/robowaifu/ - DIY Robot Wives

Advancing robotics to a point where anime catgrill meidos in tiny miniskirts are a reality.

Site was down because of hosting-related issues. Figuring out why it happened now.

Build Back Better

Sorry for the delays in the BBB plan. An update will be issued in the thread soon in late August. -r

Max message length: 6144

Drag files to upload or
click here to select them

Maximum 5 files / Maximum size: 20.00 MB

More

(used to delete files and postings)


“I am not judged by the number of times I fail, but by the number of times I succeed: and the number of times I succeed is in direct proportion to the number of times I fail and keep trying.” -t. Tom Hopkins


CNC Machine Thread Robowaifu Technician 05/12/2020 (Tue) 02:13:40 No.2991
Many of the parts needed to build our robowaifus will need to be custom made and they will need to be metal. For parts that have a high tolerance for imperfections a 3d printer can print a mold and then a small scale foundry can be used to cast the piece with metal (probably copper or aluminum). BUT there will be pieces that need a higher degree of precision (such as joints). For these pieces a CNC machine would be useful. CNC machines can widely range in size, price, and accuracy and I would like to find models suitable for our purposes. I know there are CNC machines available that can cut up to copper for under $300, but I don't know if that will be enough for our purposes. (https://www.sainsmart.com/products/sainsmart-genmitsu-cnc-router-pro-diy-kit?variant=15941458296905&currency=USD&utm_campaign=gs-2018-08-06&utm_source=google&utm_medium=smart_campaign) Some CNC machines can be used to engrave printed circuit boards and that may prove useful for our purposes as well. Are there any anons that know more about CNC machines? Anons looking to buy one ask your questions here.
>>9197 >I was a tech at a injection molding factory That's interesting. Would you mind having a look at our threads Plastic Production >>108 and Waifu Materials >>154 , and giving us all the perspectives of a tech at a injection molding factory Anon? I'm sure you would have some insights that those of us completely inexperienced in this field would benefit from. Creating injection-molded external shell parts, as well as mass-produced plastic frames, connectors, fittings, etc., are all likely needs for us in the future. Small-scale production techniques will need to be worked out in these beginning times ofc. One thing I actually did already was work on a heat-lamp + dry-vac vacuum-molding rig set up with ventilation for our attic at home. Little ideas like that would be very helpful at this stage.
>>9199 I found another gem. A Kickstarter 5 axis mill. Honestly I have higher hopes for it since it would bring more power to us and let us have more flexibility. I have a few concerns like how sturdy it is or how hard of a material can it cut? But honestly it it cuts aluminum then it is good enough. Biggest problem would be the part or the mill shifting mid run. So i want to hear your guy's thoughts. https://www.kickstarter.com/projects/2003668803/5axismaker-first-ever-affordable-5axis-multi-fabri?ref=discovery_category
>>9314 That is a very neat project Anon. However, it's possible there may be some issues with the project management itself. Did everyone receive their units and everything they paid for? I would closely examine everything before I gave them any money. BTW, since this kickstarter was a few years ago, maybe there's a similar project out there by now?
>>9197 Yeah, people working in some industry with expensive tools will always say things like that. Of course I would first look at some YouTube channel I trust before I'd buy anything. In 3D printing, the ratio between price and quality from China is mostly quite okay for non-industrial use. If I had to pay expensive engineers per hour, I might buy something else of course. Big companies think different than smaller shops or hobbyists. >homemade PCB I think I saw a review of this printer and the conclusion was that it's not so interesting for most people, since PCBs are so cheap to order in small series nowadays.
>>9328 "Don't Build a Metal Foundry Until you See This First" https://www.youtube.com/watch?v=l2FuvKTyRMQ
>>9328 That's a very nice looking metal. >>9329 That guy makes it look easy. So, it looks like it's possible to craft custom actual metal parts on a small scale at home then?
