/robowaifu/ - DIY Robot Wives

Advancing robotics to a point where anime catgrill meidos in tiny miniskirts are a reality.

The canary has FINALLY been updated. -robi

Server software upgrades done, should hopefully keep the feds away. -robi

LynxChan 2.8 update this weekend. I will update all the extensions in the relevant repos as well.

The mail server for Alogs was down for the past few months. If you want to reach out, you can now use admin at this domain.

Max message length: 6144

Drag files to upload or
click here to select them

Maximum 5 files / Maximum size: 20.00 MB


(used to delete files and postings)

Knowing more than 100% of what we knew the moment before! Go beyond! Plus! Ultra!

Open file (32.62 KB 341x512 unnamed.jpg)
Cyborg general + Biological synthetic brains for robowaifus? Robowaifu Technician 04/06/2020 (Mon) 20:16:19 No.2184
Scientists made a neural network from rat neurons that could fly a fighter jet in a simulator and control a small robot. I think that lab grown biological components would be a great way to go for some robowaifu systems. It could also make it feel more real. https://www.google.com/amp/s/singularityhub.com/2010/10/06/videos-of-robot-controlled-by-rat-brain-amazing-technology-still-moving-forward/amp/
Edited last time by Chobitsu on 06/17/2022 (Fri) 18:18:34.
Some more links on biocomputers https://phys.org/news/2020-04-unveil-electronics-mimic-human-brain.html https://www.sciencedaily.com/releases/2020/04/200402144433.htm https://arstechnica.com/science/2020/02/bacterial-proteins-plus-ambient-humidity-renewable-power/ https://followtechnology.pw/electronic-chip-imitates-a-human-brain-to-make-memories/ (its not actually biological, but it is relevant to the topic) https://phys.org/news/2017-02-switched-on-dna-nano-electronic-applications.html https://www.sciencemag.org/news/2016/03/researchers-take-small-step-toward-silicon-based-life?utm_campaign=email-news-weekly&et_rid=16756882&et_cid=349887 https://source.colostate.edu/programmable-plants-synthetic-biologists-pave-way-for-making-genetic-circuits/ https://www.sciencealert.com/scientists-have-developed-a-power-cell-that-harnesses-electricity-from-algae (more energy related but getting microbes to generate a current might be useful to us) https://www.asianscientist.com/2015/09/in-the-lab/kaist-synthetic-biology-emergent-oscillations/ https://www.nature.com/articles/nrg4014 https://www.popsci.com/bacteria-man-made-dna-produce-protein-first-time/ https://phys.org/news/2018-05-microbes-savvy-contributing-common-good.html https://www.umass.edu/newsoffice/article/many-more-bacteria-have-electrically https://elifesciences.org/articles/25739?utm_source=content_alert&utm_medium=email&utm_content=fulltext&utm_campaign=elife-alerts https://physicsworld.com/a/simple-interactions-cause-micro-organisms-to-follow-the-crowd/ https://www.livescience.com/57360-brainless-slime-mold-learns-and-teaches.html https://blogs.scientificamerican.com/observations/slime-molds-are-smarter-than-you-think/?WT.mc_id=SA_DD_20160419 https://www.nature.com/news/long-sought-biological-compass-discovered-1.18803?WT.ec_id=NATURE-20151119&spMailingID=50048505&spUserID=Njk3NjE5NzEwMzgS1&spJobID=802503317&spReportId=ODAyNTAzMzE3S0 https://www.pnas.org/content/112/52/15771.full
>>3055 Wow, that's quite a list Anon, thanks! :^)
https://www.nature.com/articles/s41598-019-51330-6 Why even involve organics? I am a bit of a layman when it comes to this end of things, but would it not be possible to generate a similiar dynamic system using inorganic chemistry
>>7418 That's an interesting point Anon. I'm no expert either, so I certainly can't claim that's an improbable outcome. I think for the anons suggesting this idea, the point is that the amazing behaviors designed into biological systems might be of benefit to us if we can manage to successfully integrate them into robowaifu designs. I think that's the main point here.
>>7418 >>7423 Haven't read the article yet, but the advantages of biological parts are energy efficiency and self repair. Even if we could do what the brain does, then won't be with the same efficiency and longevity. However, if I had to guess, we're rather going to use some biological muscles and/or skin at some point. Since this would be OT and speculative fiction anyways, I'll leave it to that.
>>7426 >Since this would be OT and speculative fiction anyways, I'll leave it to that. Ehh, I'd say proceed if you're intent is legitimate discussion on it. AFAICT, we don't really have any other thread that even broached the Cyborg idea outside of the artificial wombs one.
