmit English text using the following simple strategy. First, use 
a large corpus of text to rank each 10-letter sub-sequence according 
to its frequency. Next, identify the 262,144 most common 10-letter
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3 The Source Coding Theorem

sub-sequences, and allocate one codeword to each sub-sequence, where 
each codeword is represented as 18 binary digits. In doing this, we 
have effectively constructed a look-up table (a codebook) with entries 
numbered from 1 to 262,144. If we want to transmit a message across 
the world then the receiver must have a copy of this look-up table, but 
if we are going to use this table often then the cost of transmitting 
it to the receiver is relatively small. Next, we take the message to be 
transmitted, break it up into consecutive 10-letter sub-sequences, and 
use the look-up table to find the associated codewords. Finally we send 
the codeword in the form of 18 binary digits. When this codeword is 
received, the receiver simply finds the codeword on their copy of the 
look-up table to recover the original 10-letter sub-sequence.

We have thus sent a message which looks as if it might require 47.5 
binary digits for each 10-letter sub-sequence (see Equation 3.54), but 
using only 18 binary digits per sub-sequence. Equivalently, we have 
sent a message which looks as if it might require 4.75 binary digits for 
each letter, but using only 1.8 binary digits per letter.

Ironically, before Morse made use of the letter-by-letter code 
described in Section 1.6, he had devised a system conceptually similar 
to the one outlined above. Specifically, he made a list of commonly 
used phrases and assigned a number to each one. For example, the 
third phrase might be The 9pm train will be late. When he wanted 
to transmit this message, he simply transmitted the number 3 as the 
binary number 11 (sent as two dashes, for example). It is almost as if 
Morse had recognised, long before Shannon’s formal proofs existed, that 
the number of possible messages far exceeds the number of messages 
actually used, and that this is the key to efficient communication.

As Shakespeare noted in Romeo and Juliet:

What’s in a name? That which we call a rose
By any other name would smell as sweet.
Shakespeare W, 1597.

Indeed, for the purposes of communication, it is not the name itself 
that matters, but the number of different possible words from which 
the name was chosen.
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Just as English consists of sequences of non-independent letters which 
can be efficiently encoded as blocks of independent sub-sequences, so 
images consist of sequences of non-independent grey-levels which can 
be efficiently encoded as (square) blocks of independent sub-sequences. 
Thus, the line of reasoning applied to English text also applies to 
images, and to most other natural sequences (e.g. music, movies, DNA).

3.8. Why the Theorem  is True

In essence, Shannon’s source coding theorem is based on the observation 
that most events that could occur almost certainly do not, and those 
that do, occur with about the same probability as each other. The 
truth of Shannon’s source coding theorem can be glimpsed from a type 
of mathematical logic called a counting argument, which is used here 
to give a rough idea of Shannon’s proof.

Consider a source which generates messages, where each message 
consists of n binary digits s = (s\,..., sn). Crucially, we assume that 
the source statistics are iid, so the probability P  that each binary 
digit equals 1 remains stable over time. This is not an unreasonable 
assumption, because many practical examples of sources have a nice 
stable probability profile (e.g. the probability of each letter in English 
text does not change from year to year). In principle, the number 
of different possible messages of length n that could be generated by 
this source is huge, specifically, mmax = 2n. But, as we shall see, the 
number m of different messages actually generated will almost certainly 
be much, much smaller than mmax (i.e. m «  mmax). So, in practice, 
if we want to communicate information about the source messages then 
we only have to worry about m of them. This is the key to Shannon’s 
source coding theorem.

If n is large (i.e. messages are long) then all of the roughly m different 
messages Si,...,sm generated by the source will contain about nP 
binary digits equal to 1. For example, if P = 1/8 = 0.125 and n =
8.000 then the most common messages generated will contain about
1.000 Is. More importantly, as the messages are allowed to get longer, 
the law of large numbers guarantees that almost all messages generated 
will contain nP Is.
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In fact, Shannon’s proof relies on the assumption that messages are 
very long, but for the purposes of illustration we shall use a short 
message. What is plausibly true for large values of n is less plausibly 
true for small n, but the spirit of the Shannon’s proof applies to both 
cases.

If n = 8 then each message looks like

S =  (si, S2, 53, S4, S5, S6, S7, S8), (3.58)

with examples shown in Table 3.4. In principle, the number of different 
possible messages is mmax = 28 = 256. However, if P — 0.125 
then nP = 1, so the most common messages generated contain 
one 1, and there are exactly m — 8 such messages. We can work 
out the probability that a message contains one 1 and seven Os as 
follows. The probability of a 1 in the first binary digit of a message 
is Pi = 0.125, and the probability of a 0 in the second binary digit 
is P2 = (1 — 0.125) = 0.875, P3 = 0.875, and so on. Because these 
probabilities are independent, the probability that a message contains 
one 1 and seven 0s is not affected by the order in which they occur (see

Message Codeword
Sl 1 0 0 0 0 0 0 0 Xl 0 0 0
S2 0 1 0 0 0 0 0 0 x2 0 0 1
S3 0 0 1 0 0 0 0 0 x3 0 1 0
s4 0 0 0 1 0 0 0 0 x4 1 1 1
S5 0 0 0 0 1 0 0 0 x5 1 0 0
S6 0 0 0 0 0 1 0 0 x6 1 0 1
S7 0 0 0 0 0 0 1 0 X7 1 1 0
Sg 0 0 0 0 0 0 0 1 X8 1 1 1

Not needed
S256 1 1 1 1 1 1 1 1 Not needed

Tab le 3.4. W hy  Shann on’s sou rce  c o d in g  th eo rem  is true. E ach  m essa ge  
(row) from  a sou r ce  con ta in s n = 8 b inary d ig its, so  u p  to  256 different 
m essa ge s can  b e  genera ted. I f the p robab ility  tha t each  b in ary d ig it equa ls 
1 is P = 1/8 then m o st m essa ge s con ta in  on e 1, so  th ere are effectiv ely  
on ly  eigh t d ifferen t m essages, s i , ... ,ss, which  can  b e  rep resen ted  by  e igh t 
c o d ew o rd s x i , ... ,xg, each  o f  w hich  con ta in s th ree b inary d igits.
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Appendix F), and is therefore

Pi x P2 x ... x P8 = 0.125 x 0.8757 
= 0.049.

(3.59)
(3.60)

The actual value of this probability is less important than the fact that 
its value is the same irrespective of where the 1 occurs in each message. 
It follows that all of the m — 8 different messages Si,...,S8 (with 
one 1 in each message) are generated with the same probability, and 
therefore they all have the same relative frequency p in the distribution 
of messages; we do not yet know the value of this relative frequency, 
but we do know it is the same for all eight messages. So far, we have 
established two facts. Given n — 8 and P = 0.125:

1. each of the m =  8 messages s1?..., sm generated contains one 1;
2. these messages have the same relative frequency p.

As noted above, these ‘facts’ are really only true for large values of n, 
but we will continue to pretend they are also exactly true for the small 
value of n used in this example.

We already know that the total number of possible messages is 
rrimax = 256, and this includes messages with every possible number 
of Is. However, if we assume that only m = 8 different messages are 
actually generated, and that each of these contains exactly one 1, then 
the number of different messages generated is much smaller than the 
number of possible messages.

In order to clinch the source coding argument, we need to review a 
crucial observation. We know that if we have m = 8 equally probable 
outcome values, such as the integers 1,..., 8, then we can encode each 
message as one of eight binary codewords x i, ..., Xg. And because we 
only need eight such codewords, this means we only need

log 8 
3

(3.61)
(3.62)

binary digits per codeword, i.e.

X = (xj, ... ,x3). (3.63)

73



3 The Source Coding Theorem

In other words, we can send m — 8 equally probable integers using 
exactly nw — 3 binary digits per codeword. Of course, each outcome 
value does not have to be an integer; it could just as easily be 
represented as a message of eight binary digits, as shown in Table 3.4. 
This means that we can encode each of the messages s i, ..., s§ with a 
codeword of just three binary digits.

Because the m = 8 messages are generated with equal probability, 
and because we assume that they comprise all of the messages that 
get generated in practice, it follows that the probability (measured as 
relative frequency) of each message must be

p = 1/ra (3.64)

= 0.125. (3.65)

This should not be confused with Equation 3.60, which is the 
probability that a message contains one 1.

If we have m — 8 messages, each of which is generated with the same 
probability p, then we know (from Equation 2.69) that the entropy is

H = E[log(l/p)] (3.66)

= log m (3.67)

= 3 bits per message. (3.68)

Thus, even though the source could generate 256 different messages, 
the 8-binary-digit messages generated have, in practice, an entropy of 
only H — 3 bits per message, and can be encoded with nw = H = 3 
binary digits per codeword.

At this point, we should note two caveats. First, if P = 0.5 exactly 
then m = mmax, and therefore m — 2n and H = n bits. However, even 
tiny deviations from P — 0.5 ensure that m «  mmax.

Second, the example above used nP = 1, but even if nP >  1 then 
m <  2n (unless P = 0.5). These caveats are more apparent from a 
careful reading of the next section, which is for readers who wish for 
more technical details.
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Why D oes the Source Generate Only m  D istinct Messages?

The general reason that a source, which could generate mmax = 2n 
distinct messages, generates only m = 2H messages, is as follows. The 
number of distinct messages of length n which contain n\ Is and no 
Os is just the number of different ways of distributing n\ Is and no Os 
over n positions (binary digits). This can be calculated as a binomial 
coefficient, which is defined as

Cn,Til n! 
ni!no! ’ (3.69)

where n! = nx(n — 1) x • • • x 1. When considered over all values between 
ni = 0 and n\ = n, the total number of possible distinct messages is

n

Y  = 2" ’ (3-7°)Til =0

which is reassuring, given that we know there are 2n possible messages.
For long messages, we can safely assume that almost all m messages 

generated by the source contain nP Is. It follows that the value of the 
binomial coefficient is about zero (Cn>ni « 0) unless n\ is equal to nP. 
So the number of distinct messages generated is approximately equal 
to the number of messages that contain nP Is,

^   ̂Cn,m
ni=0

Cn,nP

m,

(3.71)

(3.72)

where comparison with Equation 3.70 implies that m < 2 n.
Next, we will find the logarithm of the number m, and, in so doing, 

we will confirm that it is indeed the entropy of the source. This can be 
achieved with the aid of Stirling’s approximation, which states that if 
n is large then Inn! « n[(lnn) — 1]. This is defined in terms of natural 
logarithms, so we begin with the natural logarithm of Equation 3.69:

In Cn,ni (3.73)
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From Equation 3.72, we can assume that m = n p ? so that Stirling’s 
approximation yields

lnm « n[(lnn) -  1]-ni[(lnn)i -  1]- n 0[(inno) _  !] (3.74) 
= n l n n - n i l n m - n 0lnn0 -  (n -(n i+ n o )) (3.75)

Given that n = no + ni, this can be rewritten as

lnm = (n0 + ni)lnn -  nilnni -  nolnno (3.76)
= ni(lnn-lnni) + n 0( lnn- inno) (3.77)

~ni n~ — In — +

*/o I 
£ 1 
1___

n n i n n0_
= n(pilnl/pi + polnl/po). (3.79)

The final step involves the substitutions pi = rix/n and p0 = n0/n, 
where pi is the probability that each binary digit is equal to 1, and po is 
the probability that it is equal to 0. We can recognise Equation 3.79 as 
the entropy of a message containing n binary digits, expressed in units 
of nats (because we used natural logarithms). If we use logarithms of 
base 2 then we can translate this into bits, and we find that the source 
generates messages with an average of

log2m = n(pilog2(l/pi) + Polog2(l/p0)) 
i !

= n ̂  pi log2 — bits per message, (3.80)
i=oP i

which is the equation for the entropy of a binary number containing n 
binary digits.

The preceding account is not a rigorous proof of Shannon’s source 
coding theorem, but it conveys the key ideas which underpin the proofs 
presented by Shannon and others.

3.9. K olm ogorov Com plexity
As mentioned in Section 3.3, we can interpret Shannon’s source 
coding theorem in terms of data compression. This interpretation 
was developed independently by the Russian mathematician Andrey 
Kolmogorov(1933)28. He defined algorithmic complexity to be the
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3.9. Kolmogorov Complexity

length of the shortest computer program capable of describing a given 
object (e.g. a message). Algorithmic complexity is now known as 
Kolmogorov complexity.

For example, the first million digits of the number 7r, which begins 
7r = 3.14159265358979323846264338327950288419716939937510 ... 
can be generated by a computer program containing many fewer than 
one million binary digits. In fact, n can be obtained using one of several 
methods, such as the Leibniz formula

’ = 4* (1- 5  + 5 -  ̂+ 5- )’ (381)
which can be written more succinctly as

'  = 4><S k T T -  <382>k=0

Using a computer program, this can be written as a simple ‘for’ loop, 
which would generate the infinite digits of 7r. However, the shortest

pwpa

Xhastt
discover*!
MXveioos
proof 
inferm&en 
h m u
comestbit. 
buH l*

;s-ho

...oh
nevermind:(

F igu re 3.9. W hat if the K o lm o g o ro v  c om p le x ity  o f  every  o b je c t  w ere zero?  
By Randa ll M unroe, rep ro du ced  w ith  p erm iss ion  from  xkcd.com .

77



3 The Source Coding Theorem

program capable of generating 7r contains a small, finite, but unknown 
number nn of binary digits. If the shortest program contains binary 
digits then it must also contain nn bits because, if it contains more 
than nn binary digits then each binary digit would convey less than 1 
bit, which means that a shorter program must exist. Thus, the infinite 
number of digits in n would have been compressed to nn bits. This 
implies that the apparently random, infinitely long sequence of digits 
in 7r can be represented with just nn binary digits. And, because the 
Kolmogorov complexity of the number ir is the length of the shortest 
program that can generate 7r, it follows that the Kolmogorov complexity 
of 7r is nn bits. The link to Shannon’s definition of information is 
that the Kolmogorov complexity of a random sequence of digits is 
approximately equal to the entropy of that sequence.

However, Kolmogorov complexity is non-computable. This means 
that there is no definite method or algorithm for finding the Kolmogorov 
complexity of a given object or number, except by exhaustive search 
(i.e. trying out all possible computer programs). For the example of 
7r considered above, this means that, irrespective of the brevity of the 
program we devise in order to generate 7r, we can never be certain that 
a shorter program does not exist.

3.10. Summary
Shannon’s source coding theorem is essentially about encoding 
messages into codewords efficiently, which is really a form of data 
compression. In order to understand this theorem, we first examined 
the idea of channel capacity, the maximum rate at which information 
can be communicated through a communication channel. After 
quoting Shannon’s source coding theorem, we explored its relevance 
to coding theory, and we found that some codes are not very 
efficient, in the sense that each binary digit in an encoded message 
represents much less than the theoretical upper limit of one bit of 
information. Finally, we considered the transmission of data in which 
symbols are not independent, and found that they can be encoded 
to obtain independent blocks of symbols. A key implication of this 
is that Shannon’s source coding theorem applies to natural sequences 
(e.g. English, images) with non-independent symbols.
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Chapter 4

The Noisy Channel C od ing Theorem

Uncertainty which arises by virtue of freedom of choice on 
the part of the sender is desirable uncertainty. Uncertainty 
which arises because of errors or because of the influence of 
noise is undesirable.
Weaver W, 1949.

4.1. In troduction
Shannon’s noisy channel coding theorem cannot be understood without 
a firm grasp of mutual information, so we will spend a substantial 
portion of this chapter exploring this topic.

Mutual information is a general measure of association between 
two variables, like the input and output of a communication channel 
(Figure 4.1). It has many properties that apply to both discrete and 
continuous variables. So, by way of introduction, we begin with a 
general account that applies to both types of variables.

Given two variables X  and Y, the mutual information I(X,Y) 
between them is the average information that we gain about Y after 
we have observed a single value of X. Because mutual information is 
a symmetric quantity, it is also the average information that we gain 
about X  after we have observed a single value of Y. Equivalently, 
mutual information is the average reduction in uncertainty about X  
that results from knowing the value of U, and vice versa.

To give a less terse definition, the uncertainty we have about the 
value of Y is initially summarised by its entropy H(Y). If X  and 
Y are related then after observing a single value of X  we have more
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4 The Noisy Channel Coding Theorem

F igu re 4.1. A n o isy  com m un ica t ion  channel.

information about T, and so our uncertainty about Y is reduced to 
some value less than H(Y). If we average across all possible values of 
X  and Y then after observing X  our uncertainty about Y is reduced 
by an amount which is the mutual information /(X, Y) between X  and 
Y. The amount of residual uncertainty we have about the value of Y 
after observing a single value of X  is the conditional entropy H(Y\X). 
Because we usually consider noise T] as being added to the input as it 
passes through the channel, this particular conditional entropy H(Y\X) 
is also called the noise entropy, H(r]) = H(Y\X). And, because the 
mutual information between two variables is symmetric, all of this 
remains true if the roles of X  and Y are swapped.

In order to appreciate the formal definition of mutual information, 
we first need to consider the entropy of joint distributions in the context 
of a communication channel. The remainder of this chapter concerns 
discrete variables.

4.2. Joint D istributions

Consider a source which generates messages for transmission over a 
noisy communication channel, as shown in Figure 4.1. At any point in 
time, this source generates one of four different messages, each of which 
consists of a single symbol. Each message could be an integer (0-3), 
an English word, or even an entire book, but, for simplicity, we assume 
that each message is an integer (i.e. s\ = 0, $2 = 1, $3 = 2, S4 = 3).
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4.2. Joint Distributions

If we wish to send one instance of each message through a noisy 
communication channel, how many binary digits do we need? Well, we 
know that if there is no noise, and if the messages are equally probable, 
then we could simply encode each message as a different binary number 
and send that, requiring a maximum of 2 = log 4 binary digits per 
message. But the channel is noisy, which increases the number of binary 
digits required to represent each message.

We are going to estimate mutual information from a sample of 128 
input and output message pairs. For simplicity, we assume that our 
sampling process is perfect, inasmuch as the quantities we measure from 
our relatively small sample accurately reflect the underlying statistics 
of the channel.

The four distinct messages are represented by the alphabet

As = {0,1,2,3} (4.1)
= {S1,S2,S3,S4}, (4.2)

and they are generated by the source in unequal proportions as defined
by the probability distribution

p(S) = {p(si),p(s2),p{s3),p(s4)}. (4.3)

In this example, no special encoding of each message occurs before 
transmission, so each symbol is represented as a binary codeword. Each 
codeword can adopt one of my = 4 values

Ax = {00,01,10,11} (4.4)
= {*1, *2, *3,0:4}, (4.5)

which occur with probabilities defined by the probability distribution

p(X) = {p(x1),p(x2),p(x3),p(x4)}. (4.6)

We are using a trivial encoding here, so p(X) = p(S).
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4 The Noisy Channel Coding Theorem

Y i  X -> Xi X2 £3 £4 Sum
yi 12 15 2 0 29
V2 4 21 10 0 35
ys 0 10 21 4 35
y\ 0 2 15 12 29

Sum 16 48 48 16 128

Tab le 4.1. C ou n ts o f  in pu t va lues X  and co rre sp on d in g  ou tp u t va lues Y.

After being transmitted, each input emerges as a (possibly different) 
output, which can adopt any one of my = 4 values,

Ay = {00,01,10,11} (4.7)
= {yi,2/2,2/3,2/4}, (4.8)

which occur with probabilities defined by the probability distribution

p(Y) = {p(yi),p(j/2),p(y3),p(j/4)}. (4.9)

Given that each codeword can adopt one of four possible values, 
and that each output adopts one of four possible values (e.g. the 
integers 1-4), there are 16 possible input/output pairs. The set of 16 
input/output pairs can be represented as a set of four input or source 
values X  together with four corresponding channel output values y, as 
in Table 4.1.

Y i  -»• Xi X2 X3 £4 p(Y)
yi 0.094 0.117 0.016 0.00 0.227
y2 0.031 0.164 0.078 0.00 0.273
ys 0.00 0.078 0.164 0.031 0.273
2/4 0.00 0.016 0.117 0.094 0.227

p(V) 0.125 0.375 0.375 0.125 1

Tab le 4.2. Joint p rob a b ility  d is tr ibu tion  p(X,Y). T h e  num bers in the tab le 
m arg in s are the m arg in a l d is tr ibu t ion s p{X) and p(Y). T h e  p robab ility  
p(xi,yj) in each  ce ll is ob ta in ed  by d iv id in g  the co rre sp on d in g  num ber in 
Tab le 4.1 by  128.
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4.2. Joint Distributions

We can gain a visual impression of how accurately the communication 
channel communicates information by recording a sample of, say, 128 
encoded messages # i,... ,xi28, and their corresponding output values 
2/i,..., ?/i28 ? in a 4 x 4 grid, as in Table 4.1. If we divide the frequency of 
each pair (#*, yj) by the total number of pairs (i.e. 128) then we obtain 
an estimate of the probability that X = Xi and Y = yi, as shown in 
Table 4.2. Note that we have used the same subscript notation for the 
elements in an alphabet and the elements in a message.

The probability that X = Xi and Y = yj is called the joint probability 
p(xi,yj). Each joint probability p(xi,yj) can be visualised as the ith 
column and jth row of an n x n array, the joint probability distribution

P(X,Y) =

* p(xi,yi) 
P{x 1,2/2) 
P(x 1,2/3) 
P(xi,yi)

p{x2,yi) 
p(x 2,2/2)
p{x 2,2/3) p(x3,y3)
P(x2,yi) p{x3,y4)

p{x4,yi) ^
P(X4, 2/2) 
P{x4,y3)
p(x4,2/4) J

The entire joint probability distribution can be visualised as a three- 
dimensional histogram of vertical columns, where the height of each 
column reflects the value p(X, Y) of the probability assigned to each 
input/output pair of values, as in Figure 4.2. For convenience, we 
assume that the input/output statistics of our sample given in Table
4.1 perfectly represent the underlying joint distribution, even though 
this would not usually be the case in practice.

There are two things worth noting here. First, as stated in the 
Ground Rules (Section 2.2), the probabilities must sum to one. This 
is because probabilities behave like proportions and just as we would 
expect all 16 proportions to sum to one, so we would expect all 16 
probabilities to sum to one. This is a defining feature of a probability 
distribution, as shown in Table 4.2. Second, even though the joint 
distribution function p(X,Y) is a discrete distribution because the 
random variables X  and Y are discrete, each of the 16 probability 
values it defines is represented by a continuous variable with a value 
between zero and one.
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4 The Noisy Channel Coding Theorem

Entropy o f the Joint Probab ility D istribution

The entropy of a joint distribution is a straightforward generalisation 
of the entropy of a single variable,

where mx is the number of different values of X  and my is the number 
of different values of Y (as in Table 4.2). The term bits per pair 
is used to emphasise the fact that the joint entropy H(X,Y) is the 
average amount of Shannon information of each pair of values, where 
this average is taken over all possible pairs.

Just as the entropy of a single variable (with finite bounds) can be 
considered to be a measure of its uniformity, so the entropy of a joint 
distribution is also a measure of its uniformity (provided X  and Y lie 
within a fixed range). If all possible pairs of values are equally probable 
then this defines a uniform joint distribution, known as a maximum 
entropy joint distribution. In contrast, if some pairs of values occur

Figure 4.2. The discrete joint probability distribution p(X,Y). The 
probability that an input/output pair has the particular combination of 
values Xi and yj is obtained by dividing the i j th cell in Table 4.1 by the 
total number of pairs, 128.

(4.10)

(4.11)

x
y
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4.2. Joint Distributions

with a high probability and others occur with low probability then this 
defines a joint distribution with lower entropy.

Marginalisation

In order to evaluate the mutual information between X  and Y, we need 
to consider the distributions of X  and Y. The distribution of X  can 
be obtained by summing each value of p(X,Y) over all possible values 
of Y. For example, if we want the value of the distribution p(X) at 
X  = Xi then this is obtained by summing over all values of Y for the 
fixed value of X  = xp

m y

p{xi) = Y l v X̂i'y^- (4-12)
j= i

This is equivalent to summing the values in the ith column of Table 4.2 
over all rows. If we consider the value of p(x{) for all mx values of X

b 4
• * % • «•
f •

3
. * •»«JH • « +  m m #

2 • •♦ .V **
\ m ; ♦ •

••
1 • *

. 1*• * • • _________
1 2  3 4

F igure 4.3. V isua lisin g the jo in t  p rob a b ility  d istr ibu tion , (a) D is tr ib u t ion  o f  
input va lues is on e o f  the m arg in a l d is tr ib u t ion s p(X) o f  p(X, Y). (b) Joint
d is tr ibu tion  p(X, Y) o f  128 in pu t/ ou tp u t pairs. (c) T h e  o u tpu t d is tr ibu t ion  
is the o th er m arg ina l d is tr ibu t ion  p(Y) o f  p(X, Y). P o s it ion s o f  p o in ts  in (b) 
have in teger values, w hich  have b een  jit t e r e d  to  m ake th em  visib le.
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then we obtain the marginal distribution,
my

pW = X>(*,2/,')
3 =1

(4.13)

= {0.125,0.375,0.375,0.125}, (4.14)

as shown in Table 4.2. Similarly, the marginal distribution p(Y) is 
obtained by summing over values of X,

p(Y)
m x

= ^ p f o T ) (4.15)

= {0.227,0.273,0.273,0.227}, (4.16)

as shown in Table 4.2. If we want the value of the distribution p(Y) 
at a particular value Y  =  y j then this is obtained by summing over all 
values of X  for the fixed value of Y  =  y j ,

mx
p(yj) = Y p(Xi'yi)- (4-17)i=l

This is equivalent to summing the values in the j th row of Table 4.2 
over all columns.

Statistical Independence

If X  and Y are statistically independent then knowing the value of X  
provides absolutely no information about the corresponding value of 
y, and vice versa. This implies that the probability of any two values 
(e.g. Xi and yj) of X  and Y occurring together is the same as the 
probability of x\ multiplied by the probability of yj\

p(xi,yj) = p(xi)p(yj) if X  and Y are independent. (4.18)

When considered over all values of X  and Y this implies that if two 
variables are independent then the joint distribution is given by the
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product of its two marginal distributions:

4.2. Joint Distributions

p(X, V) = p(X)p(Y). (4.19)

Here, the product p(X)p(Y) is interpreted as an outer product, which 
means that the zth column and jth row of the joint distribution p(X, Y) 
is the product p(xi)p(yj).

Given this definition, if two variables are independent then the 
entropy of their joint probability distribution p(X, Y) can be rewritten 
as the sum of their individual entropies,

Thus, if X  and Y are independent then

H(X) + H(Y) — H(X, Y) = 0 bits per outcome pair. (4.25)

For example, if two dice are thrown then the value of each die does 
not depend on the value of the other die, so they are independent (see 
Section 3.5). Over many throws, the pairs X  and Y of values could be 
recorded in a 6 x 6 table representing the joint distribution of values. 
Because all 36 pairs are equally probable, this joint distribution p(X, Y) 
is uniform and has an entropy of

(4.22)

(4.21)

(4.20)

which can be rewritten as two summations,

H(X) + H(Y) bits per outcome pair. (4.24)

H(X,Y) = log 36
= 5.17 bits per outcome pair. (4.26)

87



4 The Noisy Channel Coding Theorem

The distribution of values for one die X  yields the uniform marginal 
distribution

p(X) = {1/6,1/6,1/6,1/6,1/6,1/6}, (4.27)

which has an entropy of

H(X) = log 6 (4.28)
= 2.59 bits per outcome. (4.29)

Similarly, the distribution of values for the other die yields the uniform 
marginal distribution p(Y) = p(X), which also has an entropy of 
H(Y) = 2.59 bits per outcome. Because these marginal distributions 
represent independent variables, the joint entropy H(X,Y) is the sum 
of the entropies of the marginal distributions:

H(X,Y) = H{X) + H(Y)
= 5.17 bits per outcome pair. (4.30)

The use of the terms bits per outcome pair and bits per outcome are 
not conventional, but are used here to stress precisely what the entropy 
is referring to. We shall use the more conventional term bits for the 
remainder of this chapter.

Key point. If X  and Y are independent then the entropy of 
the joint distribution p(X, Y) is equal to the summed entropies 
of its marginal distributions, H(X,Y) = H(X) + H(Y).

4.3. Mutual Information
Given a communication channel, the key question is this: what
proportion of the entropy in the output reflects information in the 
input? In other words, how much of the entropy in the output is telling 
us about the input, and how much is just noise? This question leads 
naturally to the notion of mutual information.

For a channel with inputs represented by the random variable 
X  and outputs represented by Y, the rate at which information is
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communicated is the mutual information between X  and Y, which 
depends on three entities:

1. the entropy H(X) of the input X;
2. the entropy H(Y) of the output Y;
3. the relationship between X  and Y.

If the output distribution has high entropy then it has the potential 
to provide a lot of information about input values. However, there is 
no point in having high output entropy and low input entropy, because 
then the large variability in the output values would have little to do 
with the corresponding small variations in input values.

Similarly, there is no point in having high input entropy and low 
output entropy, because then some of the variability in the input values 
is effectively ‘input noise’, inasmuch as it induces no corresponding 
variability in the output.

Finally, there is no point in having high input and high output 
entropy if the inputs and outputs are mutually independent. In this 
case, all of the output entropy, which could be providing information 
about the input, is just output noise.