>>9330 >custom actual metal parts on a small scale at home Yes, didn't watch the vids here yet, but a few years ago there was a talk on that on Chaos Communication Congress. They melted Aluminium in some foundry, I think. Printed molds, put them into sand if I recall correctly and put it into a microwave for some reason. The microwave was used outside. Quote ~"If something goes wrong, you don't want to deal with molten Aluminium on your kitchen floor." - So it appeared to be more interesting for people living a bit remote (fumes?) or at least in a house. I think the microwave also had to run for some hours. This whole thing is also more interesting in USA than in EU, because their soda cans are actually made out of Aluminium while in EU it's Tin or something. Old bicycle wheels were also mentioned as a potential source for the Aluminium.
>>9331 >because their soda cans are actually made out of Aluminium while It's true. While there's not much there at all (maybe a gram or two), it's probably close to be 100% pure aluminum. There's an entire industry surrounding recycling these things here. >t. Burger
The best all around metal casting book is by C W Ammen. "The complete handbook of sand casting" Here's a link for it. http://libgen.rs/book/index.php?md5=044722E0EE1D11BFEF4E4F654FAAAF30 He has several other books you can find at Amazon that are also very good. Now this is old school tech going all the way back to B.C. so it doesn't take some unobtainable technology to do this but it does take some practice. Aluminum would probably be the easiest metal to use. You can melt aluminum in steel pots.You could use old car parts like aluminum intakes and stuff like that for metal. Aluminum cans can work also but there's a lot of oxidized metal in the cans so you would have to be careful about skimming off this oxidation. One thing he doesn't cover is lost foam. Lost foam may be the easiest way to may highly intricate parts easily. They use this in the auto industry and many other places for high volume but it's just as good for a few parts. Basically you make whatever you want cast in foam, pack sand with a little clay to hold it together and then pour the metal into the foam. The foam instantly vaporizes and the metal replaces it. There's also lost wax which is much older. You make whatever you want cast from wax, melt it out then pour in metal into the open spaces. All the ancient statues you see were made this way. For making furnaces David J. Gingery makes a great book. Several of his books and his sons are here including the charcoal foundry to melt metal. http://libgen.lc/search.php?req=David%20J.%20Gingery&column[]=author There are several propane furnaces on Youtube and the web that might be more suitable. He also has great make your own shop machines series which is good but it may be the open source multimachine would be better. here, http://opensourcemachine.org/
>>9455 Thanks, great info Anon. We may need this kind of thing for more than just robowaifus some day heh. Just in case, like me, others can't get to the site you linked for us: https://web.archive.org/web/20210325152108/http://opensourcemachine.org/
>>9461 >>9462 >>9463 >>9464 >>9465 >>9466 >>9467 >>9468 Apologies for stretching the dump out like this instead of making it more compact /robowaifu/. All of these are US Army machining training guides.
Since this thread is unofficially for everything related to metal parts and especially alternatives to the CNC machining as well: This https://youtu.be/v44bEsL3TCo shows casting of metal gears in some kind of gypsum after using gelatine and glyzerine and then wax to copy a gear with a silicone casting technique. Downside is, you need a furnace and work on it, also he was still using a machine towards the end, to clean it up. But it looks easier than machining the whole thing (except if you have a good industrial CNC machine). Then again, don't forget that it might be possible to order parts from online services doing that for you. Then again, we wan to be independent (as an option).
>>10515 Thanks Anon. That seems reasonably accessible with some experience and effort. >Then again, we wan to be independent (as an option). I would suppose that during the earlier years of robowaifus, hobbyists would rely quite heavily on 3rd party vendors for practically everything, one way or another. As entrepreneur-minded anons step out to begin their own manufacturing operations this would gradually form a different balance. Big industrial concerns like a Mitsubishi will very likely be producing most everything mechanical for a robowaifu themselves.
>>9469 No need for apologies anon, this is a lot of quality content! Very practical and in quite some depth and detail. I can think of several other groups on the internet such as survivalists, homesteader/permaculturalists and gunsmiths who would be thrilled to have these manuals. So thank you very much for sharing!
3D printed parts can be used for metal sheet forming: https://youtu.be/fxzqkhmcRlY