>>7427 I currently think most likely thing to happen, related to parts of higher organisms, is that we might be using muscles based on cell from frogs, fish or jellyfish. One problem here are infections. Working with material from humans might even be illegal in some countries and deployment in a cyborg is another story. Novel diseases can come from that, existing ones might spread. Containing it with antibiotics might cause resiliences. Then, muscles might be easier to control than wiring a cell to a computer and communicate with it, a bunch of neural cells might even be another story. This is all a bit pie in the sky, since we would need people to know about that stuff, have a hobby lab at least and then work on it. It's still more way to go, than using non-biological parts. However, related the biology there's also a idea of using water kefir in the saliva to prevent other stuff from growing, and the idea of using a method to let our robowaifus release female pheromones into the air. mlpol has a thread on biohacking in /cyb/: https://mlpol.net/cyb/1181 - Since we probably can't cover all of that what might be necessary to do R&D in that area, we might as well link to forums and threads for the fundamentals.
>>7456 >infections, diseases Yep, always an issue. An even bigger one to my mind is the simple maintenance problem of keeping organic tissue alive, whether as organs or otherwise. The kefir and pheremones idea is probably doable though. I'm also interested in some sort of coating that would sustain beneficial microbes on the robowaifu skin. There are going to be microbes there whether we want them or not, but we might somehow at least foster neutral or even helpful ones. Just find some kind of lotion that's helpful, just like in Chobits can probably solve this if we do a little research. And over-the-counter fragrances can be easily be stored and dispensed if desired. >Since we probably can't cover all of that what might be necessary to do R&D in that area, we might as well link to forums and threads for the fundamentals. Sure, linking to any other forums has been a long-standing tradition here. Heh, I'd be surprised if the ponies can manage much more unless they happen to have some sekrit embedded 1337 mad scientist type. Who knows? :^)
>>7491 >maintenance problem of keeping organic tissue alive Okay, but in the best case scenario this would even be the reason for using organic material in the first place. Imagine we could build simple elements that would last very long if they get their liquid in which they are replaced when necessary. I thought about something like silicon rubber tubes with muscles inside, which would get new nutriens through a liquid. Waste is flushed away with the liquid. Maybe this would last longer than air muscles or other material. Ideally these muscles would grow out of some liquid with the cells in it, then stop growing when not getting the right hormones or something. Then they could even get replaced after a while, hopefully by dissolving in their tubes, and then regrown by putting liquid with fresh cells into the body. This is of course only a scenario how it would make sense, I have no idea if this is possible or how to get there soon. Of course, it also wouldn't solve the problem that these silicone parts would have to last for a long time either. Only replacing some other parts which might fail after some time.
Open file (137.64 KB 350x350 carlos.png)
>>7493 Obviously, trying to create, long, stringy muscles grown in situ is opening up a whole other can of worms. I'm generally opposed to liquids maintenance inside our robowaifus to the feasible degree possible. There are simply a rapefugee-boatload of problems that come along with the basic concept itself and we'd be best served not to open that door in the first place IMO. And the idea of intentionally adding biologicals into the system? Well, that seems a little more like the lid to Pandora's Box tbh. I know that the topic ITT, but the idea is an extreme stretch for something that's already out there so far it seems like getting to Mars and back.
Open file (113.63 KB 579x700 female_Cthulhu.jpeg)
>>7494 My take is rather that I want to use liquids anyways, for cooling and heat distribution. I also know that there are artificial grown bio robots, made in part out of jellyfish and such. However, I don't plan to go into that and don't think this is something where we can get fast progress. One more thought on this, I had on my mind, was comparing it to the cables of earphones. The cables often break on the inside, while the insulator isn't broken. If the inside was made out of something that would repair itself, it wouldn't matter. That's how nerves or muscle fibers could work. That's the best way to describe what I meant. In the most extreme case it would be different from most or any Cyborgs we know from fiction. Maybe like a silicone doll on the outside, with artificial bones, the rest made out of silicone rubber and grown stuff, which would be originated from animals not closely related to us. Reminds me a bit of Lovecraft's creatures, but hopefully better looking and smelling, and without all the demonic stuff.
>>7498 Haha, fair enough. There's surely some merit and even possible benefits from exploring the concepts around integrating partial biologicals into our robowaifus. But, obviously, it will come at a heavy cost development-wise. Better appear to be well worth it before any serious effort is started.
>>7499 The development costs would be high if we would now try to get into it, on top of all the other things. On the other hand, in case someone would show up here, who would already happen to be involved in biology, then it will be good that we already have some ideas laid out.
