>>28417
Sigh....I've been looking at this and find that it is not an actual AI but a tool to interact with an AI. Though I could be wrong I think you must use "other" pre-trained models. Not that this is bad but it appears to me that there are other tools presently existing that have better documentation and are farther along in usefulness that do much the same.
So I start looking at stuff I already downloaded.
One I see is Tensorflow. It's been around but looking at what they've been doing recently, they "might" be less work to set up and use. It has some attractive features and is open source.
A couple that caught my attention is it has built in capability to interface and download a huge mass of datasets. I'm not exactly sure what "datasets" means. I'm not sure if it is just a set format set of data, like a list of books on say, cake building, which is then already formatted to a form that can be used by an AI. ( I think this is true but some of the datasets appear to have been manipulated such that they are "trained"?????)
Now this one dataset appears to be a pre-trained "model".
"...databricks-dolly-15k is an open source dataset of instruction-following records used in training databricks/dolly-v2-12b that was generated by thousands of Databricks employees in several of the behavioral categories outlined in the InstructGPT paper, including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization...."
https://www.tensorflow.org/datasets/catalog/databricks_dolly
Trained as in the paper,
"Training language models to follow instructions with human feedback"
"...In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through the OpenAI API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent..."
This stuff is confusing to me because they call these "datasets" yet here is one that calls itself a dataset but then explains(in the paper) that it's pre-trained like a model. This nomenclature is not clear. If it's a pre-trained model, which I understand to be an actual neural net package, already trained, then why call it a dataset and not a model?
Anyways not only is Tensorflow set up to download a lot of these prepackaged, whatever they are, it also has a tool that can shape data that you enter. I assume, from a quick read, it can take in raw data like books and websites and make datasets from these.
Overview
"...Datasets are distributed in all kinds of formats and in all kinds of places, and they're not always stored in a format that's ready to feed into a machine learning pipeline. Enter TFDS.
TFDS process those datasets into a standard format (external data -> serialized files), which can then be loaded as machine learning pipeline (serialized files -> tf.data.Dataset). The serialization is done only once. Subsequent access will read from those pre-processed files directly...."
https://www.tensorflow.org/datasets/add_dataset
This is confusing to me. Some of these datasets they say are trained but they speak of them as if they need to "train" another existing AI without specifying what sort of computational load is needed for this. It's not clear to me how processed a "dataset" is.
It does appear that Tensorflow can use a vast array of datasets and can also interact with trained models.
"...TensorFlow Hub has been integrated with Kaggle Models. You can now access 2,300+ TensorFlow models published on TensorFlow Hub by Google, DeepMind, and more..."
https://www.kaggle.com/models?tfhub-redirect=true
Part of the problem is AI stuff is covered up in what I call "Varbage", (verbal garbage) which is when they make up new words for what ever specialization that is a new technology instead of using common easily understandable words. In fact a perfect example is me calling it "Varbage". :) See how that works?