In summary, to communicate as much information as possible 
through a noisy channel:

1. the input entropy should be high;
2. the output entropy should be high;
3. the noise entropy should be low.
The relationships between input entropy, output entropy and mutual 

information can be visualised from several equivalent perspectives, as 
shown in Figures 4.4-4.7.

The mutual information between X  and Y is defined as

which is more easily understood as the mean or expected value (see 
Appendix E) of the ratio

(4.31)

(4.32)
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We can separate the numerator and denominator of this ratio,

I(X,Y) = E[logp(x,j/) -  log(4.33)
= E[\ogp(x,y)} -E[log(p(x)p(t/))], (4.34)

where the final term can be rewritten as

E[log(p(x)p(y))] = E[logp(x)] + E[logp(y)], (4.35)

so that

I(X,Y) = E[logp(x,y)] — E[logp(x)] — E[logp(t/)] (4.36)
= E[log(l/p(x))] + E[log(l/p(y))] -  E[log(l/p(x, ?/))] (4.37) 
= H(X) + H{Y) -  H(X, Y) bits. (4.38)

Finally, if we rearrange Equation 4.38 then we can see that the joint 
entropy acts a kind of ‘container’ for the various entropy components, 
including mutual information

H(X,Y) = H(X) + H(Y)-I(X,Y). (4.39)

Key point. The mutual information between two variables 
X  and Y is the average reduction in uncertainty about the 
value of X  provided by the value of Y, and vice versa.

Calculating Mutual Information
In order to reinforce our intuitive understanding of the ideas introduced 
so far, we will work out the entropies associated with the distribution 
defined in Table 4.2.

The entropy of the marginal distribution p(X) can be calculated from 
Table 4.2 as

H(X) E ^ ) i o g —^  p(xi)
0.125 log(l/0.125) +0.375 log(l/0.375) +

0.375 log(l/0.375) +0.125 log(l/0.125)

(4.40)

(4.41)
(4.42)
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4.3. Mutual Information

Similarly, the entropy of the marginal distribution p(Y) can be 
calculated from Table 4.2 as

H(Y) = £ p( fc)  tog—  (4-43)
= 0.227 log(l/0.227) + 0.273 log(l/0.273) +

0.273 log(l/0.273) -f 0.227 log(l/0.227) (4.44) 
= 1.99 bits. (4.45)

The entropy of the joint distribution defined in Table 4.2 can be 
calculated by substituting the 16 probabilities into Equation 4.11 to 
give

H(X, Y) = 3.30 bits. (4.46)

However, some of the entries in Table 4.2 are zero, so p(xi,yj) = 0, 
which implies a surprise value of infinity. To deal with such cases, we 
define the product p(xi,yj) log(l/p(xi,yj)) to be zero if p(xi,yj) = 0.

We can immediately tell that X  and Y are not independent because 
the total entropy of the marginal distributions is larger than the entropy
of the joint distribution,

H(X) + H(Y) = 1.811 + 1.99 (4.47)
= 3.80 bits. (4.48)

Finally, these results can be used to calculate the mutual information,

I(X,Y) = H{X) + H(Y)-H(X,Y) (4.49)
= 1.81 + 1.99 -  3.30 bits (4.50)
= 0.509 bits. (4.51)

Thus, on average, each value of X  reduces our uncertainty about the 
corresponding value of Y by about half of a bit, and vice versa.

When considered in terms of output entropy, this implies that 
only 0.256 (i.e. I(X,Y)/H(Y) = 0.509/1.99) of the output entropy is 
information about the input, and the remainder is just channel noise.
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4 The Noisy Channel Coding Theorem

4.4. Conditional Entropy
An alternative way of viewing mutual information can be obtained by 
considering the entropy of the output in relation to channel noise. If 
we do not know the value of the input X  then our uncertainty about 
the output Y is given by its entropy H(Y). But if we do know the 
value of X  then our uncertainty about Y is reduced from H(Y) to a 
quantity called the conditional entropy H(Y\X), which is the average 
uncertainty in the value of Y after X  is observed. The vertical bar in 
H(Y\X) is read as ‘given’, so that H(Y\X) is the entropy of Y given 
X. In other words, the reduction in uncertainty regarding X  induced 
by knowing Y is the difference between H(Y) and H(Y\X),

I(X, Y) = H(Y) -  H(Y\X). (4.52)

Key point. The conditional entropy H(Y\X) is the average 
uncertainty in Y after X  is observed, and is therefore the 
average uncertainty in Y that cannot be attributed to X.

We can prove Equation 4.52 as follows. From Section 4.3 we have

j(x,y)
mx rny

,Vj) log
2=1 j = 1

pjxivyj) 
P(xi)p(Uj) '

(4.53)

According to the product rule (see Appendix F), p{x,y) = p(y\x)p(x), 
where p(y\x) is the conditional probability that Y given that 
We can use this to rewrite Equation 4.53 as

-
i = l j = l

which in turn can be rewritten as the difference
mx my mx my ^

lQg y y ]  -  Y Y p{Xu Vi) log
where the first term on the right is the entropy H(Y) and the final 
term is the conditional entropy H(Y|X), yielding Equation 4.52.
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By symmetry, Equation 4.52 implies that

I(X,Y) = H(X)-H(X\Y), (4.55)

where H(X\Y) is the average uncertainty we have about the value of 
X  after Y is observed. The conditional entropy H(X\Y) is the average 
uncertainty in X  after Y is observed, and is therefore the average 
uncertainty in X  that cannot be attributed to Y.

Conditional Entropy and Noise

Given that the output Y is equal to the input X  plus some channel
noise 77, we can find an expression for the entropy of the channel noise
as follows. We begin by substituting

Y = X  + r/, (4.56)

in Equation 4.52, which yields

I(X,Y) = H(Y)-H([X + rf]\X). (4.57)

If the value of X  is known then the uncertainty in X  is zero, so it makes 
no contribution to the conditional entropy H([X + T]]\X), and therefore

I(X,Y) = H(Y)-H(rj\X). (4.58)

However, the value of the noise T) is independent of the value of X , so 
H(r]\X) = H(rj), which allows us to rewrite Equation 4.58 as

I(X,Y) = H(Y) -  H(rj). (4.59)

Comparing this to Equation 4.52 implies that

H(Y\X) = H(r/), (4.60)

so the entropy of the noise is the conditional entropy H(Y\X).
Notice that we use the Greek letter 77 to represent a single value, and 

an enlarged version 7] to represent the random variable.
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4 The Noisy Channel Coding Theorem

For the example given in Table 4.2, we can rearrange Equation 4.59 
to calculate the entropy of channel noise as

H(ti) = H(Y) — I(X, Y) (4.61)
= 1.99 -0.509 (4.62)
= 1.481 bits. (4.63)

Key point. In a communication channel with input X  and 
output Y = X  + 77, the conditional entropy H(Y\X) is the 
entropy of the channel noise H(Tj) added to X  by the channel.

Schematic Representations o f Mutual Information
Historically, mutual information has been represented using Venn 
diagrams, as shown in Figures 4.4a and 4.4b. The channels represented 
in these two figures have identical input and output entropies, but 
they differ in the amount of overlap. In both cases, the input entropy 
is smaller than the output entropy because the channel adds some noise 
to each input before it emerges as a corrupted output.

The noisy channel implicit in Figure 4.4a has outputs which have 
little to do with the corresponding inputs, so this channel does not 
communicate data accurately. This can be seen from the relatively 
large proportion H(Y\X) of output entropy H(Y) which is just noise,

Figure 4.4. Venn diagrams of mutual information I(X, Y) between input X 
and output Y. Each circle represents the entropy of one variable, and the 
total area of the three labelled regions represents the joint entropy H(X, Y) = 
I(X, Y) + H(X\Y) + H(Y\X). The input entropy and output entropy is the 
same in (a) and (b), but the mutual information in (a) is smaller.
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and also from the relatively small proportion of output entropy which 
is shared with the input entropy H(X). This shared input/output 
entropy is the mutual information I(X,Y).

In contrast, the less noisy channel implicit in Figure 4.4b has outputs 
which are largely determined by the corresponding inputs, so this 
channel does communicate data fairly accurately. This can be seen 
from the relatively small proportion H(Y\X) of output entropy H(Y) 
which is just noise, and also from the relatively large proportion of 
output entropy which is shared with the input entropy H(X), giving 
the mutual information I(X,Y).

MacKay (20 03)34 showed that some areas in these Venn diagrams 
can become negative under certain circumstances. A representation 
which overcomes this problem is shown in Figure 4.5 (used in 
Jessop (1995)27 and MacKay (2003)34). This representation stresses 
the fact that the joint entropy acts as a container for all of the other 
constituent entropies. So, for a given amount of joint entropy, the 
amount of mutual information depends on the amount of overlap 
between the input and output entropies.

4.5. Noise and Cross-Talk
In Chapter 2, we interpreted entropy in terms of the number of equally 
probable input or output values. Shannon also used this interpretation 
to give an intuitive understanding of the conditional entropies H(X\Y) 
and H(Y\X). In his proofs, Shannon showed that the inputs (encoded 
messages) are all equally probable, provided they are sufficiently long.

H(X,Y) joint entropy

H(Y) output entropy H(X\Y)

H(Y\X) H(X) input entropy

I(X,Y)

Figure 4.5. The relationship between the input entropy H(X), output 
entropy H(Y), joint entropy H(X,Y), mutual information I(X,Y), and the 
conditional entropies H(X\Y) and H(Y\X).
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If a communication channel is noisy then there is inevitably a degree 
of cross-talk between input and output. Specifically, each input Xi 
could result in many different outputs (yi,..., ymy|x), and each output 
yj could be the result of many different inputs (xi,..., xmx|y), as shown 
in the fan diagram of Figure 4.6. Shannon showed that the number my\x 
of different outputs which could be generated by each input is limited 
by the channel noise

my\x = 2H(V) = 2h{y\x)' (464)

Of course, noise can also affect the number mx\y of different inputs that 
could yield each output:

m,|„  = (4.65)

Number of possible inputs 
for one output = 2H(X|Y)

Number of 
inputs = 2H<X)

Outputs Y

2H(Y|X)

i \

Number of 
outputs = 2H<Y>

11

\
Number of possible outputs 
for one input = 2H<YIX)

Figure 4.6. A fan diagram shows how channel noise affects the number of 
possible outputs given a single input, and vice versa. If the noise 77 in the 
channel output has entropy i f (77) = H(Y\X) then each input value could 
yield one of 2H(y|x  ̂ equally probable output values. Similarly, if the noise 
in the channel input has entropy H(X\Y) then each output value could have 
been caused by one of 2H(x|y) equally probable input values.
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We refer to H(Y\X) as the entropy of the channel noise because we 
are usually interested in estimating the input from an observed output, 
and the noise T] added to the input by the channel has a direct effect 
on our ability to estimate the input. However, noise can also affect 
our ability to estimate the output from an observed input. The extent 
to which noise affects each of these estimates is captured by the two 
complementary conditional entropies H(X\Y) and H(Y\X).

An alternative, but equivalent, interpretation of this is depicted in 
Figure 4.7. Because the channel adds noise, the output entropy is 
usually larger than the input entropy, and this is reflected in the areas 
of the shaded (outermost) discs in Figures 4.7a and 4.7b. The mutual 
information represented by the cross-hatched discs appears as part of 
the input and output entropy (these discs have the same area in both 
(a) and (b)). However, even though the amount of mutual information 
within the input and output entropy is the same, the proportion of input 
entropy occupied by the mutual information is relatively large, whereas 
the proportion of output entropy occupied by the mutual information 
is relatively small. Consequently, the amount of input noise H(X\Y) 
is small compared to the output noise H(Y\X).

Output noise 
entropy H(Y|X) Output 

entropy H(Y)

(a)
Mutual information l(X,Y) 

(b)

Figure 4.7. Visualising mutual information. The cross-hatched discs 
represent the mutual information of the same channel. They are the same 
size in (a) and (b), because they represent the same amount of mutual 
information.
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Key point. The conditional entropy H(Y\X) is the 
uncertainty of Y after X  is observed, and the conditional 
entropy H(X\Y) is the uncertainty of X  after Y is observed.

4.6. Noisy P ictures and C od in g Efficiency
In order to make these quantities more tangible, we will assume that 
the input or source is represented by the binary image X  shown in 
Figure 4.8a, and the output Y is represented by the noisy version of 
this image, shown in Figure 4.8b.

Because the channel is noisy, each pixel value has some probability 
of being corrupted. In this example, the channel is a binary symmetric 
channel, in which there is a 10% probability that each source pixel will 
be changed (either from 0 to 1, or vice versa) by the time it reaches 
the output. The joint probabilities for the four possible input/output 
pairs are shown in Table 4.3.

In the input image in Figure 4.8a, a proportion 0.724 of the pixels 
are black (0), and 0.276 of them are white (1), so its entropy is

H{X) = p(0)log(l/p(0))+p(l)log(l/p(l)) (4.66)
= 0.724 x log(l/0.724) + 0.276 x log(l/0.276) (4.67) 
= 0.851 bits/pixel. (4.68)

(a) (b)
Figure 4.8. (a) Binary image, in which each pixel is either black or white. 
This is the input X to a communication channel. (b) Output Y of a noisy 
communication channel, in which each pixel has had a 10% probability of 
being changed.
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In fact, because adjacent pixels tend to have similar values, this is 
an over-estimate. So the estimate of 0.851 bits/pixels is really the 
maximum entropy that these data could possess if data values were 
independent.

Similarly, in the output image in Figure 4.8b, a proportion 0.679 of 
the pixels are black, and 0.322 of them are white. If we again ignore 
the correlations between neighbouring pixel values, its entropy is

H{Y) = p(0)log(l/p(0))+p(l)log(l/p(l)) (4.69)
= 0.679 x log(l/0.679) + 0.322 x log(l/0.322) (4.70) 
= 0.906 bits/pixel. (4.71)

Because we know the state of each input pixel and the corresponding 
output pixel, we can work out the joint probability of each of the four 
possible input/output pairs of pixel values (i.e. 00, 01, 10, 11), listed 
in Table 4.3. These joint probabilities can then be used to estimate 
the joint entropy of the pair of input/output images (i.e. the average 
Shannon information per pair of input/output pixels),

2 2
H(X,Y) = J2 J2 p(Xi,y j)log-— - y  (4.72)

= p(0,0) log(l/p(0,0)) + p(0,1) log(l/p(0,1)) +
P(l, 0) log(l/p(l, 0)) + p( 1,1) log(l/p(l, 1)), (4.73)

which evaluates to

H(X, Y) = 0.651 x log(l/0.651)+ 0.073 x log(l/0.073) +
0.028 x log(l/0.028) + 0.249 x log(l/0.249) (4.74) 

= 1.32 bits. (4.75)

State lnput=0 Input=1
Output=0 p(0,0) = 0.651 p(0,l) = 0.028
Output=l p(l,0) = 0.073 p(l, 1) = 0.249

Table 4.3. Joint probabilities for corresponding pixels in input image X and 
output image Y in Figure 4.8. Each cell represents
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We can now work out the mutual information of the input and output 
images in Figure 4.8:

I(X,Y) H(X) + H(Y)-H{X,Y) (4.76)
0.851 +0.906- 1.321 (4.77)
0.436 bits. (4.78)

Thus, each value of the output Y reduces our uncertainty about the 
corresponding value of the input X  by about half of a bit.

Calculating Conditional Entropy

We can use the values calculated above to find the conditional entropy 
H(X\Y). Before we observe an output our average uncertainty 
about the value of the input X  is H(X) = 0.851 bits. Rearranging 
Equation 4.55 yields

H(X\Y) = H(X) — I(X, Y) 
= 0.851 - 0.436 
= 0.415 bits.

(4.79)
(4.80)
(4.81)

Thus, after we have observed our average uncertainty about the 
value of X  is reduced by I(X,Y) bits, to 0.415 bits.

Rearranging Equation 4.52 yields an equation for the conditional 
entropy H(Y\X) based on output entropy and mutual information, 
which can be used with estimates based on our data:

H(Y\X) = H(Y) -  I(X , Y) (4.82)
= 0.906 -  0.436 (4.83)
= 0.470 bits. (4.84)

As a check on our informal reasoning in Section 4.4, where we 
concluded that H(Y\X) = H(r]), we can also calculate the entropy of 
the noise added by the channel, and then compare it to the conditional 
entropy H(Y\X). Given that each pixel’s state is flipped with a 
probability p = 0.1 (or, equivalently, that 10% of pixel states are
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flipped), this amounts to channel noise 77 with an entropy of

H(l1) plog(l/p) + (1 -p)log(l/(l - ) ) (4.85)
0.1 log(l/0.1) + 0.91og(l/0.9) (4.86)
0.332 + 0.137 (4.87)
0.469 bits. (4.88)

The small difference between Equations 4.84 and 4.88 is due to the 
fact that the figure of 0.469 bits is based on the known probability that 
a pixel’s value will get flipped, whereas the figure of 0.470 is estimated 
from data which resulted from flipping pixel values. Just as we would 
not expect two coin flips to always yield a head and a tail, so we should 
not expect estimates based on data to be an exact match to estimates 
based on the known underlying probabilities.
Transmission Efficiency
Given that the output entropy is H(Y) = 0.906 bits and that the 
mutual information is 7(X, Y) = 0.436 bits, the proportion of output 
entropy that is also shared by the input is (see Figure 4.7b)

I(X,Y) __ 0.436
H{Y) ~ 0.906

= 0.481.

(4.89)

(4.90)

This is one measure of how efficiently information is communicated 
from input to output, and is defined here as the transmission efficiency. 
A transmission efficiency of 0.481 means that almost half of the entropy 
of the output depends on the input, and the remainder is due to noise 
within the channel.

4.7. Error Correcting C odes
The examples considered in Chapter 3 showed how it is possible 
to remove redundancy from a message in order to find a compact 
(efficient) coding. This is desirable for the noiseless channel assumed 
for Shannon’s source coding theorem. However, for Shannon’s noisy 
channel coding theorem, removing redundancy makes the encoded 
message vulnerable to the aimless effects of noise. For this reason,
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it makes sense to add redundancy to the encoded message before it is 
transmitted, and the particular form of redundancy added allows errors 
introduced during transmission to be detected and/or corrected. We 
now consider a basic form of error correcting code.

The simplest forms of error correcting codes are called block codes. 
As an example (from Pierce (1961)40) of a block code, if we want to 
communicate a message of 16 binary digits,

s = [1 10100110101100 0], (4.91)

then we can add redundancy as follows. First, we arrange the digits 
into a 4 x 4 grid,

1 1 0 1
0 0 1 1
0 1 0 1
1 0 0 0

then we check the parity within each row and column, and finally, we 
add an extra parity binary digit to obtain the encoded message

1 1 0 1 1
0 0 1 1 0
0 1 0 1 0
1 0 0 0 1
0 ' 0 1 1 -

Notice that if a row/column has an even number of Is then we add 
a parity digit of 0, otherwise we add a parity digit of 1. This adds an 
extra row on the right-hand side and an extra column at the bottom.
In this augmented 5x5  array, there are an even number of Is in every 
row and in every column. If the communication channel only accepts 
one binary digit at a time then we have to concatenate successive rows, 
so the encoded message now has 24 binary digits,

x = [1 1011001100101010001001 1]. (4.92)

But how does the addition of parity binary digits help to correct 
transmission errors?
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Suppose the first binary digit of the original encoded message is 
changed during transmission, so that the message received (with the 
erroneous zero marked with an asterisk) is

0* 1 0 1 1
0 0 1 1 0
0 1 0 1 0
1 0 0 0 1
0 0 1 1 -

In this corrupted message, the parity binary digits in the first row 
and column no longer tally with the number of Is. This error can 
be detected easily because there is no longer an even number of Is in 
every row and column. Note that this is true only for the first row and 
column, whereas all other parity binary digits do tally. In other words, 
the parity binary digits tell us there is an error, and they also tell us 
where that error is, making it easy to correct the error.

The parity binary digit is often called a parity bit. However, because 
the value of each parity binary digit is completely determined by the 
values of the binary digits in the 4 x4  grid, each parity binary digit 
provides zero bits of information in the encoded message. However, if 
the message is corrupted within a communication channel then each 
parity digit in the channel output can provide information about the 
correct state of each binary digit in the message.

In this example, the number of extra parity binary digits was eight, 
for an original message of 16 binary digits, so we have increased the 
number of binary digits communicated by a factor of 24/16 = 1.5. 
More generally, if we have a message of m = n x n binary digits 
which is encoded in this way then the total number of binary digits 
transmitted would be (n x n) + 2n, which increases the number of 
binary digits transmitted by a factor of (n2 + 2n)/n2 = 1 + 2/n. So 
the parity overhead associated with this strategy shrinks fairly rapidly 
as the length of the block code increases.

However, we need to remember that a 4 x 4 block code allows us to 
correct one error in every 24 (i.e. 4 x4  + 8) binary digits transmitted, 
whereas annxn  block code allows us to correct only one error in every 
n2 + 2n binary digits transmitted. For example, if the block code length
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is defined by n = 20 then adding parity digits increases the number of 
binary digits transmitted in each block from nx n = 400 to 440, which 
is a factor of 440/400 = 1.1, and allows us to correct only one error in 
every 440 binary digits transmitted. So, once again, there is a trade­
off between the robustness of the encoded message and the number of 
extra binary digits required to make the message robust.
Redundancy is Good, and Bad
As we have seen from the examples above, data that contains redundant 
values can be compressed by removing the redundancy. Additionally, if 
some values occur more often than others then this implies that further 
compression can be achieved by recoding data so that all recoded values 
occur equally often. This reduces the amount of data to be transmitted, 
but it also makes the data more prone to the effects of noise. Images 
and language are both highly redundant. This is good because it means 
that most data values are implicit in the rest of the data, which makes 
each data value robust with respect to the effects of noise. But it is 
also bad, because we have to process relatively large amounts of data 
to recover the relatively small amounts of information they contain.

4.8. Capacity o f a Noisy Channel
The most general definition of channel capacity for any channel is

C — max I(X, Y) bits. (4.93)
P(X)

This states that channel capacity C is achieved by the distribution p(X) 
which makes the mutual information /(X, Y) between input and output 
as large as possible. Using Equation 4.55, we can rewrite Equation 4.93:

C = max H(X) -  H(X\Y) bits. (4.94)

If there is no noise then H(X\Y) = 0, so this reduces to the definition 
of channel capacity for noiseless channels (Equation 3.2).

4.9. Shannon’s Noisy Channel C od in g Theorem
As discussed at the end of Chapter 1, all practical communication 
channels are noisy. To take a trivial example, the voice signal coming
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out of a telephone is not a perfect copy of the speaker’s voice signal, 
because various electrical components introduce spurious bits of noise 
into the telephone system.

As we have seen, the effects of noise can be reduced by using error 
correcting codes. These codes reduce errors, but they also reduce 
the rate at which information is communicated. More generally, any 
method which reduces the effects of noise also reduces the rate at which 
information can be communicated.

Taking this line of reasoning to its logical conclusion seems to imply 
that the only way to communicate information with zero error is to 
reduce the effective rate of information transmission to zero, and in 
Shannon’s day this was widely believed to be true. Then Shannon 
proved that information can be communicated, with vanishingly small 
error, at a rate which is limited only by the channel capacity.

Before quoting Shannon’s theorem, we should note that he used 
the word ‘equivocation’ to mean the average uncertainty that remains 
regarding the value of the input after the output is observed, i.e. the 
conditional entropy H(X\Y).

Now we give Shannon’s fundamental theorem for a discrete channel 
with noise, also known as the second fundamental coding theorem, and 
as Shannon’s noisy channel coding theorem50:

Let a discrete channel have the capacity C  and a discrete 
source the entropy per second H. If H <  C  there exists 
a coding system such that the output of the source can 
be transmitted over the channel with an arbitrarily small 
frequency of errors (or an arbitrarily small equivocation).
If H >  C  it is possible to encode the source so that the 
equivocation is less than H — C -he where e is arbitrarily 
small. There is no method of encoding which gives an 
equivocation less than H — C.

In essence, Shannon’s theorem states that it is possible to use a 
communication channel to communicate information with a low error 
rate e (epsilon), at a rate arbitrarily close to the channel capacity of 
C bits/s, but it is not possible to communicate information at a rate 
greater than C  bits/s.
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The Noisy Typewriter
As an example of Shannon’s theorem in action, we can make use of 
the noisy typewriter, shown in Figure 4.9. As its name suggests, the 
noisy typewriter produces letters (outputs) that are unreliably related 
to the (input) letter typed. Specifically, each typed letter produces one 
of three letters that are near (alphabetically) to the typed letter. For 
example, if the letter B is typed then the output could be A, B or C, 
and each of these outputs occurs with a probability of 1/3. Similarly, if 
C is typed then the output could be B, C or D, and if D is typed then 
the output could be C, D or E, and so on (for reasons that will become 
apparent, we use the space character as the 26th letter, and Z as the 
27th letter). The problem is that any output (e.g. C) could have been 
produced by any one of three inputs (e.g. B, C, or D), so the inputs are 
confusable given any particular output.

However, we can make this particular noisy communication channel 
communicate information without any error (i.e. with e = 0). If we 
restrict the inputs to every third letter in the alphabet, starting at 
B, then each input yields an output which is one of three letters. 
But because each output triplet contains three unique letters (i.e. the 
triplets are disjoint), each input message gives rise to a non-confusable 
set of output letters. The decoding method consists of a look-up table

Typed letter A B C D E F G H I J K L M N O P Q R S T U V W X Y S P Z

Output Z A B C D E F G H I J K L M N O P Q R S T U V W X Y S P Z A

Typed letter B W SP

Output
A A A A A A A A A
A B C D E F G H I J K L M N O P Q R S T U V W X Y S P Z

F igu re 4.9. T h e  n oisy  typew riter. T op : E ach  ty p ed  le tter y ie ld s on e o f  three 
p o s s ib le  letters. For exam ple, ou tp u t C  cou ld  have b een  p ro d u ced  by  typing 
B, C  or D. B o ttom : T o  en su re tha t ou tp u ts are n ot con fu sab le, w e use 
on ly  every th ird le tter in th e a lphabet. SP  =  space, w hich  is trea ted  as the 
26th le tter here.
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which maps each disjoint output triplet (e.g. [A, B, C]) to a unique 
input (e.g. B). For example, if the channel output is

XFZAEYXDU

then by using the look-up table we can recover the original message:

WE BE WET.

Note that we have rearranged the final triplet in our table to form [Y 
SPACE Z], so that we have access to the space character.

Using this code, there are nine possible inputs. If all inputs are used 
equally often, and if we type at a rate of one letter per second, then 
the entropy of the channel input is

H(X) = log 9 (4.95)
= 3.17bits/s. (4.96)

Again, if all nine inputs are used equally often then all 27 outputs will
also occur equally often, so the output entropy is

H(Y) = log 27 (4.97)
= 4.76bits/s. (4.98)

For each typed letter, there are three equally probable outputs, so the
average uncertainty in Y given X  is

H(Y\X) = log 3 (4.99)
= 1.59bits/s, (4.100)

which we can recognise as the entropy of the channel noise T]. From
these entropies, we can work out that the mutual information is

I(X,Y) (4.101)
= 4.76-1.59 (4.102)
= 3.17bits/s. (4.103)
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We can confirm this as follows. Using this code, transmission is free 
of errors, so the average uncertainty H(X\Y) in the input given an 
output is zero. This allows us to calculate the mutual information as

Also, we know that the mutual information cannot be larger than the 
input entropy, so if the mutual information is the same as the input 
entropy then it follows that the channel capacity equals the input 
entropy. In other words, of all the possible input distributions, the 
uniform distribution of inputs used here is guaranteed to maximise 
the mutual information of this particular channel, which (according 
to Equation 4.93) is the channel capacity C = 3.17 bits/s. In general, 
provided the entropy of the noise distribution is fixed (e.g. a binary 
symmetric channel), a uniform input distribution is guaranteed to 
maximise the mutual information of a discrete noisy channel.

We could object that this typewriter is not much use, because it has 
only 9 letters. But, by using the code described above, we have turned 
a noisy device into a reliable communication channel. Additionally, 
if we treat this noisy typewriter as a communication channel then we 
can encode any message we choose, and then transmit it through this 
channel with 100% reliability. For example, if our message uses 27 
equally probable letters then we need log 27 = 4.75 binary digits to 
represent each letter. Thus, given that each typed letter represents 
3.17 bits, we could use two typed letters to transmit each letter in our 
message. In this way, we have effectively transformed a noisy typewriter 
into a fully functional error-free communication channel.

In this example, the error rate is zero. However, what makes the 
noisy coding theorem remarkable is that Shannon proved the error rate 
can be reduced to an arbitrarily small value for any data set.

I(X,Y) = H(X)-H(X\Y) (4.104)
(4.105)
(4.106)

-  3.17-0.00
= 3.17 bits/s.
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4.10. Why the Theorem  is True
Describing Shannon’s proof in detail would require more mathematical 
tools than we have available here, so this is a brief summary which 
gives a flavour of his proof.

