/robowaifu/ - DIY Robot Wives

Advancing robotics to a point where anime catgrill meidos in tiny miniskirts are a reality.

Happy New Year!

The recovered files have been restored.

Max message length: 6144

Drag files to upload or
click here to select them

Maximum 5 files / Maximum size: 20.00 MB

More

(used to delete files and postings)


“Fall seven times, stand up eight.” -t. Japanese Proverb


Robot skeletons and armatures Robowaifu Technician 09/13/2019 (Fri) 11:26:51 No.200
What are the best designs and materials for creating a skeleton/framework for a mobile, life-sized gynoid robot?
www.thingiverse.com/thing:2358565
This website may interest you.
dancingdoll-rz.com/main.htm
>>699
>>700
Thanks anon(s). I'm researching both links now.

Interestingly, I was contemplating recently working on a controller solution for a single hand as a starter project using the BeagleBone Blue. That hand is pretty sweet.
>>699
This one is probably not an IRL artifact like yours but it kinda looks similar in design.
This design seems to work pretty well.
hackaday.com/2017/07/16/three-thumbs-way-way-up/
hackaday.com/2017/08/24/3d-printed-robotic-arms-for-sign-language/
>>705
>>704
Outstanding anon(s). I've been puzzling over the hand for a while now. It's important to reduce the weight of everything, since it will sit on the end of a relatively long and complex lever itself (the arm). Yet it needs to be able to deliver a fairly sizable amount of force to function well as a humanlike hand. It's a complicated problem, and the hands we have are amazingly elegant and powerful designs. Good stuff, thanks.
>>200
Look up soft robots. I was inspired by this paradigm
www.youtube.com/watch?v=gI0tzsO8xwc

The material is cheap and reusable (just remelt!) and it's a simple solution to complex actions such as picking an object up without crushing it. Normally with hard robots you need many sensors and it needs a big "brain" to calculate everything and the actuators need precision.

Think of evolution. invertebrates are simpler yet they still exist because although they are simple they are robust. Go this route.

If you want a mobile gynoid, the simplest way would to be to probably make it basically a 100% soft skeleton, like a hydro skeleton and soft pneumatic actuators. Then for structure add armored plated like an exoskeleton (this makes it look like a stereotypical sci-fi gynoid). Then for stability suspend it with a cable between it's shoulders. It needs power (electricity and compressed air) so it really shouldn't be a problem. It's very practical. I took a solder to my 100cm sex doll and ripped out the skeleton. I'm working on Posing it with pneumatics. Sex Dolls have stiff joints (so it doesn't recoil like a Biotrash ) and posing is a bitch. I'm hoping to fix these 2 problems. although It's too flexible at the moment without any skeleton at all.

For you, you can probably get away with a hollow inflatable Japanese sex doll as the outer layer for experimenting with the design before going all out. They are just under $200 dollars.

And you can use a 3d printer with flexible silicone threading to print soft actuators so you don't need to cast a mold for every experiment.

www.ebay.com/itm/Japanese-silicone-sex-doll-silicone-vagina-japaneese-love-inflatable-sex-dolls/222636234911
>>707
>inb4 robosquidwaifuhair full body jobs
Powered exoskeletons for construction workers are on the horizon, this from Makita's pending patents. We'll probably start seeing them sold around 2021.

>>707
A big development in soft robotics is the creation of flexible low powered pump that can be installed inside the robot
>The pump has a tube-shaped channel, 1mm in diameter, inside of which rows of electrodes are printed. The pump is filled with a dielectric liquid. When a voltage is applied, electrons jump from the electrodes to the liquid, giving some of the molecules an electrical charge. These molecules are subsequently attracted to other electrodes, pulling along the rest of the fluid through the tube with them. “We can speed up the flow by adjusting the electric field, yet it remains completely silent,” says Vito Cacucciolo, a post-doc at the LMTS and the lead author of the study.
https://robohub.org/a-miniature-stretchable-pump-for-the-next-generation-of-soft-robots/
http://archive.is/GZRc4
Open file (481.40 KB 900x600 StretchablePumpNCCR1.png)
>>719
>Powered exoskeletons for construction workers
lol, i just discovered there's an Exoskeleton Report. didn't realize it was an industry on it's own.
exoskeletonreport.com/2016/04/exoskeletons-for-industry-and-work/
>related
constructible.trimble.com/construction-industry/exoskeletons-for-construction-workers-are-marching-on-site

That pump is surprising, thanks anon.
Anyone know of any good designs or prosthetics for artificial spines?
>>1686
Hmm, good question but I can't say that I do myself. I imagine some sort of 'bionic' prosthetic design is used for the few patients that are being experimented on. Since the palliative approach to non-functioning spines would more or less by definition require a bipedal robotics solution, this is probably a very limited area of medical research right now, I imagine. The typical prescription is likely just to chuck the patient into a wheelchair and call it a day.

I hope we can manage something better here.

>>1687
To my thinking, this is little more than just a fancy weight belt. It appears to have little to no active behavioral capacity, which a real exoskeleton would have. Still, good find anon. I think we can learn from the ergonomic and weight support design and the approach of wearing it could be very convenient for our robowaifus.
High-sensitivity (1 µG level resolution) solid-state accelerometer.
https://www.titech.ac.jp/english/news/2019/044723.html
Could these designs lead to high-reliability body positional-awareness robowaifu systems? That is, strategically load the robo-armature up with these things all the way out to the fingertips and then integrate all the data using TensorFlow (or some other mathematical modeling system) to calculate the details of the waifu's body pose in realtime?
>>1697
>To my thinking, this is little more than just a fancy weight belt. It appears to have little to no active behavioral capacity, which a real exoskeleton would have.
it seems to be a passive mobility suit more than an attempt at an exoskeleton, it seem to help the support by compressing air when bending over, just like how fat belly are used as spring by powerlifter when squatting.
Open file (75.28 KB 1176x666 2b23bc471db8e1ac.JPG)
I've been looking at sex doll skeletons and they're all specifically designed for high pressure TPE injection, probably the same with silicone dolls since they're heat cured to save time. Doesn't seem like they'll be of much use in any robotics project and because of the manufacturing process adding automation in sex dolls is practically impossible.
https://www.finelovedolls.com/forums/topic/skeletons-connectors/

>>1697
It is a real exoskeleton even if it's soft and works passively using air resistance. Using the same principle inside a robot connected to the skeleton this design cuts down weight and applies mechanical leverage where and when you need it.

I've seen similar exoskeletons for the legs that use air inside pistons being tested by the US military to help soldiers carry weight.
>>1714
Ahh, I see.