>>10588 really impressed, Anon. I admit I was a bit skeptical when I saw how he was going about it, but I was really impressed that he seemed to mostly pull it off. I think if he had worked on creating some sort of compression jig first to keep the dies rigidized as they cured it would have been a bit better, but my overall verdict: >really impressed. :^)
>>Aluminium bronzes are most valued for their higher strength Trust me when I say that the more difficult to machine, the more cost prohibitive. You're best sticking to aluminum and no space age alloys. >>3080 It is not cost effective to be trying to create foundries to smelt materials especially alloys if you have no idea what you're doing. You can buy all of this material through material suppliers. There are many local and online based ones you can buy stock of all sizes and materials. >>4797 Shapeokos can cut aluminum but with hobby machines its much more about fine tuning tool paths, feeds and speeds, and the specific tooling you use. You have a lot less wiggle room. >>9314 By the look of that machine, trust me that thing won't cut dick besides foam and plastics. If you want a 5axis cnc that can cut aluminum at least you'll need a pocket.NC. Only super cheap available 5axis desktop mill I've seen so far.
>>11217 >If you want a 5axis cnc that can cut aluminum at least you'll need a pocket.NC. You seems to have some understanding of this field Anon. Would you mind expanding on that please? What is a pocket.NC, and why is it good at cutting aluminum? TIA.
>>11217 Thanks for that, but I didn't understand all of it. Are Shapeokos also hobby machines or did you mean it so, that these are more professional ones? (I found their website) Do I need something like that just for cutting some millimeters of sheet? >>11218 Not the same anon. YouTube: https://youtu.be/tV5lDZOUeyY https://youtu.be/kn34-LqDKQo
>>11222 >digits Ah, I understand better now. Thanks Anon! Now I'm curious how one goes about programming such a machine? Is it anything like the files you simply load into a 3D printer?
>>11225 Never used one, but for all I know: Yes. You can create files with a CAD program like Solvespace for example. Though the format might be different.
>>2991 >Many of the parts needed to build our robowaifus will need to be custom made and they will need to be metal Source?
>>11250 Not the OP, but it's obvious. Plastics are rather weak and can get brittle or wear of.
>>11250 >>11362 a graphene + epoxy resin compound was one idea being floated around, might be more useful as a type of internal "cartilage" than as structural support I posted a while back on Aluminum Bronze, which is low enough melting temp to be forged in a home foundry (several YT videos on this) IMO we'd want to avoid something ferro-magnetic. Also as light weight and corrosion resistant as possible (aluminum is a contender here), we're not at the point where it matters if our waifu can rescue us from a burning building or something.
>>11362 >but it's obvious. More x=x logic from "ur a troll" guy I think
>>11374 e.g., the plans for my waifu involve a build comprised solely of plastic printed parts, mainly polycarbonate for structural support. This is fairly easy and inexpensive to build an amateur 3d printer for
>>11375 >comprised solely of plastic printed parts, mainly polycarbonate for structural support It requires a better printer than other materials. It's not lighter than aluminium in relation to strength and parts like gears would wear down over time. Maybe you can do without metal parts or only using standardized metal parts, but it clearly has advantages to be able to use custom made parts. >>11374 You didn't address the problem that plastics are weaker and wearing off, so it was an appropriate answer, and yeah it is obvious that at least using some (custom made) metal parts has advantages. Maybe more so for the higher quality versions. Not necessarily many custom made ones in every case.
Open file (298.52 KB 963x1625 IMG_20210703_201416.jpg)
>>11410 >you may even be able to put some kind of metal plating for mechanical parts that interact That was one of ideas of using some custom made metal parts. Yes. >metals aren't very cost effective There are standardized parts, which are very cheap and companies that mill custom parts have been mentioned as a source in this this thread. >for the average user Some here want to build very cheap robowaifus, others might go for the more expensive version, which might be able to be build as a cheaper version with some drawbacks. >metal 3d printer That's only one option, there's milling, casting and ordering custom parts from companies. Also these printers might get cheaper at some point. >comparative stress-tests for materials CNC Kitchen on YouTube.
>>11417 What happened here? He deleted his posting I replied to?