Consider a discrete or continuous channel with a fixed amount of 
channel noise and capacity C. We have a set of N messages s i, ..., s# 
which have been encoded to produce inputs Xi,... ,xjy such that the 
entropy H of these inputs is less than the channel capacity C. Now 
imagine that we construct a bizarre codebook in which each randomly 
chosen input x* gets interpreted as a fixed, but randomly chosen, 
output yi. By chance, some outputs will get assigned the same, or 
very similar, inputs, and vice versa, leading to a degree of cross-talk. 
Consequently, when we use this codebook to decode outputs, we are 
bound to misclassify a proportion of them. This proportion is the 
error rate of the codebook. We then repeat this madness until we have 
recorded the error rate of all possible codebooks.

Shannon proved that, provided H <  <7, when averaged over all 
possible codebooks, the average error approaches zero as the length 
of the inputs x increases. Consequently, if we make use of long inputs, 
so that the average error rate e is small, then there must exist at least 
one codebook which produces an error as small as e. Notice that if all 
codebooks produce the same error rate e then the average error rate 
is also e, but if just one codebook has an error greater than e then at 
least one codebook has an error rate smaller than e.

As Pierce (1961)40 notes, some people regard the logic which 
underpins Shannon’s proof as weird, but such an outrageous proof also 
gives some insight into the distinctive mind which created it.

Key point. When averaged over all possible codebooks, if 
the average error rate is e then there must exist at least one 
codebook which produces an error as small as e.
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4.11. Summary
Mutual information is a subtle concept, so it is important to understand 
it properly. One way to think of it is as the average amount of 
uncertainty in the value of one variable that is eliminated when the 
value of another variable is known. When considered in terms of 
communication channels, it is the amount of uncertainty in the value 
of the input that is eliminated when the value of the output is known.

After an informal account of mutual information, we considered the 
inputs and outputs of a noisy channel for the case of a binary image 
and represented its joint probability distribution in a 2 x 2 table. This 
was used to calculate the entropies of the input, output, and joint 
distribution, which were then used to calculate the mutual information 
of the noisy channel.

We also explored a simple form of error correcting code, which works 
by adding redundancy to encoded messages. However, we found that 
such error correcting codes always require an increase in the total 
number of binary digits, which reduces the amount of information per 
binary digit transmitted.

We then examined Shannon’s noisy channel coding theorem. An 
example of this theorem ‘in action’ was provided in the form of a noisy 
typewriter. Finally, we considered why Shannon’s noisy channel coding 
theorem is true.
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Chapter 5

Entropy of Continuous Variables

All things physical are information-theoretic in origin.
Wheeler J, 1990.

5.1. In troduction
So far, we have considered entropy and mutual information in the 
context of discrete random variables (e.g. coin flipping). However, 
we also need a definition of entropy for continuous random variables 
(e.g. temperature). In many cases, results obtained with discrete 
variables can easily be extended to continuous variables, but 
information theory is not one of those cases.

Even though Shannon derived a measure of entropy for 
continuous variables from the definition used for discrete variables, 
MacKay (2003)34 simply notes that the equation which defines 
continuous entropy is illegal. Others effectively ignore the problem by 
considering entropy only in the context of discrete variables. None of 
these are very helpful if our data consist of samples from a continuous 
variable, such as daily temperature or the heights of 5,000 people, 
where we wish to estimate the entropy of these data (as in Figure 
5.1). Fortunately, there are ways to generalise the discrete definition 
of entropy to obtain sensible measures of entropy for continuous 
variables26’36’39541553.

In this chapter we will follow the historical development of entropy 
for continuous variables. Thus, we begin with a seemingly innocuous 
definition (which leads to infinities), before considering definitions 
which allow entropy to be calculated.

I l l



5 Entropy of Continuous Variables

5.2. The Trouble W ith Entropy
To estimate the entropy of any variable, it is necessary to know the 
probability associated with each of its possible values. For continuous 
variables this amounts to knowing its probability density function or 
pdf which we refer to here as its distribution (see Appendices D and 
E). We can use a pdf as a starting point for estimating the entropy 
of a continuous variable by making a histogram of a large number of 
measured values. However, this reveals a fundamental problem, as we 
shall see below.

In order to make a histogram of any continuous quantity X, such as 
human height, we need to define the width Ax of bins in the histogram. 
We then categorise each measured value of X  into one histogram bin, 
as in Figure 5.1. Then the probability that a randomly chosen value of 
X  is in a given bin is simply the proportion of values of X  in that bin 
(see Appendix D). The entropy of this histogram is then given by the 
average surprisal of its bins (here indexed with i),

H(Xa ) = Y  (prob X  is in zth bin) x lo g--- — —:— . . , (5.1)v ' ^  prob X  is m 2th bini

F igu re 5.1. A h isto g ram  o f  n — 5,000 h yp o th e tica l va lues o f  hum an height 
X , m easu red  in inches. T h is  h is tog ram  was con stru c te d  by  d iv id in g  values 
o f  X  in to a num ber o f  in tervals or bins, where each  b in  has w id th  Ax, and 
then  cou n tin g  h ow  m any va lues are in each  bin.
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where X A indicates that we are dealing with a continuous variable 
which has been discretised using a histogram in which each bin has 
a width equal to Ax. We have purposely not specified the number of 
bins; in principle, it can be infinite. In practice, it suffices to simply use 
enough bins to include all of the values in our data set, as in Figure 5.1.

The probability that a randomly chosen value of X  is in the ith bin 
is given by the area a* of the ith bin, expressed as a proportion of the 
total area A of all bins. A bin which contains n* values has an area 
equal to its height rii times its width Ax,

at = rii x Ax, (5.2)

so that

the probability that X  is in the ith bin = a*/A, (5.3)

where

A = y  (5.4)
i

In effect, the ith bin area in this normalised histogram is the proportion

Pi = di/A (5.5)

of the total histogram area. It will prove useful later to note that the 
sum of these proportions (i.e. total area) of this normalised histogram 
is necessarily equal to 1:

y p  = i. (5.6)
i

If the ith bin in this normalised histogram has height p(xi) and width 
Ax then its area (height times width) can be obtained from

(5.7)
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5 Entropy of Continuous Variables

which allows us to rewrite Equation 5.1 more succinctly as

H(Xa ) = y p . l o g -  (5.8)ii

Given that the probability Pi corresponds to the area of the zth column, 
we can interpret the height p(xi) = Pi/Ax of the zth column as a 
probability density. Substituting Equation 5.7 in Equation 5.8 yields

H{Xa ) = ^Tp(xi)x log -7—7

However, given that the final term can be written as

’ logRb + loĝ ’
we can rewrite Equation 5.9 as

H(X“) = + l o g ^ E f .

where, according to Equation 5.6, the sum = 1, so that

(5.9)

(5.10)

H{XA) $ > * 0  Ax log 1
P(*i) + log Ax (5.11)

Thus, as the bin width approaches zero, the first term on the right 
becomes an integral, but the second term diverges to infinity:

H(X) p{x) log 1
p(x) dx +  00. (5.12)

And there’s the rub. For a continuous variable, as the bin width Ax 
approaches zero, so 1/Ax, and therefore log(l/Ax), and therefore the 
entropy of A, diverges to infinity.

One consequence of this is that the entropy of a continuous variable 
increases with the precision of our measurements (which determines 
the bin width), as shown in Figure 5.2. This makes sense if we 
bear in mind that increasing the precision of the measurements ought
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to increase the information associated with each measurement. For 
example, being told that a table is measured as five feet wide and 
that the device used to measure its width had a precision of ±0.1 inch 
provides more information than being told that the measurement device 
had a precision of ±1 inch. In practice, it means that we must always 
take account of the bin width when comparing the entropies of two 
different continuous variables.

As we shall see in Section 6.4, the problem of infinities disappears 
for quantities which involve the difference between two entropies, such 
as mutual information.

Key point. The estimated entropy H(XA) of a (discretised) 
continuous variable increases as the width of bins in that 
variable’s histogram decreases.

5.3. Differential Entropy
Equation 5.12 states that the entropy of a continuous variable is infinite, 
which is true, but not very helpful. If all continuous variables have 
infinite entropy then distributions that are obviously different have the 
same (infinite) entropy.

A measure of entropy called the differential entropy of a continuous 
variable ignores this infinity; it is defined as

H d i f ( X )  =  / log —— (5.13)
J  X — — CX5 P \ % )

where the subscript d if denotes differential entropy (although this is 
not used where the intended meaning is unambiguous). Thus, the 
differential entropy is that part of the entropy which includes only the 
‘interesting’ part of Equation 5.12.

Key point. The entropy of a continuous variable is infinite 
because it includes a constant term which is infinite. If 
we ignore this term then we obtain the differential entropy 
Hdif(X) = E[log(l/p(x))], the mean value of log(l/p{X)).
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5 Entropy of Continuous Variables

Calculating Differential Entropy

In practical terms, given a large sample of values from an unknown 
distribution p(X), how can we estimate the differential entropy of these 
data? Our first step is to construct a histogram, on the assumption 
that this is an approximation to an underlying continuous distribution 
p(X). Using this histogram, the differential entropy Hdif(X) can then 
be estimated from a discrete approximation to Equation 5.13:

Hdif(XA) « J2p(Axl o g— (5.14)

From Equation 5.7, we can substitute Pi =  p(xi) Ax  to obtain 

Hd lf(XA) *  £  P i log ̂
i

= ^ P t l o g -  + ^ P l logAa:

E  *°g pr -  log Ax

(5.15)

(5.16)

(5.17)

Prom Equation 5.8, we can recognise the first term on the right as 
H (X A), so that the differential entropy in Equation 5.13 can be 
approximated as

Hdif(X)« tf(XA) - l o g — . (5.18)

Estimates of differential entropy Hdif{XA) (calculated using 
Equation 5.17) are shown in Figure 5.2 together with estimates of 
entropy H (X A) (calculated using Equation 5.8), for comparison.

Note that these data are drawn from a Gaussian distribution (see 
Section 5.6 and Appendix G). This particular Gaussian distribution has 
a standard deviation equal to one, which implies a differential entropy 
of Hdif(X) = 2.05 bits (see Equation 5.47). Thus, for the large data 
set (of 1 million values) and the ‘reasonable’ bin widths in Figures 5.2b 
and 5.2c, Equation 5.17 provides a good approximation to the known 
value of differential entropy11.
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5.3. Differential Entropy

Substituting Equation 5.14 in Equation 5.11, the discretised version 
of X  has a predicted entropy of

H(Xa ) *  Hdif(X) + lo g— , (5.19)

which is in good agreement with the values in in Figure 5.2.
An alternative approach consists of fitting a parametric function 

(e.g. Gaussian) to the data and then using an analytic expression to 
find the differential entropy of the fitted function (e.g. Equation 5.47). 
This parametric method is related to the more general kernel estimation 
methods. For more recent advances, see Nemenman et al (2002)36.

(a) B in  w id th  =  1
H d l f { X A ) =  2.104 b it s  
H ( X A ) =  2.104 b it s

(b) B in  w id th  =  0.5
H d l f ( X A ) =  2.062 b it s  
H { X a ) =  3.062 b it s

(c) B in  w id th  =  0.1
H d if  ( X A ) =  2.047 b it s  
H ( X A ) =  5.369 b it s

F igure 5.2. (a-c) E ffect o f  h is tog ram  bin  w id th  Ax on  the d ifferen tia l en tropy  
Hdlf(XA) and en tropy  H(XA) o f 1 m illion  sam p le s from  the G au ssian  
d istr ibu tion  show n  in (d), which has a variance o f  on e and a differentia l 
en tropy Hdif(X ) =  2.05 b its (see E qu a tion  5.47). Hdif(XA) values w ere 
e stim a ted  u sin g E qu a tion  5.17, and H(XA) va lues w ere e st im a ted  u sin g  
Equation  5.8.
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5 Entropy of Continuous Variables

5.4. Under-Estimating Entropy
This section can be skipped by readers unfamiliar with Bayes’ rule52 
(see Appendix F). Whether a variable X  is continuous or discrete, using 
the relative frequency (i.e. proportion) of observed values to estimate 
the probability of that value yields biased estimates of entropy. For 
clarity, we will assume X  is discrete and has m possible values, but the 
analysis here applies to both discrete and continuous variables.

In this section only, we will use Pi to represent the probability of the 
zth value of X, and Pi to represent the estimated value (i.e. relative 
frequency) of Pi. For reasons we will not discuss, Pi is called the 
maximum likelihood estimate (MLE) of Pi. We will make a distinction 
between the true entropy based on Pi values

m ..
H(X) = £ > l o g  -  (5.20)

i=1 2

and the (maximum likelihood) estimate of entropy based on Pi values
m ..

Hm le (X) = £  log (5.21)
i=  1 Fi

Each estimate Pi implicitly assumes a uniform prior probability 
distribution for Pi values (i.e. all values of Pi are a priori equally 
probable). However, because entropy is a logarithmic function of P*, 
this uniform prior imposes a non-uniform prior on entropy. In other 
words, by assuming a uniform prior for P*, we implicitly assume that 
some values of entropy are more probable than others, which is an 
unwarranted assumption in this case.

It can be shown that the resultant biased estimate of entropy Hmle 
based on Pi values tends to be smaller than the true entropy, and that 
this bias is reduced by using a uniform prior distribution for entropy39.

Key point. If a variable X  has entropy P, and if each value 
of the probability distribution p(X) is estimated as a relative 
frequency then the resultant estimated entropy H m l e  tends 
to be smaller than H.
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5.5. P roperties o f Differential Entropy
Here, we explore what happens to the entropy of a continuous variable 
X  when it is transformed to another variable Y. In subsequent sections, 
we shall see how this can be used to transform a variable X  so that 
each value of Y provides as much information as possible.

Entropy o f Transformed Variables

Consider two continuous variables X  and Y which are related by a 
function g:

y = (5.22)

If the function g is monotonic then each value of X  gets mapped to a 
unique value of Y, and it can be shown that the entropies of X  and Y 
are related by

Hdif(Y) = Hdif{X) + E[\og\dY/dX\], (5.23)

where the vertical bars indicate absolute value.

Multiplying by a Constant

The entropy of a discrete variable does not depend on the values of that 
variable but only on the number of values and the probability that each 
value occurs. For example, doubling all values of a die increases the 
range of values (from 1-6 to 2-12), but it does not alter the entropy of 
the resultant histogram of observed values (see Section 2.5). However, 
unlike a discrete variable, the entropy of a continuous variable does 
depend on the range of values.

For example, if X  is multiplied by a constant c so that Y = cX  then 
the derivative

dY/dX = c, (5.24)

is constant, and therefore

(5.25)
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5 Entropy of Continuous Variables

Substituting this into Equation 5.23,

Hdif(Y) = H,nf(X + log |c| bits.(5.26)

For example, if Y = 2X  then

dY/dX = 2, (5.27)

and therefore

E[iog |dy/dX|] -  i , (5.28)

so that

HdifiX) = Hdif(X) + lbit. (5.29)

Thus, even though Y is completely determined by X, Y contains one 
more bit of information than X. How can this be? This apparent 
paradox is related to the difficulty in defining continuous entropy. If we 
take a pragmatic approach and simply assume that finite measurement 
precision translates to a fixed width of measurement ‘bins’ then, by 
doubling the range of X, we have doubled the number of bins in the 
measured range, giving one more bit of information.

Key point. Multiplying a continuous variable X  by a 
constant c changes the range of values, which changes the 
entropy of X  by an amount log |c|.

Adding a Constant

If Y = X  + c then the distribution p(Y) of Y values is the same as the 
distribution p(X) of X  values, but it is shifted along the x-axis by a 
distance c so that p(Y) = p(X + c). As in the previous examples, we 
evaluate the derivative

dY/dX = (dX + c) jdX
= 1,

(5.30)
(5.31)
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and therefore

E[log \dY/dX\ ] = 0. (5.32)

Substituting this into Equation 5.23 implies that if Y = X  + c then

Thus, adding a constant to X  has no effect on its entropy.

Key point. Adding a constant c to a continuous variable X  
has no effect on its entropy.

5.6. Maximum Entropy D istributions
The reason we are interested in maximum entropy distributions is 
because entropy equates to information, so a maximum entropy 
distribution is also a maximum information distribution. In other 
words, the amount of information conveyed by each value from a 
maximum entropy distribution is as large as it can possibly be. 
This matters because if we have some quantity 5 with a particular 
distribution p(S) and we wish to transmit 5 through a communication 
channel, then we had better transform (encode) it into another variable 
X  with a maximum entropy distribution p(X) before transmitting it. 
An example of how the fly’s eye does just this is given in Section 7.7.

Specifically, given a variable 5, which we wish to transmit along a 
communication channel by encoding 5 as another variable X, what 
distribution should X  have to ensure each transmitted value of X  
conveys as much information as possible? For example, if S is the 
outcome of throwing a pair of dice then the distribution of 5 is shown 
in Figure 3.2b, which is clearly not uniform. More importantly, if 
we simply encode the outcome values S between 2 and 12 as their 
corresponding binary numbers X, then the distribution of Os and Is 
in the resultant set of codewords is far from uniform. However, if 
S is encoded as a binary variable X  using Huffman coding then the 
distribution of Os and Is in the resultant set of codewords is almost 
uniform (i.e. the proportion of Os and Is is about the same). Of all

Hdif(Y) = Hdif(X) bits. (5.33)
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the possible distributions of Os and Is, the uniform distribution has 
maximum entropy, and is therefore a maximum entropy distribution. 
Thus, Huffman coding implicitly encodes iid data as a maximum 
entropy distribution, which is consistent with the fact that it provides 
almost one bit per binary digit (i.e. it provides a fairly efficient code).

In contrast, for continuous variables, the distribution with maximum 
entropy is not necessarily the uniform distribution. We consider three 
types of continuous variable, each of which has a different particular 
constraint but is free to vary in every other respect. These constraints 
are:

1. fixed upper and lower bounds;

2. fixed mean, with all values greater than or equal to zero;

3. fixed variance (e.g. power).

Each of these constraints is associated with a different maximum 
entropy distribution. For the constraints above, the maximum entropy 
distributions are (1) uniform, (2) exponential, and (3) Gaussian.
Entropy o f a Uniform Distribution
Consider a random variable X  with fixed upper and lower bounds, 
distributed uniformly between zero and a so that the probability density

F igu re 5.3. A un iform  d is tr ib u t ion  w ith  a ran ge be tw een  zero  and tw o has 
an area o f  on e (= 2 x 0.5), and an en tropy  o f  lo g  2 =  1 bit.
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p(x) has the same value for all values of X , for example as in Figure 5.3. 
The width times the height of p(X) must be one, so p(pc) x a = 1, 
and so the probability density function of a variable with a uniform 
distribution is

p(x) = 1/a. (5.34)

The probability density p(x) of x is therefore equal to 1/a between zero 
and a, and equal to zero elsewhere. By convention, a random variable 
X  with a uniform distribution which is non-zero between zero and a is 
written as

X ~ U ( 0 ,a). (5.35)

The entropy of this uniform distribution is therefore

H d if(X )  = / p(x) log a dx
Jx=o

(5.36)

= log a bits. (5.37)

This result is intuitively consistent with the entropy of discrete 
variables. For example, in the case of a discrete variable, we know 
from Equation 2.69 that doubling the number of possible outcome 
values increases the entropy of that variable by one bit (i.e. by log 2 
bits). Similarly, for a continuous variable, doubling the range of 
continuous values effectively doubles the number of possible outcome 
values (provided we are content to accept that this number is infinitely 
large for a continuous variable) and also increases the entropy of that 
continuous variable by one bit. Thus, if the range of X  values is 
increased from a to b = 2a then the entropy of Y = 2X  should increase 
by exactly one bit in relation to the entropy of X, i.e.

= log b (5.38)
= log 2 a (5.39)
= log a + 1 bits, (5.40)

which is the expected result.
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More importantly, it can be shown41 that if a variable has a fixed 
lower and upper bound (e.g. zero and a) then no probability distribution 
can have a larger entropy than the uniform distribution.

Key point. Given a continuous variable X  with a fixed range 
(e.g. between zero and two), the distribution with maximum 
entropy is the uniform distribution.

An odd feature of the entropy of continuous distributions is that 
they can have zero or negative entropy. For example, if X  has a range 
of a = 1 then Hdif{X) = 0, and if a = 0.5 then Hdif(X) = -1. 
One way to think about this is to interpret the entropy of a uniform 
distribution relative to the entropy of a distribution with an entropy of 
Hdif(X) = 0 (i.e. with a range of a = 1). If a = 2 then this distribution 
has an entropy which is Hdif{X) = 1 bit larger than the entropy of a 
distribution with a = 1. And if a = 0.5 then the distribution has an 
entropy which is one bit smaller than that of a distribution with a — 1. 
Similar remarks apply to the entropy of any continuous distribution.

Entropy o f an Exponential D istribution
An exponential distribution is defined by one parameter, which is 
its mean, fi. The probability density function of a variable with an

x

F igu re 5.4. An exp on en tia l d is tr ib u t ion  w ith  a m ean  o f  p =  1 ( in d ica ted by 
th e v ertica l da sh ed  line) has an en trop y  o f  Hdif(X) = 1.44 bits.
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exponential distribution is

{- e~ i x >  0 (5.41)

0 x <  0,

as shown in Figure 5.4 for p = 1. By convention, a random variable X  
with an exponential distribution which has a mean of p is written as

X  ~ exp(/i). (5.42)

It can be shown41 that the entropy of an exponential distribution with 
mean p is

Hdif(X) = log ep bits. (5.43)

More importantly, if we know nothing about a variable except that it is 
positive and that its mean value is p then the distribution of X  which 
has maximum entropy is the exponential distribution.

Key point. Given a continuous positive variable X  which 
has a mean //, but is otherwise unconstrained, the distribution 
with maximum entropy is the exponential distribution.

Entropy o f a Gaussian D istribution
A Gaussian distribution is defined by two parameters, its mean p and 
its variance u, which is the square of its standard deviation cr, so v = a2. 
(See Figure 5.5 and Appendix G.) The probability density function of 
a variable with a Gaussian distribution is

1 ( z - m)2p(x) = (5.44)

where the mean determines the location of the peak of the probability 
distribution, and the variance, which is the average squared difference 
between x and the mean,

(5.45)
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determines how spread out the Gaussian distribution is. By convention, 
a random variable X  with a Gaussian distribution which has mean [u 
and variance v is written as

X -  N(p,v). (5.46)

It can be shown41 that the entropy of a Gaussian variable is

Hdif(X) = 1/2 log 27recr2 (5.47)
= 1/2 log 27re + log a (5.48)
= 2.05 4- log <j bits. (5.49)

Given that log 1 = 0, a Gaussian distribution with a standard deviation 
of g = 1 has an entropy of 2.05 bits. If X  is constrained to have a fixed 
variance a2 (which equates to power in terms of physics) then it can 
be shown41 that no probability distribution has larger entropy than the 
Gaussian distribution.

Key point. Given a continuous variable X  which has a 
variance cr2, but is otherwise unconstrained, the distribution 
with maximum entropy is the Gaussian distribution.

Figure 5.5. A Gaussian distribution with a mean of p = 0 and a standard  
deviation of cr = 1 (indicated by the horizontal dashed line), has an en tropy  
of Hdif = 2.05 bits.
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Why Information Looks Like Pure Noise

One particularly intriguing consequence of the final result above is that 
in order for a signal to carry as much information as possible, it should 
be indistinguishable from pure noise.

Most physical systems that generate a signal have limits defined by 
the amount of available energy per second, which amounts to a power 
limitation, and this, in turn, corresponds exactly to a limit on the 
variance of a signal. We already know that a signal with a fixed variance 
carries as much information as possible only if it is Gaussian, which 
is why it is desirable to make power-limited signals have a Gaussian 
distribution. Thus, when we measure some power-limited quantity, 
like the voice on a telephone, we should recode it into a signal with 
a Gaussian distribution in order to convey as much information as 
possible for each watt of power expended. But what about the noise 
that inevitably gets added to that signal?

Noise usually consists of a mixture of unwanted signals from other 
sources, and the central limit theorem guarantees that such mixtures 
tend to be Gaussian (see Appendix G). Consequently, when our 
recoded Gaussian signal gets corrupted by Gaussian noise, it yields a 
(signal plus noise) measurement with a Gaussian distribution of values.

So, when a neurophysiologist measures the output of brain cells, 
he does not complain if his recordings look like pure Gaussian 
noise, because that is precisely what Shannon would predict of a 
power-limited system which communicates information as efficiently 
as possible.

5.7. Making Sense o f Differential Entropy
Differential entropy is a peculiar concept, inasmuch as it appears to 
have no meaning when considered in isolation. The fact that a variable 
has a definite amount of differential entropy tells us almost nothing 
of interest. In particular, knowing the amount of differential entropy 
of a variable does not place any limit on how much information that 
variable can convey (because each value of every continuous variable 
can convey an infinite amount of information). This stands in stark 
contrast to the case for a discrete variable, where entropy determines
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precisely how much information it can convey. However, given that the 
accuracy of every measurement is limited by noise, this measurement 
noise places a strict upper limit on the information-carrying capacity of 
all continuous variables. Thus, even though each value of a continuous 
variable can, in principle, convey infinite information, the amount of 
information it conveys in practice depends on the accuracy of our 
measurements. In effect, measurement noise divides up the range of 
probabilities of a continuous variable into a finite number of discrete 
intervals; the number of intervals increases as the measurement noise 
decreases. The exact consequences of this discretisation of continuous 
variables by measurement noise will be examined in more detail in 
Section 7.3.

Key point. Noise limits the amount of information conveyed 
by a continuous variable and, to all intents and purposes, 
transforms it into a discrete variable with m discriminable 
values, where m decreases as noise increases.

5.8. What is Half a Bit o f Information?
If a variable has a uniform distribution then one bit halves our range 
of uncertainty about its value, just as it halves the number of possible 
routes in Figure 1.2. However, we often encounter fractions of a bit. 
So, what does it mean to have, say, half a bit of information?

We can find out what a fraction of a bit means by copying the recipe 
we use for whole bits. For clarity, we assume that the variable X  
has a uniform distribution and that we know nothing about which 
value X  has. For example, the distribution of the 8-sided die shown 
in Figure 2.7b has an entropy of three bits, which corresponds to an 
initial uncertainty range of 1 or 100%. If we are given H = 2 bits 
of information about the value of X  then this reduces our range of 
uncertainty by a factor of 2H = 22 = 4, so our uncertainty about the 
value of a variable is one quarter as big as it was before receiving these 
two bits. Because the die has eight sides, this would mean that we 
now know the outcome is one of only two possible values (i.e. 1/4 of 
8). More generally, if we treat our initial uncertainty as 1 (or 100%) 
then this implies that our residual uncertainty is U = 1/4 (or 25%), as
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■5 .8 . What is Half a Bit of Information?

a) After receiving 2 bits, U=25%

-------->
Residual
uncertainty

b) After receiving 1 bit, U=50%

Residual uncertainty

c) After receiving 1/2 a bit, U=71%

k ----------------------------- >
Residual uncertainty

F igu re 5.6. R esidua l uncerta in ty  U. I f  we have no in fo rm ation  a b ou t the 
lo ca t ion  o f  a p o in t on  a line o f  len gth  1 th en  ou r in itia l un certa in ty  is U =  1. 
(a) A fter rece iv in g 2 bits, w e know  which  quarter con ta in s th e point, bu t w e 
d o  n ot know  where it is w ith in  tha t quarter, so  U =  1/4. (b) A fter rece iv in g
1 bit, w e know  wh ich  h a lf con ta in s th e point, so  ou r residua l un certa in ty is 
U =  1/2. (c) A fter rece iv in g  1/2 a bit, we know  the p o in t lies w ith in  a
reg ion  con ta in in g  0.71 o f  th e line, so  ou r residua l un certa in ty  is U =  0.71.

shown in Figure 5.6. Note that the term residual uncertainty is unique 
to this book.

Initially, our uncertainty spanned the whole line, which has a length 
of one. After receiving two bits, the region depicting the residual 
uncertainty has a length of 0.25. The precise location of this region 
depends on the particular information received, just as the particular 
set of remaining destinations in the navigation example in Section 1.3 
depends on the information received.
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5 Entropy of Continuous Variables

The recipe we have just used applies to any number of bits H , for 
which the residual uncertainty is

U = 2 ~h , (5.50)

as shown in Figure 5.7. So, if we have H = 1 bit then our residual 
uncertainty is

U = 2-1 (5.51)
= 1/2, (5.52)

which means that our residual uncertainty is half as big as it was before 
receiving this one bit.

Equation 5.50 applies to any value of H , including fractional values. 
It follows that if we receive half a bit (H = 1/2) then our residual 
uncertainty is

U = 2-1/2 
= 0.71

times as big as it was before receiving half a bit.

(5.53)
(5.54)

F igu re 5.7. R esidua l un certa in ty  U after rece iv in g different am oun ts of 
in fo rm a tion  H , where U =  2~H.
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5.8. What is Half a Bit of Information?

Let’s keep this half a bit of information, and let’s call our residual 
uncertainty U\ = 0.71. If we are given another half a bit then our new 
residual uncertainty, which we call U2, is our current uncertainty U\ 
reduced by a factor of 0.71. Thus, after being given two half bits, our 
new residual uncertainty is

U2 = 0.71 x Ui (5.55)
= 0.5. (5.56)

So, as we should expect, being given two half bits yields the same 
residual uncertainty (0.5) as being given one bit.

Finally, the residual uncertainty for one quarter of a bit is

U = 2“1/4 (5.57)
= 0.84. (5.58)

In other words, after receiving one quarter of a bit, our uncertainty is
0.84 times what it was before receiving it.