>>1733
Fair enough. That's a cool looking armature anon. Got any more of it?
Open file (53.54 KB 396x524 WaifuSafety.jpg)
>>707 Soft robotics is good for hands for robowaifus, also nether regions. Got to keep her sausage safe. A mix of hard and soft robotics is the ideal, for safety.
Just buy plastic skeleton and install appropriate mechanical joints between bones. Ball joints and bearings for efficiency. You could go classic and slap some lubricant between the original joints and have the skin hold the whole thing together. Polyurethane for the spine and other areas that need to be flexible but only acutely. They look to cost on average 200 American pesos. Just have to find someone selling a 4ft 10in cutie. Should hold up just fine as long as you're not abusive to your waifu you sick fuck. You could 3D print customized parts. I'm no skeleton expert but the main variability seems to be in the skull, hips, and ribcage.
>>1883 Whereas, using a human like skeleton has obvious advantages, the cheap plastic ones are really only good for wheelchair waifus. This mostly because altering the legs to the point of being able to use them for bipedal locomotion would require similar effort to building from scratch. Upper body seems like a great idea though. May be worth looking into.
>>1884 I had one class with a skeleton and I remember it being really durable. Considering that a real human skeleton is like 3 grand, I doubt someone is selling a quality skeleton made with composite materials. I might buy a skeleton just to see how it is because I found a shorter one for $90. If only the legs were the problem anons could spend a few hours reinforcing the tibia, fibia, and femur. I imagine the process would simply be cutting the bones down the middle and slapping the metal in the middle and screwing the sandwich together. We don't have to worry about compressive strength, just bending. There's also some 3D printing filaments that have glass fiber in them. Obviously not longchain but it might be good enough.
>>1887 Why not just use wood, plywood, plastic, fiberglass, etc? Common, cheap, durable, strong enough. Might be a bit heavy but I'm sure it will be fine.
Stolen from /doll/. Seems to be a rather simple design for the armature, probably could be scaled up into something fairly lightweight. Any thoughts on how to make this work for a ~140cm robowaifu? https://anon.cafe/doll/res/65.html#q152
>>1897 Wood isn't as strong as bone and tends to be heavier, so wood isn't a great option. Plastic could work, but no idea what type would be best. Plastic would likely be pretty cheap and could easily be sourced by recycling. What I find interesting is fiberglass. Woven fiberglass can actually be stronger than bone in every aspect while being cheaper and lighter. Fiberglass seems to be the most effective material for a frame. That said, not sure about the methods required for actually constructing the frame out of fiberglass, but it can't be too hard right?
>>4222 >but it can't be too hard right? It's not hard to do fiberglass layup, but it's a bit tricky and you need safety gear b/c, well, it's fine glass strands you're working with. I suppose you could make a structure that would be thin enough to not be too heavy (thick, strong fiberglass can be quite heavy, actually) but I'm inclined to think that 3D-printing two-layer shells is probably the best route for strength & weight ratios, within reasonable cost.
For very simple bots and prototypes plastic tubes connected with printed parts might be a good start. Plastic can be reinforced with carbonfiber: https://youtu.be/wN1AFG08P28 For the more advanced bots I would prefer not to use a human skeleton, but use a model of it and adapt it to the use case. Putting small steel rods into the center of some bones might be a good idea.
>>4230 It's a great idea to use tubes as structural components Anon. Since one of the important constraints we need to solve here is not only doing a functional range of robowaifus, but also to make at least some of them very inexpensive to produce, I researched using jumbo drinking-straws glued/taped together into triplets at a sort of strut. My initial experiments were really promising, with 30cm 'straw-struts' being able to support more than 2 kilograms of weight (vs. together they all weighed about 1.5g w/ glue & tape) in a vertical compression test. I don't remember when they failed, but it was probably double that mass. Total cost for that 3x strut: ~US$.12 (about a dime) purchased in a 500-pack. >t. Strawgirl Anon
Ok, but I aside of us going a bit OT here, I was more thinking of poolnoodles and such, as soft material for cheap and simple bots. Both, straws and foam might have issues with repeated stress, though.
>>4244 Pool noodles would be a great type of foam for areas that need to be semi-soft, and could serve as interstitial material for joints, etc. As far as stress factors with straws, etc., it really comes down to proper engineering. If you design the struts with triplets of straws well-adhered together, and you design the frame with triangular forms such that each force moment is inducing compression/tension instead of lateral forces on the individual struts then the design could conceivably last many years with care. Think racing machine space frames. Other materials could be found that would obviously be better suited, but when cost is a primary constraint (as it is with almost all of us) then these 3xStraw-struts may prove to be the cheapest (and lightest) form of construction resource available to us. I sure appreciate anons having concern for going off-topic, but we seem to be focused on Skeletons & Armatures in our current posts right?
>>4227 I remember reading that the strength of a toucan beak is extremely high considering its weight due to the hard exterior with a rigid interior. Bone works similarly if you take into account the spongier marrow compared to the harder collagen exterior. If we were to use a polyester resin and netted fiberglass shell filled with some sort of foam it would save on the price a bit while potentially still having comparable strength. This is turning into >>4230 anon's tube idea but with fiberglass resin instead of raw plastic. In fact, I'm curious how much stronger they'd be if the tubes were filled with a spongy material. Something to note is that plastics and resins have a terrible tensile strength. This is why they are usually supplemented with a fiber, which has an extremely high tensile strength. I doubt that using a raw plastic alone would be sufficient for a frame. Thus, finding the right fiber and the right resin in combination for the strength required is ideal. There are two main fibers I see as options: carbon fiber or fiber glass. Kevlar probably isn't worth it as it is still relatively expensive and isn't much better than fiber glass. If fiberglass isn't good enough, carbon fiber would be more cost effective than Kevlar. Carbon fiber is the strongest, but is also the more expensive. Carbon fiber seems to be around $7-9/lb. Fiber glass is still a comparably strong material, but carbon fiber can be made magnitudes stronger using the right resin. Fiber glass seems to be around $2-3/lb. Of course, fiber glass is also not very healthy to work with, as was pointed out, but if I'm making my robowaifu myself I don't mind the risk. Both are options, one is just more expensive.
>>4256 >Thus, finding the right fiber and the right resin in combination for the strength required is ideal. >Quality >Performance >Price -Pick any two Anon. Price is probably always an included factor for the first few years for us, unless some wealthy patron decides to take an interest in our dreams. Ergo, a decision must be made between: >Quality >Performance >but if I'm making my robowaifu myself I don't mind the risk I've actually worked doing automotive fiberglass. It's not really risky--unless you don't take safety precautions. You need: -Breathing protection, first and foremost. A respirator is best. -Skin protection. Gloves, long sleeves, etc. Take care removing your protective clothing before removing your respirator. This implies button-up shirts only, no t-shirts. Shower very well at the end of the day. Following these protocols and you should be fine. And yes, I bet foam-filled cores would be a great choice for the structures, even for the straw-frames.
>>4258 >You need: Duh, eye protection too ofc. 2nd only to breathing protection. my apologies
>>4246 Ah, I didn't really understand what armatures meant. I thought this thread was only about the skeleton. Printing PLA foam: https://youtu.be/2tmgzwgi2UI Gradient infill, which we could optionally fill with silicone maybe? https://youtu.be/hq53gsYREHU
>>4266 >what armatures meant Just think stop-motion puppets (which have numerous crossover with robotics concerns). > >sauce kineticarmatures.com/custom/ Thanks for the videos!
You're welcome. Had some more thoughts on this: The hollow parts in bones with gradient infill might also be used for cables, air transport, or signaling with lights. I've got bad experiences with broken cables on headphones, so I'd like to avoid bending cables. I thought the bones cold have metal parts at their joints, to be used for data transfer or electricity distribution, the cables or metal rods would be inside the bone. Alternatively, data transfer with light signaling, which might be less reliable, though. If a bot uses air pressure for air muscles, then bones might transport the air in some channel, so only smaller parts outside need to be sealed of while being flexible. This might even be usefull to stretch a extremity. Joints would be bendable without pressure inside, but not if there is pressure. Also unbend when the joints are filled with pressure. Even if it's not done that way, there's something else: Air muscles might make ugly noise bc pressure release. This might better happen within the bones, so it would be less noisy. Though with enough other material around this might not be so important.
>>4272 Those are all really good points Anon. I'll just say that I intend to route networking cabling through the struts bones. I imagine we could even manage Bowden cables for direct force transfer down them as well.
>>4273 I thought about this a bit, even if it isn't the main way for me to go. Do you think you could use bandages to press them together? To form a female looking leg. Some straws shorter at the ends to get a curvy thigh? Maybe a small pool noodle cut through in the middle or other foam for some extra curves? Then some Leggins as finish? Maybe a thin layer of silicone on top of that? Do you consider to put in some of the foam for molding into most straws, as a bit more expensive variant?
>>4388 >Do you think you could use bandages to press them together? If you mean simply to adhere them together, then I suppose so, yes. However a high-quality tape like Kapton would be my recommendation in that case, instead. >To form a female looking leg. Some straws shorter at the ends to get a curvy thigh? Maybe a small pool noodle cut through in the middle or other foam for some extra curves? Yes, that's one of the several nice advantages of jumbo drinking straws as structural support; they are inherently flexible. Also, you might investigate the mechanical-engineering concept of Tensegrity. Straws or other long flexible materials (even things like wooden skewers, for instance) can take advantage of this principal to notably increase their structural rigidity for only a small, incremental price increase. And the straws are intended only to be an internal, endoskeleton. After that, an Anon could create the outer shell from any reasonable (and lightweight) material he chooses. So yeah, pool noodle foam attached to the skeleton, and artfully carved and crafted could then be covered with a layer of silicone (be sure to use the type that will cure dry). And the idea of the injecting spray foam down into the straws for increased structural support should be relatively inexpensive, so it can probably be a part of even the most inexpensive models I'd imagine.
A thanks, now I get it. I'll look up Tensegrity as well. If they're only meant for the bones then putting foam inside of them might not be so useful, bc you might need at least some channels for cables. I just thought at first, you wanted to make the whole leg out of those straws.
>>4416 Glad to clarify it for you then. >bc you might need at least some channels for cables. You can run cables down the straws and then inject the spray foam if you'd care to, it will be easy enough to do. And ofc you can always leave central channels down the 'bones' that you don't inject foam into, and just do the outer parts instead. Cables can then be run down these central channels after the fact (of skeletal assembly).
Another interesting thread in Dollforum, here about skeletons: https://dollforum.com/forum/viewtopic.php?f=6&t=95936 Some takeaways: - TPE is what makes dolls heavy, not the skeleton. - Foam parts might be buoyant and this could be a problem if one wanted to to put them in the middle of a silicone molded part. - Mainly the problems are about skeletons breaking and them damaging other parts and breaking through. Though that's often the wires for posing, instead of muscles, which fembots shouldn't have. - Some bones also might need to be flexible (ribcage). - One problems for dolls also would be that they need to be poseable, staying in one position during use. If the had more flexible joints, they would collapse. Bots shouldn't have that problem, bc muscles/motors. - Also, dolls apparently don't loosen up around their pelvis when being used for bed gymnastics, unlike females. Let's keep this in mind.
>>4547 >- Also, dolls apparently don't loosen up around their pelvis when being used for bed gymnastics, unlike females. Let's keep this in mind. Kek'd. OK will do Anon. Thanks for all the updates BTW.
Open file (1.13 MB 2757x3381 20180904_120753_2.jpg)
Open file (58.33 KB 600x338 musculator-back04.jpeg)
Open file (27.78 KB 600x338 6segments-pivots.jpeg)