>>7500 That's true. But honestly, I can't think of anything we're dabbling into that I personally feel less qualified to discuss in earnest, and even barely to speculate on. My investigations into the biochemical foundations of life via molecular-biology studies and research frankly leave me flabbergasted. -In software engineering, I feel vaguely like some kind of an engineer, at least part of the time. -In character animation, I feel remotely qualified to judge acting-quality, having been a human being all my life. -In electrical engineering, I've actually put together a thing or two under the close guidance of a good mentor. -In mechanical engineering, I feel like only a bumbling dabbler, strictly an amateur. Mostly breaking things but sometimes succeeding. But when it comes to life sciences (in particular at the molecular level) I don't think I understand much at all. Nor do most others I suspect -- certainly not the pop-science crowd. Never have so many LARPed so hard with so much ultimate comedy in the end.
>It’s not yet clear what sorts of jobs these xenobots might do, if any. Cleaning up waterways, arteries or other small spaces comes to mind, the researchers say. https://www.sciencenews.org/article/frog-skin-cells-self-made-living-machines-xenobots/amp
>>9414 I saw news on that too. I haven't been able to think of anything with that that would help us out with robowaifus yet. As with the other biologics-issues ITT, to my mind the costs outweigh all the benefits ATM. AFAICT. But thanks for bringing them up Anon.
>>7498 Just some note I want to throw in here on the topic of long term feasibility of cyborgs. Slime molds could be interesting as an organism to build partially biological intelligence and sensors: https://scitechdaily.com/slimy-action-at-a-distance-thinking-without-a-brain/ https://youtu.be/spZwZLkMsYw https://youtu.be/2UxGrde1NDA I have no specific idea how to use them. It's just that I think if anything is possible in that area, then it's without human cells,. There reasons I pointed out above. These slime moods have some features which might make them interesting as internal self-repairing sensors for pressure and maybe with some good ideas and gene engineering for building something like a (partially) biological brain. Anime predicted this: https://tensura.fandom.com/wiki/Demon_Slime https://www.sciencefriday.com/articles/dussutour-slime-mind/ https://en.m.wikipedia.org/wiki/Physarum_polycephalum >it has been reported that plasmodia can be made to form logic gates, https://ui.adsabs.harvard.edu/abs/2010arXiv1005.2301A >...practice these results do not scale to allow for actual computation. >because plasmodia appear to react in a consistent way to stimuli, they are the "ideal substrate for future and emerging bio-computing devices https://en.m.wikipedia.org/wiki/Biological_computing >researchers have successfully used the organism's reaction to its environment in a USB sensor and to control a robot https://www.newscientist.com/article/dn11875-biosensor-puts-slime-mould-at-its-heart.html https://www.newscientist.com/article/dn8718-robot-moved-by-a-slime-moulds-fears.html >Food source chemosensation (taste) The surfaces of P. polycephalum cells have glycoconjugate receptors for wheat germ agglutinins, Ricinus communis agglutinins, concanavalin A, and soybean agglutinins. >https://doi.org/10.1247%2Fcsf.7.145 Mechanical force sensors (maybe temperature also): >The scientists suspected it had to do with Physarum’s ability to rhythmically contract and tug on its substrate, because the pulsing and sensing of the resultant changes in substrate deformation allows the organism to gain information about its surroundings https://scitechdaily.com/slimy-action-at-a-distance-thinking-without-a-brain/ > “Mechanosensation Mediates Long-Range Spatial Decision-Making in an Aneural Organism” by Nirosha J. Murugan, Daniel H. Kaltman, Paul H. Jin, Melanie Chien, Ramses Martinez, Cuong Q. Nguyen, Anna Kane, Richard Novak, Donald E. Ingber and Michael Levin, 15 July 2021, Advanced Materials. DOI: 10.1002/adma.202008161 >Missing evidence for memory in the monocellular slime mold: https://www.pnas.org/content/118/36/e2105928118 Somewhat related, but already mentioned somewhere here in the forum: https://scitechdaily.com/xenobots-2-0-scientists-create-the-next-generation-of-living-robots
>>13117 >cells,. There reasons *cells. The reasons >These slime moods *These slime molds >The surfaces of P. polycephalum *>
>>13117 It's certainly an interesting concept to intentionally harbor bio-materials within our robowaifus Anon. I'm unsure the feasibility of it being productive, but certainly the nanomachines designed by God are far surpassing anything feasible by mankind, so who knows?
>>13119 ideally, we'd reverse engineer these except to be sturdier. Also could help to integrate them into ourselves as anti-aging or protection against dementia if we are able to create nano-scale brain cell analogues.
>>13130 Let's stay on topic please. The slime molds or some other cells would't be working inside a human body. The whole idea here is to say, if we ever get something partially biological it would rater be a Xeno-Cyborg than made out of human cells. Exactly because we won't have the risk of diseases jump over to humans, for example. Therefore and because regulations for moral reasons, it would also be easier to work with such materials outside of big corps and governments.