The Uncertain Table Length

The table I am sitting at has a length x that has been chosen from a 
warehouse in which the distribution of table lengths is uniform, with 
a range between zero and 10 feet. Let’s assume that your initial 
uncertainty about where x lies in this range is 100% or 1. If I tell 
you that my table is less than five feet long then I have halved your 
uncertainty, which amounts to one bit, and therefore leaves you with a 
residual uncertainty of U — 0.5. If I then tell you my table is less than 
2.5 feet long then I have again halved your uncertainty, which amounts 
to another bit, and which leaves you with a residual uncertainty of 
U = 0.25. This is fairly straightforward, as we know that two bits 
should reduce your uncertainty by a factor of four (i.e. from 1 to 0.25).

Now, let’s start over and make this scenario more interesting. What if 
I tell you that my table is less than 7.1 feet long? Then your uncertainty 
is 0.71 = 7.1/10 times as large as your initial uncertainty of 1, and so 
your residual uncertainty is U = 0.71 or 71%. It turns out that this 
reduction in uncertainty from 100% to 71% is the result of being given
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5 Entropy of Continuous Variables

half a bit of information, because these particular numbers have been 
chosen to coincide with the residual uncertainty after receiving half 
a bit (see Equation 5.54). Thus, half a bit of Shannon information 
reduces uncertainty to 0.71 of its previous value.

Key Point. An initial uncertainty of U = 1.0 is reduced to 
U = 2"0,5 = 0.71 after receiving half a bit of information, and 
to U = 2~h after receiving H  bits.

5.9. Summary
The trouble with entropy for continuous variables is that it is infinitely 
large. Even though this is not very useful, it is not really surprising. 
Unlike a discrete variable, a continuous variable has a value which is 
chosen from an uncountably infinite number of possible values. It 
follows that the value of a continuous variable is implicitly specified 
with infinite precision, and we have found that such precision carries 
with it an infinite amount of Shannon information. We also found that, 
in practice, this need not diminish the utility of entropy, provided we 
take account of the precision of the measurements used when estimating 
differential entropy.

We encountered three distributions, each of which has maximum 
entropy under different conditions. The dual nature of information and 
entropy once again became apparent as it emerged that one particular 
maximum entropy distribution (the Gaussian) is indistinguishable from 
pure noise. Finally, in order to provide an intuitive understanding of 
entropy, we considered what a fraction of a bit means, and used the 
example of half a bit to derive a formal measure (residual uncertainty) 
related to fractional numbers of bits.
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Chapter 6

Mutual Information: Continuous

The fundamental problem of communication is that of 
reproducing at one point, either exactly or approximately, 
a message selected at another point.
Shannon C, 1948.

6.1. In troduction
In this chapter, we explore information in the context of a 
communication channel which communicates the values of continuous 
variables. This will involve revising material from previous chapters on 
discrete variables in the context of continuous variables.

A continuous channel is depicted in Figure 6.1. The definition of 
mutual information for continuous variables is the same as previously 
given for discrete variables

I(X,Y) = H(X) + H(Y)-H(X,Y) bits. (6.1)

In the context of continuous variables, the mutual information 
between channel input and output determines the number of different 
inputs that can be reliably discriminated from a knowledge of the 
outputs. Specifically, the mutual information is the logarithm of the 
number m of input values which can be reliably discriminated from 
a knowledge of the output values (I = log m), where this number is 
limited by the noise in the channel. Because mutual information is 
symmetric (i.e. /(X, Y) = I(Y,X)), m is also the logarithm of the 
number of output values which can be reliably discriminated from a
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6 Mutual Information: Continuous

F igu re 6.1. T h e  n o isy  con tin u ou s channel. A sign a l s is tran sform ed  by  an 
en cod in g  fun ction  x = g(s) b e fo re  b e in g  tran sm itted  th rou gh  th e channel, 
which  co rru p ts x by a d d in g  n o ise  77 to  p ro du ce  the ou tp u t y = x -f 77.

knowledge of the input values. Shannon proved that the number m has 
an upper bound ramax, for which C = log ramax is the channel capacity.

An important property of mutual information is that it is sensitive to 
the strength of association between two variables, but it is essentially 
‘blind’ to the nature of that relationship (e.g. whether it is linear or 
non-linear). If two variables are related to each other then it does not 
matter how complex or subtle their relationship is, mutual information 
will give an exact value for the strength of the association, measured 
in bits. We will return to this topic in Section 6.5.

Equation 6.1 will be derived from a formal definition of mutual 
information. However, the bulk of this chapter will be dedicated to 
understanding mutual information in a more intuitively appealing form 
involving conditional entropy (introduced in Section 4.1), which cannot 
be understood without having some familiarity with joint distributions 
of continuous variables.
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6.2. Joint D istributions

6 .2 . Joint Distributions

If the channel inputs X  and outputs Y are correlated then a scattergram 
of their corresponding values looks like the dots on the ground plane in 
Figure 6.2, where dot density is represented in Figure 6.4a. A non-zero 
correlation implies that if we know the value of X  then we also know 
something about the corresponding value of Y, and vice versa. How 
much we know depends on the magnitude of the correlation between 
X  and Y.

As previously described for discrete variables, if X  and Y are 
independent then knowing the value of X  tells us absolutely nothing 
about the corresponding value of y ,  and vice versa; examples of this 
are shown in Figures 6.3 and 6.5. In other words, the value of X  is not 
predictable from the corresponding value of y, and vice versa.

The joint probability density of x and y is written as p(x,y). If 
we ignore the distinction between probability density p{x,y) and 
probability then our notation becomes less rigorous, but more readable 
(see Appendix D). Accordingly, if X  and Y are independent then 
the probability of observing the pair (x, y) is just the product of the 
probability that X  — x and the probability that Y — y; specifically, 
p(x,y) = p(x) p(y). Because this is true for all values of X  and y ,  
it follows that if X  and Y are independent then the joint probability 
distribution p(X,Y) is the outer product (see Section 4.2) of the 
probability distributions p(X) and p(Y),

P{X,Y) = p(X)p(Y). (6.2)

This is usually described as the joint probability distribution p(X,Y) 
being factorised into the two probability distributions p(X) and p(Y), 
where p(X) and p(Y) are the marginal probability distributions of the 
joint probability distribution p(X,Y).

Marginalisation

By analogy with discrete variables, the marginal probability 
distributions of the joint distribution p(X, Y) can be obtained using
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6 Mutual Information: Continuous

integration:

p(X) =
p O C

/ y) dy
J y = - o c

(6.3)

p(Y) =
p  oo
/ p{x,y)dx.
J X — — OC

(6.4)

For example, the joint distribution p(X,Y) shown in Figure 6.2 has a 
marginal distribution p(X) shown on the left-hand back plane and a 
marginal distribution p(Y) shown on the right-hand back plane.

Differential Entropy o f Joint D istributions
The differential entropy of the joint probability distribution p(X, Y) is 
a generalisation of the differential entropy of a single variable

Hdif(X,Y)
p O C  pO C

J x= — oc J y
P(x, y) log --- r dx (6.5)) V)

log p(x,y). bits. (6.6)

F igu re 6.2. Joint p rob a b ility  d en sity  fun ction  p(X, Y) for co rre la ted  G au ssian  
variables. T h e stan dard  d ev ia t ion  o f  Y is cry =  1, th e stan da rd  d ev ia tion  
o f X  is <j x  =  2, and th e co rre la tion  betw een  X  and Y is p = 0.8. The  
p robab ility  d en sity  p(x, y) is in d ica ted  by the d en sity  o f  p o in ts on  the ground  
p lane at (x, y). T h e m arg in a l d is tr ib u t ion s p(X) and p{Y) are p lo t te d  on  the 
s id e axes. T h ese  m arg in a l d is tr ibu t ion s have b een  resca led  to  have th e sam e 
height as the jo in t p d f  in th is and subsequ en t figures.
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6 .2 . Joint Distributions

The limits of integration (i.e. ±oo) and the subscript dif will be omitted 
from now on.

Note that the problem of infinities encountered for any distribution 
of a single continuous variable (Section 5.3) also applies to any joint 
distribution of variables, and it is ‘solved’ in a similar manner, by simply 
ignoring the infinities. For brevity, we will use the term ‘joint entropy’ 
to refer to ‘joint differential entropy’.

The joint entropy H(X, y) can be considered as a measure of the 
overall variability of the variables X  and Y, or equivalently, as a 
measure of dispersion of the joint probability distribution p(X, Y).

If X  and Y are independent then the differential entropy of the joint 
probability distribution is equal to the sum of the differential entropies 
of its marginal distributions,

H(X) + H(Y) L lmmi^*s<v)d,dx
l p{x}]osl k dx + I,ply)'0KW)dv
E log

P(x).
+ E log

p(y).

(6.7)

(6.8)

(6.9)

F igu re 6.3. Joint p rob a b ility  d en sity  fun ction  p(X,Y) for in d ep enden t 
Gau ssian  variables. B ecau se  X  and Y are independen t, p(X, Y) is the 
p rodu c t o f  its m arg in a l d istr ibu tion s, p(X,Y) = p(X)p(Y). T h e  standard  
dev ia tion s are th e sam e as in F igu re 6.2.
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6 Mutual Information: Continuous

It follows that if X  and Y are independent then there is no difference 
between the differential entropy of the joint distribution and the total 
differential entropy of its marginal distributions,

H(X) + H(Y) -  H{X, Y) = 0 bits. (6.10)

Mutual Information and Marginal D istributions

For continuous variables, mutual information is defined as

I(X,Y)

This can be rewritten as

f f p{x, y) log
J x  j  XI ' p{x)p(y)

I(X.Y) =

(6.11)

/ / p(x, y)log 1 ■
Jx  Jy P(X1 y)

dy dx (6.12)

log p(x)_ + E log
p(y)

-  E log p{x)p(y)_ (6.13)

F igu re 6.4. B ird’s-eye v iew  o f  jo in t p robab ility  d en sity  function s, (a) 
C orre la ted  variab les sh ow n  in F igu re 6.2. (b) In dep en den t variab les shown
in F igu re 6.3. L igh ter areas in d ica te  reg ion s o f  h igher p rob a b ility  density.
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6.3. Conditional Distributions and Entropy

which can be recognised as the sum of the entropies of the two marginal 
distributions minus the entropy of the joint distribution,

I(X,Y) = H(X) + H(Y)-H(X,Y) bits. (6.14)

By analogy with the discrete case, I(X, Y) is the average amount of 
information conveyed by each input about each output value received. 
Because mutual information is symmetric, it is also the average amount 
of information conveyed by each output about each input value.

However, this formulation of mutual information is arguably less 
accessible than formulations that involve the conditional entropies, 
which is the interpretation developed in the remainder of this chapter.

6.3. Conditional D istributions and Entropy
Here, we explore the idea of conditional entropy, which demands that 
we first define conditional probability distributions.
Conditional Probability D istributions
If we take a slice through a joint probability distribution then we obtain 
a cross-section, as shown in Figure 6.6. If this cross-section is taken 
at x\ — 1 then the resultant shape defines the probability of obtaining

5 5

F igu re 6.5. Un iform  jo in t p rob a b ility  d en sity  fun ction  p(X, Y) for tw o 
variables, b o th  o f  w hich  have un iform  p rob a b ility  d istr ibu tion s. T h ese  
variables are independen t.
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6 Mutual Information: Continuous

different values of Y, given that X  = x\\ that is, it defines the cross- 
section p(xi,Y). From the product rule (see Appendix F), we know 
that

p{xi,Y) = (6.15)

where the vertical bar stands for ‘given that’. The distribution of Y 
given that X — x\ is therefore

p(Y\xi) = p(6.16)

which is a conditional probability distribution. Thus, p(Y\x\) is a scaled 
version of the slice in Figure 6.6, where the scaling factor is l/p(xi). 
The value of p(xi) is given by the height of the marginal probability 
distribution at X = x\, which can be obtained by marginalisation 
(i.e. by integrating over y),

p(xi) = I (6.17)
dy

F igu re 6.6. C on d it ion a l p rob a b ility  d is tr ibu tion  p(Y\x\) o f  the corre la ted  
variab les sh own  in F igu re 6.2. T h e cro ss- section  p(Y,x 1) (solid curve) 
rep resen ts the p rob a b ility  (density) o f d ifferent va lues o f  Y for a spec ific given 
value o f  A  — x\ = 1 and is a sca led  version  o f  th e con d it ion a l d istr ibu tion  
p(y|xi). T h e m arg in a l d is tr ib u t ion  p(X) is a da sh ed  curve and the den sity  
p(xi) is the heigh t o f  p(X) at X  =  x i, as in d ica ted  by the so lid  vertica l line.
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6.3. Conditional Distributions and Entropy

However, for our purposes, the value of p(xi) is immaterial, because 
it simply serves as a scaling factor which ensures that the distribution 
p(Y\xi) has unit area (and is therefore a probability distribution).

Similarly, if we had chosen to take a slice parallel to the x-axis at 
Y = yi then we would obtain a cross-section which is proportional to 
the conditional probability distribution p(X\yi), with a scaling factor 
of l/p(yi) in this case, as shown in Figure 6.7.
Conditional Entropy
Given a joint probability distribution p(X, F), the conditional entropy 
H(Y\X) is our average surprise when we are told the value of Y 
given that we already know the value of X. In fact, p(X, F) has two 
conditional entropies H(Y\X) and H(X\Y), which can be summarised 
as follows:

1. A slice through p(X, Y) at X = x\ defines a one-dimensional 
distribution p(Y\xi) with entropy H{Y\x\). The conditional 
entropy H(Y\X) is the average entropy of all such slices through 
p(X, F), where this average is taken over all values of X. See 
Figure 6.6.

F igu re 6.7. C on d it ion a l p rob a b ility  d is tr ibu t ion  p(X\yi) o f  th e co rre la ted  
variables sh own  in F igu re 6.2. T h e  cro ss- section  p(X, yi) (solid curve) 
represen ts the p ro b a b ility  (density) o f  d ifferent va lues o f  X  for a sp e c if ic  given 
value o f  Y — y\ =  1.5 and is a sca led  version  o f  th e con d it ion a l d is tr ibu tion  
p(X\yi). T h e m arg in a l d is tr ib u t ion  p(Y) is a da sh ed  curve, and th e d en sity  
p(yi) is th e h eigh t o f  p(Y) at Y — yi, as in d ica ted  by  th e so lid  vertica l line.

141



6 Mutual Information: Continuous

2. A slice through p(X,Y) at 7 — y\ defines a one-dimensional 
distribution p(X\yi) with entropy H(X\yi). The conditional 
entropy H(X\Y) is the average entropy of all such slices through 
p(X,Y), where this average is taken over all values of Y. See 
Figure 6.7.

Now let’s back up a little, and derive an expression for H(Y\X), 
beginning with a single slice through p(X,Y) at X  = x\. This slice 
is a scaled version of the conditional probability distribution p(Y|xi), 
where the entropy of p(Y\x\) is related to the amount of spread or 
dispersion it has,

If we consider the mean dispersion of the family of conditional 
probability distributions defined by p{Y\x{) for different values of X  
then we obtain the conditional entropy H(Y|X),

This is the average uncertainty in Y given a value of X, when this 
average is taken over all values of X. If we substitute H(Y\x) from 
Equation 6.18 into Equation 6.19 then we get

(6.18)

H(Y\X) (6.19)

(6.20)

where p{y\x)p{x) = p(x,y), so that

(6.21)

(6.22)

where this expectation is taken over all values of X  and Y. 
Similarly, the conditional entropy H(X\Y) is

H(X\Y) = J J p(x, y)log dx dbits. (6.23)
Jy Jx

142



6.4. Mutual Information and Conditional Entropy

Both of these conditional entropies will prove useful shortly.
Notice that, usually, H(X\Y) ^  H(Y\X). For example, the joint 

probability distribution in Figure 6.2 implies a family of conditional 
probability distributions p(Y\X) which have large widths or variances 
(see Figure 6.6) but conditional probability distributions p(X\Y) that 
have small variances (see Figure 6.7), and the mean variance of each of 
these two families is reflected in the corresponding conditional entropies 
H(Y\X) and H{X\Y).

6.4. Mutual Information and Conditional Entropy

In order to proceed, we first need to show that mutual information can 
be expressed as

I(X, Y) = H(Y) -  H(Y\X) bits, (6.24)

as shown in Figures 6.8 and 6.9. Given that

i i x ’Y] = U * x'y)^ $ m ixdv' <6,25)
and that p{x,y) = p(y\x)p(x), we can substitute this into Equation 
6.25 to obtain

I(X,Y) = JJ^p(x,y) log (6.26)

which can be rewritten as the difference

I(X,Y) = j J p(x,y)log dx dy

- f J / ix ,y) k s -± -)dxdy, (6.27)

where we can recognise (from Equation 6.21) that the second term on 
the right is H(Y\X) and that the first term is the entropy of Y, because

J J p(x, y) log —-y dx dy = J log dy = H{Y), (6.28)
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6 Mutual Information: Continuous

so

I(X, Y) = H(Y) -  H(Y\X) bits, (6.29)

which establishes the result stated in Equation 6.24.
If we simply swap the variables Y and X  then, by symmetry, we have

Both of these results will prove useful shortly.

No Infinity

Notice that both H(X) and H(X\Y) in Equation 6.30 include the 
infinite constant first encountered in Equation 5.12. However, because 
this constant has the same value in H(X) and H(X\Y), it cancels out 
when we subtract one from the other. Thus, the definitions of mutual 
information for both discrete and continuous variables do not contain 
any infinities.

Next, we consider mutual information from two perspectives: the 
input and the output.

The Information That Y Provides About X

The mutual information I(X,Y) between X  and Y is the difference 
between the average uncertainty H(X) we have about X  before an 
output Y is observed, and the average uncertainty H(X\Y) after Y 
is observed (Equation 6.30); it is the reduction in uncertainty in X  
induced by observing F, and is therefore the amount of information 
gained about X  after observing Y.

Because a reduction in uncertainty, from H(X) to H(X\Y), amounts 
to an increase in certainty, the amount of information gained about X  
after observing Y is

which, according to Equation 6.30, is the mutual information between 
X  and Y. In summary, the mutual information can be expressed as 
the difference between what we know about X  before observing F,

I(X , Y) = H(X) -  H(X\Y) bits. (6.30)

I(X,Y) = H[X) -  H(X\Y) bits, (6.31)
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6.4. Mutual Information and Conditional Entropy

and what we know about X  after observing Y. It is also the amount 
of output entropy that is exclusively related to the input entropy and 
therefore not related to the noise in the input.
Mutual Information Cannot Be Negative
On average, observing an output reduces uncertainty about the input 
(even though certain outputs may increase uncertainty). Indeed, it can 
be shown (see Reza (1961)41) that the entropy of X  given Y cannot 
be greater than the entropy of X,

H(X\Y) <  H(X) bits, (6.32)

with equality only if X  and Y are independent. From Equation 6.30, 
it follows that mutual information is positive, unless X  and Y are 
independent, in which case it is zero.
The Information That X Provides About Y
The mutual information between X  and Y can also be expressed as the 
difference between the amount of uncertainty H(Y) we have about Y 
before an input X  is observed, and the amount of uncertainty H(Y\X) 
after X  is observed (Equation 6.29).

Given that our uncertainty is reduced by an amount H(Y\X) from 
an initial value of H(Y), it follows that the amount of information we 
have gained about Y is

/(X, Y) = H(Y) - H{Y\X) bits. (6.33)

Thus, the mutual information can be expressed as the difference 
between what we know about Y before observing X, and what we know 
about Y after observing X. It is also the amount of input entropy that 
is exclusively related to the output entropy and therefore not related 
to the noise in the output.
Mutual Information, Conditional Entropy, and Joint Entropy
So far, we have established three expressions for mutual information, 
each of which can be interpreted as follows. First, we have

(6.34)
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6 Mutual Information: Continuous

Second,
I(X , Y) = H(Y) -  H(Y\X) bits. (6.35)

And third,
/(X, Y) = H{X) + H(Y) -  H(X, Y) bits. (6.36)

From these, a little algebra yields a fourth expression

I(X,y) = H(X,Y)-[H(X\Y) + H(Y\X)]. (6.37)

This is the portion of the joint entropy H(X,Y) that is left over once 
we have removed [H(X\Y) + H(Y|X)], which is the entropy H(X\Y) 
due to noise in X  plus the entropy H(Y\X) due to noise in Y.

If we rearrange Equation 6.37 then we obtain

H{X,Y) = I(X,Y) + H{X\Y) + H{Y\X). (6.38)

In other words, the joint entropy if  (X, Y) acts as an ‘entropy container’ 
which consists of three disjoint (i.e. non-overlapping) subsets, as shown 
in Figures 6.8 and 6.9:

1. the conditional entropy H(X\Y) due to noise in X, which is the 
entropy in X  which is not determined by Y ;

2. the conditional entropy H(Y|X) due to noise in y, which is the 
entropy in Y which is not determined by X;

H(X,Y)

F igu re 6.8. M u tua l in form ation  betw een  re la ted  va riab les X  and Y . Each 
c irc le  rep resen ts th e en tropy  o f  on e variable.
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6.5. Mutual Information is Invariant

3. the mutual information 7(X, Y), which is the entropy ‘shared’ by 
X  and F, and which results from the co-dependence of X  and Y.

Finally, Equations 6.34-6.36 imply that the conditional entropies can 
be obtained as

H(X\Y) = H(X,Y)-H(Y) (6.39)
H(Y\X) = H(X, Y) -  H(X), (6.40)

which will prove useful shortly. These two equations imply that

H(X,Y) = H(X)+H{Y\X) (6.41)
H(X,Y) = H(Y) + H(X\Y), (6.42)

which is called the chain rule for entropy.

Key point. The mutual information is that part of the joint 
entropy i7 (X, Y) that is left over once we have removed the 
part [H(X\Y) + H(Y\X)] due to noise.

6.5. Mutual Information is Invariant
Within formally defined limits, the mutual information between two 
variables is invariant with respect to transformations of those variables, 
where the term invariant means that the amount of mutual information 
is unaffected by such transformations.

H(X, Y) joint entropy

H(Y) output entropy

H(X) input entropy

H(Y\X) conditional I(X,Y) H(X\Y) cond.

F igu re 6.9. T h e  re la tion sh ip  be tw een  th e in pu t en tropy  H(X), ou tpu t 
en tropy H(Y), jo in t en trop y  H(X,Y), m u tua l in form ation  I(X,Y ), and the 
con d it ion a l en trop ies H(X\Y) and H(Y\X).
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6 Mutual Information: Continuous

If two variables X  and Y have mutual information I(X, Y) then using 
a function / to transform X  to another variable X' and a function g 
to transform Y  to another variable Y',

has no effect on mutual information, so J(X',Y') = /(X, Y). This is 
true provided the functions / and g are invertible, which implies that 
the value of X  can be recovered from X' and the value of Y can be 
recovered from Y'. For example, if the function / maps each value of 
X  to logX, so that X' = logX, then X' can be recovered from X  
(by using X  = 2X ). But if the function / maps all values of X  to a 
constant X' = k then X' cannot be recovered from X.

As stated earlier, the reason this matters is because it ensures that 
no matter how complex the relationship between X  and Y appears to 
be, mutual information can be used to measure the precise strength (in 
bits) of the association between X  and Y. To illustrate this, suppose 
that a medical study discovers that the mutual information between 
the prevalence of diabetes X  and sugar intake measured in grams Y is 
/(X, Y) = 2 bits. If another study measures the prevalence of diabetes 
X  and sugar intake as Y' = Y2 (or even as Y' = log(Y)) then the 
mutual information between X  and Y' would still be equal to 2 bits.

Indeed, no matter how complex the relationship between diabetes 
and sugar intake is, mutual information gives a precise measurement 
of how closely they are related. We cannot make such strong claims 
for more conventional measures of association, such as correlation (see 
Section 7.6).

6.6. Kullback-Leibler D ivergence and Bayes
Kullback-Leibler divergence (KL-divergence) is a general measure of 
the difference between two distributions, and is also known as relative 
entropy. Given two distributions p(X) and q(X) of the same variable 
X, the KL-divergence between these distributions is

X' = /(X)

y =  9<x),
(6.43)
(6.44)

(6.45)
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KL-divergence is not a true measure of distance because, usually,

Dkl(p(X)\\q(X)) ±(6.46)

Note that D k L(p(X)\\q(X)) >  0, unless p = q, in which case it is equal 
to zero.

The KL-divergence between the joint distribution p(X, Y) and the 
joint distribution [p(X)p(Y)\ obtained from the outer product of the 
marginal distributions p(X) and p(Y) is

DKL(p(X,Y)\\\p(X)p(Y)}) = J J ^ p(x,y ) lo g -0 ^d y d x ,(6.47)

which we can recognise from Equation 6.25 as the mutual information 
between X  and Y.

Thus, the mutual information between X  and Y is the KL-divergence 
between the joint distribution p(X,Y) and the joint distribution 
\p{X)p(Y)} obtained by evaluating the outer product of the marginal 
distributions p(X) and p(Y).

Bayes’ Rule

We can express the KL-divergence between two variables in terms of 
Bayes’ rule (see Stone (2013)52 and Appendix F). Given that p(x, y) = 
p(x\y)p(y), mutual information can be expressed as

I(X,Y) = j p(y)j  log ——  (6.48)

where the inner integral can be recognised as the KL-divergence 
between the distributions p{X\y) and p(X),

DKL(p(X\y)\\p{X)) = f  p(x\y) log dx, (6.49)
Jx P\X)

where p{X\y) is the posterior distribution and p(X) is the prior 
distribution. Thus, the mutual information between X  and Y is

/(X,y) = [  p(y) DKL(p(X\y)\\p(X)) dy, (6.50)
dy
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which is the expected KL-divergence between the posterior and prior,

I(X,Y) = Ey[DKL(p (6.51)

where this expectation is taken over values of Y.

6.7. Summary
In this chapter, we considered information in terms of continuous 
variables. To do this, we explored how joint distributions can be 
used to define and visualise marginal and conditional distributions, and 
the entropies of those distributions. The mutual information between 
continuous variables, in contrast to the entropy of continuous variables, 
turns out to have a perfectly sensible interpretation, which does not 
involve any infinities. We considered how each input value conveys 
information about a corresponding output value, and vice versa, and 
how this is reduced by the presence of channel noise. Finally, we defined 
the KL-divergence between two variables, and considered how it can 
be interpreted in terms of mutual information and Bayes’ rule.
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Chapter 7

Channel Capacity: Continuous

Information is a fundamental physical quantity, obeying 
exact laws.
Deutsch D and Marletto C, 201414.

7.1. In troduction
In this chapter, we consider precisely what form of input distribution 
p(X) of a continuous variable maximises the rate at which information 
can be communicated through a noisy channel. After defining channel 
capacity, we find that the input distribution which provides the 
maximum communication rate depends on the nature of the channel 
under consideration. In common with discrete variables, we also find 
that the error rate shrinks rapidly as the message length increases.

7.2. Channel Capacity
The general definition of channel capacity given in Equation 4.93 is

where I(X,Y) is the mutual information, which is (Equation 6.29)

C — max I(X,Y) bits, (7.1)

I(X, Y) = H{Y) - H(Y\ bits. (7.2)

So we can rewrite Equation 7.1 as

C = max H{Y) - H(Y\X) bits.
P(X)

(7.3)
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7 Channel Capacity: Continuous

We proceed by identifying the input distribution which maximises 
information transmission under two different constraints:

Constraint 1: The output has a fixed variance and infinite range. 
Constraint 2: The output has a finite range.

In physical terms, Constraint 1 could correspond to the sound signal 
conveyed by a cable into a loudspeaker with a specific wattage (power), 
because power equates to variance. In contrast, Constraint 2 could be 
the output of a camera photoreceptor (one per image pixel) which has 
a fixed lower limit of zero volts, and a fixed upper limit of five volts. 
In both cases, we wish to sculpt the input distribution p(X) so that it 
can convey as much information as possible.

7.3. The Gaussian Channel
A Gaussian channel is one in which the noise has a Gaussian 
distribution (see Appendix G). If a channel output has fixed variance 
then we know (from Section 5.6) that its entropy can be maximised 
by ensuring it has a Gaussian distribution. Here, we address the 
question: what form should the input distribution p(X) adopt in order 
to maximise the mutual information between the input and output of 
a channel? So far, we know two relevant facts:

1. The noise added to signal X as it passes through the channel is

77 -  Y — X  bits; (7.4)

2 . The mutual information between input X  and output Y is

I(X, Y) = H(Y) - H(Y\X) bits, (7.5)

where, according to Equation 4.60, H(Y\X) = H(r]) is the 
channel noise, so
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7.3. The Gaussian Channel

Using Equation 7.6, we can rewrite the channel capacity defined in 
Equation 7.3 as

C = max H(Y) -  H(tj) bits. (7.7)

In trying to maximise the mutual information, we cannot reduce the 
noise entropy, which is a fixed property of the channel. So, we are left 
with trying to make the entropy of the output Y as large as possible.