Looking into this thread really motivates me to pick up learning CAD again: https://dollforum.com/forum/viewtopic.php?f=6&t=105309 One guy build a spine with a airmuscle for his "doll". It's vaguely how I imagined it. I'd like to try something similar. He also has a YT channel, but his videos are really weird, bc he's combining his robots movements with some animation and sound from movies: https://www.youtube.com/channel/UCKOlO5xVrL5GW5kiEsGvLYg
>>4563 Very nice. Guy's obviously a clever designer. Please keep us updated on your project's progress Anon.
I'm looking into parts of already existing robot projects, and how useable they are. I'm currently looking into InMoov, including remixes. The first picture shows a more traditional design, printed by me in white PLA. The "tower" on the left is a piston, it's like a screw inside a tube. Connected to a motor, it could move the head. Of course there would be others on the sides. The pictures after that show a newer design. It cought my eye because it was used for a bot with a familiar look... The spine seem to be from here: https://www.thingiverse.com/thing:2059967 Kyle Campbell building it: https://www.youtube.com/watch?v=heYThvTCOMU https://www.youtube.com/watch?v=gGwGW-JlC80 http://www.drupp.eu/inmoov.html This guy here seems to be much into improving InMoov: https://www.thingiverse.com/ambroise/ Then there's a spine and other skeleton parts by Fernando Gomez: https://youtu.be/OCwrFUHSqpQ - He seems. To build his own robot (Dara) with very human like skeleton. But on Thingiverse, he has a another name, or I'm confused, or these are two people and this here is the original source: https://www.thingiverse.com/willy1067/designs
Open file (106.53 KB 900x600 IMG_20200817_152940.jpg)
Open file (113.72 KB 600x900 IMG_20200817_152932.jpg)
Open file (107.84 KB 600x900 IMG_20200817_152919.jpg)
Open file (11.96 KB 488x650 IMG_20200730_015320.jpg)
Open file (24.83 KB 495x650 IMG_20200730_015314.jpg)
Also had some images from Twitter, where I don't recall the source. But they might be useful to look at. I think at least one of the sources was mentioned somewhere else here in the forum. Maybe here: >>366 or in the link below. There are some guys building dancing little bots on Twitter. You know, like these Danny Choo waifus were supposed to work: >>245 and the pics are from one of them.
>>5327 I think the classic linear-actuator you built is very useful. I'm interested to see how the three-arm pivot joint performs over long duty cycles. Interesting stuff.
Open file (431.13 KB 1536x2048 IMG_20200927_054424.jpg)
Open file (377.68 KB 1536x2048 IMG_20200927_054429.jpg)
@ExRobots is also really pushing forward: https://nitter.net/ExRobots1/status/1301083155458334721#m I like how lean this arm is, unlike so many others they don't make them bulky. Also posting some pics which might be educational.
>>5364 effin impressive tbh. best abdomen/legs complex i've seen to date. i wonder it there are connections there w/ boston dynamics?
Open file (25.89 KB 240x320 20160824093102740.jpg)
I found out an image from a while ago about a Asuka doll, her joints and esthetics are very interesting. I wonder if they can be powered because the range of movement is impressive. The only thing i could find was from a Japanese website: website:http://sansogyorai00.blog54.fc2.com/blog-entry-9.html Is there more info on such joints?
>>7422 I've never seen such an elaborate papier mâché style model before. The more recent blog post of his has higher resolution images but it's difficult to tell what the joints are made of. If I had to guess it might be custom joints based on the ones used in 1/12 scale model gundam & evangelion kits. But according to his site everything is 100% custom and of his own design; 私は電力を必要とする機械器械道具を使いません 紙以外の素材も一切使用していません 全て脳内設計と 完全な手作業のみで製作しました。 I don't use machines, instruments, tools that require power. No materials other than paper are used It's all about brain design It was made only by complete handwork.
>>7425 Neat, thanks.
Open file (97.59 KB 1024x1024 Imagepipe_8.jpg)
Open file (80.07 KB 580x870 Imagepipe_7.jpg)
Here are some examples for different joints in the thread about ball jointed dolls >>7625 including pics related. Originally from https://anon.cafe/toy/res/4.html#4 via >>5531. >LIMS2-AMBIDEX arm joint discussion >>7619 First foot/ankle joint for Elfdroid Sophie >>7631
>>7634 Makes me wonder if we can't just start from an oversized action-figure toy and transform it into a robot.
>>7636 You would still need to redesign the parts to make them hollow for the motors, cables, batteries, additional gears, private parts, heat distribution / cooling ... later you want more sensors... It's certainly a good way to think about it, though.
>>7637 Yes I suppose that's the case. But probably not a lot more to do than would be necessary anyway and some of the shell's design work would already be done. I suppose the main issue at first would simply be finding a figure large enough/reasonably priced enough. I wonder how difficult it would be to make a mold from one and then make casts (is that what it's called?) from them. Kind of spreads the cost out a bit that way I imagine.
>>7639 If this already existing model would not be a attractive female, then I'm quite sure that changing the outsides and insides of every part would be more difficult than designing it from scratch. It is also better to have the parts in a CAD file than just the modeled mesh, since changing something is easier that way. But such models of dolls or toys are rather designed by 3D sculpting, not by using parametric design (CAD). Makes probably more sense if only the outside matters and later changes were only small. Also, I think making big molds only pays of for some repeated production over several iterations. Silicone rubber on that scale is quite expensive, even the one which isn't medically safe. People share srt files and CAD file formats, instead of using molds, for a reason. That also avoids shipping cost. Dependent on the country it might also be risky, if the parts could be interpreted as looking child-like but would also contain certain orifices. I don't want to discourage you to much though, one might be able to create a set for others, so they can buy and build a female looking robot that way. Produced at one place and shipped to the customers, which would customize them.
>>7640 Makes sense, thank you.
>>7641 You're welcome. I'm benefiting from good conversations as well, thank you. I wanted to add a conclusion that came to me later, which is, that starting a project to build a robowaifu body by creating a toy model first might actually be a good idea. Then the files could be parametric, the design of the toy model would be less complex, but then additional complexity could be added to it later on.
>>7651 >Then the files could be parametric Does that mean they're highly precise, or is there more to it? >the design of the toy model would be less complex, but then additional complexity could be added to it later on. One of the good things about this is that the robowaifu could easily be in different models and features and the cost of building her could be very different from the least to most complicated I think.
>>7661 >>Then the files could be parametric >Does that mean they're highly precise, or is there more to it? It means they can be changed by changing numbers, instead of sculpting the 3D surface (mesh). For a face or something with a complex form, sculpting might be better, which is more like working with clay. But many other parts don't have that many variations in their surface, and so they can be created with CAD. Which means you make a 2D drawing and then it becomes 3D, while you can still change the parameters. > One of the good things about this is that the robowaifu could easily be in different models and features and the cost of building her could be very different from the least to most complicated I think. Yes, seems to be a reasonable assumption.
>>7674 Ahh, I see. I've dabbled with Blender a little bit creating simple mesh objects. Seems like parametric would be better for mechanical things. Obviously that's going to be important to us. Thanks for taking the time to explain the differences anon.
>>7709 and follow ups are related to skeletons. Pics in the project dump thread, came from https://nitter.net/hamcat_mqq
Open file (210.89 KB 1535x2048 hamcat_mqq-10.jpg)
Open file (302.48 KB 1153x2048 hamcat_mqq-16.jpg)
Open file (250.10 KB 1535x2048 hamcat_mqq-22.jpg)
Open file (329.15 KB 1535x2048 hamcat_mqq-24.jpg)
>>7722 Should probably dump some here as well, with focus on general skeleton.
>>7723 This guy makes some incredible dolls. Best DIY that I've ever seen. His 3D printer must be calibrated perfectly! I experimented with ball joints a lot about 2 years ago and they were always floppy, especially if you added much weight onto one end of the limb. So the fact he is able to make a doll that can stand on one leg is amazing! Is any of this going to be open-source though?
>>7727 >Is any of this going to be open-source though? I second this question.
>>7727 >ball joints ...were always floppy, especially if you added much weight onto one end of the limb I'm looking forward to find out myself about that. >Is any ... open-source though? My browser offered translation, but didn't look into it yet. The inspiration is more important to me right now. Would need to be in a usable CAD file format anyways, and then skills to adept it to the way one wants to build a bot out of it. I'd like to learn to do this on my own. Then the rest should be easier. Hopefully I'm going to do so, soon.
I'd like to try some tests with a special composite aluminum panel called 'Hylite' but finding this material is next to impossible. From the reviews I've seen on some consumer products that use it(ergonomic folding laptop holders) and a 3d printer called Zatsit that appeared on kickstarter but seemed to have gone nowhere this might be the perfect material for building lightweight robotic frames with built in joints. There were some samples sold on ebay several years back but they're not there anymore. One store in the UK still sells it but they don't ship internationally, it may have been the same seller on ebay. >>7762 You wouldn't necessarily need those files if the pictures released publicly are detailed enough to reverse engineer. When I first saw the eye movement mechanism here >>7725 I immediately tried to figure out how it worked but it took me awhile as the belt on the motor was the same color as everything else. The perspective also threw me off a bit. But there's enough there to recreate it. He's probably using TPU or TPE filament for the outside of the ball so it's constantly gripping properly inside the joint. Would also explain why they're black. Would be fine for a doll that you'd want to pose but for a robot all that friction would make it difficult to have smooth movements. I'd try using high friction silicon tape instead of TPU/TPE in this situation as it's much cheaper.
>>7762 >I'd like to learn to do this on my own. That's admirable, but I'd suggest you not be too bull-headed about that. Always good to stretch yourself, but it's always wisdom to be aware of your limits and get the help you need when you need. Over time you might find you need less and less as you go along. >>7764 >Hylite Sounds very interesting. Please let us know if you ever come across this Anon. >I'd try using high friction silicon tape instead of TPU/TPE in this situation as it's much cheaper. You know, that idea made me think of something else. What if one created a tight-gripping ball joint at manufacture, but then disassembled it again and worked regular Plumber's Teflon tape thoroughly into both surfaces inside the ball joint? Perhaps it would be both smooth enough and 'grippy' enough at the same time then.
Open file (187.60 KB 800x600 coarse_denim.jpg)
>>7769 I know that skilled BJD makers use a process (I forget exactly what they call it) where they cut out small disks or squares of coarse denim material and stick them onto both contact surfaces of each ball joint. This provides a lot more friction in the joint, enabling their dolls to hold complex poses more easily, without needing the elastic to be so tightly strung.
>>7772 That's definitely an idea I'd like to explore Anon, thanks!
>>7764 Yes, I also thought if these joints were not stable one could put something into them. The eye mechanism wasn't what I was thinking about when stating that it probably wasn't open source. I think I saw a link in the tweet about it, also I wasn't convinced that the eye mechanism was something special. This might just be like some which is even available as files. Though, it seems to be more compact than others. The skeleton is what is certainly spacial about this "doll" (we're in the skeleton thread...). That's what needs to become accessible as CAD.
>>7769 >>7772 What if you tried both the Teflon and the Denim together at the same time? Anyone tried that yet tbh?
Open file (234.36 KB 898x1110 Asuka Doll 1.jpg)
Open file (206.73 KB 794x1244 Asuka Doll 2.jpg)
Open file (246.63 KB 918x1206 Asuka Doll 3.jpg)
Open file (146.07 KB 746x1246 Asuka Doll 4.jpg)
>>7425 If he didn't use powered tools or machinery, there's a good chance that he simply used glue, scissors, and/or a hobby knife. You can harden paper using epoxy. https://youtu.be/nLhJcIqZv7Q is an example. What boggles my mind is the fact that he managed to create such intricate details using so many individual pieces! Dude practically learned 8th dimensional origami to do what he did. Based on the limbs in the foreground, as well as the puzzle-like sections outlined in what is likely (and hopefully) glue, there was much trial and error involved in the process.
Open file (902.41 KB 960x1440 1591484369720.jpg)
>>8062 Sorry, but I don't see the reasoning behind this approach. She looks like th creation of a deranged mind. I worked with paper mache myself, and build round forms. The problem was getting the parts to be symmetric, though. >>4429
Guy is a master at creating hinges using wooden dowelling and cardstock! Particularly impressive are the photos where some of her joints appear to be holding a pose. Floppy, loose joints are a big challenge to overcome when designing a doll...and to pull it off using such materials is amazing! (The movable "breasts" are a nice idea...although I can't say I'm a fan of those spikey nipples).