Just going to drop this here. https://docs.v1engineering.com/mpcnc/intro/ https://github.com/V1EngineeringInc/MPCNC_Primo https://www.thingiverse.com/thing:790533 Tabletop CNC that is mostly manufacture on a 3d printer with the rails being relatively cheap conduit pipping. It is modular so you can slap on a router, plasma cutter or laser depending on what you are working with. Additionally the system can be customized to any size provided you can find belts long enough for it and are willing to tolerate some looseness and loss of accuracy. The creator has a lot of other interesting prints if you are interest in checking them out https://www.prusaprinters.org/social/47417-ryan-z/prints
EDM machine (via Levi Jannsen Discord) https://youtu.be/5CeCxkFVCdM >"EDM" typically refers to "Electrical Discharge Machining." EDM is a machining process that uses electrical discharges (sparks) to remove material from a workpiece. It is often used for precision machining of complex shapes or for creating fine features in hard materials.
>>11424 >He deleted his posting I replied to? Seems like it. >>15712 >>26357 Interesting stuff Anons, thanks! :^)
Open file (733.51 KB 1024x853 PhotoChemicalMachining.jpg)
An excellent tutorial for at home photo chemical machining. https://www.instructables.com/Micro-Machining-at-Home-on-the-Cheap/
>>26798 Excellent find, Kiwi! This could definitely be a useful approach for the DIY Robowaifuist. Cheers. :^)
Some mentions of metal in the 3D printing thread: >>23931 (low melting point alloys) >>24149 (metal casting at the end of the comment) >>26053 >>31511
Back after a long hiatus, have been kitting out my workshop. I've done extensive research on this topic, probably more than anyone should. I have went to several production plants and I have bought a bunch of machines and either kept them or returned them. The best and cheapest cnc router is the Sainsmart Genmitsu 3030-PROVer MAX Desktop CNC Router. I have one. It's insanely rigid and has ballscrews + linear rails with 0.05mm reproducibility. It's stock 300w motor can cut aluminum, steel can be cut but need to upgrade the spindle. I mean you can cut steel with the stock spindle, but you're basically cutting dust and you'll go through a lot more tooling though it's possible. I talked with sainsmart and they claim to have a Closed-Loop stepper upgrade in the future which would bring the reproducibility down to 0.00mm to 0.01mm but it's not clear when this or if it will happen. I have bought and returned quite a few cnc router machines, 12 in total, they are all basically junk. The 3030PROVer MAX is the only one I actually felt like keeping out of all of them. The 3030PROVer MAX can have a 4th axis and a laser too. The best and cheapest lathes/mills are Sherline lathe and mills. Everything is made in USA and everything is quite high quality. Clickspring on youtube uses a Sherline lathe for small stuff, if it's good enough for him, it's good enough for you. I have a Sherline lathe, and it's an amazing machine for the price. I upgraded all leadscrews into ballscrews and upgraded the motor. Without upgrades, it's able to cut steel and even titanium. Softer metals are obviously no problem. Upgraded stuff gives you more headroom on torque/speeds and no backlash on axis's. These Sherlines can be DRO/CNC upgraded or kitted with DRO and/or CNC from the get go. All DRO/CNC stuff is of high quality, nothing is junk or cheap feeling. I will be buying a Sherline mill soon based on the lathe. I visited the Sherline Production facility and got a guided tour. Their showroom is amazing. All of it's just crazy and they know their stuff. Don't be discouraged by the look of the Sherline stuff, it's far more than capable. In fact a bunch of Sherline stuff is used on the production floor to make Sherline stuff. Sherline has a similar ideology to the reprap 3d printer. Create a machine which can create the machine. Sherline stuff can get expensive quick, if you go CNC and you don't need CNC honestly. CNC stuff is more for batch production of parts, if you're building robot parts, this is completely unnecessary, buy the CNC upgrade stuff later if you must. A manual Sherline lathe and mill plus goodies will cost you $3000, at minimum. Sherline_ap_lathe2 picture will cost you $6400. Sherline_ap_mill3 picture will cost you around $8000. Sherline_8658 pic will cost you around $7600. A Sherline manual mill with DRO installed goes from 1300-3000 USD depending on package. A Sherline manual lathe with DRO installed goes from 900-1700 USD depending on package. I'm telling you all this so you can see why to use a DRO and ignore CNC. :) The stuff littlemachineshop has is fine and quite good. Their littlemachineshop machines are generally SIEG stuff but rebranded and upgraded, significantly upgraded in some cases. However these are generally manual only machines and are more difficult to upgrade