We know from Section 5.6 that if the variance of a distribution is 
fixed then the distribution that has maximum entropy is Gaussian. It 
can be shown41 that the sum of two independent Gaussian variables is 
also Gaussian, so if we want p(Y) to be Gaussian then we should ensure 
that p(X) is Gaussian, because Y = X + T]. So, p(X) must be Gaussian 
in order to maximise H(X), which maximises H(Y), which maximises 
I(X,Y), which coincides with the channel capacity of C bits. Thus, if 
input, output, and noise are all Gaussian then the average amount of 
information communicated per output value is the channel capacity

I(X,Y) = H(Y) — H(rj) (7.8)

= Cbits. (7.9)

This result is an informal proof of Shannon’s continuous noisy channel 
coding theorem for Gaussian channels. We now make use of this to 
express channel capacity in terms of the variance of the Gaussian input, 
output, and noise.

From Equation 5.47, we know that if the noise has variance vv = 
then its entropy is

H(rj) — ^ log 27revrt bits. (7.10)

Similarly, if the input has variance vx = then its entropy is

H(X) = - log 2nevx bits. (7.11)
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7 Channel Capacity: Continuous

At this point, we make use of a general result which states that if 
two independent Gaussian variables X  and T] have variances vx and vv 
(respectively) then a third variable Y = X  + T] is also Gaussian and 
has a variance of

Vy — Vx “h Vrj‘ (7*12)

The entropy of Y is therefore

H(Y) = ^log27r evy (7.13)

= - log 27re(vx + vv) bits. (7.14)

For example, if the signal and noise both have the same variance then 
the output variance is twice the input variance, so the noise adds half 
a bit to the entropy of the output; that is, H(Y) = H(X) + 1/2 bit. 

Substituting Equations 7.11 and 7.14 into Equation 7.8 yields

^ log 27Te(nx + vv) -  ^ log 2nevr, (7.15)

1 log + V̂2 vv (7.16)

l lo g (1 + 5 )bits' (7.17)

Because the variance of any signal is equal to its power, the input 
signal power is P = vx, and the noise power is N = v̂ - Substituting 
these equations into Equation 7.17 allows the capacity of this Gaussian 
channel to be written as Shannon’s well-known equation

c  = 5 los (1 + v) bits’ 7̂‘18̂
where the ratio of variances P/N is the signal to noise ratio (SNR).
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7.3. The Gaussian Channel

F igu re 7.1. G au ssian  channel ca p a c ity  and signa l to  n o ise  ra tio  P/N. I f a 
s ign a l is sam p led  at ra te o f  1,000 va lues p er se c on d  then  th e channel ca p a c ity  
is C = 5001og(l +  P/N) b its/s. If n o ise  p ow er is fix ed th en  in crea sin g signa l 
pow er has d im in ish in g retu rn s in te rm s o f  channel capacity.

It will prove useful to note that this can be expressed in terms of the 
ratio between the standard deviations of channel outputs and noise:

1 1„ „  (v* + 
2 l0S v. (7.19)

1 1 vv (7.20)

log — bits. (7.21)<T r j

For discrete variables, C is the maximum (average) mutual 
information per symbol, but because we are now dealing with 
continuous variables, one symbol corresponds to a single input value 
for a given channel. Thus, for Gaussian X, T] and Y, the mutual 
information between the input and output is equal to the channel 
capacity of C bits per transmitted value in Equations 7.18 and 7.21. 
This implies that the number of different equiprobable input values
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7 Channel Capacity: Continuous

which can be discriminated using a single output value is

m = 2C (7.22)

ay
(Jrj

(7.23)

Thus, channel noise effectively discretises the continuous Gaussian 
output distribution into a discrete distribution.

Equation 7.23 represents a fundamental result. It shows precisely 
how the number of input values that can be discriminated increases 
as the signal to noise ratio in the channel increases (see Figure 7.1). 
However, the proof of this assumes that the codewords are very long, 
like the ones considered next.

Key point. Channel noise effectively discretises a continuous 
Gaussian output distribution into a discrete distribution.

Long Messages

So far in this chapter we have considered single input/output pairs of 
values. In order to understand the next section regarding error rates, 
we need to consider codewords and messages which consist of more 
than a single value. Accordingly, we now take each encoded message x 
to be a vector of n values,

X = (xi,... (7.24)

and we assume that each value corresponds to one message symbol, so 
that message length and codeword length are the same. Each encoded 
message is corrupted by noise T] as it passes through the channel, so each 
value Xi is associated with a corresponding output value yi = Xi + ry<, 
where the received output y is a vector of n values,
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7.3. The Gaussian Channel

which is a noisy version of the encoded message

y = (x1 +r]1,...,xn +rin)
= (xi,...,xn) +(»?!,..., 7?„)
= X + 7?,

(7.26)
(7.27)
(7.28)

where rj is a vector of noise values

V = (»7l, •••,%)• (7.29)

If each of these vectors has a mean of zero then their variances are

where P = vx and N = vv.
In effect, Shannon’s noisy channel coding theorem is based on a 

counting argument which shows that if the n values in each encoded 
message have a Gaussian distribution with input variance vx, and if 
the channel noise is Gaussian with variance v ,̂ then the maximum 
number of equally probable input vectors x i ,..., xm which can be 
reliably discriminated from observing the corresponding outputs is

so the amount of information provided by each output vector y about 
the input vector x is

For example, if vx = 15 and vv = 1 then vy = 16, giving oy = 4 and 
C = 2 bits per output value. If n = 4 then the maximum amount of

(7.30)

logm = log2nC. 
-  nC

(7.32)
(7.33)
(7.34)= n log — bits.<Tj)
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7 Channel Capacity: Continuous

information that can be recovered about each input vector x is

nC = n l o g— (7.35)
^77

= 4 log 4 (7.36)
= 8 bits, (7.37)

so the number of discriminable inputs X i,..., xm is

m = 28 = 256. (7.38)

In practice, n would be much larger than four, which is used here only 
for illustration purposes.

If we rearrange Equation 7.32 and express it in terms of signal to 
noise ratio then we have

nC = -  log ( l + — bits. (7.39)

Given that we want to transmit as much information as possible for 
each watt of power expended, should we increase the number n of 
values in each input vector x, or should we increase the signal power 
P by increasing the amplitude of each value in x?

Clearly, doubling n doubles the length of x, which doubles the power 
required to transmit x, but it also doubles the amount of information 
transmitted. In contrast, doubling the signal power P increases, but 
does not double, the amount of information transmitted, as can be seen 
from Figure 7.1. Thus, given a choice between increasing the number 
n of values transmitted and increasing the amplitude of transmitted 
values (i.e. signal power P), we should increase n. Although we have 
not covered the topic of signal bandwidth in this book, the above result 
implies that if we have a choice between boosting signal power and 
increasing the bandwidth then we should increase the bandwidth.

7.4. Error Rates o f Noisy Channels
The presence of noise in a channel means that we cannot be certain 
about which of the m possible input vectors was sent. However, 
Shannon proved that the probability of making an error regarding
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7.4. Error Rates of Noisy Channels

which input was sent falls rapidly as the number of values in each input 
vector increases. An informal summary of his theorem is as follows.

If a source has entropy R , then it possible to encode the 
output of the source and transmit it over a continuous 
noisy channel which has capacity C with an error rate 
that approaches zero as the length n of encoded messages 
approaches infinity, provided R is less than C.

For more extensive treatments, see Shannon and Weaver (1949)50 
(Theorem 21), Reza (1961)41 (Section 9-17), or MacKay (2003)34 
(Section 11.3).

Shannon also provided a proof that applies to any continuous 
channel. This states that the probability of decoding an output y 
as the wrong encoded message is

nerror) « $ ( J ^ P ^ N )) (i?"  ’ (7'4°)

where P is the signal power, N is the noise power, and is the 
cumulative distribution function (cdf) of a Gaussian function. For 
readers unfamiliar with cdfs, the general form of $ can be seen in 
Figure 7.6a and in Figure G.lb in Appendix G .

The main thing to notice about Equation 7.40 is that the difference 
R — C  is negative (i.e. R <  C), because Shannon’s noisy channel coding 
theorem implies that we should not attempt to make R >  C. Thus, 
for fixed values of P and N (i.e. for a given signal to noise ratio), the 
argument of decreases in proportion to the square root of the message 
length n, so the probability of error decreases rapidly and approaches 
zero as n approaches infinity. Despite the apparent complexity of 
Equation 7.40, we can set the values of its parameters to plausible 
values and then plot P(error) as a function of message length n, as in 
Figure 7.2. This shows that, even though the source rate R is within 
1% of the channel capacity (i.e. R/C = 0.99), the probability of error 
rapidly approaches zero even for modest message lengths.
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7 Channel Capacity: Continuous

F igu re 7.2. T h e p rob a b ility  P(error) o f  d e co d in g  an o u tpu t y  in correc tly  for 
a con tin u ou s channel p lo t te d  as a fun ction  o f  m e ssa g e  len gth  n, a cc o rd in g  to  
E qu a tion  7.40. T h e  in pu t variance is P = 10, the n o ise  variance N = 1. T h e  
in pu t en tropy  is R = 0.99 b its  p er in pu t value, wh ich  is c lo se  to  th e channel 
ca p a c ity  C = 1 bit. Thus, d e sp ite  runn ing at a lm ost fu ll capacity, the error 
rate app roa ch e s ze ro  for m e ssa g e  len gth s grea ter than  n = 4,000.

7.5. Using a Gaussian Channel
So far, we have seen how each output can be used to discriminate 
between many possible inputs, but we have not yet considered how 
this can be used for communication in general.

For example, if we wished to transmit a human voice (which is not 
Gaussian) as an analogue signal then we could transform it into a 
Gaussian signal before transmission, and it would then be decoded 
by the receiver to recover the original voice signal. The nature of 
this transformation is qualitatively similar to an example which will be 
presented in Section 7.7, where the transformation is from a Gaussian 
distribution to a uniform distribution.

We could protest that we need to have infinite accuracy, which 
implies infinite information, in order to read a channel output which 
is the value of a continuous variable. However, we can never read 
the channel output with 100% accuracy because, no matter what 
instrument we use to measure the output (e.g. a voltmeter), its accuracy 
is finite; noise in the voltmeter’s output limits the accuracy of the 
reading. When observing the voltmeter’s output, the effect of voltmeter
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7.5. Using a Gaussian Channel

noise is indistinguishable from the effect of additional channel noise. 
We therefore combine channel noise with voltmeter noise to obtain the 
overall noise level, which limits our ability to discriminate inputs in 
exactly the same way as extra channel noise. Thus, whether noise 
originates in the channel, the voltmeter, or both, the overall effect is to 
reduce the number of discriminable inputs.

If we do want to use this channel to send individual messages then 
we can construct a look-up table consisting of m rows, numbered from 
one to m, with each row consisting of two sections: a codeword x* of 
n values, and a message s*, so that the whole table defines a complete 
codebook of m messages. For the example considered in Section 7.3, we 
found that C — 2 bits, so if each codeword consists of n = 20 Gaussian 
values then each codeword specifies one out of

m = T c  (7.41)
= 240 messages, (7.42)

which is about 1012 messages. For illustration, the possible forms of 
two codewords are shown in Figure 7.3. The error rates for such short 
codewords would be quite high, but this could be remedied simply by

F igu re 7.3. S ch em atic rep resen ta tion  o f  tw o G au ssian  cod ew ord s, x i  and  
X2. E ach  co d ew o rd  con s is ts  o f  n = 20 values, w here each  va lue is ch osen  
random ly from  a G au ssian  d is tr ibu t ion  w ith  a variance o f  vx = 15. If the 
channel n o ise has a G au ssian  d is tr ibu t ion  w ith  a variance o f  = 1 th en  each  
cod ew ord  spec ifie s on e ou t o f  a b ou t 1012 m essages, and th erefore con vey s 40 
b its o f in form ation .
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using longer codewords. If we want to send a message, say 53, in the 
third row, then we transmit the codeword X3 . If the codewords are 
sufficiently long then we are almost guaranteed that our codeword will 
be correctly classified by the receiver.

In practice, the hardest part of this operation is finding m codewords 
which are discriminable, because Shannon’s theorem states that such 
codewords exist but does not specify how to find them. Practical 
methods for constructing codewords which can transmit almost 2nC 
different messages with negligible error rates do exist (see Cover and 
Thomas (1991)11), but are beyond the scope of this introductory text.

7.6. Mutual Information and Correlation
Correlation is a standard statistical measure of the dependence between 
two variables X  and Y. As an example, a person’s height X  and 
weight Y usually increase together and are therefore correlated. The 
correlation coefficient between X  and Y is represented with the Greek 
letter p (rho), and is defined as

E [ fa  -  x)(y j -  y)]
GxGy

(7.43)

F igu re 7.4. M u tua l in form ation  and corre lation . T h e  (Gaussian) variables 
X  and Y have a co rre la tion  o f  p = 0.866, and a m u tua l in form ation  of 
I(X,Y) = 1.00 b it (using E qu a tion  7.45).
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CO-p•HA 1.

2
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Co•H-P
Omc■H
CO3-PDs
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0.5Correlation

F igu re 7.5. M u tua l in form ation  and co rre la tion  for tw o G au ssian  variables. 
As the co rre la tion  app roa ch e s one, the m u tua l in form ation  app roa ch e s 
in fin ity (Equation  7.45).

where x is the mean value of X, y is the mean value of Y , and ox and 
c y are the standard deviations of X  and y, respectively (see Glossary). 
Given n values of X  and n corresponding values of y, the correlation 
coefficient is estimated as

1 n
p = —  (7-44)nax<Jy “y j=i

If X  and y  are drawn from a Gaussian distribution, as in Figure 7.4, 
and have a correlation of p then it can be shown41 that the mutual 
information between X  and Y is

I{X,Y) = 0.5 log ̂ -^2  bits, (7.45)

as shown in Figure 7.5. Equation 7.45 can be rearranged to obtain 
correlation in terms of mutual information,

p =  V l- 2 - 2̂ ) .  (7.46)

For example, if X  and Y have a correlation of p — 0.866, as in Figure 
7.4, then this implies that their mutual information is I(X,Y) = 1 bit 
per value.
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7 Channel Capacity: Continuous

Correlation can be viewed as a special version of mutual information. 
It follows that X  and Y can have a large mutual information and a 
correlation of zero (e.g. if they are not Gaussian), but they cannot have 
a large correlation and zero mutual information.

7.7. The F ixed Range Channel

We will consider two complementary versions of the problem of how 
to maximise information transmission through a fixed range channel 
(i.e. a channel whose outputs lie between fixed lower and upper limits).

First, we provide an informal solution to the problem of identifying 
the input distribution that maximises mutual information. Given that 
the channel outputs lie between fixed limits, we already know (from 
Section 5.6) that the output distribution with maximum entropy is 
the uniform distribution. Thus, in order to communicate as much 
information as possible, the output distribution must be uniform. It 
follows that if the noise distribution has a particular known form then 
we should modify the input distribution to complement this, so that 
the output distribution is uniform.

Second (and this represents the bulk of this section), we provide a 
solution to the following problem: if our messages have a distribution 
p(S) then how should we encode them in order to communicate as much 
information as possible?

As before, we have some channel inputs x and outputs y, each of 
which is a noisy version of x. Specifically,

V = x + Tj, (7.47)

where 77 is noise. Suppose we have some data, in the form of values 
of an observed variable 5, which we wish to encode as channel inputs 
in such a way that the channel communicates as much information as 
possible. The data are encoded using a continuous encoding function, 
g , which maps each observed value s to a corresponding unique channel 
input value x,

= g(s)-
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7.7. The Fixed Range Channel

The fact that each value s gets mapped to a unique input value 
x effectively defines the encoding function # to be a monotonic 
function (i.e. one that always increases or decreases, like Figure 7.6a, 
or Figure G.lb in Appendix G).

Thus, the channel input g(s) and output y are related by

y = 9(s) + (7-49)

We proceed using the following line of reasoning. Provided the noise 
is negligible, maximising the entropy of the output Y maximises the 
mutual information between the input X  and output Y. It follows 
that an encoding function g which maximises the input entropy also 
maximises the output entropy, and therefore maximises the mutual 
information between the input and output. Matters will be greatly 
simplified if we simply assume the noise is almost zero.

Maximising Mutual Information by Maxim ising Entropy

Given that /(X, Y) varies as a function of g , when /(X, Y) is as large as 
possible, the slope of /(X, Y) with respect to g must be zero. It follows 
that, if we want to find that particular g which maximises /(X, Y) 
then we need to find a form for g which makes the derivative (slope) of 
/(X, Y) with respect to g equal to zero, i.e.

dI(X,Y)
dg(S) (7.50)

Given our zero-noise assumption, Equation 7.7 implies that I(X, Y) — 
H(Y), so

dI(X,Y) dH(Y)
dg{S) ) • 1 • '

If follows that the form of g that maximises the output entropy H(Y) 
is also guaranteed to maximise the mutual information /(X, Y). For a 
channel with bounded output values (e.g. 0 to 1), the distribution p(Y) 
with maximum entropy is the uniform distribution (see Section 5.6). 
Therefore, to maximise the mutual information, we need to find a form 
for the function g that makes the distribution p(Y) uniform.
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7 Channel Capacity: Continuous

Even though it makes intuitive sense, it is an abuse of notation 
to define the denominator of a derivative to be a a function, 
like dH(Y)/dg(S). In practice, g could be an S-shaped or 
sigmoidal function (as in Figure 7.6a), parameterised by a variable 
a which determines how steep it is. For example, it could be 
the cumulative distribution function of a Gaussian distribution with 
standard deviation cr, as shown in Figure 7.6a and in Figure G.lb in 
Appendix G:

Once we have defined g in terms of a ‘steepness’ parameter cr, we 
can rewrite the derivative dH(Y)/dg(S) = dH(Y)/da. In this case, 
assuming a mean of (i = 0, the ‘steepness’ parameter cr can be adjusted 
to maximise H(Y) and therefore I(X,Y).

Thus, in order to find a value for cr that maximises 7(X, y) , all we 
need to do is to find a value for cr that maximises H(Y). This is 
an important insight because it implies that the particular function g 
that maximises the entropy of the output Y also maximises the mutual 
information between the input X  and the output Y. In other words, 
if we want to communicate as much information as possible through a 
channel then we should adjust the function g so that X, and therefore 
y, has maximum entropy. Moreover, if Y has a finite bound then 
we know that H(Y) has maximum entropy when Y has a uniform 
distribution.

Key point. Given that Y = X  + 77, where X  = g(S), and 
that the noise is negligible, maximising the mutual information 
between the bounded input X  and the output Y amounts to 
finding a form for g which makes p(X) uniform.

Entropy o f a Transformed Variable

We will explore how changing the function g which encodes observed 
values s as input values x affects the entropy of X, and how this is 
related to the mutual information between X  and Y.

(7.52)
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7.7. The Fixed Range Channel

The question we seek to answer is this: given that the probability 
distribution of 5 is fixed, what form should the encoding function g 
take to ensure that the channel outputs Y convey as much information 
as possible about the channel inputs X  = g(S)? In other words, how 
should g be adjusted so as to maximise the mutual information between 
X  and Y? In order to answer this question we need to know how the 
entropies of 5 and X  are related, given that Y = g(S) + T). As above, 
we assume almost zero noise, so that

V =

and therefore

H(Y) =

x + 7} (7.53)
g(s) + r\ (7.54)
g(s), (7.55)

H(X) + H(rf) (7.56)
H(X) bits. (7.57)

Thus, we can maximise the mutual information by finding a mapping 
function g that maximises the entropy of the input X  = g{S).

Entropy o f Related Variables

We will be juggling with probability distributions in this section so, to 
keep track of them, we introduce some new notation: the distribution 
of X  will be denoted by px(X), where the subscript x identifies this as 
the distribution of x values; similar notation is used for other variables.

A monotonic increasing function x = g(s) (Figure 7.6a) transforms 
the variable 5 with a distribution ps(S) (Figure 7.6b) to a variable X  
with a uniform distribution (Figure 7.6c). As we saw in Section 5.5, 
the general rule for transforming pa(s) to px(x) is

Px(x) Ps(s)
|dff(s)/ds|’ (7.58)

where the vertical bars indicate absolute value. We can omit the 
vertical bars because the function g is a cdf, and therefore its slope 
dg(s)/ds is always positive.
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7 Channel Capacity: Continuous

For convenience, we define the probability distribution

f(s) — dx/ds (7.59)
= dg{s)/ds, (7.60)

which could take any form, in principle, but let’s assume it looks 
something like the Gaussian distribution ps(S) in Figure 7.6b. 
Substituting Equation 7.60 in Equation 7.58 yields

( \ P s { s ) a-\\Px(x) = (7.61)

F igu re 7.6. H ow  (a) an en cod in g  fun ction  m ap s (b) G au ss ian  d is tr ib u ted  
S va lues to  (c) a un iform  (m axim um  entropy) d is tr ibu t ion  o f  in pu t values 
X . T h e en cod in g  fun ction  which  en su res p(X) is un iform  (and th ere fo re  has 
m ax im um  entropy) is the cum u la tive d is tr ibu tion  fun ction  o f  p(S).
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7.7. The Fixed Range Channel

From this, we can see that changing the form of g affects /(S), which 
affects the form of px(X). As a reminder, the entropy of X  is

r  1H(X) = / px{x)\og— — dx. (7.62)
J x=—oo Px\%)

Substituting Equation 7.61 into 7.62 and noting that dx = f(s) ds 
allows us to rewrite the integral with a change of variables from x to s:

H(X) =
m  K («i>),{s)da (7.63)

=
l , P M '°g V.(s)dS' (7.64)

which can be rewritten as

H(X) = Ĵ p3(s)log~-̂ ds + (7.65)

(7.66)H{S) + E[log/(s)

This states that the entropy of X  is given by the entropy of 5 plus the 
mean value of the slope of the encoding function g which maps S to X  
(and tallies with Equation 5.23).

Which Encoding Function Maxim ises Entropy?

We know that the entropy H(X) is maximised if all values of X  are 
equally probable, which implies that px(X) is a uniform distribution, 
which, in turn, implies that all values of px(X) are the same. Using 
Equation 7.61, we can rewrite in Equation 7.62 as the ratio

1 = A f l  „7]
P x ( x )  [ ’

We can now see that this ratio must be constant in order to maximise 
the entropy of X. Given that both p8(s) and f(s) are probability 
density functions (i.e. with areas that sum to one), this ratio can be 
constant only if ps(s) = f(s). What does this equality imply about the 
encoding function g l
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7 Channel Capacity: Continuous

Well, we know that the derivative of the encoding function is f(s) = 
dg(s)/ds. The integral of f(s) yields another function g(s) which is, by 
definition, the cumulative distribution function of /(s),

where t is used as a dummy variable. Similarly, the cdf of the 
probability distribution ps(s) is

which is the encoding function that guarantees that X  has a uniform 
(maximum entropy) distribution. Therefore, if the encoding function 
g(s) is adjusted such that its derivative dg(s)/ds has the same 
magnitude as p3(s) then g(s) = g*(s).

In summary, if we want to ensure that each encoded value x of 
observed value s carries as much information as possible then we must 
ensure that the encoding function g(s) is the same as the cdf g*(s) of 
probability distribution ps(s).

7.8. Summary
In previous chapters, we defined entropy and mutual information for 
discrete variables which correspond to tangible everyday objects like 
letters of the alphabet. However, it is less obvious how to interpret 
entropy and mutual information for continuous variables because these 
correspond to insubstantial quantities like energy and power; in effect, 
we have constructed abstract measures of intangible quantities.

Unless we are careful, this begins to look as if we are performing ill- 
defined operations on non-existent objects. But we are not, because we 
can make sense of the increasingly abstract nature of these quantities 
at every stage if we maintain contact with the physical interpretation of 
the underlying equations. And, as we have seen, all of these equations 
have well-defined physical interpretations because, ultimately, they are 
all based firmly in the world of physics.

(7.68)

(7.69)
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Chapter 8

Thermodynam ic Entropy and 
Information

Our imagination is stretched to the utmost, not, as in 
fiction, to imagine things which are not really there, but 
just to comprehend those things which are there.
Feynman R, 1967.

8.1. In troduction
Entropy has been defined at least twice in the history of science. 
First, it was defined in physics as thermodynamic entropy by 
Boltzmann (1872) and Gibbs (1878), and later it was defined in 
mathematics by Shannon (1948)48. Shannon’s information entropy is a 
measure of information, whereas thermodynamic entropy is a measure 
of the number of states a physical system (like a jar of gas) can adopt.

These two different conceptualisations of entropy do not seem to be 
obviously related. But they are, and the relationship between them 
matters because thermodynamic entropy can be used to measure the 
energy cost of Shannon’s information entropy. If this were not true then 
it would be possible to use a hypothetical being, known as Maxwell’s 
demon, to run power stations on pure information.

8.2. Physics, Entropy and D isorder
In the world of physics, thermodynamic entropy is often interpreted in 
terms of the amount of disorder of a system. On this topic, there is no
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8 Thermodynamic Entropy and Information

better introduction than that given by one of the most lucid physicists, 
Richard Feynman. In order to set the scene, Feynman is considering 
the space inside a closed jar containing gas, as shown in Figure 8.1:

So we now have to talk about what we mean by disorder 
and what we mean by order. ... Suppose we divide the 
space into little volume elements. If we have black and 
white molecules, how many ways could we distribute them 
among the volume elements so that white is on one side and 
black is on the other? On the other hand, how many ways 
could we distribute them with no restriction on which goes 
where? Clearly, there are many more ways to arrange them 
in the latter case. We measure “disorder” by the number 
of ways that the insides can be arranged, so that from the 
outside it looks the same. The logarithm of that number of 
ways is the entropy. The number of ways in the separated 
case is less, so the entropy is less, or the “disorder” is less. 
Feynman R, 196415.

More formally, each arrangement of molecules defines a unique 
micro state. However, if we swap the positions of two black molecules 
then the container looks the same from outside, so both of these 
different microstates give rise to the same appearance or macrostate.

In reality, each macrostate corresponds to some global parameter, 
such as temperature. Each temperature corresponds to a particular 
distribution of molecule speeds. Clearly, if we swap the speeds of any

F igu re 8.1. T h ere  are m any m ore ways to  arran ge the m o le cu le s o f  ga s in a 
ja r if (a) their p o s it ion s  are u n restr ic ted  than if (b) all w h ite m o le cu le s have 
to  stay in on e half and all b lack  m o le cu le s have to  stay in the o th er half.
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8.2. Physics, Entropy and Disorder

two molecules then the overall distribution of speeds is unaffected, so 
the temperature remains the same. And every time we repeat this 
swap, we generate a new microstate. So, as before, each macrostate 
corresponds to many microstates. Crucially, there is no reason to 
suppose that molecule A has speed Si whilst molecule B has speed 
52, rather than vice versa. In other words, all microstates that are 
consistent with a single macrostate are equally probable.

In physics, the entropy of a macrostate is proportional to the log of 
the number of microstates consistent with that macrostate. However, 
some macrostates have more microstates than others. To see this, we 
can replace each white molecule above with a fast molecule, and each 
black molecule with a slow one, as in Figure 8.2. We can now see that 
some macrostates can be obtained by many different arrangements of 
fast and slow molecules, whereas others can be obtained with only a 
small number of arrangements of fast and slow molecules.

For example, with no restriction on which molecule goes where 
(Figure 8.2a), there are many more arrangements than if all the fast 
molecules have to stay in one half of the jar and all the slow molecules 
have to stay in the other half (Figure 8.2b). That is, there are many 
more ways to swap the speeds of two molecules if we are allowed to 
choose each molecule from anywhere in the jar, rather than having to 
choose both molecules from within the same half of the jar.

^ ___vl-»
, / o

(a) (b)

F igu re 8.2. In physics, a m a cro s ta te  d e term in es som e  g lo b a l param eter such  
as tem pera ture, w h ich  d ep en d s on  th e d is tr ibu tion  o f  sp e ed s  o f  ga s m olecu les, 
bu t n ot on  their p o s it ion s  or d ir ec t ion s o f  travel. Here, th e len gth  o f  each  
arrow  in d ica te s the sp e ed  o f  a m olecu le. I f each  m o le cu le  can  b e  (a) anywhere 
in the jar, then  th is m a cro s ta te  has m any m ore  m ic ro s ta te s  than if each  
m olecu le  is re str ic ted  to  (b) on e ha lf o f  the jar.
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8 Thermodynamic Entropy and Information

Placing all the fast molecules in one half causes that half to have a 
high temperature, and causes the other half to have a low temperature. 
So if we swap the speeds of two molecules within one half then this has 
no effect on temperature, because those molecules have the same speed. 
But if we swap the speeds of two molecules from different halves then 
this reduces the temperature in one half, and raises it in the other.

By definition, all microstates consistent with a given macrostate are 
equally probable, so it follows that macrostates with many microstates 
are more likely than macrostates with just a few microstates. For our 
jar of gas, this implies that macrostates in which both halves have an 
equal number of fast and slow molecules, as in Figure 8.3, are much 
more probable than macrostates in which one half has all the fast 
molecules (so it is hot) and the other half has all the slow molecules 
(so it is cold).

As we shall see, the highly probable macrostate in Figure 8.2a has 
high entropy, whereas the improbable macrostate in Figure 8.2b has 
low entropy.

Key point. Each macrostate is consistent with many equally 
probable microstates. So, macrostates with many microstates 
are more probable than macrostates with few microstates.

8.3. Information and Therm odynam ic Entropy
Let’s return to the history of entropy. As a first step, we can check to see 
if the definitions of thermodynamic entropy and Shannon’s information 
entropy are at least syntactically similar.