>>8071 >Guy is a master at creating hinges using wooden dowelling and cardstock More details? I'm not quite sure what you are referring to Anon.
>>8070 She definitely needs a can of spray-paint, but I think it would look quite beautiful after a little preparation. >>8071 is right about those nipples, though. What about the design looks unreasonable? It has three distinct layers, according to the author, and offers great posing options and articulation. It's great for the people designing it because the parts are easily sorted, and it's great as an end product because of the relatively few resources required to make it. I'm not saying we should use paper or anything, but a plastic equivalent should be quite cheap. Honestly, I'm thinking about picking up a 3D Printing software just to try to make these parts on my own. Not that I would know where to start...
>>8071 I don't think he even used dowelling. If you look close, the rods appear to be made of rolled up paper hardened into a plastic-like substance. I bet he used a doll of some sort in order to shape his pieces. He did make some improvements to the base shape. Look at the feet, for example. The bottommost layer of her sole extends past the foot, restricting the movement of the doll to a reasonable degree. Just brilliant!
>>8083 >Not that I would know where to start... If I am ever struggling with how to start designing a part then I literally break the complicated shape up into smaller, simpler 3D shapes. Like a hand becomes a load of cuboids and cylinders. Any fancy or complicated rounding, bevelling and chamfering I leave until last.
>>8083 >I'm not saying we should use paper or anything, Actually, not only do I think that's not a bad idea as an underlying form (along with thin foam) upon which to build up layers of hard shell over it >For a real life example of this design look at how modern light weight bike helmets are made. >>7980 but I'm actually using cardstock in my preliminary design work now. Over a lightweight tubular tensegrity space-framed chassis, paper makes an excellent type of light, cheap, and easily modifiable underlying substrate. Very quick, cheap and easy to mock up design shapes, and then to use it to build up the hard shell over. >(BTW, we have a papercraft waifu thread >>271 , though it hasn't been repopulated yet after the migration here).
If you are okay how this design looks (>>8062), then you should consider yourselves glad, since designing a body shape like this is probably much easier than designing human-like bones and a mold for a silicone body. On the other hand, if you want to use cardboard or paper because you can't afford a printer and the 12-14$ for a kilo of plastics, then that's another story. >>8083 >>414 is the thread for CAD. That basics are easier to learn than you might think, just a bit of frustration tolerance might be necessary, since some errors and problems might be confusing at the beginning. It also does not need a great computer, Solvespace for example runs on a Raspi3 and FreeCAD is also in the repository. Sculpting needs more resources, which is one reason more not to confuse those two. You''ll probably going to need that for the face.
>>8093 >On the other hand, if you want to use cardboard or paper because you can't afford a printer and the 12-14$ for a kilo of plastics, then that's another story. While I myself can manage that I have both already, I'm explicitly spending time years now, lol thinking through and working on kit designs that will be highly inexpensive and easy to assemble even for kids. This is how robowaifus will jailbreak the system, and escape the globohomo corporate stranglehold and escape into the free world. Everyone here do as you see fit, ofc, but I'd advise all of us to at the least consider these issues. Thanks for the good advice btw, Anon.
>>8096 >kit designs that will be highly inexpensive and easy to assemble even for kids I do consider this, nearly put it into the other comment, but left it out at the end. I also think that it would be great to have something in case our technological society has some breakdown or something for all the very poor men in poor countries. The later doesn't even need to be driven by compassion for those men, but by the hope to lower the birthrates in such places (while "middle-class people" in wealthier countries might even have more kids again, thanks to more advanced robowaifus and -nannies). However, I think it is highly unlikely that plastics and mass production of parts will go away anytime soon, currently even poor people in poor countries are flooded with them.
>>8098 Good points Anon. I have to agree with them all tbh.
Open file (54.62 KB 510x680 Eqr7t-tVoAEgBDF.jpg)
>>7727 >>7729 On his page https://twpf.jp/hamcat_mqq he writes in Japanese that he might sell the project one day maybe, so I don't think it is open source and probably never will be. (I copied the text into Google Translate). He also uses zBrush for his doll molds, not sure if he made the skeleton also with it. It would make it much less interesting anyways, since this program is for sculpting for all I know. I think it's better to use the project as inspiration, we don't need the files but the skills to make our own in parametric way. He also wrote that he need circa three years from zero to making his doll.
>>8156 Thank you for taking the time to look into these questions Anon. While I can't blame him for wanting to keep this work proprietary, I had rather hoped he would make it opensource. Oh well. Yes, you're right that we all need to work on our own skills. And that was 3 years well-spent developing his skills. I'd like to see us do the same here.
Open file (355.92 KB 1064x554 Selection_266.png)
Open file (143.86 KB 889x670 3DPrintRobotPage3.jpg)
I really like the space-frame design of this guy's pretty large hexapod. I'm personally convinced that this type of low-density good-rigidity structural approach (similar to tensegrity designs) will be vital to creating relatively inexpensive robowaifus in the end. https://invidious.snopyta.org/watch?v=SXGR5NzBNu8
>>8158 I dont see it. Maybe as a pattern for TPU (flexible plastics), to hold muscles and silicone parts in place under the skin. Bones should be on the inside, and feel as human as possibe. Also, even metal rods are quite cheap.
>>8166 >quite cheap Well, cost is only part of the full calculus (not that I pretend I understand all that just yet) but rather to my thinking the basic issue is simply the laws of physics. Mass is everything. I went into this in detail here: >>4313 But honestly, it's only one consideration among others, even if it's the most important one. Structural rigidity, speed & agility, graceful motion. All of these also come into play for highly appealing bipedal robowaifus. Structural frames bring the same benefits to the interior frames of a robowaifu that they do to architectural designs or box-girder bridges or other spanned structures. Namely, an efficient combination of strength and mass. These things all matter, and low mass (ie, low density) frames are the key to everything else.
Open file (528.99 KB 2048x1481 humanoid-skating.jpg)
>>8167 BTW, the designers of the poppy project also understand this basic point too. >>4436
>>8167 Thin metal tubes or rods are quit light. The material around could be light, e.g. foam and the frame could be fiber enforced silicone rubber. Holding it together, but not too rigid. It's probably more a matter of preference, more doll- and human-like or not. >>8168 Low-cost and Poppy-Project... It's rather about 3d print some parts and then spend all the money on servos instead printing the gearboxes and using cheap motors.
>>8169 Sure ofc, preference in design and aesthetics certainly plays an important part in any design engineer's work. Wouldn't have it any other way, right? :^) Yes, cost of servos is certainly an issue, thus why I asked in the other post if anyone had played around with that design using cheaper actuators yet. There's a really delicate balancing act between bulk/low-cost & compact/high-cost. This is true in practically all engineering however, so it's nothing new to our efforts. Smaller generally means more expensive, power & other constraints being nearly equal. It's a fine line we're all trying to walk here to manage to create systems that are both capable, pleasing aesthetically, and inexpensive all in one go. Some might be skeptical because it sounds like we're trying to have our cake and eat it to, and it's well-established that all engineering is a series of trade-offs. Quality/Performance/Price, choose any two.
Open file (63.92 KB 1080x1782 IMG_20210123_023213.jpg)
Open file (22.97 KB 508x508 IMG_20210123_023236.jpg)
Open file (72.36 KB 576x1024 IMG_20210202_063843.jpg)
Close shots from Alita's design. I like that some parts have layers. I imagine this to be a good idea, e.g. to run current though some parts instead of using cables. Then the layers need to be separated. Same, if the metal is for rigidity, but other layers contain electronics e.g. sensors.
Open file (71.29 KB 576x1024 IMG_20210202_063833.jpg)
Open file (239.20 KB 1152x2048 IMG_20210202_063900.jpg)
Open file (261.49 KB 1152x2048 IMG_20210202_063856.jpg)
>>8401 >>8402 Neat! Thanks Anon I've always been looking forward to some detailed images of the design work that went into the more recent Alita movie. Please dump everything you find somewhere here.
Open file (112.59 KB 576x1024 IMG_20210202_111218.jpg)
Open file (103.08 KB 576x1024 IMG_20210202_111223.jpg)
Open file (173.82 KB 1152x2048 IMG_20210202_111227.jpg)
Open file (49.17 KB 576x1024 IMG_20210202_111232.jpg)
>>8406 There actually was more. Only found this bc I went back to take a peek into Twitter, which I try not to do.
Open file (101.53 KB 576x1024 IMG_20210202_111240.jpg)
Open file (80.94 KB 576x1024 IMG_20210202_111244.jpg)
Open file (74.33 KB 576x1024 IMG_20210202_111248.jpg)
Open file (74.73 KB 576x1024 IMG_20210202_111252.jpg)
>>8412 Ah, that's fine! Thanks Anon, appreciated. I'd really like to try my hand at papercrafting a shell for my robowaifu that has some similar characteristics. Once I get it right then I imagine I should be able to use that to create some hard resin forms from it. It still has to be super lightweight to work well however, or everything else involved in moving and supporting the robowaifu becomes heavier and more expensive. But I really like some of these designs so it's worth the extra effort to try something nicer.
i'm only starting to get into the technical side of the robowaifu idea, but this design (https://www.youtube.com/watch?v=aLaqMreVj9o) should be fairly simple to integrate especially when driving it most of the motors don't have to be built into the joints themselves
>>8458 Thanks Anon! Yes, that is a really clever set of designs that team are using. Keeping the mass of the actuators themselves out of the limbs themselves may prove to be the key to giving us all fluid, smoothly-moving robowaifus. Please drop more interesting things here for us.
>>8461 gladly :3 of course everything i'll find will be shared as to further the good cause! a friend of mine, who works with orthopedics showed this to me, he has a project idea i'd like to help him with to make affordable opensource prosthetics, i'm sure i'll learn a good deal to make those useful for this kind of robotics >>8461
>>8466 Sounds good. BTW, we have a prosthetics thread here >>417 . Please post any good things you know of there, as that area definitely can provide good inspiration for ever more lifelike robowaifus, etc.
I post the link here, to the files for a mount (connector) to a motor which has none and a tubeholder for a round skeleton e.g. steel or aluminium tube. I wasn't sure if here was the right place or if the actuator thread was better. However, this is more about integration of a motor into the skeleton than about the motor itself. Not sure if the PM35S even works for this project here, since it's AC and needs a special driver if it even takes DC power. I only bought my two ones spontaneous because they were very cheap and I wanted to have something for playing around. However: The whole construction could be adapted to similar designs, of course. Basically the motor has a cogwheel, but if something is connected to it, it can fall off sideways. This is meant to solve it. Might come up with other motors as well. So here it is: https://files.catbox.moe/76t3vo.gz - nothing special, pics related. I used tar.gz for compression, not sure if zip would be better (more common).
>>8584 >and a tubeholder for a round skeleton e.g. steel or aluminium tube. What about other 'tubes' like wooden dowels, or something like PVC tubing sections? Do you think your tubeholder joints would work OK in that way? >not sure if zip would be better I think any choice is fine, do what's more convenient for yourself. I'd guess that every regular here is proficient enough to use any type of compression approach. Everything looks fine on my end, BTW. >
Open file (170.41 KB 1920x1016 tubeholder_mount.png)
>>8589 >wooden dowels, or something like PVC tubing sections Yes, sure. I had plastic tubing in mind first. Wood might be a bit heavy. The hole in the upper part might need to be fitted, which is one value in the Solvespace file, more if the whole construction has to change some sizes like thickness of the walls. This is just the current state, e.g. I forgot that I wanted some holes on the side to put in some screws. Right now, only friction or other improvisations would hold it in place. Generally, the idea is to use either tubes, which should work for fast first prototyping of a skeleton. We could also use the approach beyond that, especially for combing metal with plastics. With tubes we can also use the inside, but adding printed parts around. Wherever one can feel the bone through the skin, these parts could be designed human-like to make it feel like it. In other places where the bone is more hidden under tissue, it could be bigger than a human one. Alternatively, thinner metal rods could replace the tubes later, leaving more space for printed parts. >PVC Try to use another plastic if possible. This stuff is dangerous when heated. >attached picture This is not how to print it! Just for showing how it is supposed to fit.