>>13148 I meant: rather than have biomaterials inside our waifus we reverse engineer them, learn how they work and mimic it with nanotech. This is beyond anything we can do in a standard workshop, but if artificial neurons are conceivable in our lifetime however, it's a game changer.
>>13130 Very cool design on the 'man-made neuronal system' graphic Anon. "There's plenty of room at the bottom", as an eminently brilliant man once said, so who knows? Who's to say we can't eventually devise analogs to many of God's biological designs that are 'good enough' to get most of the jobs done? Regardless, it's going to be interesting to watch developments along these lines, and I certainly hope we here can capitalize on them into our robowaifu's designs. Please pardon me if my previous post somehow impugned the basic idea, that wasn't my intent. >>13151 All true. I hope the situation with 'standard workshops' changes and this can be easily achievable by nominally-competent men someday. Of course, it will open up huge new, unrelated-to-robowaifus-or-AI, 'cans of worms' if it does! :^)
Open file (53.02 KB 474x670 slimegirl_waifu.jpg)
Has anyone considered that the answer to all robowife questions is slimegirls? - Liquid form is both self-cleaning and fuckable - AI can operate in a distributed manner throughout the substance the slimewife is made of - can shapeshift from thicc to petite and back again, even during a single round of sex -always wet! take the slimewifepill! -
Open file (215.50 KB 1079x428 iotbn.png)
"My wife is technically a swarm of sentient microcomputers that cluster together based on natural patterns derived from the observation of bacteria dynamics but goddamn the pussy is INSANE and she's a excellent cook."
>>13307 na, if you want something that changes its appearance why just don't use VR?
>>13307 We have an unofficial thread for cyborgs, including xeno-cyborgs: >>2184, which already mentioned slime molds as a possible material, but only internally. Also a thread for monster girls >>10259. Please choose how you want to realize something like that and then put such things into the right thread(s).
>>13308 so we're going to go down the phyrexian route?
Open file (231.55 KB 1280x720 nanite_swarm.jpg)
>>13308 >"swarm of sentient microcomputers" This could not possibly backfire.
Heh, very creative OP. I think our regular SophieDev beat you to it. I'm planning to merge your thread with our Bio Brain thread very soon. (>>2184)
>>13117 Just wanted to mention these bacteria which seem to create nano wires: https://youtu.be/Hy7o78CrB-U I don't like speculative or early technologies to pester every thread here, so I didn't put it into the one for energy systems. In the video it's rather about energy generation, but it only outputs a small amount. Since it's biology base and this thread here is for collecting such long shot ideas I decided to mention it here. The point is, bacteria creates wires, which one might use for sensors or such. Breakdown of wires and elastic sensors could be one of the bigger issues we'll face, so maybe one day this might be part of the solution.
Pink Oyster Mushrooms might be a good option for the brain. They are very easy to grow and keep alive. They probably won't be very fast, but they are better at parallel processing than traditional computers so a hybrid approach between mushrooms and silicon would be best. https://phys.org/news/2021-06-fungal-electrical.html
>>13370 There's actually a little bit of research on geobacter sulfurreducens for this purpose. https://academic.oup.com/jimb/article/43/11/1561/5996553 https://www.frontiersin.org/articles/10.3389/fmicb.2019.02078/full
Since this here is the unofficial cyborg thread, I want to mention that we probable could use human skin: >>16660 - I'm not saying we should, but it's interesting to know. Not sure if we could replicate it, but we might be able to with some biohacker skills. There are forum for such things. However, when the go the next step with blood vessels it might get messier and messier. Let's just keep it in mind as some fringe or long term option. >>13330 One of our unofficial mottos is: "We're optimists, so it's going to be fine." >>16662 This is probably going to be out competed by regular hardware. We would need to create some super fungi to make it useful in the first place, I guess. I think, if biology will have any use in robowaifus, it will be for repairing parts which are bend very often. So if anything, then it might become useful for sensors and micro cables in the softer parts. >>16665 >> bacteria which seem to create nano wires > geobacter sulfurreducens Thanks, it's been a while that I watched the video. I don't remember the strain of bacteria they used in >>13370.
>>16671 Mushrooms would be ideal for biosensors. Some are already used for that purpose. Maybe use them for the skin's "nervous system."
>>16671 >Since this here is the unofficial cyborg thread -update: Edited subject slightly Anon.