F igu re 8.3. T w o  m ic ro s ta te s  from  an en sem b le w ith  the sam e m acrosta te.
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8.3. Information and Thermodynamic Entropy

As a reminder, Shannon’s information entropy is

m ,
H = ><**£)• (S-1*

where m is the number of possible values that x can adopt. It will 
be useful to note that if there are a total of W possible outcomes or 
microstates (which are, by definition, equally probable) then p(x{) = 
1/W. For example, W could be the number of sides of a die. If we 
substitute this into Equation 8.1 then an equivalent definition is

w
H = (8-2)

2=1

= log VF (8.3)

For comparison, here is Boltzmann’s entropy32, which is defined in 
terms of natural logarithms:

S = k In IF7, (8.4)

where W is the number of (equiprobable) microstates a physical 
system can adopt, and k is Boltzmann’s constant, k = 1.38 x 10“23 
joules/degree, where temperature is measured using the Kelvin (K) 
scale. (The Kelvin scale begins at absolute zero, so OK is -273°C.)

Note the syntactic similarity between Shannon’s information entropy 
H in Equation 8.3 and the thermodynamic entropy 5 in Equation 8.4. 
Finally, Gibbs’ generalisation20 of Boltzmann’s entropy is

5
m

k^ 2 p(Xi) In 
2=1

1
P(Xi) joules/degree, (8.5)

where m is the number of macroscopically distinguishable physical 
configurations that the system can adopt. This somewhat terse 
definition should become clear in Section 8.4. Again, note the syntactic 
similarity between Shannon’s information entropy in Equation 8.1 and 
the thermodynamic entropy in Equation 8.5.
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8.4. Ensembles, M acrostates and M icrostates

Just as the temperature of a gas (macrostate) is the same for many 
different arrangements of molecules (microstates), so, for a pair of 
dice, the summed outcome values are the same for different pairs of 
individual outcomes (as we saw in Section 3.5). In physics, the set of 
all microstates that yield the same macrostate is called an ensemble of 
microstates.

We can identify each of the 11 summed dice outcomes with a 
macrostate, and each pair of dice values with a microstate. In both 
cases (dice or gas), an ensemble of microstates corresponds to a single 
macrostate (summed dice dots or temperature).

Notice that every one of the microstates in an ensemble is equally 
probable, but that certain macrostates (e.g. summed dice value 7) 
are generated by many microstates, whereas other macrostates are 
generated by only a small number of microstates (e.g. summed dice 
value 2). Because all microstates are equally probable, it follows that 
a macrostate generated by many microstates is more probable than a 
macrostate generated by only a small number of microstates.

In general, entropy is given by the logarithm of the number of possible 
microstates. However, if each microstate corresponds to exactly one 
macrostate then entropy is also given by the log of the number of 
possible macrostates. For example, an 11-sided die would have 11 
equally probable macrostates (outcomes). Because each of the 11 
macrostates corresponds to one microstate, the entropy is given by 
the log of the number of possible macrostates, log 11 = 3.46 bits. We 
can reverse this logic to confirm that 3.46 bits implies 23 46 = 11 
equally probable macrostates. More interestingly, we can apply the 
same reasoning to a variable with unequal macrostate probabilities.

In the case of the two dice considered above, even though the 
macrostates (i.e. the summed dots) are not equally probable, these dice 
have the same entropy as a single die with 23,27 = 9.65 sides. Even 
though such a die is not physically possible, it corresponds to a system 
with 9.65 equally probable microstates. More generally, if a variable 
with unequal macrostate probabilities has an entropy of n bits then it 
behaves like a system which can adopt 2n equally probable microstates.
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8.5. Pricing Information: The Landauer Limit

8.5. Pricing Information: The Landauer Limit

In this section, we define an absolute lower limit to the amount of energy 
required to acquire or transmit one bit of information 40, which is known 
as the Landauer limit. The value of this lower limit was first proposed 
by von Neumann (1961), and was developed by Landauer (1961)30.

Consider a jar of gas with a particular thermodynamic entropy S. 
We can determine the entropy of the gas by counting the number of 
equally probable microstates it can adopt. In order to keep things 
simple, we will assume that this gas consists of a single molecule40;47. 
First, we push the gas into one half of the jar, whilst maintaining the 
gas at a constant temperature.

Next, we divide the jar into W\ small cubes, and we define the 
molecule’s position to be the position of the cube it occupies. The 
number of different possible positions (cubes) for the molecule is also 
Wi, where each molecule position corresponds to a single microstate. 
If the number of possible microstates available to the gas in the whole 
jar is W\ then the number of microstates in half the jar is = W\/2 . 
Therefore, in confining the gas to half the jar, the thermodynamic 
entropy changes from an initial high value of

51 = fcln W\ joules/degree, (8.6) 

to a lower thermodynamic entropy

52 = fcln W2 joules/degree. (8.7)

Thus, a gas distributed throughout a jar has higher thermodynamic 
entropy than if it occupies only one half of the jar. Specifically, in the 
process of confining the gas from the whole jar into half the jar, the
thermodynamic entropy decreases by an amount

AS = kinW1 -k\nW2 (8.8)
-  fc In 2W2 — fc In W2 (8.9)
= k\n2{W2/W2) (8.10)
= fcln 2 joules/degree. (8.11)
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Notice that this remains true irrespective of how small we make the 
cubes. Multiplying by temperature T, we obtain

TAS = kT In 2 (8.12)
= 0.693 x kT joules. (8.13)

Equation 8.13 states that the amount of energy required to change the 
entropy of a system is equal to the change in entropy multiplied by the 
system’s temperature.

If we consider this in terms of Shannon’s information entropy then 
we find that the process of restricting the gas to half of the jar decreases 
the information entropy from H i = log2 Wi bits to H2 = log2 W2 bits, 
which is a decrease in information entropy of

AH = log 2 {Wl/W2) (8.14)
-  1 bit. (8.15)

Thus, forcing a gas into one half of a jar leads to a decrease
in thermodynamic entropy of AS = 0.693k joules/degree, and a 
corresponding decrease in information entropy of AH = 1 bit.

Using a similar line of reasoning, Landauer showed that the smallest 
amount of energy required to erase (or acquire) one bit is

1 bit = 0.693/c joules/degree (8.16)
= 9.57 x 1CT24 joules/degree. (8.17)

The reason that this Landauer limit increases with temperature is 
because the information communicated has to overcome the effects 
of random fluctuations (noise), which inevitably increase at higher 
temperatures. For example, the cost of Shannon information at a 
temperature of T — 313 K (40°C) is

9.57 x 10“24 x T = 3 x 1CT21 joules/bit. (8.18)

One interpretation of the above is that, initially, we have no 
information about which half of the jar the gas is in. Given that the
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8 .6 . The Second Law of Thermodynamics

gas is restricted to one half of the jar, we require one bit of information 
to tell us which half. Thus, in the process of restricting the gas to 
one half of the jar, we effectively remove one bit’s worth of uncertainty 
(information entropy) about which half of the jar the gas is in. Because 
the amount of energy required to force the gas into one half of the jar 
cannot be less than TAS = 0.693kT joules, this is also the energy cost 
of reducing the information entropy of this one-molecule gas by one bit.

Strictly speaking, the preceding account applies only to logically 
irreversible binary operations, like erasing (forgetting) information 
based on some observation. Evidence for the existence of the Landauer 
limit has been obtained by Berut et al (2012)7.

Key point. No matter how efficient any physical device 
is (e.g. a computer or a brain), it can acquire one bit of 
information only if it expends at least 0.693kT joules of energy.

8.6. The Second Law o f Therm odynam ics
The second law of thermodynamics can be summarised as things fall 
apart. More formally, it states that the entropy of an isolated system 
increases until it reaches a maximum value. An isolated system is one 
which does not lose or gain energy from outside the system.

In a sense, we have already derived a statistical rationale for why 
the second law of thermodynamics ought to be true. Given a few 
assumptions regarding the rules of probability, our analysis of entropy 
in the preceding pages makes us fairly certain that a system will 
adopt a high entropy state, for the simple reason that (at any given 
temperature) almost all states have high entropy.

From this perspective, the second law of thermodynamics seems 
inevitable, almost tautological. But it is not. It only seems to be 
so because we have built up our picture of entropy from assumptions 
based on physically valid observations regarding the laws of probability.

One consequence of the second law of thermodynamics is that a 
system, when left to its own devices, will inevitably choose a series of 
macrostates with successively larger entropies. It will, in a sense, ‘run 
uphill’ in terms of entropy, which corresponds to ‘running downhill’ in
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terms of order. When it has finished running it is said to be in a state 
of equilibrium, which corresponds to a maximum entropy state.

In terms of the jar of gas, if we use a piece of cardboard to push all of 
the molecules into one half of the jar and then remove the cardboard, 
we should be unsurprised when the molecules quickly migrate to fill all 
of the jar. But we should be unsurprised for one very good reason.

The above analysis informs us that the most common microstates 
correspond to macrostates in which the molecules are pretty much 
evenly distributed throughout the jar, and these common microstates 
far outnumber the microstates in which the molecules arrange 
themselves to occupy one half of the jar. It follows that, from its initial 
low entropy state, the jar of gas will run uphill to achieve maximum 
entropy, which will look like a gas that is running downhill in terms of 
orderliness. With this new perspective, we

... should never be surprised by or feel the need to explain 
why any physical system is in a high entropy state.
Greene B, 200422.

8.7. M axw ell’s Dem on
The being soon came to be called Maxwell’s demon, because 
of its far reaching subversive effects on the natural order of 
things. Chief among these effects would be to abolish the 
need for energy sources such as oil, uranium and sunlight. 
Bennett CH, 19876.

Suppose we wanted to cheat physics with a cunning ploy, using pure 
information. In 1871, the physicist James Clerk Maxwell proposed an 
ingeniously simple method for doing this. If Maxwell’s method actually 
worked then we could create perpetual motion machines, and build 
power stations fuelled by pure information. Unfortunately, Maxwell’s 
demon does not provide energy for free in practice. More importantly, 
such a demon cannot provide energy for free, not even in principle.

Maxwell’s demon resides on top of a closed container of gas, near to 
a transparent partition positioned between the container’s two halves, 
labelled A and B. The demon can open and close a small door in 
the partition with the flick of his wrist (which we assume expends no
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F igu re 8.4. M axw e ll’s d em on  op en s and c lo se s  a d o o r  be tw een  tw o halves o f  
a con ta iner, so  tha t on ly  fast m o le cu le s p a ss in to th e righ t side, and on ly  s low  
m o le cu le s p a ss in to  th e left side. Thus, pu re in form ation  rega rd in g  the sp e ed  
and d ir ec t ion  o f  in d iv idua l ga s m o le cu le s is u sed  to  crea te  a tem pera tu re  
difference, which  can  b e  u sed  to  gen era te  electricity. B y Teleri Stone.

energy). When he spots a fast-moving molecule in A heading towards 
the door, he opens it, so the molecule can pass into B , as shown in 
Figure 8.4a. Similarly, when he spots a slow-moving molecule in B 
heading towards the door, he opens it, so the molecule can pass into
A. Over time, this results in the accumulation of all fast molecules in
B , and all slow molecules in A, as shown in Figure 8.4b.

Because the speed of molecules in a gas defines its temperature, the 
demon effectively separates the original container of gas into a cold 
side and a hot side. Such a temperature difference can then be used 
to do work. The archetypal machine of this type is the steam engine, 
or internal combustion engine. In both cases, the fast molecules push 
against a piston head, and the resultant piston motion can be harnessed 
to drive the wheels of a steam tractor or a car. Similarly, we could place 
a demon and his door at the intake pipe of a power station (Figure 8.5), 
so that only hot air is allowed in. Because power stations run on hot 
gas, we would have free power, forever. But there is a catch.

In order to know when to open and shut the door, the demon must use 
information about the speed and direction of each molecule. However, 
we already know that each bit of information cannot cost less than the 
Landauer limit of 0.693kT joules/bit (Equation 8.16).

If the energy extracted from a fast-moving molecule allowed through 
the door were larger than the Landauer limit then we could run power 
stations on information, because there would then be a net energy
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F igu re 8.5. U sin g M axw ell’s dem on, the fuel for p ow er sta t ion s w ou ld  b e  
pu re in form ation . F rom  W ik im ed ia.

profit for each molecule. But it turns out that the amount of usable 
energy the demon accumulates in the container is exactly balanced by 
the energy required to acquire the information needed to open the door 
at the right times. So, even though Maxwell’s demon could run a power 
station, the energy generated cannot be more than the energy expended 
by the demon.

In other words, there is no net gain to be had from using information 
to accumulate fast-moving molecules in one half of a container, and 
using the resultant temperature difference to generate electricity. This 
is important because it provides a fundamental link between the notion 
of Shannon’s information entropy, as defined in information theory, and 
thermodynamic entropy, as defined in physics. Indeed, within three 
years of the publication of Shannon’s theory, Gabor18 declared:

We cannot get anything for nothing, not even an observation. 
Gabor D, 1951.

On a lighter note, the novelist Terry Pratchett speculated that 
knowledge requires physical storage space, and he used this supposition 
to explain the mysterious dark matter which comprises 90% of the mass 
of the universe:

For something to exist, it has to have a position in time and 
space. And this explains why nine-tenths of the mass of the 
universe is unaccounted for. Nine-tenths of the universe is
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the knowledge of the position and direction of everything 
in the other tenth ...
Pratchett T, Thief of Time, 2001.

8.8. Quantum Com putation
After some initial reluctance, quantum mechanics was embraced by 
the physics community in the twentieth century. Because physics 
can be viewed in terms of computing with physical entities, it was 
inevitable that the quantum revolution would eventually impact on 
our understanding of computing with numbers. Accordingly, quantum 
mechanics is in the process of being harnessed in the hope that it 
will be able to perform computational feats beyond the capability of 
conventional computers. For example, a quantum computer program 
invented by Lov Grover 23 in 1996 should be able to play the game of ‘20 
questions’ using a sequence of just five (or, more precisely, y/20 = 4.47) 
computational steps. If we interpret each computational step as a 
quantum question then a quantum computer could win the game of ‘20 
questions’ using just five quantum questions. More generally, Grover’s 
program should play the game of N questions using the equivalent of 
only VN quantum questions.

Inevitably, there is a trade-off between the sequence of N simple 
computational steps of a conventional computer, and the sequence of 
y/N complex computational steps of a quantum computer. Indeed, if a 
sequence of y/N steps can be executed by a quantum computer faster 
than a conventional computer can execute N simple steps then the 
quantum computer should be a clear winner.

It is still early days for quantum computation, and only simple 
quantum computers exist. But we should not despair, because 
conventional computers also had a slow start. In 1949, an article in 
Popular Mechanics Magazine declared:

... a calculator today is equipped with 18,000 vacuum tubes 
and weighs 30 tons, computers in the future may have only 
1,000 vacuum tubes and perhaps weigh only half a ton.
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8.9. Summary
In this chapter, we have reinforced the claim expressed in previous 
chapters that the rarefied concepts of entropy and Shannon information 
have tangible concomitants in the world of physics. When John 
Wheeler proclaimed that “All things physical are information-theoretic 
in origin”, he was not being metaphorical (he was a physicist, 
after all) because he understood that there is a deep, but subtle, 
connection between the abstract constructs of information theory and 
the nature of the physical universe. Most remarkable of all is that 
information has a definite lowest cost which can be measured in joules 
per bit. More than any other, this fact establishes the existence 
of a fundamental link between Shannon’s information entropy and 
Boltzmann-Gibbs’ thermodynamic entropy, between information and 
the disorderly arrangement of molecules in a jar of gas.
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Chapter 9

Information As N ature’s Currency

Nature uses only the longest threads to weave her patterns, 
so each small piece of her fabric reveals the organization of 
the entire tapestry.
Feynman R, 1967.

9.1. In troduction
Information theory is used in research fields as diverse as linguistics, 
communications, signal processing, computing, neuroscience, genetics, 
and evolutionary theory. In this chapter, we explore some relevant 
applications, and discuss them in the context of information theory.

9.2. Satellite TVs, MP3 and All That
The next time you switch on your TV, remember that what you see on 
the screen bears only a superficial resemblance to the data streaming 
out of the satellite that delivers the signal to your house. The reason 
is that the original images were encoded or compressed before being 
transmitted from a TV station to the satellite, and these encoded 
images must be decoded by your TV’s computer before the original 
images can be recovered. Thus, the problem faced by modern television 
systems is that images must be displayed at a very high quality, but 
the image data must be transmitted through a communication channel 
with a relatively small capacity. This is clearly a problem that can be 
addressed with information theory.

The camera that recorded the original image data is essentially an 
information source that generates data at a rate of about 1.5 gigabits 
per second (Gb/s), where a gigabit is one billion (109 or 1,000 million)
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binary digits. This figure of 1.5 Gb/s results from the fact that TVs 
typically display 1920 elements horizontally and 1080 lines vertically, 
at a rate of 30 images per second. Each colour image displayed consists 
of 1920 x 1080 sets of three pixels (red, green and blue), so the total 
number of pixels is about 6 million (i.e. 3 x 1920 x 1080 = 6,220,800).

Let’s assume the intensity of each pixel has a range of zero to 255, 
which is represented by log 256 = 8 binary digits, making a total 
of 49,766,400, or about 50 million binary digits per image. Because 
a TV displays 30 images per second, this amounts to about 1,500 
million binary digits/s. This is confusingly quoted as 1,500 megabits/s 
(i.e. 1,500 million bits/s) in the world of computing because both bit 
and binary digit are used to refer to binary digits (see Section 1.5).

However, the channel through which these 1,500 million binary 
digits/s are communicated (i.e. a satellite) can carry only 19.2 million 
binary digits/s. According to Shannon, a noiseless channel which 
carries 19.2 million binary digits/s has a capacity of exactly 19.2 million 
bits/s. So the problem is this: how can the information implicit in 
1,500 million binary digits/s be communicated through a channel which 
carries only 19.2 million binary digits/s?

Roughly speaking, the solution comprises four stages of processing 
before the signal is transmitted. First, squeeze all of the redundant data 
out of the images. Second, remove components which are essentially 
invisible to the human eye. Third, recode the resultant data so that all 
symbols occur equally often (e.g. using Huffman coding), and, finally, 
add a small amount of redundancy in the form of an error-correcting 
code. As discussed in Chapter 1, the similarity between adjacent pixel 
values is one source of redundancy. However, because a TV receives 
data as a temporal sequence of images, the state of each pixel tends to 
be similar between consecutive images, and this temporal redundancy 
can also be removed to compress the data.

The standard set of methods used to remove spatial and temporal 
redundancy are collectively called MPEG (Moving Picture Expert 
Group). Whilst these methods are quite complex, they all rely 
heavily on a core method called the cosine transform. In essence, 
this decomposes the data into image features of different sizes. When
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measured across space (i.e. within an image), size translates to spatial 
frequency (actually, 1/spatial frequency, so large features have low 
spatial frequencies). When measured across time, size translates 
to features that persist for short or long times, which translates 
to temporal frequency (actually, 1/temporal frequency, so persistent 
features have low temporal frequencies).

Once the data have been transformed into a series of spatial and 
temporal frequencies, some of them can be thrown away. This is an 
important step for two reasons. First, it reduces the quantity of data 
to be communicated, which is good. Second, it reduces the quantity of 
information communicated, which is bad. However, if the information 
thrown away involves only those frequencies which we cannot see, then 
it is not so bad, after all. For example, fine details that are beyond the 
resolution of the human eye correspond to high spatial frequencies, and 
can therefore be discarded without any apparent loss of image quality. 
Similarly, changes over time that are too fast to be detectable by the 
eye correspond to high temporal frequencies, and can be discarded. At 
the other extreme, very low spatial and temporal frequencies are also 
essentially invisible to the eye, and can be discarded.

The eye is sensitive to intensity (luminance), but relatively insensitive 
to fine gradations of colour. Consequently, the data from TV cameras 
can be recoded to give high-resolution intensity data, and low-resolution 
colour data. Because this recoding mirrors the encoding within the 
human visual system51, the perceived picture quality is unaffected. 
The result is a 50% saving in the number of binary digits required to 
represent information regarding the colour and intensity of pixels.

Discarding certain spatial and temporal frequencies and recoding 
intensity/colour data means that data recorded at a rate of 1,500 
million binary digits/s can be compressed and transmitted through a 
communication satellite channel with a capacity of 19.2 million bits/s, 
and then decoded to present you (the TV viewer) with 1,500 million 
binary digits of data per second (with some loss of information but no 
visible loss of quality). This represents an effective compression factor 
of about 78(~ 1500/19.2), so it looks as if we can communicate 78 
times more data than the channel capacity would suggest. In fact, the
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compression has to be a little better than this, because the stereo sound 
is also squeezed into the same channel. This is achieved by applying the 
cosine transform mentioned above to sound (where it is called MP3).

Compression that throws away information is called lossy, whereas 
compression that preserves all information is called lossless. Most 
practical systems are lossy, but they do not give the appearance of 
losing information because the discarded information is invisible, or, at 
least, unimportant for human perception of images or sounds.

Finally, in order to minimise the effects of noise, redundancy is added 
to the compressed data. Unlike the redundancy of the original data, the 
amount of added redundancy is small, but it is just enough to enable 
the receiver to recover from all but the most catastrophic forms of noise 
in the form of electrical interference.

9.3. D oes Sex Accelerate Evolution?
Even though the Darwin-Wallace theory of evolution by natural 
selection was published in 1859, it still holds a number of mysteries. 
Prominent amongst these is the question of sex. Specifically, why do 
some species have two sexes?

Many answers which have been proposed rely on logical argument 
mixed with a degree of plausible speculation, rather than mathematical 
analysis. And even though mathematical analysis cannot usually 
provide definitive answers to biological questions, it can constrain the 
space of possible answers. In so doing, some answers can be definitely 
excluded, and those that remain can be used to yield hypotheses which 
can be tested empirically.

Evolution is essentially a process in which natural selection acts as 
a mechanism for transferring information from the environment to the 
collective genome of a species. (The term genome is conventionally 
used to refer to all of the genes in a particular individual, but we use 
it to refer to all of the genes in a typical individual.) Each individual 
represents a question asked of the environment: are the genes in this 
individual better or worse than average? The answer is often brutal, 
because the environment destroys many individuals in infancy. But 
even when the answer is given more tactfully, so that an individual 
does not die but simply has fewer offspring, it is still brutally honest.
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The answer comes in units called fitness, and a good measure of 
fitness is the number of offspring each individual rears to breeding 
age. Over many generations, the information provided by the answers 
(fitness) allocated to each individual coerces the genome via natural 
selection to adopt a particular form. Thus, information about the 
environment eventually becomes implicit in the genome of a species.

The form of the information received from the environment is both 
crude and noisy. It is crude inasmuch as it is measured in units of whole 
numbers of offspring, rather than in the fractional offspring numbers 
required to obtain a precise measure of fitness. And it is noisy inasmuch 
as the environment does not simply provide a perfect estimate of each 
individual’s fitness because, sometimes,

the race is not to the swift, nor the battle to the strong 
... but time and chance happeneth to them all.
Ecclesiastes 9:11, King James Bible.

Thus, the environment assigns a noisy fitness value to each individual, 
where fitness equates to the number of offspring each individual rears 
to adulthood. However, this fitness value gets assigned to a whole 
individual, and not to particular genes that make large (negative or 
positive) contributions to an individual’s fitness. In other words, the 
totality of an individual’s fitness value does not specify which beneficial 
features increase fitness, or which detrimental features decrease fitness. 
Ultimately, each individual either lives or dies before reproducing, 
which implies that its genome provides a maximum of one bit of 
information about its relative fitness. However, the fact that the 
information received from the environment is crude and noisy is not 
necessarily a problem for evolution.

In a theoretical tour de force, John Holland (1992)25 proved that the 
type of genetic algorithm used in natural selection implements a kind 
of intrinsic parallelism, which makes it incredibly efficient at allocating 
blame or credit to particular genes. In essence, Holland’s mathematical 
analyses proved the schema theorem, which states that a gene increases 
in frequency within a species at a rate exponentially related to the extra 
fitness that gene confers on its owners (i.e. good genes spread extremely 
quickly). Even though Holland’s results make no explicit claims on
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information theory, it seems likely that information theory is relevant. 
On a related topic, information theory has been applied to test the idea 
that the genetic code is optimal33’44.

The human genome contains about 3 x 109 (3 billion) pairs of 
nucleotides, where each nucleotide comprises one element in one half of 
the classic double helix of the DNA (deoxyribonucleic acid) molecule 
(there are about 1,000 nucleotides per gene). In order to explore 
how quickly the genome acquires information about the environment, 
MacKay (2003)34 identifies one bit as corresponding to one nucleotide, 
which is a well-defined chemical structure (unlike a gene). The 
human genome makes use of four particular nucleotides, adenine (A), 
guanine (G), thymine (T) and cytosine (C). Within the DNA molecule, 
nucleotides pair up on opposite sides of the double helix, such that A 
pairs with T, and C pairs with G.

In the spirit of the methods applied successfully in physics, MacKay 
uses a stripped-down model of each nucleotide, which is assumed to 
occur in one of two states, good or bad. Given a genome of N 
nucleotides, the fitness of an individual is defined simply as the number 
of nucleotides in a good state, and the normalised fitness is defined as

F igu re 9.1. H ow  fitness ch anges over gen era tion s for asexua l and sexually 
rep rodu c in g  p opu la tion s. In th is sim u lation , the num ber o f  gen es per 
in d iv idua l is N = 1,000, and 1,000 in d iv idua ls in itia lly  had random ly  
gen era ted  g en om es w ith  a fitness /  =  0.5, so  the p opu la t ion  fitness was 
in itia lly  500. T h e da sh ed  line sh ow s th e th eo re tica l curve. R ep rodu ced  with 
p erm iss ion  from  M acK ay (2003)34.
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the proportion of good genes in an individual’s genome. Finally, the 
proportion of good genes above 50% is defined as the excess normalised 
fitness, 8f , which we will just call fitness.

MacKay then compares the effects of different mutation rates on 
fitness in populations that reproduce sexually and asexually. If a 
sexually reproducing population is well adapted to its environment 
then, by definition, the genome is close to an ideal or optimal genome. 
MacKay shows that this near-optimal genome acquires one bit every 
two generations. However, if the environment changes then over 
generations the genome adapts. MacKay proves that the rate at 
which a genome of N nucleotides accumulates information from the 
environment can be as large as

VN bits/generation. (9.1)

For example, given that N = 3 x 109 nucleotides, the rate at which the 
population accumulates information from the environment can be as 
large as 540,000 bits/generation. In this case, the collective genome of 
the current generation would have 540,000 bits more information about 
its environment than the genomes of the previous generation, and so 
should be better prepared to meet the challenges of that environment. 
In contrast, under similar circumstances, an asexually reproducing 
population (e.g. aphids) acquires information at a fixed rate of one bit 
per generation.

The result stated in Equation 9.1 seems to suggest that the bigger 
the genome, the faster evolution can work. If this is true, then why 
doesn’t the process of natural selection result in genomes which are as 
large as possible? The answer involves mutation rates.

The mutation rate is the probability that each gene will be altered 
from one generation to the next, and (equivalently) is the average 
proportion of genes altered from one generation to the next. It turns 
out that, in theory, the largest mutation rate that can be tolerated in 
an asexual population is about 1/iV, whereas it is 1/y/N in a sexual 
population. To take a simple example, if the genome size is tiny, say 
N = 100, then the largest mutation rate that can be tolerated in an 
asexual population is 0.01, whereas it is 1/y/N = 1/10 = 0.1 in a
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sexual population. So, in both cases, the rate of genetic mutation 
affects large genomes more than small ones, but a sexual population 
can tolerate a much higher mutation rate than an asexual population. 
This is especially pertinent given that mutation is pretty much the only 
source of inter-individual variability available to asexual populations. 
Because variability provides the raw materials for natural selection, the 
net effect is to accelerate evolution in sexual populations.

However, the above results provide a biological conundrum: a large 
genome increases evolutionary speed, but it also decreases tolerance to 
mutations. This means there is a trade-off between a large genome 
(which accelerates evolution, but provides poor mutation tolerance) 
and a short genome (which provides good mutation tolerance, but 
decelerates evolution). These conflicting constraints suggest that 
evolution should have found a ‘happy medium’ for genome size, which 
ensures that the rate of evolution is as fast as it can be for a given 
genome size and mutation rate.

The upshot of this analysis suggests that natural selection allows a 
genome of size N to accumulate information from the environment at 
a rate proportional to VN times faster in a sexual population than in 
an asexual population. Additionally, a sexual population can tolerate 
a mutation rate that is proportional to y/N times greater than the 
mutation rate that can be tolerated by an asexual population. For 
genomes with N « 109 nucleotides, this factor of y/N is not trivial. 
Even for a ‘toy’ genome size of N = 10,000, if an asexual population 
accumulates information at the rate of 10 bits/generation then a sexual 
population would accumulate information at the rate of 10 x yQO,000 « 
1,000 bits/generation.

Darwin would almost certainly approve of this type of analysis, which 
seeks to find the laws which underpin evolution by natural selection:

The grand Question which every naturalist ought to have 
before him when dissecting a whale or classifying a mite, a 
fungus or an infusorian is “What are the Laws of Life?”.
Darwin C, B Notebook, 1837.