>>8596 >Wherever one can feel the bone through the skin, these parts could be designed human-like to make it feel like it. In other places where the bone is more hidden under tissue, it could be bigger than a human one. Great ideas. >>PVC >Try to use another plastic if possible. This stuff is dangerous when heated. Thanks for the warning. I think there is some around the house unused, but I was more about the idea rather than specifics. I'll look for alternate resources Anon.
This here, by hamcat_mqq is of course skeleton related: >>7709
>>8602 I'm looking into the topic of ball-joints right now. Including how to design and print them >>8585. I would also never rule out buying stock parts which are used somewhere, like cars or smaller vehicles. We're her to build robots, not BJ-dolls, but in some places this might be useful, starting with fast prototyping of a skeleton and then having a talking waifu standing around for motivation. Jumping into the rabitt hole of joints, made me find much more which could be useful, some familiar, but often I also forgot about them. Regular ball-joints out of steel are used in every automobile, and in many other places, so these might even be available for cheap. Maybe such ones will be useful around the shoulders or the neck, for example. https://en.wikipedia.org/wiki/Ball_joint - site includes a description of spherical rolling joint from picture one, which looks cool but might not be very useful. >rod end bearing, aka heim joint (N. America) or rose joint (U.K. and elsewhere): https://en.wikipedia.org/wiki/Rod_end_bearing >The heim joint's advantage is that the ball insert permits the rod or bolt passing through it to be misaligned to a limited degree (an angle other than 90 degrees) >If spacing is critical, female heim joints are able to be threaded on, instead of welding inserts to the shaft. When dealing with aluminium shafts, the easiest way to use heim joints is to use the female heim joint. >Light weight is a key factors when building competitive robots, so using aluminum rods and female heim joints can be key. >shifter of motorcycles. The shifting mechanism allows forces to be applied linear, but still be able to work at angles when in different gears. universal joint (universal coupling, U-joint, Cardan joint, Spicer or Hardy Spicer joint, or Hooke's joint): https://en.wikipedia.org/wiki/Universal_joint >commonly used in shafts that transmit rotary motion. Then we get to the more human stuff, which was already mentioned here before (pic 5): > 1: Ball and socket joint; 2: Condyloid joint (Ellipsoid); 3: Saddle joint; 4 Hinge joint; 5: Pivot joint; or in German: 1 Kugelgelenk, 2 Eigelenk, 3 Sattelgelenk, 4 Scharniergelenk, 5 Zapfengelenk > The ball and socket joint (or spheroid joint) is a type of synovial joint in which the ball-shaped surface of one rounded bone fits into the cup-like depression of another bone. The distal bone is capable of motion around an indefinite number of axes, which have one common center. This enables the joint to move in many directions. >An enarthrosis is a special kind of spheroidal joint in which the socket covers the sphere beyond its equator. Related: >>7588 and answers, >>7625 and answers How coupling is boing done in other machines should also be a topic of study here, since this might be useful, e.g. making sytems more flexible or safer: https://en.wikipedia.org/wiki/Coupling
>>8611 Of course I had to forget something: Link to Ball-and-socket joint (related to pic 5): https://en.wikipedia.org/wiki/Ball-and-socket_joint
>>8611 >starting with fast prototyping of a skeleton and then having a talking waifu standing around for motivation. I think this is a valid approach actually. Inspiration and motivation are important to us here. An articulated, life-sized BJD skeleton (especially one you are designing and building yourself) would be a good learning experience at the very least. And couple that with speech it would be a nice start at things. Thanks for all the joint images Anon. It's an important engineering topic obviously.
>>8584 Just realized, the folder in this file is named Feb2020 like this was a year old. No, my mind is just stuck in 2020.
>>8611 I've been trying to think of ways to mimic human hip joints using inexpensive and 3D-printed parts. I really like the MIT Mini Cheetah form-factor actuators >>4890 (>>8415) . They seems to have a good combination of power efficiency & mass, as well as being in a particularly well-suited form factor for locating down in the lower pelvis edges to drive hip joints. I wonder if anyone has any good suggestion about the kind of coupling/joints that would allow for something the Anon's dream of a ballroom dancing/ballerina robowaifu? >>7889 I think it would be absolutely revolutionary if we could build lithe & limber, dancing robowaifus someday.
>>8641 Here's a search, maybe it will help >>8642 .
>>8641 Make them walk and dance is one step after the other. Making them dance while holding a pole or something with both feet on the ground will already be something. The hip-joints are ball-and-socket-joints like here https://en.wikipedia.org/wiki/Ball-and-socket_joint - I once saw some kind of ball out of ceramics, which could be screwed onto something. Doorknob or something alike. This might be a method. On the other hand, we need a way to move current and maybe light between the extremities, for the electronics, but also communication. So we'll need to think about putting this into th joint. We'll need to add some contacts in a way that it can transmit while moving.
>>8644 >We'll need to add some contacts in a way that it can transmit while moving What I reckon would work would be to have 2 or 3 small-diameter, flexible conduits fastened through grommets in the hip 'bone', and then also down on the thighbone. Something similar up at the shoulders as well. Nothing that sticks out too much, and also flexes and bends with the ball-and-socket joint's movements. The wiring, Bowden cables, optical fibres and suchlike would ride down through these conduits around the joint areas.
Open file (237.75 KB 187x272 Hexapod_general_Anim.gif)
>>8644 Found this through your links Anon. Seems like it might be a useful approach where we can print out several linear actuators, then use them to manipulate plate-force areas for different angling degrees. During swaying/rocking motion while our robowaifus are walking or dancing with us, for instance. > Seems like a lower plate the Cheetah motor was affixed to on the inside for example, could be tilted to different basic angles during her gait by this type mechanism. The hip/pelvis volume could have two sets of these mechanisms operating independently. We'd have to be careful to leave volume for the robowaifu's vagoo down there ofc. https://en.wikipedia.org/wiki/Stewart_platform
>>8648 That looks like it would be useful for a waist (with a powerful motor on the top disk to allow the upper body to rotate 360 degrees). Although it's length may prevent legs being attached. But that's not a problem if your robowaifu is modular and can swap between bases - wheels and legs.
>>8650 Good observation, you're right Anon.
>>8650 Hmm, you know it occurs to me you could shape both plates to be more oval that the one in that example .gif. If you sort of designed both parts to be more like thin slice cross-sections of a female abdomen then you could have a Stewart platform that could serve pretty nicely as the base for a robowaifu's upper body. One like our Sophie here, instance. Regardless of what someone does for the hips downwards, fixed-base, wheeled buggy, actual legs, w/e, this section in her middle would work pretty nicely. Bright idea, lad. :^)
>>8656 >One like our Sophie here, for instance.
>>8646 Thanks, considering. But my hope is to integrate as much as possible into the bone, so there would be no bending parts. Not sure if I'll get there, had some thoughts on it today, while playing around with my printed ball-joints. >>8648 Interesting. I didn't really think about it in detail. I want to use motors for some muscles, soft muscles for others. I also thought about using springs or bumbers to make certain repetitive movements using low amounts of energy. Currently I dont know how to insert a bit of randomness there. The body should go down automatically if relaxed, and bumbing back if the spring is unlocked. I'll need a mechanism to change the traits of the spring, probably some mechanism that blocks it gradually. >>8656 Yes, seems to be the way. I didn't think of it as steward plattform, but this seems to be a good way to have a mental model of it. However, all of this is more for the hard shell body type like Sophie. I'd like to try move it via tha spine, more like a human.
>>8660 >I'd like to try move it via tha spine, more like a human. Yep, I think that ultimately that would be the most lifelike ideal for a robowaifu. We'll all get there with eventually I'm sure.
I posted something about DARA project, a guy developing a hand for his robot here >>8700. It's a male bot (like Data), but we might learn from it. He is also working on other parts, like feet, which is rather rare. Could have gone into the thread for bipedal locomotion >>237, but I think its more general so I put it in here: Foot, short clip: https://youtu.be/OBsXwv7m1hY[Embed] Tilt slider for leg: https://youtu.be/R9Wdc0H4iPs[Embed] Same, but more info: https://youtu.be/DW6PW5yQr4o[Embed] Toes, short clip: https://youtu.be/AbhPPy1ioXk[Embed] Middle toes V2: https://youtu.be/i7DZusCGz7k[Embed] There's more: https://youtube.com/c/DARARobot
>>8704 That's fine, I'll just xlink it here.
More from Alitas design. More pics and a explanation of the design process on the designers page here: https://vitalybulgarov.com/alita
>>9352 >>9353 That's really nice Anon, thanks. I don't know why he would choose a fugly face on some of these when a quite attractive one is available already, but w/e. He's obviously loaded with talent as a 3D artist, and this specific work is pretty fantastic tbh. Alita (the 'real' one) a cute and kinda hot, actually. It would be great to see him begin contributing to the IRL robowaifu movement as well.
>>9386 The rendered face of Rosa Salazar was just the placeholder. He made the body design, the face transformation came from Weta in Newsealand (Lord of the Rings).
>>9413 I see thanks for clearing that up, I see the resemblance. Grateful they didn't go with that face for Alita. I wonder who that director Rodriguez will go with for the MOCAP on the second movie? This one's obviously well past her prime expiration-date already.
>>9430 Lol, you're harsh. She's Alita now. The face is being manipulated anyways and they have it as a model, I don't see the problem. She plays the role and her facial expressions are being captured and used with the model the have.
>>9434 >Lol, you're harsh. Maybe. A 35 year old woman playing an action hero is pretty silly IMO. >She's Alita now. Hehe, she wouldn't be if they had put that face on the character! :-DDDD
Open file (215.10 KB 1000x1000 20210407133801ef2.jpg)
Open file (831.48 KB 2410x2800 IMG_20210408_015037.jpg)
Open file (305.96 KB 1000x1500 202104071337590dd.jpg)
Open file (225.81 KB 1000x1000 20210407133758f9f.jpg)
>>1944 More AniFée porn, also some friends.
I found some old posting of mine with links to some 3D files of the human skeleton, though it was male and I wanted to find if there's a female one now. However, I can't find the posting right now, so I can't link the results. Instead, I found a Japanes database for human anotomy: http://lifesciencedb.jp/bp3d/info_en/index.html and from there they link to the right search terms in Thingyverse: https://www.thingiverse.com/search?q=bodyparts3D&sa=&type=things&sort=relevant - Again, this might be mostly male parts but they can be used as inspiration. Just look up the differences between male and female somewhere and change your model accordingly. The other problem is, that such parts are often hard to orint with FDM. My idea is rather to use the 3D models to create simplified and feminized models which are also easier to print. The first is a list with links to download all the 3D models in obj, which might be much more, than on the second page, which seems to be a mirror for STL files on Thingyverse. I only had time to checked parts of it. http://down3dmodels.com/bodyparts3d-3-0-obj/ http://www.yeggi.com/q/bodyparts3d/?s=tt
>>9876 Thanks Anon, the effort is appreciated.
>related xpost (>>10121, >>10125)
>related xpost (>>10131 and following)
Related: >>10542
Open file (105.52 KB 908x1096 IMG_20210526_233435.jpg)
Open file (47.17 KB 902x902 IMG_20210529_221002.jpg)
Open file (35.67 KB 900x900 IMG_20210529_221011.jpg)
Open file (83.65 KB 1080x1080 IMG_20210529_221007.jpg)
Open file (40.45 KB 881x881 IMG_20210529_221015.jpg)
Open file (436.59 KB 1084x2004 IMG_20210528_094246.jpg)
Open file (1.07 MB 1643x2487 IMG_20210521_203659.jpg)
>>10777 Pretty gorgeous details, Mr. Digits. Thanks. :^)
Open file (45.65 KB 370x671 matlab-skeleton1.png)
>>9876 That institute has now the bone models for download. The old links didn't work properly or required to hand CC data to some shady file hoster. http://lifesciencedb.jp/bp3d/info_en/index.html#Data_download Also with information how to use the data to create models, e.g. a link to someone helping with it: https://wspr.wordpress.com/2013/05/09/bones-and-organs-and-everything-else-in-matlab/ leading to https://www.thingiverse.com/thing:31845 and from there to http://craig.bonsignore.com/2012/10/07/open-3d-human-anatomy/ which explains how to use the data in modelling programs (haven't read it, yet)
>>12878 Thanks very much Anon.
>>12878 Related: >>12905 >>12906 Yeah, I found out this whole set they have is from a male. I though they would have both sexes in it. F. However, I looked a bit found out that more female models of bones pop up from other sources, e.g.: www.thingiverse.com/thing:4946668 - I guess I have to look around more.