How about living human skin? https://m.slashdot.org/story/400898 >To make more realistic-looking skin, Takeuchi and his colleagues bathed a plastic robot finger in a soup of collagen and human skin cells called fibroblasts for three days. The collagen and fibroblasts adhered to the finger and formed a layer similar to the dermis, which is the second-from-top layer of human skin. Next, they gently poured other human skin cells called keratinocytes onto the finger to recreate the upper layer of human skin, called the epidermis. The resulting 1.5-millimeter-thick skin was able to stretch and contract as the finger bent backwards and forwards. As it did this, it wrinkled like normal skin, says Takeuchi. "It is much more realistic than silicone." >The robot skin could also be healed when it was cut by grafting a collagen sheet onto the wound. However, the skin began to dry out after a while since it didn't have blood vessels to replenish it with moisture. In the future, it may be possible to incorporate artificial blood vessels into the skin to keep it hydrated, as well as sweat glands and hair follicles to make it more realistic, says Takeuchi. It should also be possible to make different skin colors by adding melanocytes, he says. The researchers now plan to try coating a whole robot in the living skin.
>>16727 I saw that somewhere and thought it was already posted here. It's important not to get too much caught up in what might be possible at some point. This skin would probably be similar to skin of dead people. It won't grow from deeper layers of the body, but still shed away over time. Even when we discussed the feasibility of using biology, as a thought experiment, we still realized that human skin would be messy to deal with. It's good that you mentioned it and we should keep an eye on in, but I don't think it's going to be useful, at least not anytime soon. This here is the unofficial "Cyborg"-thread, btw. >>2148 - Not limited to brains for quite a while, so the thread name is misleading.
Open file (67.27 KB 528x704 co26fh.jpg)
>Scientists made a neural network from rat neurons that could fly a fighter jet in a simulator and control a small robot. I think that lab grown biological components would be a great way to go for some robowaifu systems. It could also make it feel more real. Literally the plot to I Have no Mouth and I Must Scream
>>16743 Ideally we wouldn't want the poor thing to suffer. We don't even have to use neurons for the biocomputers, anon. Infact it would probably be easier and maybe even more powerful if we used fungi or bacteria.
Since this seems to be the thread for all things biology related, how about using microbial fuel cells or bio batteries to power the robot/xenocyborg? https://www.chemistryworld.com/news/sweet-success-for-bio-battery/7022.article https://en.m.wikipedia.org/wiki/Microbial_fuel_cell
Anyone with a physic background know if peptide semiconductors could be a viable alternative to silicon chips? https://www.science.org/doi/10.1126/science.aam9756
>>16755 Regular robowaifus could use some biological technologies which work. It's not about a strict border between cyborg and non cyborg. I'm most likely going to use water kefir (a fungi) for her saliva. That aside, the thread here is more about speculation on technology that could become interesting long term. Obviously, any new tech would need to be superior in some way to existing tech, or it isn't hugely interesting right now. Except for filing it into "Look into it in 10 years again"-folder. The thread here is mostly about that. >>16756 Trying to do everything differently and with technologies in development will only cause distraction and mental blockades. We have what we need to build something good already, it's just about putting the work in.
>>16758 Do we have what we need to give the robowaifu a theory of mind or emotions of her own? That is the important question.
>>16765 We don't at the moment have a good enough understanding of either from a philosophical perspective. If we could provide her with one, we could not verify it scientifically. This being said, a biological brain would provide such by default.
>>16765 These are rather problems to think about from a software perspective, not some exotic hard or wetware. If we go deeper into that question, we should do that in the AI thread or so.
>>16768 >This being said, a biological brain would provide such by default. Not necessarily, I doubt insects have emotions or a theory of mind. Now it would probably be easier to give a biocomputer a theory of mind and emotions because mycelium, geobacter, and animal neurons are all much more similar to the human brain than silicon transistors.
>>16770 This is as much a hardware question as it is a software question. Today's computers are not good at parallel processing and emotions require many parallel processes at once. Biological computers excel at parallel computing.
The dude that made the rate flight simulator has his own website. https://potterlab.gatech.edu
Biocomputers might start looking really attractive if supply chains keep getting disrupted or if Taiwan is invaded.

Report/Delete/Moderation Forms