According to the analysis summarised above, we now have a candidate 
for one of these laws: between successive generations, the collective
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genome of a species should maximise the Shannon information acquired 
about its environment for each joule of expended energy. This general 
idea of efficient evolution can be considered to be an extension of the 
efficient coding hypothesis normally applied to brains.

Finally, MacKay argues that faulty transcription of DNA effectively 
smoothes out an otherwise rugged fitness landscape, and thereby 
increases the rate of evolution. This type of phenomenon is an example 
of the Baldwin effect4, which is traditionally considered to rely on 
within-lifetime learning to accelerate Darwinian genetic evolution.

The results of information-theoretic analyses34’54 of biological 
evolution are not only compelling and intriguing; they also provide 
hypotheses that can be tested empirically: hypotheses which should 
make redundant much of the speculative debate that often accompanies 
such controversies.

9.4. The Human Genome: How Much Information?

Like any message, DNA is composed of a finite alphabet. As described 
above, the alphabet for DNA comprises 4 letters (A,G,T, and C), where 
each letter corresponds to one nucleotide. For a message which is N 
letters long, the number m of possible messages that could be sent is 
therefore m = 4N, and the maximum amount of information conveyed 
by this message is H = log 4N = N log 4 = 2N bits. Given that the 
human genome consists of N = 3 x 109 nucleotides, this implies that it 
contains a maximum of H = 6 x 109 or 6 billion bits of information. Of 
course, the genetic code is partially redundant (which may be necessary 
to minimise errors) and some regions of the DNA molecule do not seem 
to code for anything, so the estimate of 6 billion bits is an upper bound.

Note that 6 billion bits could be stored in 6 billion binary digits, 
which is almost one gigabyte (a gigabyte is 8 x 109 binary digits). For 
comparison, a basic DVD disc can store 8 billion binary digits, which 
is enough for a two-hour movie. However, whereas a disc or a memory 
stick consists of a substantial amount of material, these 6 billion binary 
digits’ worth of data are stored in the DNA inside the nucleus of every 
cell in the human body.
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9.5. Enough DNA to W ire Up a Brain?

Everything that we see, hear, or touch depends on the flow of 
information through nerve cells or neurons. These neurons are the only 
connection between us and the physical world, and the brief on-off 
pulses they deliver to the brain are the only messages we can ever 
receive about that world. However, even before we are born, some 
information has already been transferred from our DNA into the brain; 
otherwise, we could neither breathe nor suckle. So at least some of 
the brain’s microstructure is determined primarily by nature, rather 
than nurture. In terms of information, an obvious question is: does 
the DNA of the human genome contain enough information to specify 
every single connection in the brain of a new-born baby?

The human brain contains about 1011 (one hundred billion) neurons, 
and each neuron has about 104 (ten thousand) connections or synapses 
to other neurons. This leads to an estimate of 1015 synapses in total. As 
stated above, the human genome contains about 3 x 109 (three billion) 
nucleotides (see Section 9.3). In fact, there are about 1,000 nucleotides 
per gene, but let’s keep things simple. If each nucleotide specified one 
synapse then this would place an extremely conservative upper bound 
on the number of synapses that could be genetically programmed. Even 
under this conservative assumption, if one bit were used to specify 
the strength of a synapse (e.g. on or off) then there would be enough 
information for only 109 synapses, which represents one millionth of all 
the synapses in the brain (109/1015 = 10~6). And this would leave no 
DNA for the rest of the body. In essence, if we want to use DNA to 
encode synapses then we would need about a million times more DNA 
than we have now.

In Darwin’s day, the question posed above would be hostage to pure 
speculation. But with Watson and Crick’s discovery of the structure 
of DNA in 1953, combined with Shannon’s information theory, we can 
answer this question definitively: no, there is not enough DNA in the 
human genome to specify every single connection in the brain.

A compelling implication of this answer is that the human brain must 
learn. It may seem obvious from observing an infant that we learn, but 
the fact that we do learn does not imply we have to learn in order to
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develop. Thus, information theory tells us that we must learn, because 
learning provides a way for the brain to use the information supplied 
by the environment to specify the correct set of 1015 synapses.

9.6. Are Brains G ood  at P rocessin g Information?
Neurons communicate information. They do not care about the shape 
of a tree, the smell of vanilla, or the touch of a cat’s fur. That is for us, 
the beneficiaries of what neurons do; what they do is to communicate 
information, and that is pretty much all that they do.

Ever since the first neurons appeared, about 580 million years ago, 
the relentless forces of natural selection have ensured that they are 
about as perfect as they can be. We know this is true because 
information theory has been applied within the research field of 
computational neuroscience to the various functions that neurons 
perform17’35’43. The success of this highly technical research program, 
far from diminishing the wonder of brain function, promises a radical 
change in our perspective:

... we claim that the results of a quantitative approach are 
sufficiently extreme that they begin to alter our qualitative 
conception of how the nervous system works.
Rieke et al, 199743.

A major reason this research program has been so successful is 
because, whatever else neurons appear to be doing, they must be 
communicating information about the world to the brain. As the world 
offers up almost infinite amounts of sensory data to be communicated, 
it is necessary for neurons to be selective, and efficient in encoding the 
information they select for transmission. This general approach has 
been championed by Horace Barlow, who has been largely responsible 
for the genesis of the resultant efficient coding hypothesis5. Put simply, 
this states that data acquired by the eye should be encoded as efficiently 
as possible before being communicated to the brain.
Information in Spiking Neurons
One of the first applications of information theory to neuroscience was 
by MacKay and McCulloch (1952), who calculated the entropy of a 
spiking source, a mere four years after the publication of Shannon’s
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Figure 9.2. A series of n voltage spikes from a neuron can be represented as 
Os and Is. If a time period of T seconds contains n spikes then the firing rate 
is r — n/T spikes/s. If T is divided into M small intervals or bins of width 
At then the probability of observing a spike in each bin is p = r x  At.

paper. The following account is based on Rieke et al (1997)43, and on 
lecture notes by Professor John Porrill.

Suppose we regard the neuron as a channel. A neuron acts as a 
binary channel because neurons deliver information in the form of brief 
voltage spikes, as shown in Figure 9.2. These spikes occur at a typical 
rate of between one and 100 spikes per second (spikes/s). Suppose we 
record spikes with only limited temporal resolution of, say, At = 0.001 
seconds (i.e. 1 millisecond (ms)) then a spike can either be present or 
not present in each 1 ms interval. This binary channel can carry one 
binary digit each millisecond, so its capacity is C = 1/At bits/s. With 
a temporal resolution of At = 0.001 seconds, this gives an upper bound 
defined by its channel capacity of 1,000 bits/s.

Let’s estimate the entropy of the output of a typical neuron, assuming 
that spikes are mutually independent. The entropy of a sequence 
of spikes, or spike train, is given by the logarithm of the number of 
different possible spike trains that could occur in a given time interval 
T. In order to avoid the complicated mathematics that ends with a 
good approximation to this43, we will use some much less complicated 
mathematics to obtain a slightly less good approximation.

If spikes are produced at an average firing rate of r spikes/s then the 
probability of a spike in each time interval of At seconds is

r At,
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and the probability that no spike occurs in each interval is therefore 
q = 1 — p. Thus, the average Shannon information of each interval is

H = h(p)+h{q) (9.3)
= p log(l/p)+g log (l/g) bits. (9.4)

If we define At to be sufficiently small then the probability of a spike in 
each interval is low, and therefore the probability of no spike is almost 
one, which implies that h(q) « 0 bits. Thus, Equation 9.4 can be 
approximated by its first term H « plog(l/p). We can use Equation
9.2 to rewrite this in terms of At

H  « r At log — — bits. (9.5)r At

This is actually the average Shannon information produced in time At, 
so the average rate R at which Shannon information is generated is 
found by dividing by At

H/At (9.6)
r log bits/s, r At (9.7)

where we have omitted the approximation symbol. For a neuron with 
a firing rate of r = 50 spikes/s, and assuming an interval of one 
millisecond (At = 0.001s), this gives an information rate of

R = 50 log ——------  = 216 bits/s. (9.8)5 50 x 0.001 ' v '

If 50 spikes convey 216 bits then each spike conveys an average of

216/50 = 4.32 bits/spike. (9.9)

Note that the temporal precision At effectively places an upper 
bound on channel capacity. This bound applies to us (as observers 
of neuronal outputs) and to neurons that receive the outputs of other 
neurons which cannot resolve the timing of spikes below some threshold 
of temporal precision.
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The estimate of 4.32 bits/spike is more than the information (one bit) 
carried by the state (spike or no-spike) of each bin, which can be 
understood if we adopt a slightly different perspective. Given a firing 
rate of 50 spikes per second and a temporal resolution defined by 1,000 
bins per second, an average of one out of every 20 (=1000/50) bins 
contains a spike. Because each spike can appear in any bin with 
equal probability, each set of 20 bins can adopt 20 equally probable 
states. Roughly speaking, each set of 20 bins has an entropy of about 
log 20 = 4.32 bits, and because each of these sets contains an average 
of one spike, each spike effectively conveys an average of 4.32 bits.

Irrespective of precisely how much information is implicit in the 
neuron’s output, there is no guarantee that it provides information 
about the neuron’s input, that is, the mutual information between the 
input and output. Note that the mutual information cannot be greater 
than the maximum entropy implied by the neuron’s mean firing rate. 
Thus, the maximum entropy implied by a neuron’s mean firing rate 
acts as an upper bound on its entropy, and this, in turn, acts as an 
upper bound on the mutual information between the neuron’s input 
and output.

Using data collected from mechanical receptors in the cricket, 
Warland et al (1992) found that neurons have an entropy of about 
600 bits/s. However, it was found that only about half of this entropy 
is related to the neuron’s input, and the rest is noise. These neurons 
therefore transmit information about their inputs at a rate of about 300 
bits/s, which represents a coding efficiency of about 0.5 (i.e. 300/600).

Let’s think about what it means for a neuron to provide 300 bits/s 
about its input. Using a simplistic interpretation, at the end of one 
second a neuron has provided 300 bits, which is enough information to 
specify its input to within one part in 2300, or (equivalently) as one part 
in 2 x 1090. This would be analogous to measuring someone’s height 
to within a fraction of the width of an atom, which is clearly silly. So 
what are we to make of this result?

An alternative interpretation, proposed by Rieke et a/43, is that each 
neuron provides a kind of ‘running commentary’ about its input, which 
is usually changing rapidly. When considered like this, each neuron
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provides, on average, three bits each 10 ms, where 10 ms seems to 
represent a plausible time frame. In other words, every 10 ms a neuron’s 
output specifies what is driving its input with a precision of one part 
in 8(= 23). For example, if a neuron is sensitive to the speed of visual 
motion between, say, zero and 32 degrees/s then its output over 10 ms 
could indicate one particular eighth of this range. Because 1/8 of 32 is 
4, the neuron’s output could indicate a speed of, say, 20 ± 2 degrees/s, 
where ± 2 implies a range of 4 degrees/s. In this case, the information 
conveyed over 10 ms is about the same as the information conveyed by 
each spike (three bits), so the timing of each spike effectively indicates 
speed to within ± 2 degrees/s.

Experiments on the frog auditory system42 showed that the 
proportion of output entropy that provides information about a 
neuron’s input depends on the nature of the sounds used. Specifically, 
if artificial sounds were used then the coding efficiency was only about 
20%, but if naturalistic frog calls were used then the coding efficiency 
was an impressive 90%.

Eyes, Flies, and Information Theory

The purpose of an eye is to communicate information about the world 
to the brain, and this is as true for the eye of a fly as it is for the eye 
of a human. Thus, even though the structure of a human eye is very 
different from the structure of a fly’s eye, it is likely that the underlying 
computational processes in both are essentially the same.

Laughlin (1981)31 showed that neurons which receive outputs from 
the eye communicate about as much information as is theoretically 
possible. He showed this to be true for fly eyes, and subsequent work 
suggests that it is also true for human eyes. Laughlin’s brief paper 
(two pages) is not only a physical example of the power of information 
compression, but also one of the most insightful papers in biology.

Organisms with eyes are more interested in differences in luminance, 
or contrast, than in luminance per se. For this reason, the neurons 
which receive outputs from photoreceptors respond to contrast rather 
than luminance. In the fly, these neurons are called large monopolar 
cells or LMCs. These brain cells, which have continuous voltage
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outputs (rather than spikes), are the cells from which Laughlin made 
his recordings.

The first question Laughlin posed in his paper was this: if the 
distribution of contrasts seen by a fly’s eye is fixed by its natural 
environment, and if the LMC neurons in a fly’s eye have a specific

□
F igu re  9.3. S ch em a t ic  sum m a ry  o f  L a u gh lin ’s ex p er im en t.
(a) P r o b a b il it y  d en s ity  fu n c t ion  p3(s) o f  c o n tr a s t s  s in  th e  f ly’s env ironm en t.
(b) S am p le d  va lu es o f  s from  (a) o b ta in e d  ov e r  t im e  a s th e  fly m ov e s  around.
(c) T ra n s fo rm in g  s va lu es t o  x va lu es u s in g  th e  cum u la t iv e  d is tr ib u t ion  
fu n c t ion  o f  p3(s), w h ich  is th e  o p t im a l e n c o d in g  fu n c t ion  g* ( sm oo th  curve), 
and  w h ich  p r e d ic t s  th e (rescaled) o u tp u ts  x =  g(s) o f  L M C  n eu ron s (dots).
(d) H ow  L M C  n eu ron  o u tp u ts  x ch an ge  over tim e.
(e) U n ifo rm  p d f  px(x) o f  L M C  ou tp u ts  p r e d ic te d  by g * .

200



9.6. Are Brains Good at Processing Information?

input/output encoding function, then what is the precise form of this 
encoding function which would communicate as much information as 
possible from the fly’s eye to the fly’s brain?

Each LMC neuron has an output between xmin = —20 mV and 
X m a x  = +20 mV, so it acts like an encoding function which prepares 
(encodes) contrasts for transmission along a communication channel 
with fixed lower and upper bounds (where LMC outputs were rescaled 
to have a range between zero and one). The analysis in Section 7.7 
implies that the optimal encoding function g*{s) for such a channel is 
given by the cumulative distribution function (cdf) of the probability 
density function (pdf) p3(s) of contrasts s in the fly’s environment 
x* = g*(s). By definition, if the pdf of contrasts seen by a fly’s eye in 
its natural environment is ps(s) then the cdf of contrast values is

9 *(s) = f  (9.10)
Jt= — CO

From Section 7.7, we know that the encoding function g* is guaranteed 
to transform the distribution p3(s) of contrast values into a uniform pdf 
px(x) of encoded contrast values x. Because the uniform distribution is 
a maximum entropy pdf, each value of x provides as much information 
as possible.

In order to estimate the optimal encoding function g*(s), Laughlin 
needed to know ps(s), the pdf of contrasts in the fly’s environment. 
For this, he measured the distribution of contrasts which occur in a 
woodland setting. These data were used to construct a histogram, 
which represents an approximation to p3(s) (Figure 9.3a). Numerical 
integration of this histogram was then used to estimate the cdf g*(s) 
(Figure 9.3c, solid curve).

Having used information theory to find the precise form that an 
optimal encoding function should adopt, Laughlin’s second question 
was this: does the LMC encoding function g implicit in LMC neurons 
match the optimal encoding function g* predicted by information 
theory?

In some respects, this second question is conceptually more 
straightforward than the first question because the encoding function g
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of an LMC neuron is given by the mean response to each contrast. 
Accordingly, Laughlin exposed the fly to different contrasts in his 
laboratory, and measured the output voltage of LMC neurons. As 
the contrast was increased, the output increased slowly at first, then 
more rapidly, and finally tailed off at very high contrasts, as shown by 
the data points plotted in Figure 9.3c.

To answer his second question, Laughlin had to compare the data 
points from the neuron’s encoding function g(s) with the optimal 
encoding function g*(s). In order to make this comparison, LMC 
outputs were linearly rescaled to have a range between zero and one. 
The match between the LMC outputs x = g(s) (the data points in 
Figure 9.3c) and the values predicted by the optimal encoding function 
g*(s) (the solid curve in Figure 9.3c) is remarkably good.

Laughlin’s experiment represents one of the first tests of an 
information-theoretic optimality principle within the brain (i.e. the 
efficient coding hypothesis). This general approach has been vindicated 
in tests on other organisms (including humans38’51’55) and on other 
sense modalities (e.g. olfaction29 and audition42). Indeed, Karl 
Friston’s free-energy theory17;47 assumes that an organising principle 
for all behaviour consists of minimising the sum total of all future 
surprises (i.e. sensory entropy).

Blue Green Red
cone cone cone

Figure 9.4. Photoreceptor sensitivity to different wavelengths of light.
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The Colour o f Information

The human eye contains about 126 million photoreceptors, which 
consist of two main types. The 120 million rods are very sensitive 
to light, and these function only in low-light conditions. The 6 million 
cones function under daylight conditions, and are concentrated close 
to the optical centre of the eye. There are three types of cones, and 
these are responsible for colour vision. The amount of light absorbed 
at each wavelength by each cone type defines its tuning curve, as 
shown in Figure 9.4. These cones are labelled L, M and S, supposedly 
named after long, medium and short wavelengths. However, this is a 
misleading nomenclature, because the L and M cones have very similar 
tuning curves, and both cone types respond best to light which looks 
greeny-yellow. In contrast, the S-cones are sensitive to short wavelength 
light which appears blue. Despite this misnaming, for simplicity, we will 
refer to them as red, green and blue cones.

The outputs of the photoreceptors are transmitted to the brain via 
one million fibres which comprise the optic nerve. However, trying to 
squeeze the outputs of 126 million photoreceptors into the optic nerve’s 
one million fibres is the cause of a severe bottleneck.

Blue Green Red
cone cone cone

Blue-Yellow Luminance Red-Green 
channel channel channel

Figure 9.5. Combining outputs from three cone types to produce three new 
colour channels (ganglion cell outputs). From Frisby and Stone (2010)16.
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(a) (b)

Figure 9.6. Schematic illustration of sum-difference recoding, (a) The similar 
tuning curves of red and green cones means that nearby cones have similar 
output values. (b) The recoded sum gR+G = rR+rG and difference gR-G = 
vr — tg channels are independent. From Stone, 201251.

Because the red and green cone types have similar tuning curves, 
neighbouring red and green cones usually have similar outputs. If these 
red and green cones had their own private nerve fibres to send their 
outputs along then these outputs would be similar; almost as if the same 
message is being sent along two different wires. Given the information 
bottleneck, this would obviously be a wasteful use of the capacity of 
the communication channels (i.e. nerve fibres).

One simple way to ensure that the messages in different optic nerve 
fibres are uncorrelated consists of using one fibre to carry the sum of 
the red and green cone outputs, and another to carry the difference 
between their outputs, as in Figure 9.5. For brevity, we will call 
this type of recoding sum-difference recoding; it is also obtained by 
applying principal component analysis to the data in Figure 9.6a.
It can be shown that if cone outputs have Gaussian distributions 
then sum-difference recoding yields independent messages. Physical 
evidence for sum-difference recoding exists in the form of ganglion 
cells. These cells reside in the retina, where they collate the outputs of 
neighbouring photoreceptors, and each ganglion cell output is carried 
by one of the million nerve fibres in the optic nerve.
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To confirm that the sum and difference signals are independent, we 
can test whether one can be predicted from the other. For example, if 
the two cone outputs are represented as r# and tq then the value of 
rR tells us roughly what the value of re is; they are highly correlated, 
as shown in Figure 9.6a. Now, using g to denote ganglion cell output, 
suppose instead that these values are recoded in terms of a sum ganglion 
cell output, gR+G = tr + re, and a difference ganglion cell output, 
gR-G = tr — tg, as shown in Figure 9.6b. The almost uniform 
coverage in Figure 9.6b suggests that the ganglion cell outputs gR+G 
and gR-G are independent, and this, in turn, suggests that ganglion 
cell channel capacity is not being wasted. In fact, ganglion cell channel 
capacity is only fully utilised if the outputs of each ganglion cell are also 
independent over time, and there is evidence for this37. In summary, 
using separate ganglion cells to transmit outputs of red and green 
cones necessarily wastes some of the channel capacity of ganglion cells, 
whereas using ganglion cells to implement sum-difference recoding of 
cone outputs using does not.

The Brain: An Efficient Encoder

The experiments and analyses described above suggest that the brain’s 
ability to process information is about as efficient as it possibly can be. 
More importantly, information-theoretic analyses of such experiments 
have led to the general conclusion that, within sensory systems:

... information rates are very large, close to the physical
limits imposed by the spike train entropy.
Rieke et al, 199 7 43.

Without information theory, we would have no way of telling how well 
neurons perform, because we would have little idea of what it means 
to measure neuronal information processing performance in absolute 
terms. And so we would not be able to tell that the answer to the 
question, “are brains good at processing information?” is yes. More 
importantly, we could not know that, within the constraints imposed 
by their physical structure, brains operate close to the limits defined 
by Shannon’s mathematical theory of communication.
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9.7. A Very Short H istory o f Information Theory
Even the most gifted scientist cannot command an original theory out 
of thin air. Just as Einstein could not have devised his theories of 
relativity if he had no knowledge of Newton’s work, so Shannon could 
not have created information theory if he had no knowledge of the work 
of Boltzmann (1875) and Gibbs (1902) on thermodynamic entropy, 
Wiener (1927) on signal processing, Nyquist (1928) on sampling theory, 
or Hartley (1928) on information transmission40.

Even though Shannon was not alone in trying to solve one of the 
key scientific problems of his time (i.e. how to define and measure 
information), he was alone in being able to produce a complete 
mathematical theory of information: a theory that might otherwise 
have taken decades to construct. In effect, Shannon single-handedly 
accelerated the rate of scientific progress, and it is entirely possible 
that, without his contribution, we would still be treating information 
as if it were some ill-defined vital fluid.

9.8. Summary
In 1986, the physicist John Wheeler said:

It is my opinion that everything must be based on a simple 
idea. And ... this idea, once we have finally discovered it, 
will be so compelling, so beautiful, that we will say to one 
another, yes, how could it have been any different?

So compelling, and so beautiful: information theory represents a
fundamental insight that must surely rank as a candidate for Wheeler’s 
“simple idea”. Indeed, after many years of studying physics and 
information theory, Wheeler came up with a proposal which is both 
radical and intriguing:

... the universe is made of information; matter and energy 
are only incidental.

Insofar as it must be made of something, a universe in which all 
forms of energy and matter are simply different manifestations of pure 
information might be as sublime as this one.
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Appendix A

Glossary

alphabet A set of symbols used to construct a message. For example, 
the numbers 1 to 6 define a discrete variable which has an 
alphabet of possible values As = {1,2,3,4,5,6}, and a message 
could then be either a single symbol, such as s = 4, or an ordered 
list of symbols, such as s = (1,1,6,3,2,3,1,1,4).

average Given a variable x, the average or mean value of a sample of 
n values of x is

In the limit, as n —> oo, the sample mean equals the expected 
value of the variable x

where p(xi) is the proportion of values equal to £*, and m is the 
number of different values that x can adopt. See Appendix E.

Bayes' rule Given an observed value x of the discrete variable X, 
Bayes’ rule states that the posterior probability that the variable 
Y has the value y is p(y\x) = p(x\y)p(y)/p(x), where p{x\y) is 
the probability that X = x given that Y = y (the likelihood), 
p(y) is the prior probability that Y = y, and p(x) is the marginal 
probability that X = x. See Appendix F.

(A.1)

m
EM (A.2)
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binary digit A binary digit can be either a 0 or a 1.

binary number A binary number comprises only binary digits 
(e.g. 1001). Also called binary strings.

binary symmetric channel A channel in which the probability P that 
an input value X  = 1 will be flipped to an output value Y = 0 is 
the same as the probability that a 0 will be flipped to a 1.

binomial coefficient Given a binary number containing n binary 
digits, the number of different ways that we can arrange k Is 
amongst n positions is given by the binomial coefficient

Cn’k = kl(n-k)V (A'3)

where n! = n x (n — 1) x (n — 2) x • • • x 1.

bit A fundamental unit of information, often confused with a binary 
digit (see Section 1.5). A bit provides enough information for one 
of two equally probable alternatives to be specified.

byte An ordered set of 8 binary digits.

capacity The capacity of a communication channel is the maximum 
rate at which it can communicate information from its input to its 
output. Capacity can be specified either in terms of information 
communicated per second (e.g. bits/s), or in terms of information 
communicated per symbol (e.g. bits/symbol).

channel A conduit for communicating data from its input to its output.

code A code consists of a set of symbols or messages, an encoder (which 
maps symbols to channel inputs), a decoder (which maps channel 
outputs to inputs).

codebook The set of codewords produced by a given encoder.

codeword Each symbol s in a message is encoded before transmission 
as a codeword x.
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coding efficiency A source generates messages with entropy H(S). 
These are encoded as sequences of codewords with a mean length 
L(X). The coding efficiency is H(S)/L(X) bits/binary digit, 
which is the amount of information each binary digit carries.

conditional probability The probability that the value of one random 
variable Y has the value y given that the value of another random 
variable X  has the value x, written as p(Y = y\X = x) or p(y|x).

conditional entropy Given two random variables X  and Y, the average 
uncertainty regarding the value of Y when the value of X  is 
known, H(Y\X) = E[\og(l / p(y\x))] bits.

continuous In contrast to a discrete variable which can adopt a discrete 
number of values, a continuous variable can adopt any value 
(e.g. a decimal).

cumulative distribution function The cdf of a variable is the 
cumulative area under the probability density function (pdf) of 
that variable. See Appendix G.

differential entropy The expected value of a continuous random 
variable, E[log(l/p(x))].

discrete Elements of set that are clearly separated from each other, 
like a list of integers, are called discrete. See also continuous.

disjoint If two sets of items are disjoint then they do not have any items 
in common. For example, the sets A\ = {pqr} and A2 = {stu} 
are disjoint, whereas the sets A\ — {pqr} and As = {rst} are 
not, because they both contain the letter r.

encoding Before a message is transmitted, it is recoded or encoded as 
an input sequence. Ideally, the encoding process ensures that each 
element of the encoded message conveys as much information as 
possible.

ensemble In physics, this is the set of all possible microstates of a 
system. For example, each spatial configuration of molecules 
in a jar represents a microstate, and the set of all possible
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configurations constitutes an ensemble of microstates. In 
information theory, the entropy of a source is defined in terms 
of the ensemble of an infinite set of sequences.

entropy The entropy of a variable is a measure of its overall variability. 
A discrete variable with high variability can convey more 
information than a variable with low variability. The entropy 
of a discrete variable X  which adopts m possible values with 
probability p(xi) is

m
H{X) = ^ p ( x j) lo g2 l/p(xi) bits, (A.4)

i= 1

where the values of X  are assumed to be iid.

expected value See average.

histogram If we count the number of times the value of a discrete 
variable adopts each of a number of values then the resultant set 
of counts defines a histogram. If each count is divided by the total 
number of counts then the resultant set of proportions defines a 
normalised histogram. See Appendix D.

iid If values are chosen independently (i.e. ‘at random’) from a single 
probability distribution then they are said to be iid (independent 
and identically distributed).

independence If two variables X  and Y are independent then the value 
x o^ X  provides no information regarding the value y of the other 
variable T, and vice versa.

information The amount of information conveyed by a discrete variable 
X  which has a value X = x is h(x) = log(l/p(x)). The average 
amount of information conveyed by each value of X  is its entropy

H{X) =  £ > ( x i)  log(l/p(xi)).

integration The process of integration can be considered as a platonic 
form of summation (see Appendix D).

joint probability The probability that two or more quantities 
simultaneously adopt specified values. For example, the
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probability that one die yields x3 = 3 and another yields 2/4 = 4 
is the joint probability p(x3,2/4) = 1/36.

Kolmogorov complexity The smallest number of binary digits required 
to represent a given entity (e.g. number, system, object), 
asymptotically equivalent to Shannon information.