>>12909 I'm really starting to wonder why no one here or in the dollforum successfully designed some simple skeleton, a bit like hamcat_mmq >>7709 or armatures like 61laboratory >>9268. SophieAnon seemingly only needed a few weeks to months to render some armatures in Blender >>11776 but no one else seems to create some like those and make them printable. Then there are at least stl models of female human bones https://www.yeggi.com/q/female+pelvis/ , and I only find them by random coincidence, because no one else was even looking and mentioning it here. Not to speak of printing them and using them for a simple robowaifu. At the beginning of the forum people thought it was okay to have waifus in wheelchairs or ones which would walk on all four into the bathroom. But now, no one cares about these simple versions, they all have to at least walk somehow. Which is one of the hardest things to do and absolutely shouldn't be a high priority. I thought about this tonight, while waking up: Building a partially animated doll-like waifu or one with printed armatures on the outside would be much easier than trying to figure out how to build something very life-like. It's still gonna take years for getting a fully animated one with a human-like skeleton in the current speed and it will cost rather 10-15k than 2-3k. Just in case you're just lurking and waiting.
No one seem to have looked into how to design a knee for a robot yet. Didn't find it mentioned in this thread once. The problem is, it needs to be able to turn a bit sideways, I think It's not just a simple bi-directional movement, but more complex. Hamcat_mqq's design can do it >>7723, Alita 's design hints at it >>8412, Anifee seem to have some double-ball-joints which can do it >>9685, in action figurines it seems to consist of two hinge and one pivot joint >>7634. Human anatomy of the human knee: https://youtu.be/WhSxZWNBW3o - interesting, but the human knee is known to be a bad design. I have to look into how to design ball-joint knees, I guess.
>>12994 They're simpler than you think.
Has anyone made blueprints for a SFBT- 3 (Special Fullaction Body Type-3) ? It is an artist mannequin with great flexibility and complex joints.
>>12994 Found a cool knee on Pixiv
>>13893 Thanks. One thing in a very human-like robot is to make it look similar to a human one. However, the sliding kneecap actually has a function by connecting it to the muscles in the thighs: https://youtu.be/PuspQOe-sfI
>>13767 >>13893 These look neat, but like a lot of things in this thread, they're just too damn complex. >>12994 >The problem is, it needs to be able to turn a bit sideways, I think It's not just a simple bi-directional movement. What? As far as I can tell it doesn't need to be more than a single hinge, any tilting is done at the ankles and the hips, and rotating is also done at the hips. Perfect mimicry isn't the best idea unless you're literally going to make artificial muscles and bones that move just like a regular human.
>>13944 Yeah, this little sideway tilt might not be really important. However, I generally try to get very close to human-likeness. Others build more robotic waifus, I'll try to go for the "animated doll". So, I'm interested in the >>13893 approach above, but I hope I can go for a sliding kneecap.
>>13961 Not only do I think it's unimportant, but I think it's bad. I had a problem where it felt like my lower legs were held on by threads and would occasionally force my legs to tilt sideways (probably looked like I was trying to unstick my balls from my leg) and they'd crack pretty painfully. At best the sideways tilt is some kind of shock absorption, at worst it's your knees failing.
Human bones in an lower arm.
>>14397 very nice diagram Anon, thanks
Lol, I haven't any idea where to post this here on the board. It's about being careful with cable management. It was either here or the actuators thread I think. Seems like an important, oft-overlooked, topic for structural design. https://anon.cafe/retro/res/803.html#2069
>>14397 That's a lot of joints. Anybody have an idea of how to build a hand without using 19 individual stepper motors?
>>14576 This site has a catalog with a lot of active threads - e.g. hand development >>4577 is the thread for your answers, then the thread for humanoid robot projects >>374 might also include videos which haven't been crosslinked in the hand development thread yet. Your implication of servos also plays into the topic of artificial muscles and actuators: >>12810
Have a look at compliant mechanisms, they\re is easy to make, need little material and are really simple. Only drawback is its longevity, but that can be solved by printing with PETG/Nylon, etc. https://yewtu.be/watch?v=FW6Vx2g9OCI
Suman for my wiggly fingers, here is another neat vid. https://yewtu.be/watch?v=4fFH2RHpcTY
>>14810 >>14811 Compliant (backdriveable?) mechanisms will ofc be very necessary for human-interacting robots such as our robowaifus Anon. Good idea.
I recently started casting silicone with the correct vacuum chambers and pumps and all necessary equipment. Has anyone embedded a complex armature like this https://abcnews.go.com/US/video/man-built-prosthetic-hand-64975188 in silicone?
>>15191 I'm sure there are literally thousands of examples of silicone casting over armatures in the Dark Rides (theme parks) industry. And for the Creature EFX sub-industry in cinema, the results can be pretty remarkable. But for our DIY garage-factory Robowaifu prototyping, I'm fairly sure that silicone's density pretty much precludes most other industries' usage of it. For example, solid-casting a thigh would basically weigh about the same as the same volume of a real human's. Much too heavy tbh. The Medical Prosthetics industry may inform our approaches with the material however. For example, the notion of using a thin-ish sheet (or film) of medical-grade silicone over a sub exo-shell/structural mechatronics could be a very suitable approach for us all. Good luck with your prototyping efforts Anon. Please keep us up to date!
>>15194 Interesting. I will look into making negatives of my molds so that the silicone can go over a shell.
>>15215 Sounds great! You might consider an initial rough prototype using wooden dowels like MeidoDev (>>11446), or Kiwi (>>15214). Over that you might fashion some of that flexible craft EVA foam that's popular as a base for cosplay & accessories at conventions like the various 'Cons, etc. (>>6506) and fasten it over your wooden framework. This outer shell would become the basis of a form for a negative mold, right? Create her 'skin' using your hi-grade silicone, color it, decorate it, etc. and Bob's your uncle! :^) Looking forward to seeing your progress Anon.
>>8062 dude should 3d scan these and make it a STL file for the glory of mankind
>>8062 >>17149 I had memory holed this boner inducing monstrosity thanks for bringing it back to burn into my retinas anew
>>15194 > the notion of using a thin-ish sheet (or film) of medical-grade silicone over a sub exo-shell/structural mechatronics So, basically how the Westworld show depicted the park's early models? Probably is the best way to start off. Also, might be able to implement 'self-healing' synthetic materials to lessen worry about cuts and for making segmented parts for maintenance easier to work with.
>>17487 >So, basically how the Westworld show depicted the park's early models? Yep you've got it. >Also, might be able to implement 'self-healing' synthetic materials to lessen worry about cuts and for making segmented parts for maintenance easier to work with. I agree we should look for material blends that offer 'self-healing' for minor scratches and scrapes, all else being equal.
>ringlink-related https://anon.cafe/doll/res/191.html#463 Internal cutaway of a modern doll's armature & shell.
model for humanoid robowaifu spinal design: >>19494 https://www.e2046.com/p/33272/
Spine related prototypes which failed: >>4653 >>12882 - It's going to be a bit difficult and still take a while.
>>20406 Even if that works though... how do you move it?
>>20407 ITo answer that, I'd suggest you study both human anatomy in general, and biotensegrity in particular. All your answers are out there Anon.
>>20407 >Even if that works though... how do you move it? That depends on the specific robot design. I'm open for every kind of actuator. We have a whole thread for that: >>12810 I stalled my plan of building a very human-like robot body with a spine and legs for now, because it takes too much time and is too difficult. I'm gonna make it, but first I'm finishing a more simple gynoid with no spine >>18433 (simple Joystick body / desktop waifu). So she won't bend like a human. Just with a stiff upper body. I didn't make a specific thread for my build yet, but I plan to do so. Same, for the follow-up models. Look into this here for how to possibly design the spine: https://www.youtube.com/watch?v=mqrDYsjBjoY Channel: https://www.youtube.com/@Anatomie3DLyon I recommend keeping it simple first and look into how simple these companion (sex) dolls are designed. Maybe don't make it much more complicated at the beginning. You don't really need a flexible spine with muscles, it's a bonus.
>>20420 >Spine Compliant mechanisms might also be useful: >Compliant Rolling-contact >Compliant Rolling Joint https://youtu.be/uvPSsUkLypY https://www.youtube.com/shorts/iX2flAskPhQ https://www.youtube.com/watch?v=aPmmY4rDiq0 Also used in a hand here: https://www.youtube.com/watch?v=EA9mRS_-SC0
>>20421 And this also looks interesting: >Spatial rolling contact joint for a path generating link mechanism https://youtu.be/ONu23LCZl8E >This is a spatial rolling contact joint for a spatial path generator. The rolling contact surfaces between the two links can be designed so that the two links generate the specified spatial trajectory relatively. Thus, a spatial path generator with it can completely generate the specified trajectory. It is expected to be applied to a pick-and-place machine, an exoskeleton for human knee joint, and so on. The research paper in the following link describes the method to design the rolling contact surfaces, the method to arrange linear springs optimally, and so on. (Japanese): https://researchmap.jp/blogs/blog_entries/view/112730/2ab336a68df84942d7a3cda4212a902f?frame_id=574244 PDF: https://www.jstage.jst.go.jp/article/mej/6/6/6_19-00253/_pdf/-char/en
Very interesting stuff NoidoDev, thanks.
I found a book on simulating humans and their movement Simulating Humans_ Computer Graphics Animation and Control-Norman I. Badler It was linked from a page for a program called Jack, a human modeling program. https://en.wikipedia.org/wiki/Jack_(human_modeling) Jack is designed to plug in to a CAD program called BRL-CAD developed by the US military to model and test...everything. The Jack program was done by the military and NASA to validate human equipment interactions. I commented about BRL-CAD and Jack in the links below >>23897 >>23921 It appears this book covers most all the basics on human robot modeling. I expect it would be a good reference for a lot of base level robowaifu hardware, rule of thumb info.
>>23925 Free Jack Human Simulation Software for Students https://blogs.sw.siemens.com/news/Free-Jack-Human-Simulation-Software-for-Students/ video https://www.youtube.com/watch?v=OWnYlWCATmI While looking for Jack software I found this new, upgraded, more shiny, cleaner cloths and brighter sparkles software, Santos: The Virtual Human WOW what thus thing won't do is easier to list than what it does. https://iti.uiowa.edu/santos-virtual-human no source...that I can find, for either.
>>23939 Plastics ULTEM/PEI and PEEK which can be 3D printed and come in carbon fiber mixed in.
>>20423 >And this also looks interesting: That is interesting as a mechanical engineering solution NoidoDev. Thanks! >>23925 I like how the authors go into several of the related cognitive problems involved with humanoid movement Grommet. Thanks!
I was looking for skeleton models and found what appears to me to be a really detailed human skeleton scan made by a company selling 3D scanners. Many file formats that can be printed. Here, https://www.artec3d.com/3d-models/human-skeleton-hd
These guys sell filaments and high end 3D printing machines. They have a decent run down on strengths and weaknesses of different high end, and low end, filaments. Could be a good guide to what can be done with the stronger filaments. I learned a bit watching it. They talk about beginner stuff but a lot of the video covers using 3D printers for job shops and high end JIT parts. This sort of strong parts is what's needed to keep weight down and maximize complicated forms without having to buy a machine shop. The ULTIMATE Guide to 3D Printing Materials - Usability and Demand for High-End Filaments https://www.youtube.com/watch?v=7kjSKSEtpMY
>>23985 >https://www.youtube.com/@VisionMiner This is the channel I recently referred to in some comment, but didn't recall the name. Yes, it's a good channel on this topic. Though, I plan to go with more common plastics.
>>23984 Thanks Grommet, that's helpful. Do you know if they have specifically Caucasian/Asian Female skeletons?
>>24004 I've done "some", minor, looking for this but not exhaustive. So far I haven't seen it. I'll keep it in mind. You wouldn't happen to know a program that can take drawing of skeletons from different angles and then piece them together to a 3D model do you? I'm sure this can be done at least on a rudimentary level which could then be tweaked into shape in a cad program.
>>24021 >So far I haven't seen it. I'll keep it in mind. Thanks Grommet. There's definitely a easily-discerned distinctiveness between male & female skellingtons. There's also a difference between the races of females, particularly in the underlying physiognomy structures of them. >You wouldn't happen to know a program that can take drawing of skeletons from different angles and then piece them together to a 3D model do you? My apologies but no. It's on my bucket list, but thus far I haven't been able to focus much investigation into the current SOTA of auto-generated meshes. I plan to start digging into it a bit sometime in the fall. >I'm sure this can be done at least on a rudimentary level which could then be tweaked into shape in a cad program. In a full DCC program such as Blender, really the imagination and skill of the modeler are the only real limits. It's definitely in the big leagues now as a platform.