to CNC than Sherline. I've been on the SEIG production floor and it's fine, some stuff shouldn't go out the door, but whatever. Nothing at all like Sherline, that's for sure. I have been to a littlemachineshop production area and “working” littlemachineshop showroom and wow they do a lot of work on SEIG stuff before it gets to you, makes sense with the way the SEIG production floor was. I have bought and returned a SEIG machine, it was horrible but I'm pretty sure based on the production floor trip, that wasn't a normal machine. Your mileage may vary. I'd stay away from any cheap Chinese routers/lathes/mills, they are notoriously cheap and not worth the time spending to upgrade them. Trust me, just buy a capable machine outright. Are you building a robotwaifu, or are you building a router/mill/lathe? If a machine is $1000 USD, expect to spend another $1000 USD on tooling and upgrades/extras. If you want all 3 machines, you'll pay about $10,000 or more in total between the machines, upgrades/extras, and tooling for baseline stuff. You can easily spend 10k on a single machine including tooling from Sherline. This isn't a cheap path, but it's by far the best path. Also remember, some stuff that is 3d printable isn't machinable. Look in to aluminum/bass/bronze casting if that's the case.
>>34467 POTD Welcome back, Anon! Glad you've returned. :^) <---> This is remarkable research, Anon. Thank you very much. I'm hoping to start a smol robowaifu kit manufacturing garage-shop operation at some point, ala The Wright Brothers. While the bulk of the physical parts other than actuators/electronics will be variations of the least-expensive stock I can manage that will still get the job done properly... there are simply localised areas inside a robowaifu's body that are going to need very rigid and/or strong parts to be crafted. One example is the lower-back/pelvic bone complex. As the nexus of most of the kinematic forces inside her body, this area needs extra-special attention to be durable for the longhaul. Similar for the shoulders & hips joints. >tl;dr Some places only metal/alloys will do -- notably steels or aluminums. CNC is the answer. All that to say, again, thank you for your researches Anon. I knew I would need some equipment for this at the proper stage, but you've already done a metric boatload of 'footwork' that will save myself & other Anons troubles. <---> Looking very much to seeing what all you accomplish! Cheers, Anon. :^)
Here's something related to parts building I've been thinking about, a lot, lately. Isogrids. Here's a killer link that I ran across talking about these. It's where I first heard of them. This guy made a surfboard out of quarter Isogrids of cardboard and then fiberglassed it. Now I'm not saying make waifus from cardboard. I'm trying to point out the extreme strength of these Isogrids. I read they have in some cases an order of magnitude strength to weight increase. That's 10 times or 10,000 percent better strength to weight. Now this is for traditional Isogrids noted in the last paper I linked. In a ballistic missile case they got, "...built by the Air Force Research Lab on the Combined Experiments program. This grid structure was 61% lighter, 300% stronger, and 1000% stiffer than the aluminum structure it replaced..." That is some serious improvement. But the real winner is this Quarter grid Isostructure that the surf board guy came up with. He says he thought it up but after looking around he found he was not the first. He's very humble because the idea is a killer good one that he stumbled on all by himself. Have a look at this super easy to build, high strength structure here, https://www.sheldrake.net/quarter_isogrid/ The key and big takeaway is this just a bunch of flat pieces with notches cut in them. So you could make this out of whatever flat stock you could get your hands on and have a super strong structure. One thing I noticed is that it's somewhat one dimensional structurally. But there's no reason at all you could not cut slots in three sides so that now you have a structure with slats providing strength in three dimensions made out of nothing but flat pieces with slots cut in them. A good search for stuff they are making of them is "quarter Isogrids" and "Isogrid furniture". They're making all sorts of stuff from them. More traditional Isogrids below. https://en.wikipedia.org/wiki/Isogrid Grid Stiffened Structures_A survey of fabrication, analysis and design methods https://iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap357.pdf
The above comment might be suited to be elsewhere. Arrrgh, but it sort of fits.
>>34492 Made a note linking this and a few ideas in the structures thread here, >34493
>>34494 Forgot a sign it's >>34493

Report/Delete/Moderation Forms
Delete
Report