Kullback-Leibler divergence Given two distributions p(X) and q(X), 
the KL-divergence (relative entropy) is a measure of how different 
these distributions are, given by

DKL(p(X)\\q(X)) = ^ p ( x) l o g ^ d x .  (A.5)

law of large numbers Given a variable X  with a mean //, the mean of 
a sample of n values converges to p as the number of values in 
that sample approaches infinity; that is, E[X] -> p as n —> 0 0 .

logarithm Given a number x which we wish to express as a logarithm 
with base a, y = loga x is the power to which we have to raise a 
in order to get x. See Section 1.3 and Appendix C.

mean See average.

message A sequence of symbols or values, represented in bold s or 
non-bold 5, according to context.

marginal distribution A distribution that results from marginalisation 
of a multivariate (e.g. 2D) distribution. For example, given a 2D 
distribution p(X, F), one of its marginal distributions is p(X) = 
Jy P(x, y)dy.

monotonic If a variable y = f(x) changes monotonically with changes 
in x then a change in x always induces an increase or it always 
induces a decrease in y. For example, see Figure C.l.

mutual information The reduction in uncertainty I(X,Y) regarding 
the value of one variable Y induced by knowing the value 
of another variable X. Mutual information is symmetric, so 
I(X,Y) = I(Y,X).
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noise The random ‘jitter’ that is part of a measured quantity.

outcome In this text, the term outcome refers to a single instance of 
a physical outcome, like the pair of numbers showing after a pair 
of dice is thrown. In terms of random variables, an outcome is 
the result of a single experiment.

outcome value In this text, the term outcome value refers to the 
numerical value assigned to a single physical outcome. For 
example, if a pair of dice is thrown then the outcome (£1,0:2) 
comprises two numbers, and the outcome value can be defined 
as the sum of these two numbers, x = £1 + £2. In terms of 
the random variable X, the outcome value is the numerical value 
assigned to the outcome (£1,£2), written as x = X(£i,£2).

outer product Given two probability distributions represented as 
p{X) = {p(xi),... ,p{xn)}and = {p{yi), ■ ■ ■ ,p{ym)}, the 
outer product is an n x m matrix in which the ith column and 
jth row is the product p(x{) x p{yj). The distribution of values in 
this matrix represents the joint distribution p(X, Y) = p(X)p(Y).

parity A measure of the number of Is or Os in a binary number, as 
indicated by the value of a parity binary digit, which is often 
incorrectly called a parity bit.

precision An indication of the granularity or resolution with which 
a variable can be measured, formally defined as the inverse of 
variance (i.e. precision=l/variance).

prefix code A code in which no codeword is the prefix of any other 
codeword, so each codeword can be decoded as soon as it arrives, 
also called an instantaneous or self-punctuating code.

probability There are many definitions of probability. The two main 
ones are (using coin bias as an example): (1) Bayesian: an 
observer’s estimate of the probability that a coin will land heads 
up is based on all the information the observer has, including 
the proportion of times it was observed to land heads up in the 
past. (2) Frequentist: the probability that a coin will land heads
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up is given by the proportion of times it lands heads up, when 
measured over a large number of coin flips.

probability density function (pdf) The probability density function 
(pdf) p{X) of a continuous random variable X  defines the 
probability density of each value of X. Loosely speaking, the 
probability that X  — x can be considered as the probability 
density p(x). See Appendix D.

probability distribution The distribution of probabilities of different 
values of a variable. The probability distribution of a continuous 
variable is a probability density function, and the probability 
distribution of a discrete variable is a probability function. When 
we refer to a case which includes either continuous or discrete 
variables, we use the term probability distribution in this text.

probability function (pf) A function p(X) of a discrete random 
variable X  defines the probability of each value of X. The 
probability that X = x is p(X = x) or, more succinctly, p(x). 
This is called a probability mass function (pmf) in some texts.

quantum computer A computer which makes use of quantum 
mechanics to speed up computation.

random variable (RV) The concept of a random variable X  can be 
understood from a simple example, such as the throw of a pair 
of dice. Each physical outcome is a pair of numbers (xa,x&), 
which is assigned a value (typically, x = xa + x\f) which is taken 
to be the value of the random variable, so that X = x. The 
probability of each value is defined by a probability distribution 
p(X) = {p(xi),p(x2),.. • }• See Section 2.2.

redundancy Given an ordered set of values of a variable (e.g. in an 
image or sound), if a value can be obtained from a knowledge of 
other values then it is redundant.

relative entropy A general measure of the difference between two 
distributions, also known as Kullback-Leibler divergence.
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relative frequency Frequency of occurrence, expressed as a proportion. 
For example, out of every 10,000 English letters, 1,304 of them are 
the letter E, so the relative frequency of E is 1304/10000=0.134.

sample space The sample space of the random variable X  is the set of 
ah possible experiment outcomes. For example, if an experiment 
consists of three coin flips then each time the experiment is run we 
obtain a sequence of three head or tail values (e.g. (xfr,xt,xt)), 
which is one out of the eight possible outcomes (i.e. sequences) 
that comprise the sample space.

standard deviation The square root o of the variance of a variable.

stationary source A source for which the probability of each symbol, 
and for every sub-sequence of symbols, remains stable over time.

symbol A symbol is one element of an alphabet of symbols, and refers 
to a particular value that a random variable can adopt.

theorem A theorem is a mathematical statement which has been 
proven to be true.

uncertainty In this text, uncertainty refers to the surprisal 
(i.e. log(l/p(x))) of a variable X.

variable A variable is essentially a ‘container’, usually for one number.

variance The variance is a measure of how ‘spread out’ the values of 
a variable are. Given a sample of n values of a variable x with a 
sample mean x, the estimated variance vx of x is

where the sample mean is x = 1 /nJ2 j xj- If x can adopt m 
different values then its variance is

(A.6)

m
(A.7)
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Appendix B

Mathematical Symbols

" the hat symbol is used to indicate an estimated value. For example, 
vx is an estimate of the variance vx.

\x\ indicates the absolute value of x (e.g. if x = -3 then |x| = 3).

<  if x <  y then x is less than or equal to y.

>  if x >  y then x is greater than or equal to y.

« means ‘approximately equal to’.

~ if a random variable X  has a distribution p(X) then this is written 
as X~p(X).

oo infinity.

oc indicates proportional to.

a Greek letter alpha, denotes the number of different symbols in an 
alphabet.

A Greek upper case letter delta, denotes a small increment.

e Greek letter epsilon, denotes a small quantity.

r] Greek letter eta (pronounced eater), denotes a single value of the 
noise in a measured quantity.

T) large Greek letter eta, used in this text to denote a random variable 
for noise.
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(i Greek letter mu (pronounced mew), denotes the mean value of a 
variable.

p Greek letter rho (pronounced row), denotes correlation.

cr Greek letter sigma, denotes the standard deviation of a distribution.

the capital Greek letter sigma represents summation. For example, 
if we represent the n = 3 numbers 2, 5 and 7 as X\ = 2, x<i = 5, 
xz — l  then their sum xsum is

Xsum —

The variable i is counted up from 1 to n, and, for each i, the term 
Xi adopts a new value and is added to a running total.

A the set or alphabet of different values of a random variable. For 
example, if the random variable X  can adopt one of m different 
values then the set Ax is

Ax i (® #1)

C  channel capacity, the maximum rate at which information can be 
communicated through a given channel, usually measured in bits 
per second (bits/s).

e constant, equal to 2.7 1828 1828 —  Base of natural logarithms, so 
that In ex = x.

E the mean, average, or expected value of a variable X, written as E[X].

g encoding function, which transforms a message of symbols s = 
(si,..., Sfc) into channel inputs x = (xi,... ,xn), so x = g(s).

h(x) Shannon information, uncertainty, or surprise, log(l/p(x)), 
associated with the value x.

i=l
X1 +X2 + £ 3  

2 + 5 + 7 
14.
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h(x) average Shannon information of a finite sample of values of x.

H(X) entropy of X, which is the average Shannon information of the 
probability distribution p(X) of the random variable X.

H(X\Y) conditional entropy of the conditional probability distribution 
p(X\Y) of values adopted by the variable X  given values of the 
variable Y. This is the average uncertainty in the value of X  after 
the value of Y is observed.

H(Y\X) conditional entropy of the conditional probability distribution 
p(Y\X) of values adopted by the variable Y given values of the 
variable X. This is the average uncertainty in the value of Y after 
the value of X  is observed.

H{X,Y) entropy of the joint probability distribution p(X,Y) of the 
variables X  and Y.

/(X, Y) mutual information between X  and F, the average number of 
bits provided by each value of Y about the value of X, and vice 
versa.

In a: natural logarithm (log to the base e) of x.

logx logarithm of x. Logarithms use base 2 in this text, and base 
is indicated with a subscript if the base is unclear (e.g. log2x). 
Natural logarithms are logarithms to the base e, and are usually 
written as lnx.

m number of different possible messages, input values, codewords, or 
symbols in an alphabet.

M  number of bins in a histogram.

N noise variance in Shannon’s fundamental equation for channel 
capacity C — \ log(l + P/N).

n the number of observations in a data set (e.g. coin flip outcomes), or 
elements in a message, or codewords in an encoded message.
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p(x) the probability (density) that the random variable X = x.

p(X, Y) the joint probability distribution of the random variables X  
and Y. For discrete variables this is called the joint probability 
function (pf) of X  and Y, and for continuous variables it is called 
the joint probability density function (pdf) of X  and Y.

p{x, y) the joint probability that the random variables X  and Y have 
the values x and y, respectively.

p[x\y) the conditional probability that the random variable X = x 
given that Y = y.

R the rate at which information is communicated, usually measured in 
bits per second (bits/s).

S a random variable. The probability that 5 adopts a value s is defined 
by the value of the probability distribution p(S) at S = s.

s a value of the random variable S, used to represent a message.

vx if X  has mean p then the variance of X  is vx = o\ — E[(/x -  x)2].

W the total number of microstates of a system.

X  a random variable. The probability that X  adopts a specific value 
x is defined by the value of the probability distribution p(X) at 
X  = x.

X A a variable which has been quantised into intervals (e.g. histogram 
bins) of width Ax.

x a value of the random variable X, used to represent a channel input.

x a vector or permutation (round brackets (xi,..., xn)) or combination 
(curly brackets {xi,... ,xn}) of x values.

Y a random variable. The probability that Y adopts a specific value 
y is defined by the value of the probability distribution p(Y) at 
Y — y.

y a value of the random variable Y, used to represent a channel output.
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Logarithms

This is a basic tutorial about logarithms. As an example, if we want to 
know what power we must raise 10 to in order to get 100 then we find 
that the answer is 2, because 100 = 102. Equivalently, the logarithm 
of 100 is 2, written as 2 = log10 100, so we say that the log of 100 is 2 
(using logarithms to the base 10).

The reason that logarithms are so useful is because they turn 
multiplication into addition. For example, if we want to multiply 100 
by 100 then we have

1q2+2 (C.l)
104 (C.2)
10,000. (C.3)

F igu re C .l. T h e  loga r ithm ic fun ction  w ith  ba se 2 (dotted  curve), and w ith  
ba se 10 (solid curve). N ote tha t lo g #  in crea ses m on o ton ica lly  w ith  x.
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If we express this in terms of logarithms to the base 10 then we have

log10 100 + log10 100 = log10 102 + log10 102 (C.4)
= 2 + 2, (C.5)

and the answer is obtained by taking the anti-logarithm of 4, which 
means raising 10 (the base) to the power of 4, which comes to 104 = 
10,000. If we have two numbers n and m that we wish to multiply then 
we can simply add their logarithms, and then find the product from 
the anti-logarithm of this sum.

Instead of using logarithms with base 10, we can use logarithms with 
any base 6, so that

y = logb(n x m) = logb n + logb ra, (C.6)

and the product is obtained from the anti-logarithm of the sum y as

n x m  = &log6"+iog*m = by (C .7)

The rule for converting from logarithms with base a to logarithms 
with base b is

log6x logqZ 
loSa b ’

(C.8)

Natural logarithms are logarithms to the base e, and are usually written 
as In x. Logarithms use base 2 in this book, unless otherwise specified.

In summary, given a number x which we wish to express as a 
logarithm with base a, y = loga x is the power to which we have to raise 
a in order to get x. Equivalently, if the logarithm of x is y = logax 
then x = ay.
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Probability Density Functions

Before describing probability density functions, we briefly review the 
idea of a function. In essence, a function is a mapping from one space, 
called the domain, to another space, called the range. For example, 
the area y of a circle increases with square of its radius x, and the 
precise nature of the mapping from the domain x to the range y is 
defined by the function y = 7nr2. Sometimes it is convenient to refer 
to a function without specifying its precise form, and in such cases we 
often write y = /(x). For example, the letter / could represent the 
function /(x) = 7rx2. Of course, a function can be used to describe the 
relationship between any two continuous variables, like the speed of a 
falling ball and time. It can also capture the relationship between more 
abstract quantities, like probability.

In contrast, a probability density function defines the probability of 
every value of a variable. We can gain some intuition behind a pdf by 
starting with a histogram of some observed data.

If we measure the height of 5,000 people, and count the number of 
people with each height, then the resultant set of counts can be used to 
construct a histogram. A histogram is a graphical representation of a 
set of such counts, as shown in Figure 5.1. However, no two individuals 
have exactly the same height, so it doesn’t make any sense to try to 
count how many people have any particular height.

In order to make progress, we have to divide height into a number 
of different intervals, and then count how many individuals fall into 
each interval. Of course, this entails choosing a size for the intervals, 
and we will choose an interval of Ax = 1.6 inches, between 60 and 84

223



Probability Density Functions

inches (A is the Greek letter delta). This yields a total of M = 15 
intervals or bins, where each bin is defined by a lower and upper bound 
(e.g. the first bin spans 60-61.6 inches). For each bin, we count the 
number of measured heights spanned by that bin. We expect a large 
proportion of measurements to be in bins at around 72 inches, because 
this is a common human height. The resultant histogram has a typical 
bell shape, shown in Figure 5.1.

In order to make the transition from histograms to pdfs, at this 
point, we will adopt a different perspective. Suppose we drop dots 
from a great height onto the image of a histogram, so that they appear 
in random locations, as in Figure D.l (we ignore dots which do not fall 
under the curve). The probability that a dot will fall into a particular 
bin is directly related to the area of that bin; the bigger the bin, the 
more dots will fall into it. In fact, the probability Pi that a dot will 
fall into a particular bin is just the area of that bin expressed as a 
proportion of the total histogram area A, so that Pi = ai/A. The area 
of the ith bin is its width times its height, where height is equal to the 
number Ui of dots in the bin = Hi x Ax, and the total area of all

x

F igu re D .l. A n orm a lised  h istog ram  as an app rox im a tion  to  a p robab ility  
den sity  fun ction  or p d f  ( sm ooth  curve). If b la ck  d o t s  fall on to  the p a g e  at 
ran d om  p o s it ion s  then  th ere w ill u sua lly  b e  m ore d o t s  in th e ta ller colum ns. 
A s th e co lum n s ge t th inner th en  th e p ro p o r t io n  o f  d o t s  in each  co lum n  ge ts 
clo se r to  th e h eigh t p(x) o f  the pdf.
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bins is just the sum of all M  bin areas,

M
A = 22 Oi. (D.l)

i=1

Given that x must have some definite value, the total probability of all 
M  possible values must add up to one,

M
2 2  p i =  i. (d.2)
i=1

The zth bin spans the interval from a lower value x™m to an upper 
value x™ax, such that the bin width is

Ax = x™ax-x™ n. (D.3)

Thus, in this normalised histogram, the area of the ith bin is 
numerically equal to the probability

P i = p(X is between x™m and x ^ ax ). (D.4)

F igu re D.2. A p robab ility  d en sity  fun ction  p(X). T h e  vertica l lines are 
cen tred  on  a value at X  = Xi. T h e  p robab ility  Pi (that a ran dom ly  ch osen  
value o f  X  « x») is num erica lly  equa l to  th e p ro p o r t io n  o f  the to ta l area 
betw een  the tw o vertica l lines and the curve. T h is area is the w id th  A x  
t im es th e h eigh t (« p(x*)).
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The height of a bin is its area divided by its width p(xi) = Pi/Ax, 
which is the probability density in the vicinity of Xi.

In order to make the final transition from histograms to pdfs, we 
need to reduce the bin widths. If we reduce each bin width Ax so that 
it approaches zero then the finite interval Ax becomes an infinitesimal 
interval, written as dx. At this point, the infinitesimal interval dx at 
X  — x has a probability density p(x), and the density values of the 
continuous variable X  define a continuous probability density function 
p(X), shown by the curve in Figures D.l and D.2. A key advantage 
of a pdf is that it can be characterised with an equation, such as a 
Gaussian (see Appendix G).

To understand why the height of the curve defined by p(X) is called 
a probability density, consider an analogy with the density of a metal 
rod. Suppose that this rod is made of a mixture of gold (which is very 
dense) and aluminium, but the proportion of gold increases from left 
to right, so that the density increases accordingly. We can equate the 
area of a histogram bin with the mass of a small segment of the rod. 
Similarly, we can equate the bin width with the volume of that segment. 
The density of a segment is its mass divided by its volume

. . . segment mass m  rNrod segment density =    . (D.5)segment volume

Similarly, the probability density (=height) of a bin is

, , , . probability (=bin area) _probability density = ------ ----- — ;-----------------. (D.6)H J J bin width v '

Given that Pi = p(xi)Ax, we can rewrite Equation D.2 as

M
y :  p(xi) A x  =  i. (d.7) 
2=1

As the bin width Ax approaches zero, this becomes an integral

I p(x) dx = 1, (D.8)
J X

where the area under the pdf is, by definition, equal to one.
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Averages From D istributions

Here we show how the mean, average or expected value of a variable 
X  can be obtained from an equation like

m
E[X] = ^2p(xi)xi. (E.l)

t= 1

If we sample items from a population then we would expect to observe 
values in proportion to their frequency in the population. For example, 
if the population consists of items having one of three values [4 5 6] 
which occur with relative frequencies [0.1 0.2 0.7] then a typical sample 
of 100 items would consist of 10 fours, 20 fives, and 70 sixes. The mean 
of our sample would therefore be

(10 x 4) + (20 x 5) + (70 x 6) 
100 = (0.1x4)+ (0.2x5)+ (0.7x6). (E.2)

Note that the probability that a randomly chosen item from the 
population has value 4 is 0.1. If we denote the item value as x then we 
can write this as p(X = 4) = 0.1. To simplify this further, if we denote 
the value X  = 4 as Xi, then we have p(xi) =0.1. Similarly, we can use 
#2 t° stand for X  = 5, and £3 to stand for X  = 6, so that p(x2) = 0.2 
and p(x3) = 0.7. We can now rewrite Equation E.2 as

E[X] = (0.1 x 4) + (0.2 x 5) + (0.7 x 6) (E.3)
= p(x i)xi + p{x2)x 2 + p(x3)x 3 . (E.4)
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If we replace each subscrip t w ith the letter i then we have

3
E[X] =  ^ 2 p ( x i) x i.  (E.5)

2=1

More generally, if we want to  know the expected  value o f som e function, 
say h(xi) =  xf, o f a variable which can adopt m  different values, then 
we can obta in  this as

p(x l)x\ + p{x2)x\, . . . , +  p(xm)x2m (E.6)
771

2=1
(E.7)

772
y ^ p ( ^ )  h(xi) (E.8)
^ ^

E[ft(*)]. (E.9)

If h(x) is the Shannon information o f an ou tcom e x, defined as h(x) =  
log(l/p(x)), then the expected  value o f the Shannon information is

TTl h

E[M*)] = £p(**) log^ y

=  H(X

(E.10)

(E.ll)

As expected, the average Shannon information is the entropy H(X).
Rather than taking a mean over a countable number m  o f different 

values, we can consider X  to  be continuous, in which case the 
summation above becom es an integral,

E[h(X)] = [  p{x) h{x) dx. (E.12)
J x

If h(x) is (again) the Shannon information o f an ou tcom e x then

E[/i(X)] = J p(x) log —  dx (E.13)

= H(X(E.14)

which yields the differential entropy o f X.
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The Rules o f Probability

Independent Outcom es

If a set of individual outcomes are independent then the probability 
of that outcome set is obtained by multiplying the probabilities of the 
individual outcomes together.

For example, consider a coin for which the probability of a head Xh 
is p(xh) = 0.9 and the probability of a tail xt is p(xt) — (1 — 0.9) = 0.1. 
If we flip this coin twice then there are four possible pairs of outcomes: 
two heads (xh,Xh), two tails (xt,xt), a head followed by a tail (xh,xt), 
and a tail followed by a head (xt,Xh).

The probability that the first outcome is a head and the second 
outcome is a tail can be represented as a joint probability p(xh,xt) 
(More generally, a joint probability can refer to any pair of variables, 
such as X  and Y.)

In order to work out some averages, imagine that we perform 100 
pairs of coin flips. We label each flip according to whether it came first 
or second within its pair, so we have 100 first flip outcomes, and 100 
corresponding second flip outcomes (see Table F.l).

Outcome h t {h,h} {£, t} (M) (t,h) {t,h}
N 90 10 81 1 9 9 18

N/1 0 0 0.90 0.10 0.81 0.01 0.09 0.09 0.18

Tab le  F .l. T h e  num ber N  and p rob a b ility  N / 100 o f  each  p o s s ib le  ou tc om e  
from  100 pa irs o f  co in  flips o f  a co in  w h ich  lands h eads up  90% o f  th e  
time. O rd ered  sequ en ce s or p erm u ta tion s are w ritten  in round brack ets *()’, 
whereas un ord ered  se ts or com b in a t ion s are w ritten  in cu r ly  brack ets ‘{}\
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Given that p(xh) = 0.9, we expect 90 heads and 10 tails within the 
set of 100 first flips, and the same for the set of 100 second flips. But 
what about the number of pairs of outcomes?

For each head obtained on the first flip, we can observe the 
corresponding outcome on the second flip, and then add up the number 
of pairs of each type (e.g. We already know that there are (on
average)

90 = 0.9 x 100 (F.l)

heads within the set of 100 first flip outcomes. For each of these 90 
heads, the outcome of each of the corresponding 90 second flips does 
not depend on of the outcome of the first flip, so we would expect

81 = 0.9x90 (F.2)

of these 90 second flip outcomes to be heads. In other words, 81 out of 
100 pairs of coin flips should yield two heads. The figure of 90 heads 
was obtained from Equation F.l, so we can rewrite Equation F.2 as

81 = 0.9 x (0.9 x 100) = 0.81 x 100, (F.3)

where 0.9 is the probability p(xh) of a head, so the probability of 
obtaining two heads is p(xh)2 = 0.92 = 0.81.

A similar logic can be applied to find the probability of the other 
pairs (xh,xt) and (x*,x*). For the pair (x*,x*), there are (on average) 
10 tails observed in the set of 100 first flip outcomes. For each of these 
10 flips, each of the corresponding 10 second flips also has an outcome, 
and we would expect 1 = 0.1 x 10 of these to be a tail too, so that one 
out of 100 pairs of coin flips should consist of two tails (xt,xt).

The final pair is a little more tricky, but only a little. For the ordered 
pair (xh,x*), there are (on average) 90 heads from the set of 100 first 
flips, and we would expect 9 = 0.1 x 90 of the corresponding 90 second 
flips to yield a tail, so nine out of 100 pairs of coin flips should be (x/*, xt) 
tails. Similarly, for the ordered pair (xt,Xh), there are (on average) 10 
heads in the set of 100 first flips, and we would expect 9 = 0.1 x 90 of
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the corresponding nine second flips to yield a tail, so nine out of 100 
pairs of coin flips should be (xt,Xh)- If we now consider the number of 
pairs that contain a head and a tail in any order then we would expect 
there to be 18 = 9 + 9 pairs that contain a head and a tail. Notice 
that the figure of 90 heads was obtained from 90 = 0.9 x 100, so we 
can write this as 9 = (0.1 x 0.9) x 100, or p(xh)p(xt) x 100.

In summary, given a coin that lands heads up on 90% of flips, in any 
given pair of coin flips we have (without actually flipping a single coin) 
worked out that there is an 0.81 probability of obtaining two heads, 
an 0.01 probability of obtaining two tails, and an 0.18 probability of 
obtaining a head and a tail. Notice that these three probabilities sum 
to one, as they should. More importantly, the probability of obtaining 
each pair of outcomes is obtained by multiplying the probability 
associated with each individual coin flip outcome.

Conditional Probability

The conditional probability p(x\y) that X  = x given that Y — y

p(x\y) = p{x,y)/p{y), (F.4)

where the vertical bar is read as given that 

The P roduct Rule

Multiplying both sides of Equation F.4 by p(y) yields the product rule 

p(x,y) = (F.5)

The Sum Rule and Marginalisation

The sum rule is also known as the law of total probability. In the case 
of a discrete variable,

p(x) = T,p{x,Vi), (F.6)
i

and applying the product rule yields

(F.7)
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In the case of a continuous variable, the sum and product rules yield

p(x)= p{x,y)dy = p{x\y)p{y) dy. (F.8)

This is known as marginalisation, and yields the marginal probability 
p(x) of the joint probability distribution p(X, Y) at X  = x.
Bayes’ Rule
If we swap y for x in Equation F.5 then

p{y,x) = p(y\x)p{x), (F.9)

where p(y, x) = p{x, y). Therefore,

p(y\x)p(x) = p{x\y)p(y). (F.10)

Dividing both sides of Equation F.10 by p(x) yields Bayes’ rule52 
(which is also known as Bayes ’ theorem),

P(x\y)p(y) /T71̂
p{ylx) = W )  • ( }

Within the Bayesian framework, p(y\x) is called the posterior 
probability, p{x\y) is the likelihood, p(y) is the prior probability, and 
p(x) is the marginal likelihood.

Given that this is true for every individual value, Bayes’ rule must 
also be true for distributions of values, so that

p(Y\X) pW YW X)
p(X)

(F.12)

where p(Y\X) is a family of posterior distributions (one distribution per 
value of x), p(X\Y) is the corresponding family of likelihood functions, 
p(X) is the marginal likelihood distribution, and p(Y) is the prior 
distribution of Y.

A brief introduction to Bayes’ rule can be downloaded from here: 
http: IIj im-stone.staff.shef.ac.uk/BookBayes2012/BayesRuleBookMain.html.
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The Gaussian D istribution
A Gaussian probability density function (pdf) or Gaussian distribution 
is shown in Figure G.la. This function is also known as a normal 
distribution, or a bell curve. We begin by defining the equation for a 
Gaussian distribution with mean p and standard deviation <7,

where the constant e = 2.718, and k = l/(cr\/27r), which ensures that 
the area under the Gaussian distribution sums to one. For convenience, 
we define (minus) the exponent in Equation G.l as

so that Equation G.l can be written more succinctly as p(x) — k e~z, 
where e~z = l/ez. Therefore, p(x) gets larger as z gets smaller.

We can gain some intuitive understanding of the Gaussian 
distribution by considering different values of x, assuming the mean 
and standard deviation are constant for now. If x = p then x — p = 0, 
and the difference (x — p)2 = 0, at which point z = 0. Given that 
e° = 1, if x = p then p(x) adopts its biggest value of p(x) = k e~° = k. 
As x deviates from p , so the exponent z increases, which decreases the 
value of p(x).

Because the mean determines the location of the centre of the 
distribution, changing its value moves the distribution along the x-axis.

Increasing a decreases 1/cr, which effectively rescales the difference 
(x — p). Thus, increasing a increases the ‘spread’ of the bell curve.

p(x) = jfce-(x- ^ 2/(2<T2), (G.l)

(G.2)
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The Gaussian

F igu re G .l. (a) G au ssian  p rob a b ility  d en sity  fun ction  (pdf) w ith  a m ean  
li = 0 and a s tan dard  d ev ia tion  a = 1 ( ind ica ted by  the h or izon ta l d a sh ed  
line), (b) C um u la tiv e d is tr ibu t ion  fun ction  o f  th e G au ssian  p d f  sh own  in (a).

The Central Limit Theorem
In essence, the central limit theorem13 states that, as the number n 
of points in each sample from almost any distribution increases, the 
distribution of mean sample values becomes increasingly Gaussian. 
Because almost every physical quantity (e.g. human height) is affected 
by multiple factors, it is effectively a weighted mean, which suggests 
that such quantities should have a Gaussian distribution. This may 
account for the ubiquity of the Gaussian distribution in nature.
The Cumulative D istribution Function o f a Gaussian
The cumulative distribution function (cdf) of a Gaussian function is 
the cumulative area under a Gaussian pdf, and is defined as

$(ar) = — =  f  (G>3)crV2n J-oo

which is plotted in Figure G.lb for a Gaussian with a mean of zero and 
a standard deviation of a = 1 (shown in Figure G.la). Cdfs are useful 
in statistics because, for a given value x, the value of the cdf $(x) 
is the probability that a value chosen randomly from the Gaussian 
distribution will be less than (or equal to) x.
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Appendix H

Key Equations

Entropy

H(X)
m

t z  ?(*«)
(H.l)

H(X) / p(x)log
Jx P X ) (H.2)

Joint entropy

H(X,Y) =
m m

(H.3)

H(X,Y) = / / p(x, y) log JxJy p(x, y) (H.4)

H=I(X,Y) + H(X\Y) + H{Y\X) (H.5)

Conditional Entropy

H{Y\X) =
m m  ^

(H.6)

H(X\Y) =
m m  ^

(H.7)

= H p ( x ,V ) lo sp{xM ixdy (H.8)

H(Y\X) =
J , L * X-v)V* X y  M dxdi (H.9)

235

H(Y\X)



Key Equations

H(X\Y) =

H(Y\X) = H{X,Y)-H{X)

From which we obtain the chain rule for entropy

H{X,Y) =

Mutual Information

I(X,Y) 

I(X,Y)

m mEE* XuVj) log
i=  1 j= 1

pjxoyj)
p(xi)p(yj)

IIJy Jx
p(x, y) log p[y v )

p{x)p(y) dx dy

I(X,Y) = H(X) + H(Y)-H
= H(X)-H(X\Y)
=  H{Y)-H(Y\X)
= H(X,Y)-[H(X\Y) + H(Y\X)}

Channel Capacity

C  = max I(X,Y)
P(X)

Marginalisation

p(xi) = JZ P(Xi 'Pi)'p(yj ) = 51 p(Xi ’ yi )
3 =1 i=l

p(x) = / p(x, y) dy, y(y) = / p{x, y) dx
Jy J X

(H.10)

(H.ll)

(H.12)
(H.13)

(H.14)

(H.15)

(H.16)
(H.17)
(H.18)
(H.19)

(H.20)

(H.21)

(H.22)
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