>>24030 >There's definitely a easily-discerned distinctiveness between male & female skellingtons. There's also a difference between the races of females Do you happen to have a link with this sort of data laid out or is it just something you know?
>>24056 >Do you happen to have a link with this sort of data laid out or is it just something you know? Yes, it has been laid out methodically, and no, I don't know where it's at off the top of my head. I was more diligent & rigorous about this type thing a few years ago. But it's easy enough to see for yourself: simply compare two skeletons having identical race, identical age, and identical environment -- one male, one female. Not hard to see many of the differences; it's pretty clear (and commonsense as well). Most of these differences are directly-related to the divergent primary roles God accommodated us for: men to fight battles, work hard, and reason clearly; women to bear children, and be a comfort & help to those around them. However this is but one data point and you can't generalize from a sample size of just one. So, lather, rinse, and repeat this type of examination 3'000 or so more times to get a population of sufficient statistical validity. :^) As to the physiognomy issue it's a yuge sociological no-no to even admit the reality of it today because MUH_RAYCISM (well that, and the fact that the Globohomo has a clear agenda underway to genocide the White race). Back in the late 19th, early 20th centuries however, there were several comparative studies done by researchers on this topic, primarily coming out of Europe. Hard to find it all now I imagine because of the GH's strong drive to memory hole this sort of thing -- at least for the public. >=== -prose edit
Edited last time by Chobitsu on 07/19/2023 (Wed) 18:56:51.
>>24021 >you wouldn't happen to know a program that can take drawing of skeletons from different angles and then piece them together to a 3D model do you? It would need to define to contact areas and then snap it together automatically. I haven't tested all software, wouldn't be surprised if Blender could do that. I thought about exporting the "bones" from Metahuman, which are meant for animation and posing, then use that to help me with the orientation of the "real" bones. Related: 3D modeling software >>415 >>24030 > a difference between the races of females, particularly in the underlying physiognomy structures of them. But would we even see or feel it on the outside?
>>24065 >But would we even see or feel it on the outside? Heh, well we definitely all see it on the outside of real female humans. As to what we ourselves devise, we can always accomodate ill-forms underlying our external shells -- within limits. In fact I would argue we will have to do so, since we can't possibly articulate an endoskeleton/musculature/ligature/fascia/lipid/derma system that actually composes real human beings! We have to make due with our crude approximations. OTOH, it's always in our best interests if we are endeavoring here to create successful robowaifu systems, popular with men around the globe, to fashion them as closely as we can to the most beautiful human female specimens that we can. Say, the top 1M females on Earth. Thankfully, we have an incredible bounty of references to choose from -- far more than any past king ever had! :^)
>>24068 Well I had the bright idea of asking an AI to draw me pictures. All I can say is if the results I got are AI reasoning ability, then God help us when they run things. So I searched and found hundreds of pictures of skeletons and differences from Men and Women. Still downloading them. Hours. I'll put them in zip file and upload soon. A bunch are from a site that has a full scale 3D body with all the nervous system, bones,muscles, etc. I saved a LOT of those. Including sequences of walking, etc.
>>24004 >Asian Female skeletons Look what I found https://www.turbosquid.com/3d-models/skin-asian-female-skeleton-model-1512171 pricey but... Does look a bit Caucasian. I think modded from Caucasian. Here's a page with a lot of very high quality models. Some free, but not of the same quality. Good ones $600 USD
BTW I have now over 600 files of skeletons, muscles, etc. Around 600MB. Should I find a free download site and send them there? Are they too big to send here?
>>24087 >Well I had the bright idea of asking an AI to draw me pictures. Worked like I would've anticipated it. >>24089 MEGA. I mean it's great, but also https://Mega.io has 20GB for free.
>>24087 >>24088 >>24089 Neat! Nice investigative work Anon. :^) May I suggest you consider Anonfiles? AFAICT it doesn't have some of the same baggage as Mega, and allows for some pretty large files drops (and also has a good API).
I found a video on drawing "must have" books for human figures and skeletons. Looking at them briefly a lot of them have metrics for the figures. What I am calling metrics is measurements that show the proportions of various body parts in relation to each other. Very useful. This video shows several books. One that looks particular good to get an idea of proportions and metrics is, Michael Hampton - Figure Drawing_ Design and Invention I think if you have not at least perused this book you are really missing out. I think that these sort of anatomy based drawing books could really save you a lot of time and make your waifu much more realistic by using proportion metrics to lay them and their movements out. https://www.youtube.com/watch?v=FnyvNpJvuSs All of these are too big to upload but can be found here by typing in the authors name. There is even a Tor download option on most of these. http://libgen.rs/ I wonder...I'm looking at Michael Hampton's book and he has all these points that show relations between skeletonal and muscle structures and the body. I can't help but wonder if you could take a picture of a naked Women and have a computer or you, identify these points and then the computer fill in the proportions of the various muscles and other parts. Hard to explain. A different way would be you load the pictures of a naked women. You first equalize the sizes of the pictures so all body parts on all the pictures have the same proportions. You draw in all these skeleton or reference points by hand. Then the computer would know know how these are in relation to a body and spit out the length of muscles, tendons, skeleton metrics, length width etc I wonder if there is some sort of ratio of muscles. Explanation. You draw the exterior of the muscle and/or body and there would be a known relation of muscle to tendon to bone to whatever, excluding fat?? Maybe all these could be globally tweaked and you would get an accurate "parts" count with all dimensions of each part all aligned? Cause there are millions of pictures of naked women for free. I saw where you could upload a picture, somewhere can't remember, the other day of a girl and an AI, I think "Stable Diffusion" ?? and it would make different girls from the basis of that picture. So if you had a business you could take these pictures using these metrics spit out parts for a waiufu that looked like, whatever. You could add a hefty fee to do this. Build to order robowaifus. People could stretch and mod the skeleton and muscles to give them what they wanted. Since it would not be molded but one off prints you would have to boost the price but I bet some would pay for it.
>>10543 >anthropomorphic-reference-measurements Scrolling up I see I had forgotten about this comment. Exactly what I'm talking about.
Open file (169.57 KB 1033x1546 rfesfdsfds.JPG)
>>200 >What are the best designs and materials for creating a skeleton/framework for a mobile, life-sized gynoid robot? My tip is this: DO NOT reinvent the wheel! Just invent an "add on" to existing skeletons and existing sexdolls. Starpery is the leading sexdoll innovator and this is their best skeleton: https://www.starpery.com/blog/upgraded-gear-skeleton-of-starpery-sex-doll-35/ Its easy to just ask them the dimensions and design an electromotor for the hips that lets the doll "come alive" and do cowgirl and doggystyle. Then sell your design to Starpery/ask for a commission per sale. Then just keep making small inventions based off of already existing ebay battery powered electromotors. I was sent here by a very based Anon from the 4chan NPNW threads. Here is the thread. https://boards.4chan.org/pol/thread/436792695 If you need money for investment DO NOT use your own money! A lot of guys/MGTOWs would LOVE to fund you. If you want to set up a (joke/meme) company and issue stock you will basically be drowned in moneyand can design anything you want. Come to TFMs saturday show and ask him to propose your idea and how to fund you and I personally will fund anything you do, let alone the other lads.
>>24407 >My tip is this: DO NOT reinvent the wheel! No one has an open source or commercially available skeleton for a robot. Especially not one where you can feel the bones. >Just invent an "add on" to existing skeletons and existing sexdolls. >Starpery is the leading sexdoll innovator and this is their best skeleton: But it's still garbage. I mean it's okay for what it does for the price, but anyone reading about the limits and looks the fingers of these dolls, knows it's even not good enough for dolls. There's also no reason to go with something like that, since this is made for TPE dolls which are being baked at 200C or so, but we can't and won't do that at home, so we can develop something better.
>>24410 Thank you for replying. >No one has an open source or commercially available skeleton for a robot. Thats why I said you need a partnership with a sexdoll company, Starpery is the innovator when it comes to skeletons. I am in no way affiliated with them, I just know the market very well because I bought a doll and found that starpery was the innovator (got the internal heating doll :D) >>24410 >But it's still garbage. Bro, please, the first touchscreen blackberries were absolute dogshit but they lead to the first iPhone. Its the same thing. >we can't and won't do that at home Why the fuck would you want to do the production at home? Is it your plan to just make 1 sexbot for your own personal use and let other men be damned? Youre very selfish and shortsighted. Im thinking on a global economic scale, whereas you are thinking only on your own personal need. Disgusting. Dont ever talk to me again. For you are not a brother. Youre just mad you cant get a femoid, so you want to make one for yourself alone. Youre no different than chad&tyrone hoarding all the women for themselves, except you cant. Sad. Renounce your hatred for your fellow men, learn to love your brothers then come back. Or be cursed to be a simp.
>>24411 >you need a partnership with a sexdoll company I have absolutely no interest in making me dependent on a company. Also, again, I'm pretty sure these skeletons are for TPE dolls which are produced in a certain way. >Is it your plan to just make 1 sexbot for your own personal use and let other men be damned? Obviously not, but I want small scale production to be possible, since for example that's what would prevent any ban. Also, I want to be able to build my waifus on my own. >thinking on a global economic scale And you forgot about the bans in many countries. >Or be cursed to be a simp. That's not what it means, stop being a drama queen or trolling.
>>24407 Hello entrepreneur-Anon, thanks for stopping by. Yes, you're correct. The demand for great, opensauce robowaifus is a pent-up flood waiting to burst out onto the planet (>>23969). There certainly will be no lack of funding available once the timing is right! And unlike many industries, it is not going to be just the first-movers who capitalize on this coming wave -- not if we here on /robowaifu/ have anything to do with it! :^) Any man, anywhere, any time, can take our freely-given designs and start their own robowaifu-centric companies using them. We anticipate dozens, then hundreds/thousands of smol operations eventually producing robowaifu systems around the globe. Please enjoy yourself while you're here, and have a good look around Anon. BTW, we have a special Embassy Thread (>>2823) explicitly intended to allow visitors to introduce themselves/their communities to /robowaifu/ and to each other. Cheers. :^) >=== -prose edit
Edited last time by Chobitsu on 08/05/2023 (Sat) 02:01:05.
>>24411 Kindly give your antagonism a rest friend, or find yourself chikun'd. :^)
>>24419 >no interest in making me dependent on a company a company is just a couple people working together, whats your hangup against the idea of companies? Im not telling you to become a capitalist pig comrade, just email the damned company and ask them for help/free skeletons to work on etc. After you invent a moving skeleton, you will want to have access to companies that already sell sexdolls and can also sell your bots. >these skeletons are for TPE dolls which are produced in a certain way umm yes? so? > I want to be able to build my waifus on my own Oh so youre a hobbyist. Fine. I prefer to actually make sexbots for all men, not just you personally. Still, emailing some manufacturers might get you free skeletons you can weld elektromotors on, then you can send it back and they will put the TPE on it: now you have a mechanical skeleton inside a TPE doll. tl;dr: just do what I said in my post > I want to be able to build my waifus on my own.
>>24431 ill lurk
>>24432 >comrade I'm not a leftist. >you can weld elektromotors on, then you can send it back and they will put the TPE on it It's baked at high temps. Even if I would agree: The magnets, cables and electronics wouldn't survive that. There were videos about factory tours on YouTube, but many got taken down or are behind the age limited wall. >just email the damned company and ask them for help I'll do it the other way around. When I have better skeletons for hands and feet to be used in dolls (not robots) which they might be able to build and use, I will tell a bunch of manufacturers after uploading the files to Thingiverse or some other platform. If only one of them picks it up, the other ones will have to follow.
>>24434 Why would we want them involved at all? What they built appears to to be primitive to me. I would't want one. I could do what they now but feel it would be wast of time. I have seen some sex dolls that have really good shapes and great painting n them to look realistic but I bet that would wear off quick. I want something that can walk around. It might be a long time before you can have something that speaks intelligently but I think the tech is there to make something you can get to move around and you could Maybe tell to move here, there whatever. And BTW if you partner with a Chinese sex doll company they will take what you give them and give you nothing. NoidoDev way is better. Put out the data and they can make them or not.
>>24433 Thanks kindly Anon. Friendly bantz are fine, but please keep it toned down. Please remember we're all on the same team here. Even thinking about the complexities we all face here together is quite difficult enough. Let's not compound it with intra-team antagonisms, or the laughter of our mutual enemies will be our only reward. Cheers Anon. >=== -sp edit
Edited last time by Chobitsu on 08/08/2023 (Tue) 22:38:24.
>>24434 >I will tell a bunch of manufacturers after uploading the files to Thingiverse or some other platform. Neat! Thanks for your generosity-based approach NoidoDev. For those of us who really want to, making money at building robowaifus won't be at all difficult, insofar as far as public demand goes. Plenty to go around for all, and to spare! :^) >>24486 >but I think the tech is there to make something you can get to move around and you could Maybe tell to move here, there whatever. I think we'll have that relatively soon Anon. I predict we'll see a major transition for the drive to robowaifus within the year 2025 or so. And not just from the usual Anon-driven corners of the world, either. What a time to be alive! :^) >=== -minor edit
Edited last time by Chobitsu on 08/10/2023 (Thu) 16:54:02.
Open file (780.31 KB 713x725 ClipboardImage.png)
Interesting manufacturing method. A mold is used as a scaffold to hold carbon fibers. This mold is submerged into a electroplating bath to plate the fibers with metal. This creates a very stiff and sturdy composite material. A video that explains the process via demonstration using a resin printed mold. https://www.tiktok.com/@michal_baran/video/7016168169643527430?lang=pl-PL
Open file (221.83 KB 739x228 Screenshot_120.png)
Open file (145.95 KB 354x418 Screenshot_122.png)
Open file (307.70 KB 805x413 Screenshot_121.png)
Self-assembling material pops into 3D (boobs): https://youtu.be/vrOjy-v5JgQ > This bistable auxetic material gets bigger in all directions when you stretch it. It's also becomes 3 dimensional! > The paper by Tian Chen and colleagues is: Bistable auxetic surface structures, ACM Transactions on Graphics (TOG), 40(4), 1-9. (Chen, T., Panetta, J., Schnaubelt, M., & Pauly, M. (2021): https://dl.acm.org/doi/abs/10.1145/3450626.3459940 > Tian is currently working at the Architected Intelligent Matter Laboratory: https://aim.me.uh.edu/ Related: Steffen's polyhedron is a flexible concave polyhedron (I think this is something I wanted) https://www.youtube.com/watch?v=JiC6DbBoV4Y And tensegrity: https://www.youtube.com/watch?v=0onncd0_0-o
>>24407 I wouldn't mind some funding :^) Pls
What kind of lubricants will you guys be using on your waifu's joints? I've done a bit of looking around, but I can't really find any fully comprehensive tables on what kinds of lubricants work best for which kinds of plastics, and there seem to be some differing opinions. For instance, there isn't much data on PLA that I can find (the sole material I plan to load into the 3D printer, it will comprise every joint and some miscellaneous frame structure), although some people say it can take almost anything. If so, that'd be nice, but a cursory search found even less for fiberglass (the material I'll use for every hinge. To be more specific, since there are different kinds of fiberglass, I'll be cutting up road markers. You know, those thin orange poles designed to be visible and not fall apart whenever weather happens), so I'm not certain everything will work cleanly together. Of course, I plan on testing everything anyways, but the less testing I have to do the better. Kiwi mentioned previously that powdered graphite would be a good choice for a dry lubricant and a cursory search revealed that it comes in spray cans, and that I won't have to purchase a tub of literal powdered graphite like I initially suspected. Overall, other people seem to support this appraoch as well. Since I'm taking the plushbot approach, and thus every joint is going to be directly interacting with fabric in some capacity, I believe it's necessary to fully commit to only using dry lubricants. What about the rest of you, though? How do you plan on keeping your waifu well-oiled and happy? Do you plan on using entirely dry lubricants, liquids/gels, or a mixture?
>>25807 Regardless of what you decide upon, we all look forward to your continued posts, GTA. Cheers. :^)
>>25807 "...dry lubricants..." You know you can't get much cheaper than milk cartons. HDPE. Very slippery rubbing against each other and easily replaced cheaply. Try it, cut up a gallon milk jug and then rub the pieces together.
>>25807 >Since I'm taking the plushbot approach, and thus every joint is going to be directly interacting with fabric in some capacity You should probably consider taking the no-lube approach. Any lubricant you might use will eventually work it's way out to the fabric skin, making a mess, so graphite would be the worst choice . This includes the PLA dust that will be created if there are no "bearings" to reduce friction. Sealed roller or ball-bearings are made so that they can be used in dirty environments and come pre-lubed, so no addition lubrication is necessary, or possible. Some materials are very slippery, like Teflon, but there are other materials that are very slippery together like brass and stainless steel. They have been used in ink-type printers since the dot-matrix era, sometimes lubed, sometimes not. I used brass sleeve bearings from old printers to replace the crappy bearings that came with my 3D printer and the print quality went up noticeably. They glide over those stainless rods. Similarly, you could use stainless rod and brass tube (K+S stock) to make your own bearings for finger joints (my plan) for pennies each, no lube necessary.
Open file (52.45 KB 1000x1000 10001444046094.jpeg)
>>25933 theres also those orange goo lubricants you see in tiny motors for electronics like in toothbrushes, i dont know what it actually is but its definetly not dry or oil based its some goop that doesnt move no matter what but if you put an oil based lubricant on it its completely ruined
>>25935 also kinda off topic but this has annoyed me since forever but what the hell gives wd40 its smell???? is it something they fking add intentionally cuz i swear if someone used wd40 on anything i can tell just by the smell its so damn distinct
>>25929 That might be good. I'm still working out the best way to go about things, but the shoulders in particular would go well with this, since the current concept has them as large disks (by necessity, since I've just about settled on mounting the motors directly to the shoulders, instead of deeper in the torso). Cutting out strips of HDPE and gluing them on there would be easy. >>25933 >no-lube If I go that approach, then tension-held ball joints won't really be an option anymore (I know I mentioned hinges, but I was planning on putting them where ball joints wouldn't work). The reason I want ball-joints is to simplify the joint design and decrease the number of parts (at the cost of precision, which is acceptable for me). I'll consider it. Switching back to hinges for the legs won't be a marrive problem, but I'll have to completely redesign the head base into something more complicated if I abandon the ball jointed approach there. >>25936 They might be using an additive, much like how gas companies will dope propane (which has no odor) to give it that distinct smell so you can tell if there's a gas leak. It wouldn't surprise me at all if there's some law saying that potentially dangerous industrial chemicals have to come with a strong and repulsive smell. In fact, some of those aerosol cans might have propane in them, since propane is a common refridgerant.
>>25938 >Cutting out strips of HDPE and gluing them on there would be easy. HDPE is really hard to glue but it will melt in a regular oven. Make a mold and you can shape them however you want. Make a socket with tabs to hold it in place. Take your time to let it melt into place and don't burn it. To make a mold you could use paper mache or modeling clay to make a positive. Then cover with plaster of paris for the mold to melt the HDPE in to. use a little Vaseline or olive oil for release. You could do this real cheap.
>>25938 >tension-held ball joints won't really be an option anymore With HDPE melted in a mold you couldmake some steel wire frame supports that are comletely covered by the plastic. The wire provides support but HDPE is really strong by itself. Make the socket in pieces so it is clamped on the ball.
Guess this belong here https://www.dolldreaming.com/topic/17099-smart-doll-spine-repair/ Anyways i wanted to talk about the SPINE
>>27713 >Anyways i wanted to talk about the SPINE Since we're going for the humanoid form, then I'd suggest we attempt a design that biomimics the human spine. Vertebra, fascia & tensegrity, synovial lubrication, the works.
>>27714 I also came across this https://youtu.be/EUEp-AfvvzE?si=55z6gYhuqOF-MssM Maybe combine the two and make the spheres+disc idk
>>27715 Yes, that a really nice design Anon: simple, clean, obvious mechanism. I also really like the 'multi-actuated' extension to the basic idea there at the end as well. Good find Peteblank, thanks! Cheers. :^)
> (concepts -related : >>27799, ...)
>>27713 This here is they way, I plan to go: https://youtu.be/mqrDYsjBjoY
Open file (336.70 KB 936x804 Cables and Pulleys.png)
A how-to project to learn about pulleys and cables for robotics. https://www.youtube.com/watch?v=uJiauHFUbn8
>>29565 Thanks. This is really interesting. Though, when I'm going to try this I will attempt to make the wheels smaller and maybe go with a double pulley (block and tackle) like here https://youtu.be/M2w3NZzPwOM?t=232 since I want the joints to be smaller. https://www.thingiverse.com/thing:6489553
Open file (1.88 MB 400x535 1709822134355594.gif)
> IK/FK -related
>>7631 (Sophie) >>30520 (prototyping threads) >>28970 (some project) https://youtu.be/alTuWe4o1CQ (Dara project) https://youtu.be/ROd1Acma64o (anatomy, ligaments) https://youtu.be/EDBwIrAo0do (drawing anatomy) https://youtu.be/yjZPexKpZI8 (foot bones) https://youtu.be/xSlnrPys43w (ankle prosthesis) https://youtu.be/ALdmo-DKebM (sting pull and spring) https://youtu.be/3VFliOgTZ2g (InMoov)
It might help for modelling something human-like and understanding it better. >This dynamic shoulder rotator cuff model is designed specifically to simulate shoulder dislocations and treatments but can be used for a range of clinical education applications. https://youtu.be/GVXmNw9ABjo >In this model, the humerus is held in place by a series of elastic cords that simulate the pull of rotator cuff muscles and ligaments. Tension on the elastics can be adjusted to simulate variability in rotator cuff integrity and support around the glenohumeral joint. >See here for instructions and 3D files: https://thangs.com/mythangs/file/64965
I saw someone modeling teeth. Thought I would comment here in skeleton. The old school, and cheap, way to make fake dental is acrylic. Here's one site, I have no financial interest in them I just found their products interesting. https://dental.keystoneindustries.com/product-category/dental-lab/acrylics/ You can search on ebay and elsewhere for "dental acrylic" and get a large assortment of different products. More upscale and tougher are the glass Isomers A link discussing them for actual teeth on humans but the same info would be good for robowaifus. https://www.oralhealthgroup.com/features/glass-ionomers-why-where-and-how/ They can be pricey but generic stuff is not so bad. Acrylic is likely the lowest cost and best, I think, but if you want more tooth looking realism I expect the glass isomer would be better.
>>32877 Hey, thanks, I think this was me. These were only meant as placeholders. But you can buy something like crowns. For example on AliExpress. I think the ones I saw there were pre-modelled. You still need the metal rods to put them on in the right place, so the placeholders could just get replaced by that.
> (skeleton kinematic-chain & motion-planning convo -related : >>32974, ... ) >=== -sp edit
Edited last time by Chobitsu on 08/24/2024 (Sat) 19:07:33.
I made a post on super strong structures called "Isogrids" but it's sort of in the wrong place. A link so that I'm not double posting. It has great utility not only in strength but a special form I linked is great for prototyping and production with less work or machinery needed. Good cost savings without sacrificing strength. >>34491 If you see the link imagine you made these quarter isogrids for bones and had hollow areas in them. Most of the strength would remain and you could channel wires, tubing, whatever through the holes.
>>34493 An idea for quick prototyping is to use cheap canvas cloth tarp. Lay this out on regular polyethylene sheets like you use for covering the floor in painting. Lay the canvas out and squeegee in titebond glue or regular elmers white glue. This makes a strong structure. Then you cut out the part/slats and cut slots in them. Connect and you have strong structures for super cheap. You could also cut out your structures first, stiffen with glue then use a cut off grinder to cut slots.
I mentioned leaving holes in the slats but you could also build the bones like hollow tanks. See the links in the above other thread. There's pictures of tanks make this way. They use them for missiles, rockets, etc. Saves a LOT of weight while gaining lots of strength.
> (topics-related: >>34509, >>34550 )

Report/Delete/Moderation Forms
Delete
Report